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ABSTRACT

Dynamic data such as hydraulic head and concentration data can be integrated into the groundwater flow and
contaminant transport model to improve its predictive ability for groundwater resource management and aquifer
remediation. Ensemble Smoother with Multiple Data Assimilation (ES-MDA) has gained popularity for data
assimilation in the field of hydrogeology, where aquifer parameters such as hydraulic conductivity are calibrated
by conditioning on observed dynamic data. The ES-MDA has an optimal solution if aquifer parameters follow a
multi-Gaussian distribution. However, fluvial deposits commonly exhibit a strong heterogeneity with channels
(i.e., connectivity). In other words, the hydraulic conductivity does not follow the multi-Gaussian distribution.
To deal with data assimilation in channelized aquifers, we propose to couple ES-MDA with deep learning.
Specifically, Generative Adversarial Networks (GAN), a deep learning algorithm, are used to re-parameterize the
channelized aquifer with a low-dimension latent variable. The ES-MDA is then used to update the latent variable
by assimilating dynamic data into the groundwater model. Synthetic studies of groundwater flow and con-
taminant transport models are used to demonstrate the proposed method. The results illustrate that the coupling
of GAN and ES-MDA is able to reconstruct the channel structures and reduce the uncertainty of hydraulic head

and contaminant concentration predictions.

1. Introduction

Groundwater plays an important role in water supply in many
places due to the scarcity and pollution of the groundwater. However,
with the increase in water consumption, the decline of groundwater
level and groundwater pollution seriously affect the substantiality of
water supply. It is of great significance for groundwater management
and aquifer remediation to understand the groundwater flow and
contaminant transport processes. The main challenge in predicting
groundwater flow and contaminant transport is the strong hetero-
geneity of the aquifer parameters. Data assimilation techniques provide
an avenue to integrate dynamic data such as hydraulic head and con-
centration into the groundwater flow and contaminant transport model
to estimate those aquifer parameters and reduce its uncertainty.
Therefore the updated parameters can be used to improve the pre-
dictive ability of the flow and transport model. In particular, the
Ensemble Kalman Filter (EnKF) proposed by Evensen (1994) is one of
the most efficient data assimilation methods and has been successfully
applied in many fields such as hydrogeology and petroleum
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engineering. For example, Chen and Zhang (2006) implemented the
EnKF to update the hydraulic conductivity by assimilating hydraulic
head data, and the influence of the ensemble size and observation
timings on the results were also evaluated. Liu et al. (2008) applied the
EnKF to investigate the flow and transport process at the Macro-Dis-
persion Experiment (MADE) site by simultaneously estimating multiple
parameters such as hydraulic conductivities and dispersivities, and the
results shown that the EnKF can be used to solve large-scale and non-
linear inverse problems. Li et al. (2012) applied the EnKF in a transient
groundwater flow and transport model to jointly estimate the hydraulic
conductivity and porosity using hydraulic head and concentration data,
and the results demonstrated that different types of data would help
characterize aquifer parameters and improve the flow and contaminant
transport predictions.

One drawback of the EnKF is that the recursive updates require
restarting the simulation at each time step, which makes it time-con-
suming. An alternative method to the EnKF is the Ensemble Smoother
(ES), which was proposed by Van and Evensen (1996). In this method,
all the observation data are assimilated simultaneously, which greatly
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Fig. 1. The stucture of GAN. z represents the latent space variables, G (z) indicates the image generated by the generator, ConvTranspose is the transposed con-

volutional layer, and Conv represents the convolutional layer.
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Fig. 2. Training image.

reduces the computational burden. Bailey and Bat (2010) applied the
ES to estimate the hydraulic conductivity by assimilating the hydraulic
head and groundwater return flow volume. Skjervheim et al. (2011)
employed the ES for history matching in petroleum engineering, and
the results indicated that the ES was able to significantly reduce the
simulation time and provide a flexible parameterization solution.
However, the ES only assimilates data once to achieve a globe update,
which might not be able to obtain a promising result that honors all the
observation data. Consequently, a series of iterative ensemble methods
have been proposed, for example, the iterative EnKF (Gu and Oliver,
2007) and the iterative ES (Chen and Oliver, 2012). Emerick and

Table 1
The architectures of generator and discriminator.
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Fig. 3. The reference hydraulic conductivities with boundary conditions. No
flow boundary on north and south, constant head on the west boundary and
constant flux on the east boundary. The red areas represent the channels with
high hydraulic conductivity and the blue background indicates low hydraulic
conductivity materials. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Reynolds (2013) proposed a new form of the Ensemble Soother with
Multiple Data Assimilation (ES-MDA), in which the same measured data
can be assimilated multiple times to reach a better result. Zhao et al.
(2017) coupled the ES-MDA with the common basis Discrete Cosine
Transform (DCT) to solve the history matching problem of the multi-
facies channelized reservoirs, and this study illustrated that the pro-
posed method was able to preserve the key geological features of prior

Generator

Discriminator

Input: 5 X 5 latent space z

Layer 1: ConvT2d, 5 k 2s 2p 1d, InsNorm2d, ReLU
Layer 2: ConvT2d, 5 k 2s 2p 1d, InsNorm2d, ReLU
Layer 3: ConvT2d, 5 k 2s 2p 1d, InsNorm2d, ReLU
Layer 4: ConvT2d, 5 k 2s 2p 1d, InsNorm2d, ReLU
Layer 5: ConvT2d, 5 k 2s 2p 1d, InsNorm2d, ReLU
Layer 6: ConvT2d, 5 k 1s 6p 3d, InsNorm2d, ReLU
Layer 7: ConvT2d, 5 k 1s 10p 5d, Tanh

Output: 129 X 129 image

Input: 129 X 129 image

Layer 1: Conv2d, 5 k 2s 2p 1d, InsNorm2d, LeakyReLU
Layer 2: Conv2d, 5 k 2s 2p 1d, InsNorm2d, LeakyReLU
Layer 3: Conv2d, 5 k 2s 2p 1d, InsNorm2d, LeakyReLU
Layer 4: Conv2d, 5 k 2s 2p 1d, InsNorm2d, LeakyReLU
Layer 5: Conv2d, 5 k 2s 2p 1d, Sigmoid

Output: 5 X 5 array
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Fig. 4. Well locations for 6 Scenarios. The circles represent the well locations.

Table 2
Scenario studies.

Scenario Ensemble size Conditioned heads Observation wells
1 100 X 0
2 100 v 1
3 100 v 5
4 100 v 5 (Larger spacing)
5 100 v 9
6 100 v 9 (Larger spacing)

models and reduce the uncertainty of reservoir description. Fokker
et al. (2016) applied ES-MDA to investigate the gas reservoir by as-
similating the line-of-sight radar measurements, and the results de-
monstrated that ES-MDA could significantly reduce the uncertainty of
parameter estimation. Evensen (2018) compared IES and ES-MDA with
standard ES, based on Bayes’ theorem, and this study revealed that
these three methods could produce the same result for linear models,
but iterative methods behave better in nonlinear situations. Also, in-
creasing the assimilation times will lead to a better result for ES-MDA.

Although ES-MDA is an efficient method for data assimilation, the
same problem still exists as the EnKF method. In other words, it has an
optimal solution if parameters and state variables follow a multi-
Gaussian distribution (Zhou et al., 2014). Many parameters and state
variables often do not have a multi-Gaussian distribution such as hy-
draulic conductivities in fluvial deposits. Inverse methods have been
proposed to deal with non-Gaussianity, such as the Markov Chain
Monte Carlo method (MCMC) (Oliver et al., 1997) and Gradual De-
formation Method (GDM) (Hu, 2000). Nevertheless, their drawbacks
might limit the implementation of these methods. For instance, the
MCMC method is computationally expensive because of a large number
of evaluation for the forward modeling (Kuczera et al., 2010). The
structure preservation capability of the GDM method is strongly influ-
enced by the number of realization chains (Le and Neetinger, 2002). In
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addition, if the prior is wrong, a reasonable structure might not be able
to be retrieved.

Attempts based on ES-MDA have been proposed to deal with the
issue of non-Gaussianity in data assimilation. Le et al. (2015) coupled
ES-MDA with multi-point statistics simulation (MPS) to estimate non-
Gaussian facies. In this study, ES-MDA was applied to update the per-
meability, and then the reservoir facies was regenerated by MPS, using
the average of the updated permeability through ensemble as soft data.
The results illustrated that the non-Gaussian facies could be re-
constructed by the proposed procedure. Zhao et al. (2017) combined
ES-MDA with a common basis discrete cosine transform and a reg-
ularization post-processing technique to deal with the three facies his-
tory matching problem. The results indicated that the proposed ap-
proach could significantly reduce the uncertainty of reservoir
characterization and preserve the key geological features. Kim et al.
(2018) proposed a combination of ES-MDA, DCT and iterative K-sin-
gular value decomposition (K-SVD) to estimate the permeability in a
channelized aquifer using synthetic examples, and the proposed algo-
rithm could capture the complex geological features of the gas re-
servoirs and provide plausible models to match the measured gas rate
and water rate.

In recent years, the successful applications of deep learning tech-
niques in many fields have proven its ability to handle multiple scales
and heterogeneous information (Marcais and de Dreuzy, 2017), which
provides an opportunity to cope with complex problems such as non-
Gaussianity in hydrogeological sciences. Mo et al. (2019) proposed an
autoregressive framework coupling convolutional encoder-decoder
network with iterative local updating ensemble smoother (ILUES)
(Zhang et al.,, 2018) to address the high-dimensional contaminant
transport inversion problem. Their results showed that this method is
able to identify the contaminant source and provide an accurate hy-
draulic conductivity field. Zhang et al. (2020) introduced a strategy to
use the deep learning technique to modify the updating process of en-
semble smoother, and the results illustrated that the proposed method
performed much better than the standard ES method in non-Gaussian
aquifers.

Deep learning with Generative Adversarial Networks (GAN), which
was introduced by Goodfellow et al. (2014), has been gaining popu-
larity in recent years. A variety of GANs have been proposed (e.g.,
Mirza and Osindero, 2014; Radford et al., 2015; Arjovsky et al., 2017).
For instance, Laloy et al. (2018) proposed a spatial GAN (SGAN) to
address the high dimensional inversion problems, and their work
showed that the inversion framework which combined SGAN and
MCMC could recover the complex geological features close to the true
models. Sun (2018) presented a state-parameter identification GAN
(SPID-GAN) which contains two pairs of generators and discriminators,
the results demonstrated that GAN performed well in identifying the
state-parameter bidirectional mappings. Janssens et al. (2020) applied
GAN to improve the resolution of Computed Tomography (CT) images,
and using the improved CT images as the input could lead to a better
result of fluid flow simulation and more realistic pore distribution.

In this paper, we propose to combine ES-MDA and deep learning
with GAN to deal with non-Gaussianity in flow and transport data as-
similation. Specifically, GAN will be used to reparameterize the high
dimensional non-Gaussian distributed hydraulic conductivity using a
low dimension latent variable. ES-MDA is then used to update the
variable in the latent space by assimilating dynamic data into ground-
water models. Besides the hydraulic head data that are commonly used
to characterize hydraulic conductivities, concentration data also are
jointly employed to identify the non-Gaussian parameters in this study.
The results demonstrate that the coupling of GAN and ES-MDA can
reconstruct the channel structures and reduce the uncertainty of si-
mulated hydraulic heads and contaminant plume. The rest of this paper
is organized as follows: the methods are explained in Section 2. Several
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Case 2

Case 4

Fig. 5. The locations of observation wells. The hydraulic head observation wells are shown in white circles, and the concentration observation wells are shown in

black circles.

Table 3
Solute transport.

Case Ensemble size Conditioned heads Conditioned concentrations
1 100 9 0

2 100 0 36

3 100 9 36

4 100 0 81

synthetic experiments are conducted in Section 3. Then, analyses and
discussions about the results are shown in Section 4. Finally, conclu-
sions are presented in Section 5.

2. Methodology
2.1. Forward modeling

The single phase groundwater flow equation can be expressed as
follows (Fetter, 2018):

3 oh 3 oh 3 dh dh
| Ko |+ —|Kpy== |+ —|Ku— |+ W= 5=
6x( ax) By( Way) 61( “az) ot '6))

where Ky, K,,, K, are the hydraulic conductivities along the x, y, and z
directions; h is the hydraulic head; W represents source and sink; S; is
the specific storage; x, y, and z represent the coordinates; t is time. This
equation is solved using the finite-difference method in which the
aquifer is divided into a number of cells and the head is calculated at
each node (Harbaugh et al., 2000).

The governing equation for solute transport can be described as
(Huang et al., 1998; Zheng and Wang, 1999):

M_ 3 ack 3 ack 3 ack
a= &(GD’C§) + 5(6Dy?) + a(@DZ;]
- 2lg.cr|—2lgce|-2]q,Ct|+ g, Ck+ TR
ax qx dy qy oz qz q: s n

where M is the solute content; t is time; 8 is the porosity of the medium;
Ck is the dissolved concentration of species k;D,, D,, and D, are the
hydrodynamic dispersion coefficients along the x, y, and z directions;
4> 4, and g, are the volumetric flow rates per unit of aquifer in three
directions; g, is the volumetric flow rate per unit volume of aquifer
representing fluid source and sinks; CF is the concentration of the
source or sink flux for species k;Y, R, is the chemical reaction term.

(2)

2.2. Generative adversarial networks

The structure of GAN is illustrated in Fig. 1, and the latent space z is
sampled from a uniform distribution (z~U (-1, 1)) as the input of the
generator. Then through a series of transposed convolutional layers, the
output image G(z) is generated. The generated image and a training
image are then sent to the discriminator. The discriminator consists of
several convolutional layers, and the output arrays will be labeled as
true or false. The task of the discriminator is to look at a given image
and return true if the image is sampled from the training image (the
image is “real”), or return false if the image was produced by the
generator (the image is “fake”). Based on the images of the generator
and the judgment of discriminator, the performance of the generator
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Fig. 6. The reference conductivity field cut from training image and locations of observation wells. The well locations are represented by the white circles.

and discriminator are improved using backpropagation. During
training, the generator and the discriminator are competing against
each other. The goal of the generator is to generate an image that can
fool the discriminator, and the discriminator needs to do its best to
distinguish whether the image is from real data or generated by the
generator. The data generated by the generator is x~P;(x;6), where 6
indicates the generator’s network parameters. The likelihood function
can be represented as:

L(G) = ﬁ PG (Xi;e]
i=1

The generator aims at make the distribution P; (x;0) close to the real
data distribution P;(x), and the solution is to maximize the likelihood
function. If we use 6* to indicate the values of 6 corresponding to the
maximum likelihood, then 6* can be represented as:

n
6* = argmax H PG(xi;QJ

3 i=1

3

(€3]

This equals to minimize the Kullback-Leibler (KL) divergence be-
tween Pi(x) and P;(x) (Arjovsky and Bottou, 2017):

Pr(x)
Pc) = jx' P (x)logPZ (x)dx

KL (PR

%)

Generally, the methods of GAN are to minimize the KL divergence
or the Jensen-Shannon (JS) divergence, and the governing equation of
GAN can be represented as the value function V (G, D) (Goodfellow
et al., 2014):

argminmgx 174 (G, D) = Eyx_py [logD (x)] + E,_p; [log (1 -D (G (z))) ]
G
(6)

This function is solved through consecutively optimizing the dis-
criminator and generator by minimizing the following equations:

LP = —E;_py[logD(x)] = E,_p;[log(1 — D(G(2)))] )

LY = B, _p;[log (1 = D(G(2)] (8

The structure of GAN used in this paper is similar to that used by
Laloy et al. (2018). The training data is extracted from the training
image shown in Fig. 2 (Laloy et al., 2018), and the architectures of
generator and discriminator are shown in Table 1. The batch size is 16,
and the learning rate is 0.001, the networks are trained for 100 epochs.
In the table, k represents the kernel size, s represents the stride, p re-
presents the zero-paddings, and d represents the dilation. The generator
is trained using 2D transposed convolution, and the activation functions
of the first 6 layers are ReLU. The final layer is another activation
function called Tanh, and InsNorm2d represents the instance normal-
ization. The discriminator is trained using 2D convolution, the activa-
tion functions of the first 4 layers are LeakyReLU(0.2), and the final
layer is a Sigmoid function.

2.3. Ensemble smoother with multiple data assimilation

In the ES-MDA, we mainly focus on the parameter estimation, and
the ES-MDA is used to update the parameters of the latent space z. The
parameter matrix at the ith step can be expressed as follows:
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Reference

1.00

0.00

-1.00
Scenario 1: Mean Scenario 2: Mean
1.00 3 1.00
0.50 0.50
0.00 0.00
-0.50 -0.50
-1.00 -1.00
Scenario 3: Mean
1.00 1.00
0.50 0.50
0.00 0.00
-0.50 -0.50
-1.00 -1.00
1.00 1.00
0.50 0.50
0.00 0.00
-0.50 -0.50
-1.00 -1.00
Fig. 7. The mean (logarithm) of conductivity for different scenarios.
Zy Zyp t Zip d=F(k)+ e (10)
_ Z1 Z vt Zyp
L where d is a vector containing Ny simulated data, such as the hydraulic
Zm1 Zm2 *t Zmn 9 head and concentration data, F(.) is the forward operator, such as
MODFLOW-2000 (Harbaugh et al., 2000), k is a vector containing Nj
the subscript m is the number of parameters of the latent space, and n is model parameter, and € is the model error. The objective is to estimate
the number of realizations. In data assimilation, the forward model can the parameters that best reflect the observation data d,, and the
be defined as the following form: perturbed observation data is:
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Scenario 1: Variance
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Scenario 2: Variance

1.00

0.75

0.25

0.00

Scenario 4: Variance
1.00

0.75

0.50

1.00

0.75

Fig. 8. The variance of conductivity for different scenarios.

dye = dops + VT CPYLy an

where «; is the inflation coefficient of the ith iteration (ZiN_“l ai =1, N, is
- 1

the number of iterations), Cp is the observation error covariance, and
I,~N (0, I,). The updating process in ES-MDA is represented as the
following equation:

2" = 2} + Cp(Chp + aCp) iy — ), (=1, ..N) 12)
where C,, is the cross-covariance between the model parameters and
the simulated data, C, is the auto-covariance of the simulated data,
and N, is the number of realizations. The procedure of coupling GAN
with ES-MDA is shown in Algorithm 1. According to Emerick and
Reynolds (2013), if the values of «; are in decreasing order, a better
result can be achieved. Therefore, «; is set as follows:

a=2%"P (p=0,.,N,—1) (13)

In the updating equation, the matrix C = Ci,, + ;Cp needs to be
inverted. The matrix may be singular and small singular values may
cause instability and error, so a Truncated Singular Value
Decomposition (TSVD) is applied to solve the pseudo-inverse, and the
measurement error covariance Cp is rescaled wtih the Cholesky

decomposition Cp = CY2(CY)" (Emerick, 2012). Apply TSVD to matrix
C to obtain matrix C:

C = UpAVS a4

where A, is a diagonal matrix containing N, largest singular values and
N, is defined, according to:

Nn
IRT

6:";}—@3
2
i=1

where 1; are the singular values sorted in a decreasing order, N; is the
total number of singular values, and E is the energy of the singular
values retained, typically between 0.9 and 1.0. Thus, N, is the number
that makes the ratio of the sum of the N, largest singular values to the
sum of the total singular values less than or equal to E. The pseudo-
inverse of matrix C can be solved as follows:

(15)

Ct = V,ALUL (16)

where A}, is the pseudo-inverse of A,.



J. Bao, et al.

Reference

Realization 2

Journal of Hydrology 590 (2020) 125443

Realization 1

Realization 3

Fig. 9. Individual realizations for Scenario 6.

Set: N, = The number of iterations

Set: d,ps = Observation data (hydraulic head or concentration data)

Set: N, = The number of realizations

begin

fori=1,2,--- ,N, do
Ozi:2Na7i
for j=1,2,---,N, do

Perturb the observation data: d?

Calculate:

Calculate:

Update: zé-“ =z’ +C4,p(Chp +a;Cp)~'(d]

end

Generate the hydraulic conductivity field with the trained generator: Kj = G(z})

uc,)

Sample initial z from the uniform distribution z ~ U(—1,1)

J

Run forward modeling to obtain the hydraulic head or concentration data d;
uc,j dops + V angQId

. N’y' 3 —. 3 5

%D = erfl Zj:l(Z;’ - Zl)(d3‘ —di)"

i Ny i i i i
DD — ﬁ Zj:l(dj —d )(dj —d )T

3. Synthetic examples
3.1. Model setup

Synthetic examples are presented to evaluate the performance of
coupling GAN with ES-MDA. A reference hydraulic conductivity field
and its boundary conditions are shown in Fig. 3. The confined aquifer
has a size of 129 m X 129 m X 1 m, which is discretized into 129

columns by 129 rows by 1 layer. The reference hydraulic conductivity
field is an image generated by the trained generator via GAN, using the
training image in Fig. 2. Sandy channels represent high conductivity
conduits, and the silt floodplain deposits have low hydraulic con-
ductivities. The north and south boundaries of the aquifer are assumed
to be no flow boundary conditions, and the west side is a constant head
boundary (h = 0 m). The east side is considered as a constant flow
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Fig. 10. The simulated hydraulic head for different scenarios. (a) # 1 of Scenarios 1; (b) # 3 of Scenarios 2; (c) # 3 of Scenarios 3; (d) # 5 of Scenarios 4; (e) # 5 of
Scenarios 5; (g) # 6 of Scenarios 5. The red line is the reference hydraulic head, and the blue lines indicate the simulated hydraulic head of each realization. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

boundary and the prescribed flow rate is —12.9 m?/d. The initial hy-
draulic head is equal to the depth of the aquifer (—100 m) over the
simulated domain. The specific storage of the aquifer is assumed to be a
constant value of 0.003 m~. The porosity is set to 0.3 everywhere. The
MODFLOW-2000 (Harbaugh et al., 2000) is used to model the
groundwater flow in 100 days. The MT3DMS (Zheng and Wang, 1999)
is used to simulate solute transport. The black line shown in Fig. 3 re-
presents the contaminant source, and its concentration is assumed to be
a constant value of 10 mg/L. Only advection and dispersion are con-
sidered for solute transport. The longitudinal dispersivity is set to 10 m
over the simulated area, and the horizontal transverse dispersivity is
1 m.

3.2. Scenario studies

Six scenarios with different numbers and different locations of the
observation wells are conducted to evaluate the influence of informa-
tion on the results (see Fig. 4). The settings of each scenario are shown
in Table 2. In Scenario 1, no conditioning data are considered. The
initial ensemble of hydraulic conductivities are generated using the
trained generater as the reference field. Scenario 2 has only one ob-
servation well located at the center of the aquifer. Scenario 3 and
Scenario 4 increase the number of the observation wells to 5, but the
spacing between each two wells in Scenario 4 is larger than that of

Scenario 3. Scenario 5 and Scenario 6 have 9 observation wells. The
distance between each two wells in Scenario 5 is 20 m, while the dis-
tance in Scenario 6 is 50 m. Note that the wells at the corner and center
in Scenario 5 and Scenario 6 are at the same places as that of Scenario 3
and Scenario 4. Fig. 4 shows the well locations in space for each Sce-
nario. The hydraulic head data are used for data assimilation. The re-
ference hydraulic head is obtained by running the groundwater flow
model using the reference conductivity field, and have a measurement
error with a mean of 0 and a standard deviation of 0.5. The ensemble
size is 100, and the number of iterations in the ES-MDA is set to 8,
which has shown to be sufficient to achieve a reasonQable result in
previous studies (e.g., Li et al., 2018).

3.3. Solute transport

Concentration data also can be used to identify hydraulic con-
ductivities. Solute transport experiments are conducted to simulate the
migration of contaminants in the aquifer. Concentration data are sam-
pled at each time step at different locations, and the measured con-
centrations are added with Gaussian noise with a mean of 0 and a
standard deviation of 0.5 as the observation error. Four Cases are
compared in this set of experiments. Case 1, Case 2, and Case 3 are used
to evaluate the effects of different types of observation data. Case 2 and
Case 4 are compared to evaluate the results when more concentration
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Fig. 11. The mean (logarithm) and variance of conductivity for each case.

data are considered. Note that Case 1 is the same as Scenario 5 in the
last section, and only hydraulic head collected from 9 wells will be used
to identify hydraulic conductivities. In Case 2, only concentration data
will be used for data assimilation, and there are 36 observation wells
(6 x 6) which are uniformly distributed over the aquifer for sampling
the concentration, and Case 3 uses both the hydraulic head of Case 1
and concentration data of Case 2 for data assimilation. Case 4 only
considers concentration data for data assimilation but increases the
number of measurements to 81 (9 X 9). Fig. 5 shows the location of
wells for sampling head and concentration data for each Case, and the
settings of each case are shown in Table 3.

RMSE and Spread are used to evaluate the result. These two metrics
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have already been used in other studies to assess the results in data
assimilation (e.g., Chen and Zhang, 2006; Franssen et al., 2008; Li et al.,
2018). RMSE is the root mean square error, which indicates the bias and
can be used to measure the accuracy of estimation, and Spread measures
the uncertainty of ensemble retaliations:

1
RMSE = J ¥ D (K — Kpp)?
k j=1 a7

1 &
Spread = \/— Z Var (K;)
Ne 35 (18)
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Fig. 12. The hydraulic conductivity estimation RMSE and Spread of each case. The black line represents the RMSE and the red line represents the Spread. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

where N is the number of parameters, K; is the mean of estimated
parameters, K, is the reference parameters, and Var(K) is the var-
iance at each point.

3.4. Random image for reference field

In previous examples, the reference conductivity field is generated
through a trained generator using the GAN, and multiple data are as-
similated into the groundwater flow and contaminant transport model
to recover the reference image by coupling the trained generator and
the ES-MDA. It is more challenging if the reference image is directly
extracted from the training image instead of the one generated by deep
learning, which is more close to the real case in the field. In other
words, the reference image (i.e., the random image here) is not in-
cluded in the training data sets for the GAN. Here, an image randomly
cut from the training image in Fig. 2 is used as the reference hydraulic
conductivity field to test our approach. Note that, although this random
image was a random cut from training image in Fig. 2, it is not used in
the training of GAN. The hydraulic head collected from 9 wells (3 X 3),
36 wells (6 X 6), and 144 wells (12 x 12) are used for data assimilation
respectively. The reference conductivity field and the observation well
locations are shown in Fig. 6. The observation wells are uniformly
distributed over the domain, and the boundary conditions are the same
as shown in Fig. 3.

4. Results
4.1. Effects of well locations

The mean maps of log-conductivities over 100 realizations for 6
Scenarios are shown in Fig. 7, and the variance maps are shown in
Fig. 8. Note that the unit of the conductivities is m/d. We can see that:
(1) When the number of wells is increased from 1 of Scenario 1 to 9 of
Scenario 6, the characterization of hydraulic conductivity is clearly
improved; (2) When more wells locate in or near the channels, a better
result can be obtained, as shown in Scenario 3 and 4, because water
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moves faster in high conductivity areas, this can provide more in-
formation for updating process; (3) When the number of wells is same
as in Scenario 5 and 6, it is evident that the larger spacing between
wells shows a better result because hydraulic head data could provide
more information about the channel structures in space; (4) Scenario 6
has the best result, in which the mean of log-conductivity is close to the
reference image in Fig. 3; and (5) the uncertainty (i.e., variance) is
reduced, when more data are considered, in particular for Scenario 6.

Fig. 9 shows the reference image and three individual realizations
from Scenario 6. It clearly shows that the reference image has similar
channel structures as those in the training image in Fig. 2, which means
that GAN is an efficient approach to model the non-Gaussian aquifer.
The low dimension variable in latent space is able to represent the high
dimension hydraulic conductivity field. This is consistent with the
findings from Laloy et al. (2018), where a detailed discussion about the
effectiveness of GAN for modeling channelized aquifers is listed. Also,
the individual realizations after assimilating hydraulic head data show
the similar geological structures (i.e., connectivity) as the reference
field, which plays a critical role for the flow and transport predictions.

In order to compare the simulated hydraulic head, the well in the
middle of each Scenario is presented in Fig. 10. The red line is the
reference hydraulic head, and the blue lines indicate the result of each
realization. As expected, the result is better as the number of observa-
tion wells increases. The simulated hydraulic head of Scenario 5
(Fig. 10(f)) are much closer to the reference value because of the best
characterization of conductivity field (i.e., connectivity). In addition,
since the hydraulic conductivity estimation of Scenario 4 is not as good
as the one in Scenario 3, the uncertainty of simulated hydraulic head is
larger (Fig. 10(d)).

4.2. Contaminant transport prediction

The mean and variance of each case are shown in Fig. 11, and the
values of RMSE and Spread are shown in Fig. 12. The variance and
Spread illustrate that as more data are available, the uncertainty of
estimation can be significantly reduced. In Case 1, only the hydraulic
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Fig. 13. The contaminant plume at 100 days. The first column indicates the mean concentration (mg/L) for each case, and the second column is the variance. The last

image is the reference concentration.

head from 9 wells are used for data assimilation, and the boundaries of
the channels are not as clear as the other Cases. In Case 2, although the
channel boundaries are much clearer, some channels are at the wrong
locations, like the one at the upper right corner, which causes the RMSE
value of Case 2 to be the largest. If the information of hydraulic head
and contaminant concentration are combined together as in Case 3, the
shape of the channels can be accurately reproduced. By comparing Case
2 and Case 4, a better result can be achieved if more concentration data
are available. This experiment illustrates that combining different types
of data or increasing the number of observation wells can lead to a
better result.
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The results for contaminant transport predictions are shown in
Fig. 13. The contaminant plume of Case 2, Case 3, and Case 4 look
similar in general, but the concentration near the right boundary of
Case 3 and Case 4 are closer to the reference plume. Additionally, the
variance of Case 2 is larger than that of Case 3 and Case 4. In order to
quantify the bias and uncertainty of each Case, RMSE and Spread are
calculated and plotted in Fig. 14. Both the RMSE and Spread show a
downward trend, which means that the error and uncertainty are sig-
nificantly reduced. The result of Case 4 is the best since both hydraulic
head and concentration data are used for conditioning.
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Fig. 14. The RMSE and Spread of concentration. The black line represents the RMSE of Case 2, Case 3, and Case 4. The red line represents the Spread of Case 2, Case
3, and Case 4. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

4.3. Random image for reference field

A random image that is not generated by the generator or extracted
from the training set is more reasonable for a real-world application.
The mean and variance of ensemble hydraulic conductivities for the
cases of 9 wells (3 X 3), 36 wells (6 X 6), and 144 wells (12 x 12) are
shown in Fig. 15. The mean is closer to the reference as the number of
observation wells increase, and the variance (i.e., uncertainty) is
smaller, accordingly. Fig. 16 shows the RMSE and Spread, and both lines
decrease as more observation data are considered. This demonstrates
that the estimation error and uncertainty are reduced as the number of
information is increased for assimilation. Meanwhile, as shown in
Figs. 7 and 8, only 9 wells are able to obtain a good result when the
reference conductivity is generated by the trained generator. However,
the result of 9 wells, in this case, cannot accurately reconstruct the
hydraulic conductivity field or preserve the channel structures, when
the reference field is a random image from the Fig. 2. In addition, as
mentioned above, if more observation data become available, such as
for the case of 144 wells, the reference field still can be reproduced
using the proposed method.

5. Discussion

In this paper, for the sake of simplicity, only 2D cases are presented,
but the proposed method could be also extended in 3D. Studies have
proved the ability of GAN to model fluvial deposits and meandering
channels in 3D cases (e.g., Mosser et al., 2017; Laloy et al., 2018; Zhang
et al., 2019). One of the challenges for the GAN is to condition on hard
data (i.e., measured conductivities). Approaches have been proposed to
deal with this issue. For example, Zhang et al. (2019) developed a se-
mantic in-painting approach with a new loss function to make the
images generated by GAN honoring the measured facies at well loca-
tions. Ruffino et al. (2020) proposed a framework by adding an explicit
cost term to the GAN loss function to enforce pixel-wise conditioning.
As aresult, the hard data can be constrained in the generated images. In
addition, studies have shown that GAN is able to reconstruct different
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structures (Chan and Elsheikh, 2017; Gao et al., 2020) or the porous
media with different scales (e.g., Guan, 2018;Hsu et al., 2020;Feng
et al., 2019). Although conditioning on hard data using GAN has been
studied in the literature, how to jointly condition on both hard data and
dynamic data has not been explored yet, and a future study will be
conducted.

We proposed to couple the ES-MDA with deep learning to deal with
non-Gaussianity in data assimilation, which is different with the past
approaches such as the pattern-match method (Zhou et al., 2012; Li
et al., 2013), which relies on searching patterns through the ensemble
training images consisting of both conductivity and head in order to
preserve the channel structures. The searching procedure is time-con-
suming and computationally expensive. When deep learning is in-
troduced into data assimilation, the trained generator is much faster to
generate the channelized aquifer by changing the low-dimension latent
variable, which will then be updated by conditioning on dynamic data
through the ES-MDA.

Since the locations of channels are unknown in the field, an even
distribution of wells would be placed at first, as the synthetic examples
shown here. Depending on the responses of wells (i.e., measured hy-
draulic head data), future well locations could be adjusted to capture
dynamic data which could bring most information for the parameter
estimation.

6. Conclusion

In this paper, a new approach of coupling deep learning and ES-
MDA is proposed to deal with the data assimilation problem of the non-
Gaussian channelized aquifer. The ES-MDA method is applied to update
the parameters of the latent space by assimilating both the hydraulic
head and contaminant concentration data. Then the trained generator
through GAN is able to reproduce the channelized structures with much
fewer parameters (i.e, latent variable). The results demonstrate that the
coupling of GAN and ES-MDA can accurately reconstruct the channe-
lized aquifer and reduce the uncertainty of hydraulic head and con-
taminant concentration prediction. A couple of synthetic examples are
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Fig. 15. The mean (logarithm) and variance of the random image test.

used to test the proposed method, where the number of parameters to
be updated is reduced from 129 by 129 of conductivities to 5 by 5 of the
latent space variable for each realization. The results indicate: (1) in-
creasing the number of observation wells can lead to a better char-
acterization of channel structures and reduce the uncertainty of esti-
mation; (2) when additional concentration data are considered, the
characterization of channel structures are the best; (3) more data are
needed for reproducing the channel structure, if the reference con-
ductivity field is not generated by the trained generated through deep
learning which often occurs in the field; and (4) the coupling of deep
learning with GAN and ES-MDA is an efficient and effective data as-
similation method for identifying non-Gaussian channel structures.
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