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Abstract—Deep neural networks (DNNs) are being applied
to various areas such as computer vision, autonomous vehicles,
and healthcare, etc. However, DNNs are notorious for their high
computational complexity and cannot be executed efficiently on
resource constrained Internet of Things (IoT) devices. Various
solutions have been proposed to handle the high computational
complexity of DNNs. Offloading computing tasks of DNNs from
IoT devices to cloud/edge servers is one of the most popular and
promising solutions. While such remote DNN services provided
by servers largely reduce computing tasks on IoT devices, it is
challenging for IoT devices to inspect whether the quality of
the service meets their service level objectives (SLO) or not.
In this paper, we address this problem and propose a novel
approach named QIS (quality inspection sampling) that can
efficiently inspect the quality of the remote DNN services for
IoT devices. To realize QIS, we design a new ID-generation
method to generate data (IDs) that can identify the serving DNN
models on edge servers. QIS inserts the IDs into the input data
stream and implements sampling inspection on SLO violations.
The experiment results show that the QIS approach can reliably
inspect, with a nearly 100% success rate, the service qualtiy of
remote DNN services when the SLA level is 99.9% or lower at
the cost of only up to 0.5% overhead.

Index Terms—Edge Computing, AloT, MLaaS, Cloud Com-
puting

I. INTRODUCTION

In recent years, deep neural networks (DNNs) are popular
in various areas such as computer vision [1]-[5], autonomous
vehicle [6], [7], and medical care [8]-[10]. A large number of
DNN models have been designed for different functions with
diverse performance requirements. As an example, many DNN
models have been developed in the area of computer vision for
image classification [1], [11]-[15], object detection [16]-[19],
and segmentation [10], [20]. Moreover, a function, e.g., image
classification in computer vision, can be realized by a col-
lection of DNN models with varying accuracy-computational-
complexity (Acc-O) tradeoff as shown in Fig. 1. For example,
the overall accuracy of AlexNet [11] on ImageNet dataset [21]
is only 70% of that of Inception-V3 [12]. However, the number
of operations, i.e., computational complexity O, of Inception-
V3 is over five times that of AlexNet. In most cases, DNN
models with higher computational complexity usually show
higher accuracy. Meanwhile, DNN models with higher com-
putational complexity cost more for execution. Specifically,
executing DNN models with higher computational complexity
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can affect two aspects: (1) higher execution latency: taking
a longer time to execute with the same computing capability
and the same amount of computing resources, and (2) higher
execution cost: spending more computing resources, e.g., like
computing cores of GPU and power consumption, to execute.
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Fig. 1: Comparison of Accuracy and Number of Operations over
Classification DNN Models [22].

Due to the high computational complexity of DNN models,
it is challenging for IoT devices to execute DNN models
on chip [23]-[25]. Under such a circumstance, remote DNN
services provide IoT devices with rich computing resources
on cloud/edge servers [23]-[26]. A basic remote DNN service
structure is shown in Fig. 2. An IoT device can send a
number of data (e.g., images) to a server for processing with
DNNs (e.g., image classification). The server processes each
datum with a DNN model (e.g., ResNet50 [1]) and sends the
corresponding result (e.g., a class label) back to the IoT device.
Such remote DNN services will be widely adopted in future
AloT era. For instance, IoT devices such as mobile phones,
surveillance cameras, and wireless sensors may stream a huge
amount of data (e.g., images, voices, etc.) to high-performance
edge/cloud servers for processing with DNNs. The accuracy of
DNN models will determine the Quality-of-Experience (QoE)
of users and/or safety operations of IoT devices.
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Fig. 2: Overview of the QIS Approach in a Remote DNN Service
System.
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Based on the development of DNN models and Machine-
Learning-as-a-Service (MLaaS), we foresee that future remote
DNN services will possess the following features: (1) multiple
IoT devices share standardized DNN models to process their
data, (2) servers provide a collection of standardized DNN
models with different Acc-O tradeoffs (e.g., DNN models
compared in Fig. 1), and (3) remote DNN services should
maintain Service-Level-Agreement (SLA) between the service
provider and its users. As the accuracy of DNN models
determines the QoE and/or safety of IoT devices, we introduce
the accuracy-based Service-Level-Objective (SLO) as a part
of the SLA, which is the lower-boundary of DNN services’
accuracy. If a DNN model’s accuracy meets the accuracy-
based SLO, using the DNN model to serve the user will not
violate the SLA between the user and the service provider.
From users’ perspective, they expect servers to follow SLAs
and provide remote DNN services meeting their SLOs to
guarantee QoE and/or safety operations. However, to lower
execution costs and/or to serve more IoT devices, servers may
opportunistically switch to low-accuracy-low-computational-
complexity DNN models, e.g., switching from Inception-V3
to AlexNet, which leads to the violation of the SLAs.

Detecting violations against accuracy-based SLO is chal-
lenging because the outputs of a DNN model usually contain
no information about the model. Taking image classification
as an example, an IoT device cannot figure out what DNN
model was used to process an image purely based on the
received class label, e.g., Water Ouzel as shown in Fig. 2.
Alhough some machine learning verification approaches can
verify a machine learning model based on cryptography, these
approaches show high computational complexity and are only
proven to work on relatively simple machine learning models
such as support vector machine [27], shallow neural networks
[27], [28], logistic regression [27], and k-Nearest Neighbor
[27]. However, as multiple DNN models may be used during
a remote DNN service session [23], [29], a low-cost approach
to simultaneously identify multiple DNN models rather than
to verify only one DNN model [30] is necessary to effec-
tively inspect accuracy-based SLO violations. Thus, instead
of focusing on the malicious attack against integrity of DNN
models on servers [27], [28], [30], the focus of this paper is
on inspecting the violation of the accuracy-based SLO caused
by the DNN model switching among a set of DNN models
with different Acc-O trade-offs in remote DNN services.

In this paper, we first develop an ID-generation method to
effectively generate IDs for identifying among a set of DNN
models. An ID is a specially-designed datum that can identify
different DNN models with 100% accuracy simultaneously.
Specifically, with an ID as input, different DNN models output
different results. An example of a generated ID is shown in
Fig. 3, the ID can identify {InceptionV3, MobileNet [13],
ResNet50, DenseNet [31], VGG16 [32]} trained on ImageNet
Dataset [21]. When receiving the corresponding result (output)
of the ID from a server, IoT devices can find which DNN
model was used to process the ID by looking up the table
shown in Fig. 3. In practice, the IDs can be generated using

the ID-generation method on a third-party platform that pro-
vides quality certification services for remote DNN services.
Besides, the IDs can also be generated locally on IoT devices
if they have sufficient computing resources. Note that the IDs
can be generated offline before a remote DNN service session
initializes, and our experiments show that the ID-generation
method can generate a huge number of IDs efficiently.
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Fig. 3: An Example of an ID Generated with ID-Generation Method.

Leveraging these IDs, we design a Quality Inspection
Sampling (QIS) approach to inspect accuracy-based SLO
violations as shown in Fig. 2. After a pool of IDs are
generated by using the ID-generation method, an IoT device
can acquire IDs from the pool and insert them into the
original input data sequence. Based on the results of the IDs,
the IoT device can identify which DNN model is currently
used by the server in the remote DNN service. In this way,
the QIS approach realizes inspection on accuracy-based SLO
violations. For example, assume that an IoT device requires
accuracy-based SLO to be higher than 0.78. With the QIS
approach, the IoT device receives “"Water Ouzel” as class label
of the ID. Since "Water Ouzel” corresponds to ResNet50 and
Acc(ResNet50)< 0.78, the IoT device detects the accuracy-
based SLO violation on the server. As servers are unaware of
which data from IoT devices are IDs, they cannot treat IDs
specially with high-accuracy DNN models. Our experiment
shows that the QIS approach can reliably inspect the service
qualtiy of remote DNN services when the SLA level is 99.9%
or lower at the cost of only up to 0.5% overhead.

The contributions of this paper are:

o To the best of our knowledge, this is the first paper
studying the service quality inspection method to ensure
the accuracy-based SLO in remote DNN services for IoT.

o We design an ID-generation method that can effectively
generate IDs to identify different DNN models running by
remote servers.

o« We develop the QIS approach for IoT devices to inspect
potential accuracy-based SLO violations on servers in
remote DNN services.

o We implemented the QIS approach and, through extensive
experiments, validate the effectiveness of the QIS approach
with almost zero overhead. We also evaluate the general-
izability and efficiency of the ID-generation method.

This paper consists of the following sections: Section II
briefly overviews features of remote DNN services. Section
IIT describes the ID-generation method. Section IV integrates
the ID-generation method into the QIS approach for service
quality inspection. Section V experimentally verifies the gen-
eralizability of the ID-generation method and the effectiveness
of the QIS approach. Section VI concludes the paper.
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II. FEATURES OF REMOTE DNN SERVICES

In this paper, we consider the remote DNN services that
provide IoT devices with standardized DNN models [23]-[25]
instead of requiring IoT devices to upload their customized
DNN models. Specifically, we assume that the remote DNN
services will have the following three features:

1) A set of standardized DNN models can be shared by
a number of IoT devices: Before launching the remote DNN
services, instead of training DNN models individually for each
IoT device, the standardized DNN models are trained with the
dataset from samples of all IoT devices [33]. For example,
multiple autonomous vehicles can share DNN models trained
by samples from the same city/area. Thus, instead of uploading
customized DNN models to a server by each IoT device,
servers use standardized DNN models to provide services
to IoT devices. In each service session, an IoT device only
needs send data to the remote server, and the server sends
the processing results back to the IoT device using one of the
standardized DNN models as shown in Fig. 2.

2) The DNN models exhibit diverse Acc-O tradeoffs: The
diversity of the Acc-O tradeoffs can be caused by either dif-
ferent architecture of the DNN models or varying DNN model
compression, e.g., pruning, in the model deployment [34]. For
IoT devices, selecting a high-accuracy-high-computational-
complexity DNN model leads to: (1) more reliable results as
overall accuracy of such a DNN model is usually higher, e.g.,
Inception-V3, and (2) a greater expense in the DNN service
because it consumes more computing resources on Servers.
For a server, serving an IoT device with a high-accuracy-
high-computational-complexity DNN model results in: (1) a
higher cost in execution, and (2) limited capability for serving
a large number of IoT devices. Thus, both IoT devices and
servers may adaptively select DNN models with different Acc-
O tradeoffs. Specifically, IoT devices may select DNN models
based on their accuracy, latency requirements, and budgets
[29], [35]. Servers may select DNN models when serving
an IoT device according to the number of active users and
execution costs [23].

3) The remote DNN services are charged based on SLAs:
A SLA consists of an accuracy-based SLO and consequences
upon the violation against the SLO. IoT devices propose SLO
when requesting remote DNN services to servers. In this
paper, the accuracy-based SLO is defined as lower-boundary
of accuracy of DNN services. On the one hand, a remote DNN
service with a higher SLO, i.e., a higher lower-boundary of
accuracy, cost more computing resources, and thus it charges
more for using the service. On the other hand, if a violation
against SLO happens with a high rate, e.g., > 0.1%, servers
are expected to pay service credits back to IoT devices. For
example, according to Amazon S3 SLA [36], users will be
paid by 10% service credits if the monthly uptime percentage
is less than 99.9% but greater than or equal to 99.0%. The
higher the violation rate, i.e., the lower the monthly uptime
percentage, is, the more service credits will be paid to users.

Fig. 2 demonstrates the architecture of the remote DNN
service systems. A set of candidate DNN models D.qndidate =

{dy,ds, ...,dyY} are deployed on a server. These DNN models
have different Acc-O trade-offs. Thus, servers can dynamically
switch among the models in D 4, didate during a remote DNN
service session with an IoT device. Switching the DNN model
affects accuracy of the DNN service. Once a remote DNN
service is established, we denote the sequence of input data as
X , and each element of X is denoted as Z;. The server uses
a DNN model d,, € Doandidate tO process an input datum z;,
and sends corresponding result d,, (Z;) back to the IoT device.
In general, a remote DNN service with higher accuracy-based
SLO requires more computing resources on servers.

Based on features of the remote DNN service systems, we
design the QIS approach to inspect SLO violation as shown
in Fig. 2. In the QIS approach, we first generate IDs that
can 100% identify DNN models of D.ypndidate With the ID-
generation method. Then, a selection of IDs (X ) are inserted
into the original sequence of input data (X). We denote the
hybrid input data sequence as X which contains both IDs and
the original input data. The IDs in X implement sampling
inspection against accuracy-based SLO violations on servers
for IoT devices.

III. ID-GENERATION METHOD

The workflow of the ID-generation method is shown in
Fig. 4. The target of ID-generation method is to generate
IDs that deviate the outputs of a number of DNN models
Deandidate = {d1,da,...,dx}. Thus, N different references
O,.; ={01,09,...,0n} can be preset and are utilized as the
desired outputs for N different DNN models of D.gndidate-
In other word, with an ID = as an input datum, the output of
DNN model d,, (n =1,2,..., N) is o,.

ID-Generation
Method
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Y1 = 01
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Fig. 4: Workflow of ID-Generation Method.

A. Problem Formulation

Definition 1. Given a number of candidate DNN models
Deandidate = 1d1,ds, ..., dn } and randomly selected N differ-
ent reference vectors O,.; = {01,029, ...,0n}, the generated
ID % is an input datum s.t.:

;V\ (4(@) = 0.

n=1

(D

Definition 1 can be further relaxed to Definition 2:

Definition 2. Given a number of candidate DNN models
Deandidate = 1di1,ds, ...,dN} and randomly selected N dif-
ferent reference vectors O,.; = {01,0,...,0n5}, Je € RT
and € << 1, such that the generated ID ¥ satisfies:
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}V\ (lldu(@) = ou| <) @)

where ||d,, (Z) — o, || refers to L1— Norm of vector (d,(z) —
on). B

The length of the output vector of DNN model d,, is denoted
as v, (n = 1,2,...,N). Each element in reference output
vector o,, is denoted as 0?, and each element in output vector
dn(z) is denoted as y7 (j = 1,2,...,v,). Then, the problem
of generating an ID can be formulated as:

N n
. Zn:l ( Z;:l
Ea N

s5.t.07 € Op,
Y7 € dn().

where Ho? - y;i refers to L1-Norm of (o} —y7'), which is the
same as that in Definition 2. In other word, Eq. 3 adopts mean
absolute error (MAE) to compute the objective function O. In
Section V, MAE based objective function will be compared
with other two types of loss functions, i.e., mean square error
(MSE) and cross entropy (CE). Since y;' is a function of &
according to Eq. 3, the objective function O of Eq. 3 is also
a function of x and the solution of Eq. 3 is to find optimal &
that minimizes the objective function O. In Section V, we will
show that Eq. 3 is solvable experimentally, and for an optimal
Z, € of Eq. 2 can be as small as 1073,

o
05 — Y

) 3)

B. ID-Generation Method

Gradient descent is a popular way to train DNN models and
to find solutions to optimization problems. Our ID-generation
method adopts gradient descent to find a solution to the
problem formulated in Eq. 3. Specifically, as shown in Fig. 4,
the ID-generation method takes a randomly initialized input
datum or a real-world input datum (e.g., a photo taken from
real-world) as initial input xg. At each iteration k, the ID-
generation method computes the gradient of the objective
function O of Eq. 3 to the input datum of current iteration
k, i.e. %—2| k. The datum z of current iteration k£ (denoted as
x(F)) is then modified based on %M:

.90
gD = 2B _ AL sign(——r) @

where A is called learning rate and is a hyper-parameter of
gradient descent, and sign(-) denotes the sign function. We
adopt sign(%u) rather than %M to accelerate the speed of
gradient descent. The ID-generation method iterates the above
procedure to modify an input datum x4 according to Eq. 4 until
every output d;(#) approximately equals to o;. In this way,
our ID-generation method generates a modified input datum
T, i.e., an ID, which satisfies Definition 2.

Details of the ID-generation method are described in Al-
gorithm 1. The first input of Algorithm 1 is an initial seed
input datum x(, which is used as the initial input datum for
the first iteration to calculate the first gradient. There is no

constraint on the contents of x(. It can be any input datum
from real-world, or manually constructed input datum as our
experiment shows in Section V. The second input of Algorithm
1 is a number of candidate DNN models D.gndidate =
{dy,dsy, ...,dyY}, which require a generated ID to identify one
another. The third input of Algorithm 1 is N randomly selected
reference output vectors O = {01, 02, ..., o }. The dimension
of reference output vector dim(o;) should be equal to the
dimension of output vector of corresponding DNN model
dim(d,), i.e. dim(o,) = dim(d,(z)),n = 1,2, ..., N. There
is no constraint on element values of reference output vectors
either. The forth input of Algorithm 1 is the learning rate
A as in Eq. 4. It is a hyper-parameter that controls the con-
verging speed of the ID-generation method, i.e., the number
of iterations to generate an ID. In general, A of a very small
value slows down the converging speed of gradient descent,
and A of a very large value may lead the algorithm to miss
optimal points. The selection of A is critical in controlling the
convergence speed and will be further discussed in Section V.
The fifth input of Algorithm 1 is another hyper-parameter e,
which is defined in Definition 2. The value of ¢ decides the
difference between d;(¥) and o;.

In Algorithm 1, line 3 to line 7 implements gradient descent
to generate an ID #. When d;(z%)) ~ o; at iteration K
(line 3), the loop stops iteration and outputs =) as Z (line
8). The function CompObj(x,0,d) computes the objective
function O%) of each iteration %k (line 10, 11). The function
CompObj(z,0,d) in Algorithm 1 adopts the same objective
function of Eq. 3. The function Speedup(G) takes the gradient
G(*) at iteration k as input and extracts the sign of G(*) (line
12 to line 14), i.e., if an element of G ) ig negative (positive),
then the corresponding output element of gf,’f Vs -1 (+1).

To learn which DNN model is running on servers, IoT
devices can send an ID z which is generated by the ID-
generation method. By searching the returned result dserver (7)
in 01,09,...,0n, the DNN model dgerper running on the
server can be identified. For example, an ID & shown in Fig.
3 is generated to identify five DNN models, i.e., InceptionV3,
MobileNet, ResNet50, DenseNet, and VGG16 corresponding
to the class labels of “Electric Ray”, “Brambling”, ~Water
Ouzel”, "Bullfrog”, and “Black Swan”, respectively. Thus, if
the analysis result of dge,yer () is “Brambling”, an IoT device
can identify that the serving DNN model on the remote server
is MobileNet.

IV. ACCURACY-BASED SLO AND QIS APPROACH

When an IoT device employs a DNN service from a remote
server, it expects to acquire a good-quality service. In general,
there could be two types of Service Level Indicators (SLI) in
remote DNN services: accuracy and latency. As we mainly
focus on accuracy-based SLO in this paper, we will first
define nominal accuracy which will be used as our SLI to
define accuracy-based SLO. Then we will define accuracy-
based SLO. Finally, we will describe our QIS approach which
utilizes IDs generated by the ID-generation method to inspect
accuracy-based SLO violations.
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Algorithm 1: ID-Generation Method
Input: zy < randomly initial seed input matrix;
Deandidate < candidate DNN models;
O < randomly selected reference vectors;
A <+ learning rate;
€ + threshold value of Hc?n(x) — On”
Output: © — ID.

Main Function:

Initialize: x < xz¢;

while \/_, (|d.(z) — 0, > €) do
O + CompObj(x,0,d);
G + 00/0x;
Gm <+ Speedup(G);
r—x—A -G

NN R W N -

8 T <4 .
9 Utility Functions
Function CompObj (z,0,d):

w0 [ 0= (Xl | )/
11 return O.
12 Function Speedup (G) :

13 L G < sign(G);

return G,,.

—
'S

A. Nominal Accuracy

In most cases, we reference the accuracy of a DNN model
d by the accuracy measured on validation dataset X,,,; given
corresponding ground-truth outputs to represent accuracy lev-
els of DNN models, i.e.

1 % J i a_ %
ACC(d) = Zwiexeval |)2np(l|(’r ) y(.’L‘ ))

®)

where Acc(J) represents accuracy of d, | Xevai| represents the
number of data in validation dataset, and §(x;) represents the
ground-truth of a datum z; in Xepq. Cmp(-,-) compares the
output of d and ground-truth of z;, e.g. Cmp(d(x;),y(x;))

can be equal to 1 if d(z;) is equal to g(x;) and to O if
d(x;) is not equal to (z;) in classification applications. The
accuracy values in Fig. 1 are measured on validation dataset
of ImageNet [21]. A straightforward observation is that a
DNN model with higher computational complexity O usually
shows higher accuracy. Thus, for any application, a set of N
candidate DNN models Deandgidate = {di,dz,...,dy} with
accuracy-computational-complexity (Acc-O) trade-off exists.
The DNN models in Dy didate can be either different archi-
tectures like DNN models in Fig. 1 or one architecture with
different compression (e.g., pruning) levels.

In a remote DNN service scenario, after establishing a DNN
service relationship with a server, an IoT device starts to send
data to the server for DNN processing like shown in Fig. 2. We
denote the time slot when streaming starts as ¢;, and the time
slot when streaming ends as ¢,. In most cases, these data can
be described as an L-length sequence within the streaming

period [t1,tr], where ¢; € [t; : t1] represents each time slot
of sending a datum z; from the IoT device to the server:

oL} (6)

However, for a datum z; € X[1 : L] and the corresponding
DNN model d®) processing it on the server, the accuracy
cannot be strictly calculated with Eq. 5 because no ground-
truth output of z; is given. Thus, we define nominal accuracy
for Va; € X[1: L] with Ace(d™)) calculated based on Eq. 5:

Acc™™) (1)) = Ace(d™) (7

In remote DNN services, the DNN models in D[1 : L] are
selected from D.,pndidate, 1.€.

d™ € Deandidate, VA € D[1 : L] (8)

X[l : L] = {.131,3327...

where DI[1 : L] represents the sequence of DNN models used
to process each datum of X1 : L]. For convenience, we will
call nominal accuracy as accuracy and use Acc to represent
Acc™™) in this paper, and Acc will be our SLI for defining
accuracy-based SLO.

B. Accuracy-Based SLO

In general, IoT devices can set a lower-boundary Acc of
accuracy for processing each datum in X[1 : L]:

d) > Ace, Vit € [ty : ty] ©)

We call the above inequality as accuracy-based SLO. Such
accuracy-based SLO still allows servers to dynamically assign
different DNN models as long as the accuracy values of
utilized DNN models are above Acc. For example, according
to Fig. 1, if an IoT device sets an accuracy-based SLO with
Acc of 0.7, then servers can utilize ResNet34, ResNet50,
and InceptionV3 to serve the IoT device without violating
accuracy-based SLO while servers cannot utilize ResNetl8
or AlexNet to serve the IoT device as the accuracy of these
DNN models are below 0.7. In reality, IoT devices may even
vary the value of Acc based on different QoE and/or safety
requirements during a DNN service session. Once an IoT
device changes Ace, there will be different subsets of DNN
models in Dypndidate that are forbidden from serving the
IoT device on servers. Further, SLA can be made based on
accuracy-based SLO. For example, if a server utilizes DNN
models that violate accuracy-based SLO at a rate of over 0.1%
or higher during a remote DNN service session with an IoT
device, it will reimburse some percentage of the fee back to
the IoT device.

C. QIS approach

The QIS approach is composed of three steps:

Step 1: Generating IDs Given D.qndidate, IDs can be
generated with the ID-generation method. Besides identifying
each DNN model of D.gndidate, IDs should satisfy: (1) IDs
are in the same size as other input data & € X , such that IDs
cannot be figured out by servers. (2) IDs can be generated as
many as possible. The first requirement prevents servers from
processing IDs specially with high-accuracy DNN models.
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The second requirement prevents servers from receiving an
ID repeatedly and identifying the ID by comparison with the
historical record of received data.

Step 2: Inserting IDs into original input data sequence X
After initializing a remote DNN service, an IoT device can
insert K different IDs X = {Z1,Za,...,Tx} into original
input data sequence X. We denote the hybrid data sequence
as X[1 : L], which contains both X and X. IoT devices
know specifically the index positions of IDs in X[1 : L] but
servers are unaware of which of them are IDs. We denote the
indexes of IDs in X1 : L] as a set of integers {z1, 22, ..., 2K }
where 21 < z9 < ...zg. Thus, an IoT device can learn what
type of DNN model is used for processing each datum of
{Z.,,%2y, ..., T, }, and the DNN model sequence is denoted
as {d.,,doy, .y dzy )

Step 3: Inspecting accuracy-based SLO violations Inspect-
ing accuracy-based SLO violations through the QIS approach
is straightforward, i.e., when an IoT device finds that:

3k € [1, K], s.t.Acc(d,,) < Acc (10)

the IoT device can confirm that the server violates accuracy-
based SLO because Eq. 9 is no longer satisfied. In Eq. 10,
Ace(d,,) is calculated by Eq. 5. In Section V, we will see
that our QIS approach can effectively inspect accuracy-based
SLO violations that happen at a rate of 0.1% or above.

V. EXPERIMENT

In this section, the performance of the ID-generation method
and the QIS approach is evaluated via extensive experiments.

A. Computational Cost of ID-Generation Method

To study the computational cost of the ID-Generation
Method, we set up our experiment on a computer with
NVIDIA GeForce RTX 2070 and the CUDA version is 10.0.
We use Pytorch 1.2.0 deep learning framework. For experi-
ments, we use pre-trained DNN models for classification as
Deandidate- These models are pre-trained on ImageNet dataset
[21] which contains 1000 classes. We randomly select different
class (label) as output reference, i.e., o; in Algorithm 1,
for each DNN model of D_.gndaidate- We utilize a softmax-
layer at the end of each candidate DNN model to normalize
outputs to a 1000-length confidence vector, and each element
of the confidence vector is between 0 and 1. In this way,
we can convert an output reference of a label to a 1000-
length confidence vector. For example, if we select an output
reference of a label as “tiger shark”, then the corresponding
1000-length confidence vector is a vector with the fourth
element as 1 and all the other elements as 0. With these 1000-
length confidence vectors as reference outputs, we can utilize
the ID-generation method in Algorithm 1 with Eq. 2 and Eq.
3, in which we set ¢ = 0.001.

In Fig. 5 (a), we show how learning rate (i.e., A in
Algorithm 1) affects the number of iterations of Algorithm
1 in generating an ID. Fig. 5 (b) shows the effect of loss
function formula (i.e., CompObj(x, 0,d) in Algorithm 1) on
the number of iterations. Fig. 5 (c) and (d) further study the
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Fig. 5: Computational Cost of ID-Generation Method: (a) Number
of Iterations vs. Learning Rate, (b) Number of Iterations vs. Loss
Function, (c) Number of Iterations vs. Number of Candidate DNNs,
(d) Number of Iterations vs. Datasets of Initial Images.

generalizability of the ID-generation method across a different
number of candidate DNN models and various initial seed
input images.

1) Learning Rate: We first use five classification DNN
models for the study of learning rate. The five DNN mod-
els are Inception-V3, ResNet50, ResNet34, ResNetl8, and
AlexNet. As shown in Fig. 1, we have Acc(Inception—V3) >
Acc(ResNet50) > Acc(ResNet34) > Acc(ResNetl8) >
Acc(AlexNet), and O(Inception—V3) > O(ResNet50) >
O(ResNet34) > O(ResNetl8) > O(AlexNet). Thus,
these five DNN models are with Acc-O trade-off. We
randomly select five different labels as reference out-

puts of an ID, ie., Orpception—vs = Electric Ray”,
OResNets50 = Brambling”, ogesnetsa = Water Ouzel”,
OResNet1s = Bullfrog”, oajesner = Black Swan”, which

means that an ID is expected to be classified to a different
label by different DNN models. We vary learning rate A
in Algorithm 1 from 1 to 20 as shown in Fig. 5 (a). For
images, the learning rate A represents the pixel value change
(can be either +A or —A, which depends on the sign of
gradient as shown in line 13 of Algorithm 1) per iteration,
e.g., A = 10 represents that the pixel value changes by 10
per iteration. The test takes ImageNet Validation Dataset [21]
as initial input images xg, which contains 50,000 images.
We record the maximum number, average number, and the
minimum number of iterations for each learning rate value
over the 50,000 images. We can see that all the 50,000 initial
images can be modified by the ID-generation method to an
ID that can be classified to a different label by different DNN
models with learning rate from 1 to 20. As shown in Fig. 5
(a), a small pixel value change per iteration (i.e., A) leads
to a large number of iterations to find an optimal output
(generating an ID). For example, with learning rate of 1, the
number of iterations to generate an ID can be as high as 190,
even almost 50 on average. On the other hand, a large pixel
value change per iteration tends to increase the number of
iterations to find an optimal output. For example, the number
of iterations keeps increasing with the increase of learning rate
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from 10 to 20. We can also find that small pixel value change
leads to a large range of number of iterations. For example,
with learning rate of 1, the maximum number of iterations is
190 and the minimum number of iterations is only 10. With
learning rate of 10, it shows the smallest range of number
of iterations, i.e., the maximum number of iterations is 55
and the minimum number of iterations is 14. Moreover, the
average number of iterations is 30 with learning rate of 10.
The learning rate from 6 to 10 shows a very similar average
number of iterations. We finally select learning rate of 10 in
the following experiments because it shows the most stable
and relatively small number of iterations with the ImageNet
validation dataset as initial images.

2) Loss Function: In Algorithm 1, we use Mean-Absolute-
Error (MAE), i.e., L-1 Norm in line 10 of Algorithm 1. In
Fig. 5(b), we compare the loss function of MAE with two
other types of loss function formula, i.e., Mean-Square-Error
(MSE) and Cross-Entropy (CE). Again, the test is over 50,000
images of ImageNet Validation Dataset as initial images z,
and the candidate DNN models are the same as the test of
Learning Rate. We can see that all the 50,000 initial images
can be modified by the ID-generation method to an ID that
can be classified to a different label by different DNN models
with all the three types of loss functions. We find that MAE
shows the best performance compared with the other two. And
MSE shows the highest number of iterations to generate an
ID. Thus, it is reasonable to adopt MAE (L-1 Norm) in the
ID-generation method.

3) Number of Candidate DNNs: To further verify the
generalizability of our ID-generation method, we study
across different numbers of candidate DNNs with set-
tings of learning rate as 10 and loss function as
MAE. Specifically, we use the set of {Inception-V3,
ResNet18} as 2-candidate-DNN case, the set of {Inception-
V3, ResNet34, ResNetl18} as 3-candidate-DNN case, the set
of {Inception-V3, ResNet50, ResNet34, ResNetl8} as 4-
candidate-DNN case, the set of {Inception-V3, ResNet50,
ResNet34, ResNetl8, AlexNet} as 5-candidate-DNN case,
the set of {Inception-V3, ResNet50, ResNet34, ResNetl8,
AlexNet, MobileNet-V2} as 6-candidate-DNN case, the set
of {Inception-V3, ResNet50, ResNet34, ResNet18, AlexNet,
MobileNet-V2, SqueezeNet} as 7-candidate DNNs case,
the set of {Inception-V3, ResNet50, ResNet34, ResNetl8,
AlexNet, MobileNet-V2, SqueezeNet, ShuffleNet} as 8-
candidate DNNs case. And we randomly select different labels
as reference outputs of an ID, i.e., 0ryception—v3 = Electric
OResNetso ~ = Brambling”, Opgesnetsa = Water
Ouzel”, oresnet1is = Bullfrog”, oajexner = Black Swan”,
OMobileNet—v2 = lebetan terrier”, ogqueezeNet = Academic
Gown”, ospuffienet = One-Armed Bandit”, which means
that an ID is expected to be classified to a different label by
different DNN models. In Fig. 5(c), we can see that all the
50,000 initial images can be modified by the ID-generation
method to an ID that can be classified to a different label
by different DNN models for all the seven sets of candidate
DNN models. With the increase of the number of candidate

DNN models to identify, the number of iterations to generate
an ID also increases. For example, it takes only 12 iterations
on average to generate an ID for the 2-candidate-DNNSs case,
and it takes 55 iterations on average to generate an ID for the
8-candidate-DNN case.

4) Datasets of Initial Input Images: We also verify the
generalizability of our ID-generation method regarding initial
images. We test on five datasets, i.e., ImageNet [21], Food101
[37], UA-DETRAC [38], COCO [39], and PASCAL [40].
Moreover, we generated 1,000 images with each pixel value
randomly generated between 0 and 255, which is denoted as
”Random” in Fig. 5(d). The learning rate is 10 and the loss
function is MAE. And the candidate DNN models are the
same as the tests of Learning Rate and Loss Function. In
Fig. 5(d), we can see that the average number of iterations
with all the six datasets of initial images is between 25 and
30, and the maximum number of iterations is between 40
and 60. Thus, we infer from the experimental results that the
ID-generation method does not constrain the space of initial
images. For images as input, the ID-generation method can
modify any natural images taken from real-world to IDs, or
any artificial images generated. For example, given the input
image size of (224 x 224 x 3), ID-generation method can
generate IDs from all 256159528 images. As reference outputs
can be randomly selected, for each initial image, more than one
ID can be generated given different reference outputs. On the
other hand, the experimental results also show the efficiency in
generating an ID compared with searching for an ID directly
among 256'°%°28 images in brute force.

With our testbed, we find that, for the case of 5 candidate
DNN models, the latency per iteration is around 26ms. Thus,
for 5 candidate DNN models, it takes less than 0.8s on average
to generate an ID (as the average number of iteration is 30).
To conclude, we can see that our ID-generation method is
highly robust against hyper-parameter settings (e.g., learning
rate and loss function). Moreover, the ID generation method
can generate IDs with a wide range of initial images. With
appropriate hyper-parameter settings, we can generate IDs
with any initial images efficiently. The experiment shows
that our ID-generation method can generate IDs as many as
possible efficiently, and the generated ID can identify different
DNN models in D.gndidate With 100% accuracy as long as
the reference output (e.g., labels in classification) of each
DNN model in D.gpngidate 15 selected differently from one
another. One note is that, though our experiment shows results
on image classification models, the ID-generation method can
also be utilized to other types of DNNs.

B. Success Rate of QIS Approach

As an ID can identify different DNN models in D.gndidate
with 100% accuracy, the success rate of inspecting accuracy-
based SLO violations is purely determined by Step 2 and Step
3 of the QIS approach. Specifically, IoT devices can decide
how many IDs to insert and where to insert them into the
original input data sequence X. In our experiment, we use the
checking rate (CR) to represent the average ratio of the number
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of IDs over the total number of input data. For example,
CR = 0.01 represents that there is one ID inserted per 100
input data, and C'R = 0.005 represents that there is one ID
inserted per 200 input data. For a fixed length of an input data
sequence, the lower the C'R is, the fewer the number of IDs is
inserted. We assume that IoT devices can insert an ID at any
position of input data sequence independently with the same
probability of C'R. Thus, the insertion of IDs follows Poisson
Distribution P(C'R), where C'R is the average number of IDs
per unit time (per input datum). With P(C'R), we can generate
traces of hybrid data sequence X1 : L]. Specifically, we select
five different C R values, i.e., 0.01, 0.005, 0.001, 0.0005, and
0.0001. For each C'R value, we generate 1000 traces of hybrid
data sequence X1 : 100000] of 100,000 input data (including
IDs). In other words, given a C'R value, the number of IDs
in X[1 : 100000] can be estimated by C'R - 100000. For
example, given C'R = 0.0001, there are roughly 10 IDs in
X1 : 100000].

To evaluate the success rate of the generated hybrid data se-
quence, we assume that the probability of the server switching
to DNN models that do not satisfy Eq. 9 also follows Poisson
Distribution P(\). Specifically, we assume that A vary from
0.0001 to 0.001 by a step of 0.0001 as shown in x-axis of
Fig. 6. A = 0.0001 means that accuracy-based SLO violation
happens once per 10,000 input data on average and A = 0.001
means that accuracy-based SLO violation happens once per
1,000 input data on average. Moreover, we test with different
length [ = 1,10, 20,30 (number of sequential input data) of
accuracy-based SLO violations. For example, if [ = 10 and
accuracy-based SLO violation happens on processing the k-th
input datum, then the input data from the k-th to the (k+9)-th
will be processed by a DNN model that does not satisfy Eq.
9. As any ID can identify the type of DNN model with 100%
accuracy, an IoT device can successfully inspect accuracy-
based SLO violations of Eq. 10 if at least one ID is sent
during accuracy-based SLO violation happening on the server,
i.e., at least one ID is between the k-th input datum and the
(k+1—1)-th given k is one of the positions where accuracy-
based SLO violation starts to happen. As long as a one-time
slot of accuracy-based SLO violation event is inspected by
an ID, an IoT device can confirm that the server violates
accuracy-based SLO, which can be regarded as a successful
inspection. For each [ and A, we also generate 1,000 traces of
DNN model sequence D[1 : 100000]. Thus, the success rate
is the ratio of the number of successful inspection events over
1,000 times of tests.

Fig. 6(a) shows the success rate of inspection to average
violation happening rate (\) in case of [ = 1, which means
that violation happens discretely per input datum processing.
With the increase of checking rate (i.e., higher ID insertion
frequency), the success rate also increases. Given a checking
rate of 0.01 (i.e., one ID inserted per 100 input data), the QIS
approach can inspect violation against SLA level of 99.95%
with almost 100% success rate (the rate of accuracy-based
SLO violation is over 0.05%). Given a checking rate of 0.005
(i.e., one ID inserted per 200 input data), the QIS approach
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Fig. 6: Success Rate of the QIS Approach vs. Rate of Accuracy-
Based SLO Violation: (a) Discrete SLO Violation, (b) Length of SLO
Violation is 10, (c) Length of SLO Violation is 20, (d) Length of SLO
Violation is 20.

can inspect violation against SLA level of 99.91% with almost
100% success rate (the rate of accuracy-based SLO violation is
over 0.09%). In general, the QIS approach with a checking rate
of 0.005 can successfully inspect violations against SLA level
of 99.9%. Fig. 6(b) shows the success rate of inspection against
average violation happening rate (\) in case of [ = 10, which
means that once violation happens, it will keep on processing
10 input data in sequence. As more input data are processed
by illegal DNN models that do not satisfy Eq. 10, the QIS
approach can inspect violations with lower checking rate. In
general, the QIS approach with a checking rate of 0.0005 (i.e.,
one ID inserted per 2,000 input data) can successfully inspect
violations against SLA level of 99.9%. Further, in case of
Il = 20 (Fig. 6(c)), the QIS approach with a checking rate
of 0.0005 (i.e., one ID inserted per 2,000 input data) can
successfully inspect violations against SLA level of 99.95%.
And in case of [ = 30 (Fig. 6(d)), the QIS approach with a
checking rate of 0.0005 (i.e., one ID inserted per 2,000 input
data) can successfully inspect violations against SLA level of
99.96%.

Note that we test on a sequence of 100,000 input data. For
example, if an IoT device sends images to a server with 30FPS,
then it will send over 100,000 images to the server within one
hour. Thus, our QIS approach can successfully inspect the
service qualtiy of remote DNN services when the SLA level
is 99.9% or lower within an hour.

VI. CONCLUSION

In this paper, we have presented a quality inspection sam-
pling approach for remote DNN services and developed an ID-
generation method. The ID-generation method can generate
IDs to identify a set of DNN models with 100% accuracy.
Experiments show that a huge number of IDs can be efficiently
generated with low computational consumption locally or on a
third-party platform that provides quality certification services
for remote DNN services. Given a pool of IDs generated by
the ID-generation method, the QIS approach randomly selects
several IDs from the pool. By inserting these IDs randomly
into the sending data sequence, the QIS approach can reliably
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inspect the service qualtiy of remote DNN services when the
SLA level is 99.9% or lower at the cost of only up to 0.5%
overhead.
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