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A B S T R A C T   

Dynamic data such as hydraulic head and concentration data can be integrated into the groundwater flow and 
contaminant transport model to improve its predictive ability for groundwater resource management and aquifer 
remediation. Ensemble Smoother with Multiple Data Assimilation (ES-MDA) has gained popularity for data 
assimilation in the field of hydrogeology, where aquifer parameters such as hydraulic conductivity are calibrated 
by conditioning on observed dynamic data. The ES-MDA has an optimal solution if aquifer parameters follow a 
multi-Gaussian distribution. However, fluvial deposits commonly exhibit a strong heterogeneity with channels 
(i.e., connectivity). In other words, the hydraulic conductivity does not follow the multi-Gaussian distribution. 
To deal with data assimilation in channelized aquifers, we propose to couple ES-MDA with deep learning. 
Specifically, Generative Adversarial Networks (GAN), a deep learning algorithm, are used to re-parameterize the 
channelized aquifer with a low-dimension latent variable. The ES-MDA is then used to update the latent variable 
by assimilating dynamic data into the groundwater model. Synthetic studies of groundwater flow and con
taminant transport models are used to demonstrate the proposed method. The results illustrate that the coupling 
of GAN and ES-MDA is able to reconstruct the channel structures and reduce the uncertainty of hydraulic head 
and contaminant concentration predictions.   

1. Introduction 

Groundwater plays an important role in water supply in many 
places due to the scarcity and pollution of the groundwater. However, 
with the increase in water consumption, the decline of groundwater 
level and groundwater pollution seriously affect the substantiality of 
water supply. It is of great significance for groundwater management 
and aquifer remediation to understand the groundwater flow and 
contaminant transport processes. The main challenge in predicting 
groundwater flow and contaminant transport is the strong hetero
geneity of the aquifer parameters. Data assimilation techniques provide 
an avenue to integrate dynamic data such as hydraulic head and con
centration into the groundwater flow and contaminant transport model 
to estimate those aquifer parameters and reduce its uncertainty. 
Therefore the updated parameters can be used to improve the pre
dictive ability of the flow and transport model. In particular, the 
Ensemble Kalman Filter (EnKF) proposed by Evensen (1994) is one of 
the most efficient data assimilation methods and has been successfully 
applied in many fields such as hydrogeology and petroleum 

engineering. For example, Chen and Zhang (2006) implemented the 
EnKF to update the hydraulic conductivity by assimilating hydraulic 
head data, and the influence of the ensemble size and observation 
timings on the results were also evaluated. Liu et al. (2008) applied the 
EnKF to investigate the flow and transport process at the Macro-Dis
persion Experiment (MADE) site by simultaneously estimating multiple 
parameters such as hydraulic conductivities and dispersivities, and the 
results shown that the EnKF can be used to solve large-scale and non
linear inverse problems. Li et al. (2012) applied the EnKF in a transient 
groundwater flow and transport model to jointly estimate the hydraulic 
conductivity and porosity using hydraulic head and concentration data, 
and the results demonstrated that different types of data would help 
characterize aquifer parameters and improve the flow and contaminant 
transport predictions. 

One drawback of the EnKF is that the recursive updates require 
restarting the simulation at each time step, which makes it time-con
suming. An alternative method to the EnKF is the Ensemble Smoother 
(ES), which was proposed by Van and Evensen (1996). In this method, 
all the observation data are assimilated simultaneously, which greatly 
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reduces the computational burden. Bailey and Baù (2010) applied the 
ES to estimate the hydraulic conductivity by assimilating the hydraulic 
head and groundwater return flow volume. Skjervheim et al. (2011) 
employed the ES for history matching in petroleum engineering, and 
the results indicated that the ES was able to significantly reduce the 
simulation time and provide a flexible parameterization solution. 
However, the ES only assimilates data once to achieve a globe update, 
which might not be able to obtain a promising result that honors all the 
observation data. Consequently, a series of iterative ensemble methods 
have been proposed, for example, the iterative EnKF (Gu and Oliver, 
2007) and the iterative ES (Chen and Oliver, 2012). Emerick and 

Reynolds (2013) proposed a new form of the Ensemble Soother with 
Multiple Data Assimilation (ES-MDA), in which the same measured data 
can be assimilated multiple times to reach a better result. Zhao et al. 
(2017) coupled the ES-MDA with the common basis Discrete Cosine 
Transform (DCT) to solve the history matching problem of the multi- 
facies channelized reservoirs, and this study illustrated that the pro
posed method was able to preserve the key geological features of prior 

Fig. 1. The stucture of GAN. z represents the latent space variables, G z( ) indicates the image generated by the generator, ConvTranspose is the transposed con
volutional layer, and Conv represents the convolutional layer. 

Fig. 2. Training image.  

Table 1 
The architectures of generator and discriminator.    

Generator Discriminator  

Input: ×5 5 latent space z Input: ×129 129 image 
Layer 1: ConvT2d, 5 k 2s 2p 1d, InsNorm2d, ReLU Layer 1: Conv2d, 5 k 2s 2p 1d, InsNorm2d, LeakyReLU 
Layer 2: ConvT2d, 5 k 2s 2p 1d, InsNorm2d, ReLU Layer 2: Conv2d, 5 k 2s 2p 1d, InsNorm2d, LeakyReLU 
Layer 3: ConvT2d, 5 k 2s 2p 1d, InsNorm2d, ReLU Layer 3: Conv2d, 5 k 2s 2p 1d, InsNorm2d, LeakyReLU 
Layer 4: ConvT2d, 5 k 2s 2p 1d, InsNorm2d, ReLU Layer 4: Conv2d, 5 k 2s 2p 1d, InsNorm2d, LeakyReLU 
Layer 5: ConvT2d, 5 k 2s 2p 1d, InsNorm2d, ReLU Layer 5: Conv2d, 5 k 2s 2p 1d, Sigmoid 
Layer 6: ConvT2d, 5 k 1s 6p 3d, InsNorm2d, ReLU Output: ×5 5 array 
Layer 7: ConvT2d, 5 k 1s 10p 5d, Tanh  
Output: ×129 129 image     

Fig. 3. The reference hydraulic conductivities with boundary conditions. No 
flow boundary on north and south, constant head on the west boundary and 
constant flux on the east boundary. The red areas represent the channels with 
high hydraulic conductivity and the blue background indicates low hydraulic 
conductivity materials. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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models and reduce the uncertainty of reservoir description. Fokker 
et al. (2016) applied ES-MDA to investigate the gas reservoir by as
similating the line-of-sight radar measurements, and the results de
monstrated that ES-MDA could significantly reduce the uncertainty of 
parameter estimation. Evensen (2018) compared IES and ES-MDA with 
standard ES, based on Bayes’ theorem, and this study revealed that 
these three methods could produce the same result for linear models, 
but iterative methods behave better in nonlinear situations. Also, in
creasing the assimilation times will lead to a better result for ES-MDA. 

Although ES-MDA is an efficient method for data assimilation, the 
same problem still exists as the EnKF method. In other words, it has an 
optimal solution if parameters and state variables follow a multi- 
Gaussian distribution (Zhou et al., 2014). Many parameters and state 
variables often do not have a multi-Gaussian distribution such as hy
draulic conductivities in fluvial deposits. Inverse methods have been 
proposed to deal with non-Gaussianity, such as the Markov Chain 
Monte Carlo method (MCMC) (Oliver et al., 1997) and Gradual De
formation Method (GDM) (Hu, 2000). Nevertheless, their drawbacks 
might limit the implementation of these methods. For instance, the 
MCMC method is computationally expensive because of a large number 
of evaluation for the forward modeling (Kuczera et al., 2010). The 
structure preservation capability of the GDM method is strongly influ
enced by the number of realization chains (Le and Nœtinger, 2002). In 

addition, if the prior is wrong, a reasonable structure might not be able 
to be retrieved. 

Attempts based on ES-MDA have been proposed to deal with the 
issue of non-Gaussianity in data assimilation. Le et al. (2015) coupled 
ES-MDA with multi-point statistics simulation (MPS) to estimate non- 
Gaussian facies. In this study, ES-MDA was applied to update the per
meability, and then the reservoir facies was regenerated by MPS, using 
the average of the updated permeability through ensemble as soft data. 
The results illustrated that the non-Gaussian facies could be re
constructed by the proposed procedure. Zhao et al. (2017) combined 
ES-MDA with a common basis discrete cosine transform and a reg
ularization post-processing technique to deal with the three facies his
tory matching problem. The results indicated that the proposed ap
proach could significantly reduce the uncertainty of reservoir 
characterization and preserve the key geological features. Kim et al. 
(2018) proposed a combination of ES-MDA, DCT and iterative K-sin
gular value decomposition (K-SVD) to estimate the permeability in a 
channelized aquifer using synthetic examples, and the proposed algo
rithm could capture the complex geological features of the gas re
servoirs and provide plausible models to match the measured gas rate 
and water rate. 

In recent years, the successful applications of deep learning tech
niques in many fields have proven its ability to handle multiple scales 
and heterogeneous information (Marçais and de Dreuzy, 2017), which 
provides an opportunity to cope with complex problems such as non- 
Gaussianity in hydrogeological sciences. Mo et al. (2019) proposed an 
autoregressive framework coupling convolutional encoder-decoder 
network with iterative local updating ensemble smoother (ILUES) 
(Zhang et al., 2018) to address the high-dimensional contaminant 
transport inversion problem. Their results showed that this method is 
able to identify the contaminant source and provide an accurate hy
draulic conductivity field. Zhang et al. (2020) introduced a strategy to 
use the deep learning technique to modify the updating process of en
semble smoother, and the results illustrated that the proposed method 
performed much better than the standard ES method in non-Gaussian 
aquifers. 

Deep learning with Generative Adversarial Networks (GAN), which 
was introduced by Goodfellow et al. (2014), has been gaining popu
larity in recent years. A variety of GANs have been proposed (e.g.,  
Mirza and Osindero, 2014; Radford et al., 2015; Arjovsky et al., 2017). 
For instance, Laloy et al. (2018) proposed a spatial GAN (SGAN) to 
address the high dimensional inversion problems, and their work 
showed that the inversion framework which combined SGAN and 
MCMC could recover the complex geological features close to the true 
models. Sun (2018) presented a state-parameter identification GAN 
(SPID-GAN) which contains two pairs of generators and discriminators, 
the results demonstrated that GAN performed well in identifying the 
state-parameter bidirectional mappings. Janssens et al. (2020) applied 
GAN to improve the resolution of Computed Tomography (CT) images, 
and using the improved CT images as the input could lead to a better 
result of fluid flow simulation and more realistic pore distribution. 

In this paper, we propose to combine ES-MDA and deep learning 
with GAN to deal with non-Gaussianity in flow and transport data as
similation. Specifically, GAN will be used to reparameterize the high 
dimensional non-Gaussian distributed hydraulic conductivity using a 
low dimension latent variable. ES-MDA is then used to update the 
variable in the latent space by assimilating dynamic data into ground
water models. Besides the hydraulic head data that are commonly used 
to characterize hydraulic conductivities, concentration data also are 
jointly employed to identify the non-Gaussian parameters in this study. 
The results demonstrate that the coupling of GAN and ES-MDA can 
reconstruct the channel structures and reduce the uncertainty of si
mulated hydraulic heads and contaminant plume. The rest of this paper 
is organized as follows: the methods are explained in Section 2. Several 

Fig. 4. Well locations for 6 Scenarios. The circles represent the well locations.  

Table 2 
Scenario studies.      

Scenario Ensemble size Conditioned heads Observation wells  

1 100 × 0 
2 100 ✓ 1 
3 100 ✓ 5 
4 100 ✓ 5 (Larger spacing) 
5 100 ✓ 9 
6 100 ✓ 9 (Larger spacing) 
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synthetic experiments are conducted in Section 3. Then, analyses and 
discussions about the results are shown in Section 4. Finally, conclu
sions are presented in Section 5. 

2. Methodology 

2.1. Forward modeling 

The single phase groundwater flow equation can be expressed as 
follows (Fetter, 2018): 
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where K K K, ,xx yy zz are the hydraulic conductivities along the x y, , and z 
directions; h is the hydraulic head; W represents source and sink; Ss is 
the specific storage; x y, , and z represent the coordinates; t is time. This 
equation is solved using the finite-difference method in which the 
aquifer is divided into a number of cells and the head is calculated at 
each node (Harbaugh et al., 2000). 

The governing equation for solute transport can be described as 
(Huang et al., 1998; Zheng and Wang, 1999): 
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where M is the solute content; t is time; is the porosity of the medium; 
Ck is the dissolved concentration of species k D D; ,x y, and Dz are the 
hydrodynamic dispersion coefficients along the x y, , and z directions; 
q q,x y, and qz are the volumetric flow rates per unit of aquifer in three 
directions; qs is the volumetric flow rate per unit volume of aquifer 
representing fluid source and sinks; Cs

k is the concentration of the 
source or sink flux for species k R; n is the chemical reaction term. 

2.2. Generative adversarial networks 

The structure of GAN is illustrated in Fig. 1, and the latent space z is 
sampled from a uniform distribution ( Uz~ ( 1, 1)) as the input of the 
generator. Then through a series of transposed convolutional layers, the 
output image G z( ) is generated. The generated image and a training 
image are then sent to the discriminator. The discriminator consists of 
several convolutional layers, and the output arrays will be labeled as 
true or false. The task of the discriminator is to look at a given image 
and return true if the image is sampled from the training image (the 
image is “real”), or return false if the image was produced by the 
generator (the image is “fake”). Based on the images of the generator 
and the judgment of discriminator, the performance of the generator 

Fig. 5. The locations of observation wells. The hydraulic head observation wells are shown in white circles, and the concentration observation wells are shown in 
black circles. 

Table 3 
Solute transport.      

Case Ensemble size Conditioned heads Conditioned concentrations  

1 100 9 0 
2 100 0 36 
3 100 9 36 
4 100 0 81 
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and discriminator are improved using backpropagation. During 
training, the generator and the discriminator are competing against 
each other. The goal of the generator is to generate an image that can 
fool the discriminator, and the discriminator needs to do its best to 
distinguish whether the image is from real data or generated by the 
generator. The data generated by the generator is x P x~ ( ; )G , where 
indicates the generator’s network parameters. The likelihood function 
can be represented as: 

=
=

L P x( ) ;
i

n

G i
1 (3)  

The generator aims at make the distribution P x( ; )G close to the real 
data distribution P x( )R , and the solution is to maximize the likelihood 
function. If we use to indicate the values of corresponding to the 
maximum likelihood, then can be represented as: 

=
=

P xargmax ;
i
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G i
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This equals to minimize the Kullback–Leibler (KL) divergence be
tween P x( )R and P x( )G (Arjovsky and Bottou, 2017): 

=KL P P P x log P x
P x

dx( ) ( )
( )R G x R

R

G (5)  

Generally, the methods of GAN are to minimize the KL divergence 
or the Jensen-Shannon (JS) divergence, and the governing equation of 
GAN can be represented as the value function V G D( , ) (Goodfellow 
et al., 2014): 

= +V G D E logD x E log D G zargminmax , ~ ( ) ~ 1 ( )
G D

x P PzR G

(6)  

This function is solved through consecutively optimizing the dis
criminator and generator by minimizing the following equations: 

=L E logD x E log D G z~ [ ( )] ~ [ (1 ( ( )))]D
x P PzR G (7)  

=L E log D G z~ [ (1 ( ( )))]G
Pz G (8)  

The structure of GAN used in this paper is similar to that used by  
Laloy et al. (2018). The training data is extracted from the training 
image shown in Fig. 2 (Laloy et al., 2018), and the architectures of 
generator and discriminator are shown in Table 1. The batch size is 16, 
and the learning rate is 0.001, the networks are trained for 100 epochs. 
In the table, k represents the kernel size, s represents the stride, p re
presents the zero-paddings, and d represents the dilation. The generator 
is trained using 2D transposed convolution, and the activation functions 
of the first 6 layers are ReLU. The final layer is another activation 
function called Tanh, and InsNorm2d represents the instance normal
ization. The discriminator is trained using 2D convolution, the activa
tion functions of the first 4 layers are LeakyReLU(0.2), and the final 
layer is a Sigmoid function. 

2.3. Ensemble smoother with multiple data assimilation 

In the ES-MDA, we mainly focus on the parameter estimation, and 
the ES-MDA is used to update the parameters of the latent space z. The 
parameter matrix at the ith step can be expressed as follows: 

Fig. 6. The reference conductivity field cut from training image and locations of observation wells. The well locations are represented by the white circles.  
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the subscript m is the number of parameters of the latent space, and n is 
the number of realizations. In data assimilation, the forward model can 
be defined as the following form: 

= +Fd k( ) (10) 

where d is a vector containing Nd simulated data, such as the hydraulic 
head and concentration data, F (.) is the forward operator, such as 
MODFLOW-2000 (Harbaugh et al., 2000), k is a vector containing Nk
model parameter, and is the model error. The objective is to estimate 
the parameters that best reflect the observation data dobs, and the 
perturbed observation data is: 

Fig. 7. The mean (logarithm) of conductivity for different scenarios.  
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where i is the inflation coefficient of the ith iteration ( == N1,i
N
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i

is 
the number of iterations), CD is the observation error covariance, and 

NI I~ (0, )d Nd . The updating process in ES-MDA is represented as the 
following equation: 
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where CZD
i is the cross-covariance between the model parameters and 

the simulated data, CDD
i is the auto-covariance of the simulated data, 

and Nr is the number of realizations. The procedure of coupling GAN 
with ES-MDA is shown in Algorithm 1. According to Emerick and 
Reynolds (2013), if the values of i are in decreasing order, a better 
result can be achieved. Therefore, i is set as follows: 

= = …p N2 , ( 0, , 1)i
N p

aa (13)  

In the updating equation, the matrix = +C C CDD
i

i D needs to be 
inverted. The matrix may be singular and small singular values may 
cause instability and error, so a Truncated Singular Value 
Decomposition (TSVD) is applied to solve the pseudo-inverse, and the 
measurement error covariance CD is rescaled wtih the Cholesky 

decomposition =C C C( )D D D
T1/2 1/2 (Emerick, 2012). Apply TSVD to matrix 

C to obtain matrix C: 

=C U VT
n n n (14) 

where n is a diagonal matrix containing Nn largest singular values and 
Nn is defined, according to: 
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where i are the singular values sorted in a decreasing order, Nt is the 
total number of singular values, and E is the energy of the singular 
values retained, typically between 0.9 and 1.0. Thus, Nn is the number 
that makes the ratio of the sum of the Nn largest singular values to the 
sum of the total singular values less than or equal to E. The pseudo- 
inverse of matrix C can be solved as follows: 

=+ +C V UT
n n n (16) 

where +
n is the pseudo-inverse of n. 

Fig. 8. The variance of conductivity for different scenarios.  
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3. Synthetic examples 

3.1. Model setup 

Synthetic examples are presented to evaluate the performance of 
coupling GAN with ES-MDA. A reference hydraulic conductivity field 
and its boundary conditions are shown in Fig. 3. The confined aquifer 
has a size of 129 m × 129 m × 1 m, which is discretized into 129 

columns by 129 rows by 1 layer. The reference hydraulic conductivity 
field is an image generated by the trained generator via GAN, using the 
training image in Fig. 2. Sandy channels represent high conductivity 
conduits, and the silt floodplain deposits have low hydraulic con
ductivities. The north and south boundaries of the aquifer are assumed 
to be no flow boundary conditions, and the west side is a constant head 
boundary (h  = 0 m). The east side is considered as a constant flow 

Fig. 9. Individual realizations for Scenario 6.  
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boundary and the prescribed flow rate is −12.9 m /d3 . The initial hy
draulic head is equal to the depth of the aquifer (−100 m) over the 
simulated domain. The specific storage of the aquifer is assumed to be a 
constant value of 0.003 m 1. The porosity is set to 0.3 everywhere. The 
MODFLOW-2000 (Harbaugh et al., 2000) is used to model the 
groundwater flow in 100 days. The MT3DMS (Zheng and Wang, 1999) 
is used to simulate solute transport. The black line shown in Fig. 3 re
presents the contaminant source, and its concentration is assumed to be 
a constant value of 10 mg/L. Only advection and dispersion are con
sidered for solute transport. The longitudinal dispersivity is set to 10 m 
over the simulated area, and the horizontal transverse dispersivity is 
1 m. 

3.2. Scenario studies 

Six scenarios with different numbers and different locations of the 
observation wells are conducted to evaluate the influence of informa
tion on the results (see Fig. 4). The settings of each scenario are shown 
in Table 2. In Scenario 1, no conditioning data are considered. The 
initial ensemble of hydraulic conductivities are generated using the 
trained generater as the reference field. Scenario 2 has only one ob
servation well located at the center of the aquifer. Scenario 3 and 
Scenario 4 increase the number of the observation wells to 5, but the 
spacing between each two wells in Scenario 4 is larger than that of 

Scenario 3. Scenario 5 and Scenario 6 have 9 observation wells. The 
distance between each two wells in Scenario 5 is 20 m, while the dis
tance in Scenario 6 is 50 m. Note that the wells at the corner and center 
in Scenario 5 and Scenario 6 are at the same places as that of Scenario 3 
and Scenario 4. Fig. 4 shows the well locations in space for each Sce
nario. The hydraulic head data are used for data assimilation. The re
ference hydraulic head is obtained by running the groundwater flow 
model using the reference conductivity field, and have a measurement 
error with a mean of 0 and a standard deviation of 0.5. The ensemble 
size is 100, and the number of iterations in the ES-MDA is set to 8, 
which has shown to be sufficient to achieve a reason0able result in 
previous studies (e.g., Li et al., 2018). 

3.3. Solute transport 

Concentration data also can be used to identify hydraulic con
ductivities. Solute transport experiments are conducted to simulate the 
migration of contaminants in the aquifer. Concentration data are sam
pled at each time step at different locations, and the measured con
centrations are added with Gaussian noise with a mean of 0 and a 
standard deviation of 0.5 as the observation error. Four Cases are 
compared in this set of experiments. Case 1, Case 2, and Case 3 are used 
to evaluate the effects of different types of observation data. Case 2 and 
Case 4 are compared to evaluate the results when more concentration 

Fig. 10. The simulated hydraulic head for different scenarios. (a) # 1 of Scenarios 1; (b) # 3 of Scenarios 2; (c) # 3 of Scenarios 3; (d) # 5 of Scenarios 4; (e) # 5 of 
Scenarios 5; (g) # 6 of Scenarios 5. The red line is the reference hydraulic head, and the blue lines indicate the simulated hydraulic head of each realization. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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data are considered. Note that Case 1 is the same as Scenario 5 in the 
last section, and only hydraulic head collected from 9 wells will be used 
to identify hydraulic conductivities. In Case 2, only concentration data 
will be used for data assimilation, and there are 36 observation wells 
( ×6 6) which are uniformly distributed over the aquifer for sampling 
the concentration, and Case 3 uses both the hydraulic head of Case 1 
and concentration data of Case 2 for data assimilation. Case 4 only 
considers concentration data for data assimilation but increases the 
number of measurements to 81 ( ×9 9). Fig. 5 shows the location of 
wells for sampling head and concentration data for each Case, and the 
settings of each case are shown in Table 3. 

RMSE and Spread are used to evaluate the result. These two metrics 

have already been used in other studies to assess the results in data 
assimilation (e.g., Chen and Zhang, 2006; Franssen et al., 2008; Li et al., 
2018). RMSE is the root mean square error, which indicates the bias and 
can be used to measure the accuracy of estimation, and Spread measures 
the uncertainty of ensemble retaliations: 

=
=

RMSE
N

K K1 ( )
k j

N

j ref
1

2
k

(17)  

=
=

Spread
N

Var K1 ( )
k j

N

j
1

k
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Fig. 11. The mean (logarithm) and variance of conductivity for each case.  
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where Nk is the number of parameters, Kj is the mean of estimated 
parameters, Kref is the reference parameters, and Var K( )j is the var
iance at each point. 

3.4. Random image for reference field 

In previous examples, the reference conductivity field is generated 
through a trained generator using the GAN, and multiple data are as
similated into the groundwater flow and contaminant transport model 
to recover the reference image by coupling the trained generator and 
the ES-MDA. It is more challenging if the reference image is directly 
extracted from the training image instead of the one generated by deep 
learning, which is more close to the real case in the field. In other 
words, the reference image (i.e., the random image here) is not in
cluded in the training data sets for the GAN. Here, an image randomly 
cut from the training image in Fig. 2 is used as the reference hydraulic 
conductivity field to test our approach. Note that, although this random 
image was a random cut from training image in Fig. 2, it is not used in 
the training of GAN. The hydraulic head collected from 9 wells ( ×3 3), 
36 wells ( ×6 6), and 144 wells ( ×12 12) are used for data assimilation 
respectively. The reference conductivity field and the observation well 
locations are shown in Fig. 6. The observation wells are uniformly 
distributed over the domain, and the boundary conditions are the same 
as shown in Fig. 3. 

4. Results 

4.1. Effects of well locations 

The mean maps of log-conductivities over 100 realizations for 6 
Scenarios are shown in Fig. 7, and the variance maps are shown in  
Fig. 8. Note that the unit of the conductivities is m d/ . We can see that: 
(1) When the number of wells is increased from 1 of Scenario 1 to 9 of 
Scenario 6, the characterization of hydraulic conductivity is clearly 
improved; (2) When more wells locate in or near the channels, a better 
result can be obtained, as shown in Scenario 3 and 4, because water 

moves faster in high conductivity areas, this can provide more in
formation for updating process; (3) When the number of wells is same 
as in Scenario 5 and 6, it is evident that the larger spacing between 
wells shows a better result because hydraulic head data could provide 
more information about the channel structures in space; (4) Scenario 6 
has the best result, in which the mean of log-conductivity is close to the 
reference image in Fig. 3; and (5) the uncertainty (i.e., variance) is 
reduced, when more data are considered, in particular for Scenario 6. 

Fig. 9 shows the reference image and three individual realizations 
from Scenario 6. It clearly shows that the reference image has similar 
channel structures as those in the training image in Fig. 2, which means 
that GAN is an efficient approach to model the non-Gaussian aquifer. 
The low dimension variable in latent space is able to represent the high 
dimension hydraulic conductivity field. This is consistent with the 
findings from Laloy et al. (2018), where a detailed discussion about the 
effectiveness of GAN for modeling channelized aquifers is listed. Also, 
the individual realizations after assimilating hydraulic head data show 
the similar geological structures (i.e., connectivity) as the reference 
field, which plays a critical role for the flow and transport predictions. 

In order to compare the simulated hydraulic head, the well in the 
middle of each Scenario is presented in Fig. 10. The red line is the 
reference hydraulic head, and the blue lines indicate the result of each 
realization. As expected, the result is better as the number of observa
tion wells increases. The simulated hydraulic head of Scenario 5 
(Fig. 10(f)) are much closer to the reference value because of the best 
characterization of conductivity field (i.e., connectivity). In addition, 
since the hydraulic conductivity estimation of Scenario 4 is not as good 
as the one in Scenario 3, the uncertainty of simulated hydraulic head is 
larger (Fig. 10(d)). 

4.2. Contaminant transport prediction 

The mean and variance of each case are shown in Fig. 11, and the 
values of RMSE and Spread are shown in Fig. 12. The variance and 
Spread illustrate that as more data are available, the uncertainty of 
estimation can be significantly reduced. In Case 1, only the hydraulic 

Fig. 12. The hydraulic conductivity estimation RMSE and Spread of each case. The black line represents the RMSE and the red line represents the Spread. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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head from 9 wells are used for data assimilation, and the boundaries of 
the channels are not as clear as the other Cases. In Case 2, although the 
channel boundaries are much clearer, some channels are at the wrong 
locations, like the one at the upper right corner, which causes the RMSE 
value of Case 2 to be the largest. If the information of hydraulic head 
and contaminant concentration are combined together as in Case 3, the 
shape of the channels can be accurately reproduced. By comparing Case 
2 and Case 4, a better result can be achieved if more concentration data 
are available. This experiment illustrates that combining different types 
of data or increasing the number of observation wells can lead to a 
better result. 

The results for contaminant transport predictions are shown in  
Fig. 13. The contaminant plume of Case 2, Case 3, and Case 4 look 
similar in general, but the concentration near the right boundary of 
Case 3 and Case 4 are closer to the reference plume. Additionally, the 
variance of Case 2 is larger than that of Case 3 and Case 4. In order to 
quantify the bias and uncertainty of each Case, RMSE and Spread are 
calculated and plotted in Fig. 14. Both the RMSE and Spread show a 
downward trend, which means that the error and uncertainty are sig
nificantly reduced. The result of Case 4 is the best since both hydraulic 
head and concentration data are used for conditioning. 

Fig. 13. The contaminant plume at 100 days. The first column indicates the mean concentration (mg/L) for each case, and the second column is the variance. The last 
image is the reference concentration. 
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4.3. Random image for reference field 

A random image that is not generated by the generator or extracted 
from the training set is more reasonable for a real-world application. 
The mean and variance of ensemble hydraulic conductivities for the 
cases of 9 wells (3 × 3), 36 wells (6 × 6), and 144 wells (12 × 12) are 
shown in Fig. 15. The mean is closer to the reference as the number of 
observation wells increase, and the variance (i.e., uncertainty) is 
smaller, accordingly. Fig. 16 shows the RMSE and Spread, and both lines 
decrease as more observation data are considered. This demonstrates 
that the estimation error and uncertainty are reduced as the number of 
information is increased for assimilation. Meanwhile, as shown in  
Figs. 7 and 8, only 9 wells are able to obtain a good result when the 
reference conductivity is generated by the trained generator. However, 
the result of 9 wells, in this case, cannot accurately reconstruct the 
hydraulic conductivity field or preserve the channel structures, when 
the reference field is a random image from the Fig. 2. In addition, as 
mentioned above, if more observation data become available, such as 
for the case of 144 wells, the reference field still can be reproduced 
using the proposed method. 

5. Discussion 

In this paper, for the sake of simplicity, only 2D cases are presented, 
but the proposed method could be also extended in 3D. Studies have 
proved the ability of GAN to model fluvial deposits and meandering 
channels in 3D cases (e.g., Mosser et al., 2017; Laloy et al., 2018; Zhang 
et al., 2019). One of the challenges for the GAN is to condition on hard 
data (i.e., measured conductivities). Approaches have been proposed to 
deal with this issue. For example, Zhang et al. (2019) developed a se
mantic in-painting approach with a new loss function to make the 
images generated by GAN honoring the measured facies at well loca
tions. Ruffino et al. (2020) proposed a framework by adding an explicit 
cost term to the GAN loss function to enforce pixel-wise conditioning. 
As a result, the hard data can be constrained in the generated images. In 
addition, studies have shown that GAN is able to reconstruct different 

structures (Chan and Elsheikh, 2017; Gao et al., 2020) or the porous 
media with different scales (e.g., Guan, 2018;Hsu et al., 2020;Feng 
et al., 2019). Although conditioning on hard data using GAN has been 
studied in the literature, how to jointly condition on both hard data and 
dynamic data has not been explored yet, and a future study will be 
conducted. 

We proposed to couple the ES-MDA with deep learning to deal with 
non-Gaussianity in data assimilation, which is different with the past 
approaches such as the pattern-match method (Zhou et al., 2012; Li 
et al., 2013), which relies on searching patterns through the ensemble 
training images consisting of both conductivity and head in order to 
preserve the channel structures. The searching procedure is time-con
suming and computationally expensive. When deep learning is in
troduced into data assimilation, the trained generator is much faster to 
generate the channelized aquifer by changing the low-dimension latent 
variable, which will then be updated by conditioning on dynamic data 
through the ES-MDA. 

Since the locations of channels are unknown in the field, an even 
distribution of wells would be placed at first, as the synthetic examples 
shown here. Depending on the responses of wells (i.e., measured hy
draulic head data), future well locations could be adjusted to capture 
dynamic data which could bring most information for the parameter 
estimation. 

6. Conclusion 

In this paper, a new approach of coupling deep learning and ES- 
MDA is proposed to deal with the data assimilation problem of the non- 
Gaussian channelized aquifer. The ES-MDA method is applied to update 
the parameters of the latent space by assimilating both the hydraulic 
head and contaminant concentration data. Then the trained generator 
through GAN is able to reproduce the channelized structures with much 
fewer parameters (i.e, latent variable). The results demonstrate that the 
coupling of GAN and ES-MDA can accurately reconstruct the channe
lized aquifer and reduce the uncertainty of hydraulic head and con
taminant concentration prediction. A couple of synthetic examples are 

Fig. 14. The RMSE and Spread of concentration. The black line represents the RMSE of Case 2, Case 3, and Case 4. The red line represents the Spread of Case 2, Case 
3, and Case 4. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

J. Bao, et al.   Journal of Hydrology 590 (2020) 125443

13



used to test the proposed method, where the number of parameters to 
be updated is reduced from 129 by 129 of conductivities to 5 by 5 of the 
latent space variable for each realization. The results indicate: (1) in
creasing the number of observation wells can lead to a better char
acterization of channel structures and reduce the uncertainty of esti
mation; (2) when additional concentration data are considered, the 
characterization of channel structures are the best; (3) more data are 
needed for reproducing the channel structure, if the reference con
ductivity field is not generated by the trained generated through deep 
learning which often occurs in the field; and (4) the coupling of deep 
learning with GAN and ES-MDA is an efficient and effective data as
similation method for identifying non-Gaussian channel structures. 
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