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Abstract—Deep neural networks (DNNs) are being applied
to various areas such as computer vision, autonomous vehicles,
and healthcare, etc. However, DNNs are notorious for their high
computational complexity and cannot be executed efficiently on
resource constrained Internet of Things (IoT) devices. Various
solutions have been proposed to handle the high computational
complexity of DNNs. Offloading computing tasks of DNNs from
IoT devices to cloud/edge servers is one of the most popular and
promising solutions. While such remote DNN services provided
by servers largely reduce computing tasks on IoT devices, it is
challenging for IoT devices to inspect whether the quality of
the service meets their service level objectives (SLO) or not.
In this paper, we address this problem and propose a novel
approach named QIS (quality inspection sampling) that can
efficiently inspect the quality of the remote DNN services for
IoT devices. To realize QIS, we design a new ID-generation
method to generate data (IDs) that can identify the serving DNN
models on edge servers. QIS inserts the IDs into the input data
stream and implements sampling inspection on SLO violations.
The experiment results show that the QIS approach can reliably
inspect, with a nearly 100% success rate, the service qualtiy of
remote DNN services when the SLA level is 99.9% or lower at
the cost of only up to 0.5% overhead.

Index Terms—Edge Computing, AIoT, MLaaS, Cloud Com-
puting

I. INTRODUCTION

In recent years, deep neural networks (DNNs) are popular

in various areas such as computer vision [1]–[5], autonomous

vehicle [6], [7], and medical care [8]–[10]. A large number of

DNN models have been designed for different functions with

diverse performance requirements. As an example, many DNN

models have been developed in the area of computer vision for

image classification [1], [11]–[15], object detection [16]–[19],

and segmentation [10], [20]. Moreover, a function, e.g., image

classification in computer vision, can be realized by a col-

lection of DNN models with varying accuracy-computational-

complexity (Acc-O) tradeoff as shown in Fig. 1. For example,

the overall accuracy of AlexNet [11] on ImageNet dataset [21]

is only 70% of that of Inception-V3 [12]. However, the number

of operations, i.e., computational complexity O, of Inception-

V3 is over five times that of AlexNet. In most cases, DNN

models with higher computational complexity usually show

higher accuracy. Meanwhile, DNN models with higher com-

putational complexity cost more for execution. Specifically,

executing DNN models with higher computational complexity

can affect two aspects: (1) higher execution latency: taking

a longer time to execute with the same computing capability

and the same amount of computing resources, and (2) higher

execution cost: spending more computing resources, e.g., like

computing cores of GPU and power consumption, to execute.

Fig. 1: Comparison of Accuracy and Number of Operations over
Classification DNN Models [22].

Due to the high computational complexity of DNN models,

it is challenging for IoT devices to execute DNN models

on chip [23]–[25]. Under such a circumstance, remote DNN

services provide IoT devices with rich computing resources

on cloud/edge servers [23]–[26]. A basic remote DNN service

structure is shown in Fig. 2. An IoT device can send a

number of data (e.g., images) to a server for processing with

DNNs (e.g., image classification). The server processes each

datum with a DNN model (e.g., ResNet50 [1]) and sends the

corresponding result (e.g., a class label) back to the IoT device.

Such remote DNN services will be widely adopted in future

AIoT era. For instance, IoT devices such as mobile phones,

surveillance cameras, and wireless sensors may stream a huge

amount of data (e.g., images, voices, etc.) to high-performance

edge/cloud servers for processing with DNNs. The accuracy of

DNN models will determine the Quality-of-Experience (QoE)

of users and/or safety operations of IoT devices.

Fig. 2: Overview of the QIS Approach in a Remote DNN Service
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Based on the development of DNN models and Machine-

Learning-as-a-Service (MLaaS), we foresee that future remote

DNN services will possess the following features: (1) multiple

IoT devices share standardized DNN models to process their

data, (2) servers provide a collection of standardized DNN

models with different Acc-O tradeoffs (e.g., DNN models

compared in Fig. 1), and (3) remote DNN services should

maintain Service-Level-Agreement (SLA) between the service

provider and its users. As the accuracy of DNN models

determines the QoE and/or safety of IoT devices, we introduce

the accuracy-based Service-Level-Objective (SLO) as a part

of the SLA, which is the lower-boundary of DNN services’

accuracy. If a DNN model’s accuracy meets the accuracy-

based SLO, using the DNN model to serve the user will not

violate the SLA between the user and the service provider.

From users’ perspective, they expect servers to follow SLAs

and provide remote DNN services meeting their SLOs to

guarantee QoE and/or safety operations. However, to lower

execution costs and/or to serve more IoT devices, servers may

opportunistically switch to low-accuracy-low-computational-

complexity DNN models, e.g., switching from Inception-V3

to AlexNet, which leads to the violation of the SLAs.

Detecting violations against accuracy-based SLO is chal-

lenging because the outputs of a DNN model usually contain

no information about the model. Taking image classification

as an example, an IoT device cannot figure out what DNN

model was used to process an image purely based on the

received class label, e.g., Water Ouzel as shown in Fig. 2.

Alhough some machine learning verification approaches can

verify a machine learning model based on cryptography, these

approaches show high computational complexity and are only

proven to work on relatively simple machine learning models

such as support vector machine [27], shallow neural networks

[27], [28], logistic regression [27], and k-Nearest Neighbor

[27]. However, as multiple DNN models may be used during

a remote DNN service session [23], [29], a low-cost approach

to simultaneously identify multiple DNN models rather than

to verify only one DNN model [30] is necessary to effec-

tively inspect accuracy-based SLO violations. Thus, instead

of focusing on the malicious attack against integrity of DNN

models on servers [27], [28], [30], the focus of this paper is

on inspecting the violation of the accuracy-based SLO caused

by the DNN model switching among a set of DNN models

with different Acc-O trade-offs in remote DNN services.

In this paper, we first develop an ID-generation method to

effectively generate IDs for identifying among a set of DNN

models. An ID is a specially-designed datum that can identify

different DNN models with 100% accuracy simultaneously.

Specifically, with an ID as input, different DNN models output

different results. An example of a generated ID is shown in

Fig. 3, the ID can identify {InceptionV3, MobileNet [13],

ResNet50, DenseNet [31], VGG16 [32]} trained on ImageNet

Dataset [21]. When receiving the corresponding result (output)

of the ID from a server, IoT devices can find which DNN

model was used to process the ID by looking up the table

shown in Fig. 3. In practice, the IDs can be generated using

the ID-generation method on a third-party platform that pro-

vides quality certification services for remote DNN services.

Besides, the IDs can also be generated locally on IoT devices

if they have sufficient computing resources. Note that the IDs

can be generated offline before a remote DNN service session

initializes, and our experiments show that the ID-generation

method can generate a huge number of IDs efficiently.

Fig. 3: An Example of an ID Generated with ID-Generation Method.

Leveraging these IDs, we design a Quality Inspection

Sampling (QIS) approach to inspect accuracy-based SLO

violations as shown in Fig. 2. After a pool of IDs are

generated by using the ID-generation method, an IoT device

can acquire IDs from the pool and insert them into the

original input data sequence. Based on the results of the IDs,

the IoT device can identify which DNN model is currently

used by the server in the remote DNN service. In this way,

the QIS approach realizes inspection on accuracy-based SLO

violations. For example, assume that an IoT device requires

accuracy-based SLO to be higher than 0.78. With the QIS

approach, the IoT device receives ”Water Ouzel” as class label

of the ID. Since ”Water Ouzel” corresponds to ResNet50 and

Acc(ResNet50)< 0.78, the IoT device detects the accuracy-

based SLO violation on the server. As servers are unaware of

which data from IoT devices are IDs, they cannot treat IDs

specially with high-accuracy DNN models. Our experiment

shows that the QIS approach can reliably inspect the service

qualtiy of remote DNN services when the SLA level is 99.9%

or lower at the cost of only up to 0.5% overhead.

The contributions of this paper are:

• To the best of our knowledge, this is the first paper

studying the service quality inspection method to ensure

the accuracy-based SLO in remote DNN services for IoT.

• We design an ID-generation method that can effectively

generate IDs to identify different DNN models running by

remote servers.

• We develop the QIS approach for IoT devices to inspect

potential accuracy-based SLO violations on servers in

remote DNN services.

• We implemented the QIS approach and, through extensive

experiments, validate the effectiveness of the QIS approach

with almost zero overhead. We also evaluate the general-

izability and efficiency of the ID-generation method.

This paper consists of the following sections: Section II

briefly overviews features of remote DNN services. Section

III describes the ID-generation method. Section IV integrates

the ID-generation method into the QIS approach for service

quality inspection. Section V experimentally verifies the gen-

eralizability of the ID-generation method and the effectiveness

of the QIS approach. Section VI concludes the paper.
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II. FEATURES OF REMOTE DNN SERVICES

In this paper, we consider the remote DNN services that

provide IoT devices with standardized DNN models [23]–[25]

instead of requiring IoT devices to upload their customized

DNN models. Specifically, we assume that the remote DNN

services will have the following three features:
1) A set of standardized DNN models can be shared by

a number of IoT devices: Before launching the remote DNN

services, instead of training DNN models individually for each

IoT device, the standardized DNN models are trained with the

dataset from samples of all IoT devices [33]. For example,

multiple autonomous vehicles can share DNN models trained

by samples from the same city/area. Thus, instead of uploading

customized DNN models to a server by each IoT device,

servers use standardized DNN models to provide services

to IoT devices. In each service session, an IoT device only

needs send data to the remote server, and the server sends

the processing results back to the IoT device using one of the

standardized DNN models as shown in Fig. 2.
2) The DNN models exhibit diverse Acc-O tradeoffs: The

diversity of the Acc-O tradeoffs can be caused by either dif-

ferent architecture of the DNN models or varying DNN model

compression, e.g., pruning, in the model deployment [34]. For

IoT devices, selecting a high-accuracy-high-computational-

complexity DNN model leads to: (1) more reliable results as

overall accuracy of such a DNN model is usually higher, e.g.,

Inception-V3, and (2) a greater expense in the DNN service

because it consumes more computing resources on servers.

For a server, serving an IoT device with a high-accuracy-

high-computational-complexity DNN model results in: (1) a

higher cost in execution, and (2) limited capability for serving

a large number of IoT devices. Thus, both IoT devices and

servers may adaptively select DNN models with different Acc-
O tradeoffs. Specifically, IoT devices may select DNN models

based on their accuracy, latency requirements, and budgets

[29], [35]. Servers may select DNN models when serving

an IoT device according to the number of active users and

execution costs [23].
3) The remote DNN services are charged based on SLAs:

A SLA consists of an accuracy-based SLO and consequences

upon the violation against the SLO. IoT devices propose SLO

when requesting remote DNN services to servers. In this

paper, the accuracy-based SLO is defined as lower-boundary

of accuracy of DNN services. On the one hand, a remote DNN

service with a higher SLO, i.e., a higher lower-boundary of

accuracy, cost more computing resources, and thus it charges

more for using the service. On the other hand, if a violation

against SLO happens with a high rate, e.g., > 0.1%, servers

are expected to pay service credits back to IoT devices. For

example, according to Amazon S3 SLA [36], users will be

paid by 10% service credits if the monthly uptime percentage

is less than 99.9% but greater than or equal to 99.0%. The

higher the violation rate, i.e., the lower the monthly uptime

percentage, is, the more service credits will be paid to users.
Fig. 2 demonstrates the architecture of the remote DNN

service systems. A set of candidate DNN models Dcandidate =

{d̄1, d̄2, ..., d̄N} are deployed on a server. These DNN models

have different Acc-O trade-offs. Thus, servers can dynamically

switch among the models in Dcandidate during a remote DNN

service session with an IoT device. Switching the DNN model

affects accuracy of the DNN service. Once a remote DNN

service is established, we denote the sequence of input data as

X̂ , and each element of X̂ is denoted as x̂i. The server uses

a DNN model d̄n ∈ Dcandidate to process an input datum x̂i,

and sends corresponding result d̄n(x̂i) back to the IoT device.

In general, a remote DNN service with higher accuracy-based

SLO requires more computing resources on servers.

Based on features of the remote DNN service systems, we

design the QIS approach to inspect SLO violation as shown

in Fig. 2. In the QIS approach, we first generate IDs that

can 100% identify DNN models of Dcandidate with the ID-

generation method. Then, a selection of IDs (X̃) are inserted

into the original sequence of input data (X̂). We denote the

hybrid input data sequence as X which contains both IDs and

the original input data. The IDs in X implement sampling

inspection against accuracy-based SLO violations on servers

for IoT devices.

III. ID-GENERATION METHOD

The workflow of the ID-generation method is shown in

Fig. 4. The target of ID-generation method is to generate

IDs that deviate the outputs of a number of DNN models

Dcandidate = {d̄1, d̄2, ..., d̄N}. Thus, N different references

Oref = {o1,o2, ...,oN} can be preset and are utilized as the

desired outputs for N different DNN models of Dcandidate.

In other word, with an ID x̃ as an input datum, the output of

DNN model d̄n (n = 1, 2, ..., N) is on.

Fig. 4: Workflow of ID-Generation Method.

A. Problem Formulation

Definition 1. Given a number of candidate DNN models
Dcandidate = {d̄1, d̄2, ..., d̄N} and randomly selected N differ-
ent reference vectors Oref = {o1,o2, ...,oN}, the generated
ID x̃ is an input datum s.t.:

N∧
n=1

(
d̄n(x̃) = on

)
(1)

Definition 1 can be further relaxed to Definition 2:

Definition 2. Given a number of candidate DNN models
Dcandidate = {d̄1, d̄2, ..., d̄N} and randomly selected N dif-
ferent reference vectors Oref = {o1,o2, ...,oN}, ∃ε ∈ �+

and ε << 1, such that the generated ID x̃ satisfies:
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N∧
n=1

(∥∥d̄n(x̃)− on
∥∥ < ε

)
(2)

where
∥∥d̄n(x̃)− on

∥∥ refers to L1−Norm of vector (d̄n(x̃)−
on).

The length of the output vector of DNN model d̄n is denoted

as vn (n = 1, 2, ..., N). Each element in reference output

vector on is denoted as onj , and each element in output vector

d̄n(x) is denoted as ynj (j = 1, 2, ..., vn). Then, the problem

of generating an ID can be formulated as:

min
x̃

∑N
n=1

(∑vn
j=1

∥∥∥onj − ynj

∥∥∥
)

N
(3)

s.t.onj ∈ on,
ynj ∈ d̄n(x).

where
∥∥∥onj − ynj

∥∥∥ refers to L1-Norm of (onj −ynj ), which is the

same as that in Definition 2. In other word, Eq. 3 adopts mean

absolute error (MAE) to compute the objective function O. In

Section V, MAE based objective function will be compared

with other two types of loss functions, i.e., mean square error

(MSE) and cross entropy (CE). Since ynj is a function of x̃
according to Eq. 3, the objective function O of Eq. 3 is also

a function of x and the solution of Eq. 3 is to find optimal x̃
that minimizes the objective function O. In Section V, we will

show that Eq. 3 is solvable experimentally, and for an optimal

x̃, ε of Eq. 2 can be as small as 10−3.

B. ID-Generation Method

Gradient descent is a popular way to train DNN models and

to find solutions to optimization problems. Our ID-generation

method adopts gradient descent to find a solution to the

problem formulated in Eq. 3. Specifically, as shown in Fig. 4,

the ID-generation method takes a randomly initialized input

datum or a real-world input datum (e.g., a photo taken from

real-world) as initial input x0. At each iteration k, the ID-

generation method computes the gradient of the objective

function O of Eq. 3 to the input datum of current iteration

k, i.e. ∂O
∂x |k. The datum x of current iteration k (denoted as

x(k)) is then modified based on ∂O
∂x |k:

x(k+1) = x(k) −Δ · sign(∂O
∂x

|k) (4)

where Δ is called learning rate and is a hyper-parameter of

gradient descent, and sign(·) denotes the sign function. We

adopt sign(∂O∂x |k) rather than ∂O
∂x |k to accelerate the speed of

gradient descent. The ID-generation method iterates the above

procedure to modify an input datum x0 according to Eq. 4 until

every output d̄i(x̃) approximately equals to oi. In this way,

our ID-generation method generates a modified input datum

x̃, i.e., an ID, which satisfies Definition 2.
Details of the ID-generation method are described in Al-

gorithm 1. The first input of Algorithm 1 is an initial seed

input datum x0, which is used as the initial input datum for

the first iteration to calculate the first gradient. There is no

constraint on the contents of x0. It can be any input datum

from real-world, or manually constructed input datum as our

experiment shows in Section V. The second input of Algorithm

1 is a number of candidate DNN models Dcandidate =
{d̄1, d̄2, ..., d̄N}, which require a generated ID to identify one

another. The third input of Algorithm 1 is N randomly selected

reference output vectors O = {o1,o2, ...,oN}. The dimension

of reference output vector dim(oi) should be equal to the

dimension of output vector of corresponding DNN model

dim(d̄n), i.e. dim(on) = dim(d̄n(x)), n = 1, 2, ..., N . There

is no constraint on element values of reference output vectors

either. The forth input of Algorithm 1 is the learning rate
Δ as in Eq. 4. It is a hyper-parameter that controls the con-

verging speed of the ID-generation method, i.e., the number

of iterations to generate an ID. In general, Δ of a very small

value slows down the converging speed of gradient descent,

and Δ of a very large value may lead the algorithm to miss

optimal points. The selection of Δ is critical in controlling the

convergence speed and will be further discussed in Section V.

The fifth input of Algorithm 1 is another hyper-parameter ε,
which is defined in Definition 2. The value of ε decides the

difference between d̄i(x̃) and oi.
In Algorithm 1, line 3 to line 7 implements gradient descent

to generate an ID x̃. When d̄i(x
(K)) ≈ oi at iteration K

(line 3), the loop stops iteration and outputs x(K) as x̃ (line

8). The function CompObj(x,o, d̄) computes the objective

function O(k) of each iteration k (line 10, 11). The function

CompObj(x,o, d̄) in Algorithm 1 adopts the same objective

function of Eq. 3. The function Speedup(G) takes the gradient

G(k) at iteration k as input and extracts the sign of G(k) (line

12 to line 14), i.e., if an element of G(k) is negative (positive),

then the corresponding output element of G(k)
m is −1 (+1).

To learn which DNN model is running on servers, IoT

devices can send an ID x̃ which is generated by the ID-

generation method. By searching the returned result d̄server(x̃)
in o1,o2, ...,oN , the DNN model d̄server running on the

server can be identified. For example, an ID x̃ shown in Fig.

3 is generated to identify five DNN models, i.e., InceptionV3,

MobileNet, ResNet50, DenseNet, and VGG16 corresponding

to the class labels of ”Electric Ray”, ”Brambling”, ”Water

Ouzel”, ”Bullfrog”, and ”Black Swan”, respectively. Thus, if

the analysis result of d̄server(x̃) is ”Brambling”, an IoT device

can identify that the serving DNN model on the remote server

is MobileNet.

IV. ACCURACY-BASED SLO AND QIS APPROACH

When an IoT device employs a DNN service from a remote

server, it expects to acquire a good-quality service. In general,

there could be two types of Service Level Indicators (SLI) in

remote DNN services: accuracy and latency. As we mainly

focus on accuracy-based SLO in this paper, we will first

define nominal accuracy which will be used as our SLI to

define accuracy-based SLO. Then we will define accuracy-

based SLO. Finally, we will describe our QIS approach which

utilizes IDs generated by the ID-generation method to inspect

accuracy-based SLO violations.
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Algorithm 1: ID-Generation Method

Input: x0 ← randomly initial seed input matrix;

Dcandidate ← candidate DNN models;

O ← randomly selected reference vectors;

Δ ← learning rate;

ε ← threshold value of
∥∥d̄n(x)− on

∥∥
Output: x̃ → ID.

1 ————————-Main Function————————-
2 Initialize: x ← x0;
3 while

∨N
n=1(

∥∥d̄n(x)− on
∥∥ ≥ ε) do

4 O ← CompObj(x,o, d̄);
5 G ← ∂O/∂x;
6 Gm ← Speedup(G);
7 x ← x−Δ · Gm;
8 x̃ ← x.
9 ————————Utility Functions————————
Function CompObj(x,o, d̄):

10 O ← ∑N
n=1

(∑vn
j=1

∥∥∥onj − ynj

∥∥∥
)
/N ;

11 return O.

12 Function Speedup(G):
13 Gm ← sign(G);
14 return Gm.

A. Nominal Accuracy

In most cases, we reference the accuracy of a DNN model

d̄ by the accuracy measured on validation dataset Xeval given

corresponding ground-truth outputs to represent accuracy lev-

els of DNN models, i.e.

Acc(d̄) =

∑
xi∈Xeval

Cmp
(
d̄(xi), ȳ(xi)

)

|Xeval| (5)

where Acc(d̄) represents accuracy of d̄, |Xeval| represents the

number of data in validation dataset, and ȳ(xi) represents the

ground-truth of a datum xi in Xeval. Cmp(·, ·) compares the

output of d̄ and ground-truth of xi, e.g. Cmp(d̄(xi), ȳ(xi))
can be equal to 1 if d̄(xi) is equal to ȳ(xi) and to 0 if

d̄(xi) is not equal to ȳ(xi) in classification applications. The

accuracy values in Fig. 1 are measured on validation dataset

of ImageNet [21]. A straightforward observation is that a

DNN model with higher computational complexity O usually

shows higher accuracy. Thus, for any application, a set of N
candidate DNN models Dcandidate = {d̄1, d̄2, ..., d̄N} with

accuracy-computational-complexity (Acc-O) trade-off exists.

The DNN models in Dcandidate can be either different archi-

tectures like DNN models in Fig. 1 or one architecture with

different compression (e.g., pruning) levels.

In a remote DNN service scenario, after establishing a DNN

service relationship with a server, an IoT device starts to send

data to the server for DNN processing like shown in Fig. 2. We

denote the time slot when streaming starts as t1, and the time

slot when streaming ends as tL. In most cases, these data can

be described as an L-length sequence within the streaming

period [t1, tL], where tl ∈ [t1 : tL] represents each time slot

of sending a datum xl from the IoT device to the server:

X[1 : L] = {x1, x2, ..., xL} (6)

However, for a datum xl ∈ X[1 : L] and the corresponding

DNN model d(tl) processing it on the server, the accuracy

cannot be strictly calculated with Eq. 5 because no ground-

truth output of xl is given. Thus, we define nominal accuracy
for ∀xl ∈ X[1 : L] with Acc(d(tl)) calculated based on Eq. 5:

Acc(nom)(xl) = Acc(d(tl)) (7)

In remote DNN services, the DNN models in D[1 : L] are

selected from Dcandidate, i.e.

d(tl) ∈ Dcandidate, ∀d(tl) ∈ D[1 : L] (8)

where D[1 : L] represents the sequence of DNN models used

to process each datum of X[1 : L]. For convenience, we will

call nominal accuracy as accuracy and use Acc to represent

Acc(nom) in this paper, and Acc will be our SLI for defining

accuracy-based SLO.

B. Accuracy-Based SLO

In general, IoT devices can set a lower-boundary Ācc of

accuracy for processing each datum in X[1 : L]:

d(tl) ≥ Ācc, ∀tl ∈ [t1 : tL] (9)

We call the above inequality as accuracy-based SLO. Such

accuracy-based SLO still allows servers to dynamically assign

different DNN models as long as the accuracy values of

utilized DNN models are above Ācc. For example, according

to Fig. 1, if an IoT device sets an accuracy-based SLO with

Ācc of 0.7, then servers can utilize ResNet34, ResNet50,

and InceptionV3 to serve the IoT device without violating

accuracy-based SLO while servers cannot utilize ResNet18

or AlexNet to serve the IoT device as the accuracy of these

DNN models are below 0.7. In reality, IoT devices may even

vary the value of Ācc based on different QoE and/or safety

requirements during a DNN service session. Once an IoT

device changes Ācc, there will be different subsets of DNN

models in Dcandidate that are forbidden from serving the

IoT device on servers. Further, SLA can be made based on

accuracy-based SLO. For example, if a server utilizes DNN

models that violate accuracy-based SLO at a rate of over 0.1%

or higher during a remote DNN service session with an IoT

device, it will reimburse some percentage of the fee back to

the IoT device.

C. QIS approach

The QIS approach is composed of three steps:

Step 1: Generating IDs Given Dcandidate, IDs can be

generated with the ID-generation method. Besides identifying

each DNN model of Dcandidate, IDs should satisfy: (1) IDs

are in the same size as other input data x̂ ∈ X̂ , such that IDs

cannot be figured out by servers. (2) IDs can be generated as

many as possible. The first requirement prevents servers from

processing IDs specially with high-accuracy DNN models.

2020 17th IEEE International Conference on Sensing, Communication and Networking (SECON)

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 22,2020 at 18:48:23 UTC from IEEE Xplore.  Restrictions apply. 



The second requirement prevents servers from receiving an

ID repeatedly and identifying the ID by comparison with the

historical record of received data.

Step 2: Inserting IDs into original input data sequence X̂
After initializing a remote DNN service, an IoT device can

insert K different IDs X̃ = {x̃1, x̃2, ..., x̃K} into original

input data sequence X̂ . We denote the hybrid data sequence

as X[1 : L], which contains both X̂ and X̃ . IoT devices

know specifically the index positions of IDs in X[1 : L] but

servers are unaware of which of them are IDs. We denote the

indexes of IDs in X[1 : L] as a set of integers {z1, z2, ..., zK},

where z1 < z2 < ...zK . Thus, an IoT device can learn what

type of DNN model is used for processing each datum of

{xz1 , xz2 , ..., xzK}, and the DNN model sequence is denoted

as {dz1 , dz2 , ..., dzK}.

Step 3: Inspecting accuracy-based SLO violations Inspect-

ing accuracy-based SLO violations through the QIS approach

is straightforward, i.e., when an IoT device finds that:

∃k ∈ [1,K], s.t.Acc(dzk) < Ācc (10)

the IoT device can confirm that the server violates accuracy-

based SLO because Eq. 9 is no longer satisfied. In Eq. 10,

Acc(dzk) is calculated by Eq. 5. In Section V, we will see

that our QIS approach can effectively inspect accuracy-based

SLO violations that happen at a rate of 0.1% or above.

V. EXPERIMENT

In this section, the performance of the ID-generation method

and the QIS approach is evaluated via extensive experiments.

A. Computational Cost of ID-Generation Method

To study the computational cost of the ID-Generation

Method, we set up our experiment on a computer with

NVIDIA GeForce RTX 2070 and the CUDA version is 10.0.

We use Pytorch 1.2.0 deep learning framework. For experi-

ments, we use pre-trained DNN models for classification as

Dcandidate. These models are pre-trained on ImageNet dataset

[21] which contains 1000 classes. We randomly select different

class (label) as output reference, i.e., oi in Algorithm 1,

for each DNN model of Dcandidate. We utilize a softmax-

layer at the end of each candidate DNN model to normalize

outputs to a 1000-length confidence vector, and each element

of the confidence vector is between 0 and 1. In this way,

we can convert an output reference of a label to a 1000-

length confidence vector. For example, if we select an output

reference of a label as ”tiger shark”, then the corresponding

1000-length confidence vector is a vector with the fourth

element as 1 and all the other elements as 0. With these 1000-

length confidence vectors as reference outputs, we can utilize

the ID-generation method in Algorithm 1 with Eq. 2 and Eq.

3, in which we set ε = 0.001.

In Fig. 5 (a), we show how learning rate (i.e., Δ in

Algorithm 1) affects the number of iterations of Algorithm

1 in generating an ID. Fig. 5 (b) shows the effect of loss

function formula (i.e., CompObj(x,o, d̄) in Algorithm 1) on

the number of iterations. Fig. 5 (c) and (d) further study the

Fig. 5: Computational Cost of ID-Generation Method: (a) Number
of Iterations vs. Learning Rate, (b) Number of Iterations vs. Loss
Function, (c) Number of Iterations vs. Number of Candidate DNNs,
(d) Number of Iterations vs. Datasets of Initial Images.

generalizability of the ID-generation method across a different

number of candidate DNN models and various initial seed

input images.

1) Learning Rate: We first use five classification DNN

models for the study of learning rate. The five DNN mod-

els are Inception-V3, ResNet50, ResNet34, ResNet18, and

AlexNet. As shown in Fig. 1, we have Acc(Inception−V 3) >
Acc(ResNet50) > Acc(ResNet34) > Acc(ResNet18) >
Acc(AlexNet), and O(Inception−V 3) > O(ResNet50) >
O(ResNet34) > O(ResNet18) > O(AlexNet). Thus,

these five DNN models are with Acc-O trade-off. We

randomly select five different labels as reference out-

puts of an ID, i.e., oInception−V 3 =”Electric Ray”,

oResNet50 =”Brambling”, oResNet34 =”Water Ouzel”,

oResNet18 =”Bullfrog”, oAlexNet =”Black Swan”, which

means that an ID is expected to be classified to a different

label by different DNN models. We vary learning rate Δ
in Algorithm 1 from 1 to 20 as shown in Fig. 5 (a). For

images, the learning rate Δ represents the pixel value change

(can be either +Δ or −Δ, which depends on the sign of

gradient as shown in line 13 of Algorithm 1) per iteration,

e.g., Δ = 10 represents that the pixel value changes by 10

per iteration. The test takes ImageNet Validation Dataset [21]

as initial input images x0, which contains 50,000 images.

We record the maximum number, average number, and the

minimum number of iterations for each learning rate value

over the 50,000 images. We can see that all the 50,000 initial

images can be modified by the ID-generation method to an

ID that can be classified to a different label by different DNN

models with learning rate from 1 to 20. As shown in Fig. 5

(a), a small pixel value change per iteration (i.e., Δ) leads

to a large number of iterations to find an optimal output

(generating an ID). For example, with learning rate of 1, the

number of iterations to generate an ID can be as high as 190,

even almost 50 on average. On the other hand, a large pixel

value change per iteration tends to increase the number of

iterations to find an optimal output. For example, the number

of iterations keeps increasing with the increase of learning rate
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from 10 to 20. We can also find that small pixel value change

leads to a large range of number of iterations. For example,

with learning rate of 1, the maximum number of iterations is

190 and the minimum number of iterations is only 10. With

learning rate of 10, it shows the smallest range of number

of iterations, i.e., the maximum number of iterations is 55

and the minimum number of iterations is 14. Moreover, the

average number of iterations is 30 with learning rate of 10.

The learning rate from 6 to 10 shows a very similar average

number of iterations. We finally select learning rate of 10 in

the following experiments because it shows the most stable

and relatively small number of iterations with the ImageNet

validation dataset as initial images.

2) Loss Function: In Algorithm 1, we use Mean-Absolute-

Error (MAE), i.e., L-1 Norm in line 10 of Algorithm 1. In

Fig. 5(b), we compare the loss function of MAE with two

other types of loss function formula, i.e., Mean-Square-Error

(MSE) and Cross-Entropy (CE). Again, the test is over 50,000

images of ImageNet Validation Dataset as initial images x0,

and the candidate DNN models are the same as the test of

Learning Rate. We can see that all the 50,000 initial images

can be modified by the ID-generation method to an ID that

can be classified to a different label by different DNN models

with all the three types of loss functions. We find that MAE

shows the best performance compared with the other two. And

MSE shows the highest number of iterations to generate an

ID. Thus, it is reasonable to adopt MAE (L-1 Norm) in the

ID-generation method.

3) Number of Candidate DNNs: To further verify the

generalizability of our ID-generation method, we study

across different numbers of candidate DNNs with set-

tings of learning rate as 10 and loss function as

MAE. Specifically, we use the set of {Inception-V3,

ResNet18} as 2-candidate-DNN case, the set of {Inception-

V3, ResNet34, ResNet18} as 3-candidate-DNN case, the set

of {Inception-V3, ResNet50, ResNet34, ResNet18} as 4-

candidate-DNN case, the set of {Inception-V3, ResNet50,

ResNet34, ResNet18, AlexNet} as 5-candidate-DNN case,

the set of {Inception-V3, ResNet50, ResNet34, ResNet18,

AlexNet, MobileNet-V2} as 6-candidate-DNN case, the set

of {Inception-V3, ResNet50, ResNet34, ResNet18, AlexNet,

MobileNet-V2, SqueezeNet} as 7-candidate DNNs case,

the set of {Inception-V3, ResNet50, ResNet34, ResNet18,

AlexNet, MobileNet-V2, SqueezeNet, ShuffleNet} as 8-

candidate DNNs case. And we randomly select different labels

as reference outputs of an ID, i.e., oInception−V 3 =”Electric

Ray”, oResNet50 =”Brambling”, oResNet34 =”Water

Ouzel”, oResNet18 =”Bullfrog”, oAlexNet =”Black Swan”,

oMobileNet−V 2 =”Tebetan terrier”, oSqueezeNet =”Academic

Gown”, oShuffleNet =”One-Armed Bandit”, which means

that an ID is expected to be classified to a different label by

different DNN models. In Fig. 5(c), we can see that all the

50,000 initial images can be modified by the ID-generation

method to an ID that can be classified to a different label

by different DNN models for all the seven sets of candidate

DNN models. With the increase of the number of candidate

DNN models to identify, the number of iterations to generate

an ID also increases. For example, it takes only 12 iterations

on average to generate an ID for the 2-candidate-DNNs case,

and it takes 55 iterations on average to generate an ID for the

8-candidate-DNN case.

4) Datasets of Initial Input Images: We also verify the

generalizability of our ID-generation method regarding initial

images. We test on five datasets, i.e., ImageNet [21], Food101

[37], UA-DETRAC [38], COCO [39], and PASCAL [40].

Moreover, we generated 1,000 images with each pixel value

randomly generated between 0 and 255, which is denoted as

”Random” in Fig. 5(d). The learning rate is 10 and the loss

function is MAE. And the candidate DNN models are the

same as the tests of Learning Rate and Loss Function. In

Fig. 5(d), we can see that the average number of iterations

with all the six datasets of initial images is between 25 and

30, and the maximum number of iterations is between 40

and 60. Thus, we infer from the experimental results that the

ID-generation method does not constrain the space of initial

images. For images as input, the ID-generation method can

modify any natural images taken from real-world to IDs, or

any artificial images generated. For example, given the input

image size of (224 × 224 × 3), ID-generation method can

generate IDs from all 256150,528 images. As reference outputs

can be randomly selected, for each initial image, more than one

ID can be generated given different reference outputs. On the

other hand, the experimental results also show the efficiency in

generating an ID compared with searching for an ID directly

among 256150,528 images in brute force.

With our testbed, we find that, for the case of 5 candidate

DNN models, the latency per iteration is around 26ms. Thus,

for 5 candidate DNN models, it takes less than 0.8s on average

to generate an ID (as the average number of iteration is 30).

To conclude, we can see that our ID-generation method is

highly robust against hyper-parameter settings (e.g., learning

rate and loss function). Moreover, the ID generation method

can generate IDs with a wide range of initial images. With

appropriate hyper-parameter settings, we can generate IDs

with any initial images efficiently. The experiment shows

that our ID-generation method can generate IDs as many as

possible efficiently, and the generated ID can identify different

DNN models in Dcandidate with 100% accuracy as long as

the reference output (e.g., labels in classification) of each

DNN model in Dcandidate is selected differently from one

another. One note is that, though our experiment shows results

on image classification models, the ID-generation method can

also be utilized to other types of DNNs.

B. Success Rate of QIS Approach

As an ID can identify different DNN models in Dcandidate

with 100% accuracy, the success rate of inspecting accuracy-

based SLO violations is purely determined by Step 2 and Step
3 of the QIS approach. Specifically, IoT devices can decide

how many IDs to insert and where to insert them into the

original input data sequence X̂ . In our experiment, we use the

checking rate (CR) to represent the average ratio of the number
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of IDs over the total number of input data. For example,

CR = 0.01 represents that there is one ID inserted per 100

input data, and CR = 0.005 represents that there is one ID

inserted per 200 input data. For a fixed length of an input data

sequence, the lower the CR is, the fewer the number of IDs is

inserted. We assume that IoT devices can insert an ID at any

position of input data sequence independently with the same

probability of CR. Thus, the insertion of IDs follows Poisson

Distribution P (CR), where CR is the average number of IDs

per unit time (per input datum). With P (CR), we can generate

traces of hybrid data sequence X[1 : L]. Specifically, we select

five different CR values, i.e., 0.01, 0.005, 0.001, 0.0005, and

0.0001. For each CR value, we generate 1000 traces of hybrid

data sequence X[1 : 100000] of 100,000 input data (including

IDs). In other words, given a CR value, the number of IDs

in X[1 : 100000] can be estimated by CR · 100000. For

example, given CR = 0.0001, there are roughly 10 IDs in

X[1 : 100000].
To evaluate the success rate of the generated hybrid data se-

quence, we assume that the probability of the server switching

to DNN models that do not satisfy Eq. 9 also follows Poisson

Distribution P (λ). Specifically, we assume that λ vary from

0.0001 to 0.001 by a step of 0.0001 as shown in x-axis of

Fig. 6. λ = 0.0001 means that accuracy-based SLO violation

happens once per 10,000 input data on average and λ = 0.001
means that accuracy-based SLO violation happens once per

1,000 input data on average. Moreover, we test with different

length l = 1, 10, 20, 30 (number of sequential input data) of

accuracy-based SLO violations. For example, if l = 10 and

accuracy-based SLO violation happens on processing the k-th

input datum, then the input data from the k-th to the (k+9)-th
will be processed by a DNN model that does not satisfy Eq.

9. As any ID can identify the type of DNN model with 100%

accuracy, an IoT device can successfully inspect accuracy-

based SLO violations of Eq. 10 if at least one ID is sent

during accuracy-based SLO violation happening on the server,

i.e., at least one ID is between the k-th input datum and the

(k+ l− 1)-th given k is one of the positions where accuracy-

based SLO violation starts to happen. As long as a one-time

slot of accuracy-based SLO violation event is inspected by

an ID, an IoT device can confirm that the server violates

accuracy-based SLO, which can be regarded as a successful

inspection. For each l and λ, we also generate 1,000 traces of

DNN model sequence D[1 : 100000]. Thus, the success rate

is the ratio of the number of successful inspection events over

1,000 times of tests.

Fig. 6(a) shows the success rate of inspection to average

violation happening rate (λ) in case of l = 1, which means

that violation happens discretely per input datum processing.

With the increase of checking rate (i.e., higher ID insertion

frequency), the success rate also increases. Given a checking

rate of 0.01 (i.e., one ID inserted per 100 input data), the QIS

approach can inspect violation against SLA level of 99.95%

with almost 100% success rate (the rate of accuracy-based

SLO violation is over 0.05%). Given a checking rate of 0.005

(i.e., one ID inserted per 200 input data), the QIS approach

Fig. 6: Success Rate of the QIS Approach vs. Rate of Accuracy-
Based SLO Violation: (a) Discrete SLO Violation, (b) Length of SLO
Violation is 10, (c) Length of SLO Violation is 20, (d) Length of SLO
Violation is 20.

can inspect violation against SLA level of 99.91% with almost

100% success rate (the rate of accuracy-based SLO violation is

over 0.09%). In general, the QIS approach with a checking rate

of 0.005 can successfully inspect violations against SLA level

of 99.9%. Fig. 6(b) shows the success rate of inspection against

average violation happening rate (λ) in case of l = 10, which

means that once violation happens, it will keep on processing

10 input data in sequence. As more input data are processed

by illegal DNN models that do not satisfy Eq. 10, the QIS

approach can inspect violations with lower checking rate. In

general, the QIS approach with a checking rate of 0.0005 (i.e.,

one ID inserted per 2,000 input data) can successfully inspect

violations against SLA level of 99.9%. Further, in case of

l = 20 (Fig. 6(c)), the QIS approach with a checking rate

of 0.0005 (i.e., one ID inserted per 2,000 input data) can

successfully inspect violations against SLA level of 99.95%.

And in case of l = 30 (Fig. 6(d)), the QIS approach with a

checking rate of 0.0005 (i.e., one ID inserted per 2,000 input

data) can successfully inspect violations against SLA level of

99.96%.

Note that we test on a sequence of 100,000 input data. For

example, if an IoT device sends images to a server with 30FPS,

then it will send over 100,000 images to the server within one

hour. Thus, our QIS approach can successfully inspect the

service qualtiy of remote DNN services when the SLA level

is 99.9% or lower within an hour.

VI. CONCLUSION

In this paper, we have presented a quality inspection sam-

pling approach for remote DNN services and developed an ID-

generation method. The ID-generation method can generate

IDs to identify a set of DNN models with 100% accuracy.

Experiments show that a huge number of IDs can be efficiently

generated with low computational consumption locally or on a

third-party platform that provides quality certification services

for remote DNN services. Given a pool of IDs generated by

the ID-generation method, the QIS approach randomly selects

several IDs from the pool. By inserting these IDs randomly

into the sending data sequence, the QIS approach can reliably
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inspect the service qualtiy of remote DNN services when the

SLA level is 99.9% or lower at the cost of only up to 0.5%

overhead.
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