
GazeMetrics: An Open-Source Tool for Measuring the Data
Quality of HMD-based Eye Trackers

Isayas B. Adhanom
Dept. of Computer Science

University of Nevada
iadhanom@nevada.unr.edu

Samantha C. Lee
Integrative Neuroscience
University of Nevada

samanthalee@nevada.unr.edu

Eelke Folmer
Dept. of Computer Science

University of Nevada
efolmer@unr.edu

Paul MacNeilage
Dept. of Psychology
University of Nevada
pmacneilage@unr.edu

ABSTRACT
As virtual reality (VR) garners more attention for eye tracking
research, knowledge of accuracy and precision of head-mounted
display (HMD) based eye trackers becomes increasingly necessary.
It is tempting to rely on manufacturer-provided information about
the accuracy and precision of an eye tracker. However, unless data
is collected under ideal conditions, these values seldom align with
on-site metrics. Therefore, best practices dictate that accuracy and
precision should be measured and reported for each study. To ad-
dress this issue, we provide a novel open-source suite for rigorously
measuring accuracy and precision for use with a variety of HMD-
based eye trackers. This tool is customizable without having to alter
the source code, but changes to the code allow for further alteration.
The outputs are available in real time and easy to interpret, making
eye tracking with VR more approachable for all users.

CCS CONCEPTS
• Human-centered computing → Empirical studies in HCI;
Virtual reality.
KEYWORDS
Eye tracking, eye tracker data quality, eye movements, accuracy,
precision, virtual reality

ACM Reference Format:
Isayas B. Adhanom, Samantha C. Lee, Eelke Folmer, and Paul MacNeilage.
2020. GazeMetrics: An Open-Source Tool for Measuring the Data Quality
of HMD-based Eye Trackers. In Symposium on Eye Tracking Research and
Applications (ETRA ’20 Short Papers), June 2–5, 2020, Stuttgart, Germany.
ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3379156.3391374

1 INTRODUCTION
Eye tracking has been used as a research tool for decades; however,
reliable and easy-to-use HMD-based eye trackers have only recently
become widely available. While these newer devices often come
with software designed to make eye tracking simple, the settings
for collecting, filtering, and analyzing data are not standardized
across devices [Feit et al. 2017; Holmqvist et al. 2011]. This makes it
difficult to meaningfully compare data collected on different devices,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ETRA ’20 Short Papers, June 2–5, 2020, Stuttgart, Germany
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7134-6/20/06. . . $15.00
https://doi.org/10.1145/3379156.3391374

under different circumstances, and by users with differing levels
of experience [Dalrymple et al. 2018; Ehinger et al. 2019; Feit et al.
2017]. The most important measures of data quality that facilitate
comparison across studies are spatial accuracy and precision.

Accuracy quantifies the average offset between the actual fix-
ation location and the location of the intended target in units of
visual angle (Eq. 1). It provides a measure of the quality of the
calibration and gaze-mapping procedure. Precision quantifies the
ability of the eye tracker to reliably reproduce a given result, regard-
less of intended gaze location; that is, it measures the end-to-end
noise in the system (Eq. 2, 3). Precision therefore captures the ag-
gregate of system-inherent, oculomotor, and environmental noise
[Holmqvist et al. 2011]. Controlling for as many factors as possible
allows for better calculation of precision [Clemotte et al. 2014; Tobii
Technology 2011].

Many researchers report the manufacturer-determined accuracy
and precision when publishing eye tracking data [Akkil et al. 2014;
Blignaut and Beelders 2012; Dalrymple et al. 2018; Holmqvist et al.
2012], but these metrics are typically calculated under ideal con-
ditions [Tobii Technology 2011]. If manufacturer metrics are used
instead of actual measures, the data will be impaired and this can
invalidate experimental results and conclusions [Dalrymple et al.
2018; Holmqvist et al. 2011; Nyström et al. 2013].

To address these issues, we have developed a novel open-source
tool, GazeMetrics, that allows for the easy extraction of data samples
and calculation of accuracy and precision. GazeMetrics is designed
to be comprehensive and universal, while enabling objective, repli-
cable measurements of accuracy and precision [Tobii Technology
2011]. The goal of the project is to enhance user experience, ease
of measurement, and current software functionality.

2 RELATEDWORK
Several open-source tools have been developed for remote eye track-
ers to make accuracy and precision measurements more reliable.
These tools are used for validation of data quality [Akkil et al. 2014],
assessment of data quality under non-ideal conditions [Clemotte
et al. 2014] or with more difficult populations [Dalrymple et al.
2018], and extend the usability of eye tracking to other software,
such as MATLAB [Gibaldi et al. 2017]. Tools have also been devel-
oped for wearable eye trackers to measure accuracy and precision
[MacInnes 2018; Pfeiffer and Latoschik 2008] and to assess the ef-
fects of non-ideal stimulus presentation on these metrics [Kowalik
2011]. These studies emphasize the need to standardize accuracy
and precision measurements.

While these tools focus on comprehensive measures of accuracy
and precision, they use eye trackers that are not integrated with
VR. VR presents its own challenges with calculating correct metrics

https://doi.org/10.1145/3379156.3391374
https://doi.org/10.1145/3379156.3391374

ETRA ’20 Short Papers, June 2–5, 2020, Stuttgart, Germany Adhanom and Lee, et al.

across depth. Pfeiffer and Latoschik [Pfeiffer and Latoschik 2008]
focus on applications of accuracy and precision in VR, such as depth
fixation detection, but mention that their experimental set up is
limited by the projection technology and the monitor-based display.

3 MOTIVATION
Data quality is vital to the comparability and standardization of
experimental results when using eye tracking [Akkil et al. 2014;
Blignaut and Beelders 2012; Ehinger et al. 2019; Holmqvist et al.
2012; Nyström et al. 2013]. Accuracy and precisionmeasured on-site
are almost always worse than what is expected based on manufac-
turer specifications [Akkil et al. 2014; Clemotte et al. 2014; Feit et al.
2017]. Furthermore, accuracy and precision will affect how data is
collected and how well the results turn out.

During collection, these metrics contribute to factors such as data
loss and detection of fixations, saccades, and other eye movement
events [Holmqvist et al. 2011]. While applying filters to the data
can help enhance precision, poor accuracy is more difficult to fix
[Clemotte et al. 2014; Feit et al. 2017]. After data have been collected
and filtered, any inaccuracy and imprecision will become apparent
when assessing the results. While some higher-order measures are
robust to inaccuracy and imprecision, most are adversely affected.

Additionally, accuracy and precision can be difficult to assess
[Akkil et al. 2014; Blignaut and Beelders 2012; Niehorster et al.
2018]. Preprogrammed calibration procedures often do not show
the outcome of the calibration to the user. For longer sessions, mea-
surements begin to drift over time, causing a decay of data quality,
sometimes up to 30% over the span of 4 minutes [Ehinger et al.
2019], which may not be noticeable until after the data collection.

Together, these factors highlight the necessity for a tool that is
easy to implement and whose results are clear and reproducible.
Standardization across devices allows researchers to compare re-
sults meaningfully and assess the actual effectiveness of their own
data.

4 SYSTEM DESCRIPTION
4.1 General Overview
GazeMetrics is a stand-alone package that allows for online quan-
tification of data quality. The most powerful feature is that nearly
every functionality can be customized without modification to the
source code, making it easy to use for users who are not necessarily
experts in coding. All changes can be saved as default settings and
multiple settings can be saved for implementation with various eye
tracking studies.

4.2 Technical Specifications
GazeMetrics is a software package built in Unity. It provides built-in
support for three popular eye trackers’ Unity software development
kits (SDKs), which in turn support multiple HMD-based eye track-
ing platforms. Moreover, to allow users to add their own implemen-
tations to the source code to support other devices or applications,
the system was built using an extensible software design pattern,
the provider model design pattern [Howard 2006]. Figure 1 shows
a high-level class diagram of GazeMetrics. The components of the
system will be discussed in detail in this section.

GazeMetrics comes with built-in support for the Tobii XR SDK
from Tobii Pro, which can be used in conjunction with the HTC
VIVE Pro Eye integrated eye tracker, the Pico Neo 2 Eye integrated
eye tracker, and the Tobii Pro VR Integration eye tracker. In addi-
tion, the tool supports the Pupil Labs SDK, which works with the
Pupil Labs add-on eye trackers that can be installed into the HTC
VIVE, VIVE Pro, and VIVE Cosmos headsets. Finally, GazeMetrics
supports the VIVE SRAnipal SDK, the native SDK for VIVE Pro
Eye. Combined, they comprise most VR HMD-based eye trackers
available on the market today.

GazeMetrics was tested for functionality onUnity version 2019.1.6,
using the eye tracking SDKs: Tobii XR SDK v1.7.0.160, Pupil labs
HMD eyes SDK v1.1 and Vive SRanipal SDK v1.1.0.1. Development
and testing of the system was done in Windows 10.

4.3 Accuracy and Precision Calculation
GazeMetrics calculates accuracy and precision based on the eye
gaze data provided by the selected eye tracker’s SDK in Unity. Most
HMD-based eye trackers report eye gaze data in the form of a gaze
ray or origin and direction vectors from which a gaze ray can be
constructed. The gaze ray is anchored at the position of the eye or
the head and is directed in the eye gaze direction of the participant.
This approach of representing eye gaze as a ray vector is widely
used in the literature [Barabas et al. 2004; Duchowski et al. 2002].
Calculating an accurate 3D coordinate of a gaze point in the virtual
environment (VE), however, is a challenging problem and is also
extensively covered in previous literature [Pfeiffer and Latoschik
2008].

GazeMetrics uses the gaze ray reported by the eye tracking SDK
to calculate inaccuracy, or offset, of each sample. This is calculated
as the angular difference between the reported gaze ray and an
imaginary gaze ray projected from its origin onto the target stim-
ulus (\𝑖). The average of all offset angles is taken to calculate the
overall accuracy of the eye tracker:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
1
𝑛

𝑛∑︂
𝑖=1

\𝑖 (1)

\𝑅𝑀𝑆 =

⌜⎷
1
𝑛

𝑛∑︂
𝑖=1

(︂
\2
𝑖

)︂
=

√︄
\2

1 + \2
2 + ... + \2

𝑛

𝑛
(2)

𝑆𝐷𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

⌜⎷
1
𝑛

𝑛∑︂
𝑖=1

(𝑥𝑖 − 𝑥)2 (3)

Spatial precision metrics quantify variability in gaze measure-
ments. There are two popular ways to measure precision: one in-
volves calculating the root mean square (RMS) of the inter-sample
angular distances (Eq. 2) and the other involves measuring the stan-
dard deviation of the samples (Eq. 3) [Holmqvist et al. 2012]. For
HMD-based eye trackers, inter-sample angles can be calculated by
measuring the angle between successive gaze ray samples reported
by the eye tracking SDK. To calculate precision using standard
deviation, data is needed about the x, y, and z coordinates of the
gaze point in the VE. However, calculating the gaze point in the
VE is a challenging problem, so not all eye tracking SDKs report
gaze point coordinates in the VE. Therefore, the tool is designed to
report only the RMS precision when gaze-point data is not available.

GazeMetrics: An Open-Source Tool for Measuring the DataQuality of HMD-based Eye Trackers ETRA ’20 Short Papers, June 2–5, 2020, Stuttgart, Germany

Figure 1: High-level UML class diagram of GazeMetrics.

When gaze-point data is available, precision via standard deviation
is also calculated and reported separately in each direction. The
methods that calculate accuracy and precision are defined in the
MetricsCalculator class.

4.4 Stimulus Target Presentation
After selecting the SDK, the user has the option to alter the cal-
ibration targets from the user interface and to change several of
the elements, including the presentation geometry (Fig. 2); target
size, number, and color; and target display length, depth (distance
from eyes), and eccentricity. There is also the option to change the
background color that the targets will be presented on.

Figure 2: Calibration targets can be arranged in a rectangular
format (a) or in a circular format (b).

Accuracy tends to be better if the conditions used in the initial
calibration procedure are similar to the conditions used in the data
quality test [Tobii Technology 2011]. However, different eye track-
ers use different calibration settings; for instance, Tobii eye trackers
use a square calibration point arrangement (Fig. 2a) while Pupil
Labs eye trackers use a circular arrangement (Fig. 2b). GazeMetrics
allows the user to choose their desired arrangement by selecting
one of the preset settings. Experienced users can also develop their
own arrangement by implementing their own classes based on the
GazeMetricsTargets abstract class.

Desired eccentricity of targets can also be manipulated for dif-
ferent experiments, such as testing foveal versus peripheral acuity.
Users can set a different eccentricity, depth, and position of the
central target for each arrangement of targets during a single run
using settings on the user interface.

The settings can be previewed on the user’s screen with a single
button press to ensure desired placement before the participant
interacts with the experiment. The GazeMetricsSettings class
is used to create ScriptableObjects, which are used to create
a data container that is used to store data that persists between
sessions. Therefore GazeMetrics settings can be saved for use with
other sessions and reported in the methods to allow other users to
replicate the procedure.

4.5 Data Collection and Reporting
GazeMetrics communicates with the selected eye trackers’ Unity
SDK to collect real-time data from the eye tracker. The sampling
rate at which data is collected can be set by the experimenter using
the settings window. It is recommended that the sampling rate be
equal to the eye tracker’s sampling frequency. GazeMetrics collects
binocular data from the selected SDK, which is sufficient for most
interactive and analytical uses. If users prefer to use monocular data
for the precision and accuracy calculations, they can modify the
GazeDataProvider implementation of their selected SDK, or write
their own implementation of the GazeDataProvider interface.

In addition, there is an option to change how the data is collected
and thus, how the metrics are calculated. For example, it is possible
to include or exclude samples collected within certain time frames
during target presentation, such as excluding the first 800ms and last
200ms to ensure fixation without including overshoots or glissades
[Holmqvist et al. 2012; Nyström and Holmqvist 2010]. The targets
can be displayed for a selected amount of time, so the amount of
data collected from each target can be modified to suit the user’s
needs.

The tool reports results in two ways: 1) by displaying live results
through a panel on the user’s view of the VE, and 2) by storing
raw data and experiment results on external files. The live data
quality results panel (Fig. 3) allows the experimenter to check the
data quality of the eye tracker under the current experimental
conditions without interrupting the experiment.

For more detailed post-hoc analysis, GazeMetrics stores all col-
lected and processed data in the form of CSV files in a storage
location that the user chooses on the settings panel. While the data
displayed on the results panel contain only aggregate data, calcu-
lated using the formulae in section 4.3, the data exported to the

ETRA ’20 Short Papers, June 2–5, 2020, Stuttgart, Germany Adhanom and Lee, et al.

Figure 3: Data qualitymeasurement results panel used to dis-
play live results.

files contain: raw gaze samples, the target’s position on the VE, the
participant’s head position, the validity of the collected samples,
and the time stamp at which each sample was collected. To allow
users to have complete control of the data, the exported data in-
cludes all samples that were excluded from the online calculation;
that is, it includes time frames that were originally excluded by
user preference. Finally, the accuracy and precision for each target
position are stored in a separate CSV file. The methods used to
export GazeMetrics data are implemented in the DataExporter
class.

To evaluate the functionality of GazeMetrics, we collected sam-
ple data from two users using the HTC Vive Pro Eye headset, and
SRAnipal SDK. We used 9 targets with a circular target arrange-
ment, with a radius of 0.3m. The targets were placed at a depth
of 1m. We displayed each target for 2 seconds and excluded the
first 500 ms from the calculation. After running the accuracy and
precision tests with GazeMetrics, we obtained an average accuracy
score of 1.23◦, RMS precision score of 0.62◦, and SD precision val-
ues of 3.95mm, 0.46mm, and 3.34mm respectively on the X, Y and
Z directions. The manufacturer of the Vive Pro Eye reports spatial
accuracy of 0.5◦ − 1.1◦ for the eye tracker. The manufacturer does
not report spatial precision of the eye tracker. Our accuracy result is
worse than the manufacturer reported accuracy. This underscores
the importance of testing the data quality of eye trackers under the
actual experiment conditions rather than relying on the manufac-
turer reported metrics. However, we would like to clarify that this
test was performed to evaluate the functionality of the tool, and
should not be taken as an empirical evaluation of the data quality
of the tested eye tracker.

5 HOW TO USE THE TOOL
GazeMetrics is prepared as an easy-to-use Unity software package
that can be added to a new or existing Unity software project. While
it can be used as a stand-alone procedure to assess data quality,
it can also be used inside an existing eye tracking experiment to
verify data quality. GazeMetrics can be initiated by pressing a single
key at any point during an eye tracking experiment. The tool can
be run right after the initial calibration procedure or during the
experiment to check if the data quality is high enough to continue.

GazeMetrics contains all the required source code and related
assets. The user can download the latest version of the tool from
its Github page 1. Once the package has been imported to the

1https://github.com/isayasMatter/GazeMetrics

Figure 4: Easy-to-use settings allow the experimenter to cus-
tomize various aspects of the tool. This figure shows one of
the settings windows for the tool.

assets folder, the developer needs to add the ’GazeMetricsController’
prefab to the project by dragging-and-dropping it in the hierarchy
window.

GazeMetrics comes with preset settings suitable for most experi-
ments. However, the user can also change the settings by clicking
on the "Gaze Metrics Settings" or the "Target settings" of the Gaze-
MetricsController object. These settings are self-explanatory and
contain pop-up tool-tips for ease of use. Users start by selecting
which SDK (eye tracker) to use under the "Eye tracker type" setting
and then changing elements of target presentation, data collection,
and sampling rate.

After establishing the preferred settings, the procedure can be
started by pressing the ’S’ key anytime during the experiment. If
the user wants to preview the actual positions of the target stim-
uli inside the VE, they can press the ’P’ key to preview the target
markers without initiating the procedure. Users have the ability
to change the activation keys. Once the procedure is started the
results panel will display live results. This panel is visible to the
user, but is hidden from the participant in the VE. The tool displays
useful status and log messages throughout the procedure to no-
tify the experimenter and the participant about the status of the
experimental procedure.

6 CONCLUSION
Accuracy and precision are two vital components of data quality
that have implications for data collection, data analysis, and validity
of results [Holmqvist et al. 2011, 2012]. As such, it is best practice
to report correct metrics rather than relying on manufacturer data
sheets and have these measures outlined within the methods of a
study to ensure reproducible results. GazeMetrics is a free, open-
source software made to address these issues. It has a user interface
that is customizable without having to alter the source code, making
it accessible for users with all levels of coding experience.

As eye tracking in VR develops, addressing the issue of standard
accuracy and precision reporting becomes increasingly important.
We plan to continue supporting GazeMetrics, and to extend the
functionality of GazeMetrics to include other HMDVR devices, such
as FOVE, and other platforms for presenting stimuli to enhance
data quality and encompass more of the research community.

ACKNOWLEDGMENTS
This research was supported by NIH under grant number P20
GM103650 and by NSF under grant number 1911041.

GazeMetrics: An Open-Source Tool for Measuring the DataQuality of HMD-based Eye Trackers ETRA ’20 Short Papers, June 2–5, 2020, Stuttgart, Germany

REFERENCES
Deepak Akkil, Poika Isokoski, Jari Kangas, Jussi Rantala, and Roope Raisamo. 2014.

TraQuMe: A tool for measuring the gaze tracking quality. In Eye Tracking Research
and Applications Symposium (ETRA). https://doi.org/10.1145/2578153.2578192

James Barabas, Robert B. Goldstein, Henry Apfelbaum, Russell L. Woods, Robert G.
Giorgi, and Eli Peli. 2004. Tracking the line of primary gaze in a walking simulator:
Modeling and calibration. Behavior Research Methods, Instruments, and Computers
(2004). https://doi.org/10.3758/BF03206556

Pieter Blignaut and Tanya Beelders. 2012. TrackStick: A data quality measuring tool
for Tobii eye trackers. In Eye Tracking Research and Applications Symposium (ETRA).
https://doi.org/10.1145/2168556.2168619

A. Clemotte, M. Velasco, D. Torricelli, R. Raya, and R. Ceres. 2014. Accuracy and preci-
sion of the tobii X2-30 eye-tracking under non ideal conditions. In NEUROTECHNIX
2014 - Proceedings of the 2nd International Congress on Neurotechnology, Electronics
and Informatics. https://doi.org/10.5220/0005094201110116

Kirsten A. Dalrymple, Marie D. Manner, Katherine A. Harmelink, Elayne P. Teska,
and Jed T. Elison. 2018. An examination of recording accuracy and precision from
eye tracking data from toddlerhood to adulthood. Frontiers in Psychology (2018).
https://doi.org/10.3389/fpsyg.2018.00803

Andrew Duchowski, Eric Medlin, Nathan Cournia, Hunter Murphy, Anand Gramopad-
hye, Santosh Nair, Jeenal Vorah, and Brian Melloy. 2002. 3-D eye movement
analysis. Behavior Research Methods, Instruments, and Computers (2002). https:
//doi.org/10.3758/BF03195486

Benedikt V. Ehinger, Katharina Groß, Inga Ibs, and Peter König. 2019. A new compre-
hensive eye-tracking test battery concurrently evaluating the Pupil Labs glasses
and the EyeLink 1000. PeerJ 2019, 7 (2019). https://doi.org/10.7717/peerj.7086

Anna Maria Feit, Shane Williams, Arturo Toledo, Ann Paradiso, Harish Kulkarni,
Shaun Kane, and Meredith Ringel Morris. 2017. Toward everyday gaze input:
Accuracy and precision of eye tracking and implications for design. In Conference
on Human Factors in Computing Systems - Proceedings. https://doi.org/10.1145/
3025453.3025599

Agostino Gibaldi, Mauricio Vanegas, Peter J. Bex, and Guido Maiello. 2017. Evaluation
of the Tobii EyeX Eye tracking controller and Matlab toolkit for research. Behavior
Research Methods (2017). https://doi.org/10.3758/s13428-016-0762-9

Kenneth Holmqvist, Marcus Nyström, Richard Andersson, Richard Dewhurst, Halszka
Jarodzka, and Joost Van de Weijer. 2011. Eye tracking: A comprehensive guide to
methods and measures. In Eye Tracking: A comprehensive guide to methods and
measures. OUP Oxford, Chapter 2, 9–64.

Kenneth Holmqvist, Marcus Nyström, and Fiona Mulvey. 2012. Eye tracker data
quality: What it is and how to measure it. In Eye Tracking Research and Applications
Symposium (ETRA). https://doi.org/10.1145/2168556.2168563

Rob Howard. 2006. Provider Model Design Pattern and Specification. http://msdn.
microsoft.com/en-us/library/ms972319.aspx. [Online; accessed 7-April-2020].

Michal Kowalik. 2011. Do-It-Yourself Eye Tracker: Impact of the Viewing Angle on
the Eye Tracking Accuracy. Proceedings of CESCG 2011: The 15th Central European
Seminar on Computer Graphics (2011). https://doi.org/S/N

Jeff MacInnes. 2018. Wearable Eye-tracking for Research : comparisons across devices.
bioRxiv (2018).

Diederick C. Niehorster, Tim H.W. Cornelissen, Kenneth Holmqvist, Ignace T.C. Hooge,
and Roy S. Hessels. 2018. What to expect from your remote eye-tracker when
participants are unrestrained. Behavior Research Methods (2018). https://doi.org/
10.3758/s13428-017-0863-0

Marcus Nyström, RichardAndersson, KennethHolmqvist, and Joost van deWeijer. 2013.
The influence of calibration method and eye physiology on eyetracking data quality.
Behavior Research Methods (2013). https://doi.org/10.3758/s13428-012-0247-4

Marcus Nyström and Kenneth Holmqvist. 2010. An adaptive algorithm for fixation,
saccade, and glissade detection in eyetracking data. Behavior Research Methods
(2010). https://doi.org/10.3758/BRM.42.1.188

Thies Pfeiffer and Marc Erich Latoschik. 2008. Evaluation of Binocular Eye Trackers
and Algorithms for 3D Gaze Interaction in Virtual Reality Environments. Journal
of Virtual Reality and Broadcasting (2008).

Tobii Technology. 2011. Accuracy and precision test method for remote eye trackers.
Test (2011).

https://doi.org/10.1145/2578153.2578192
https://doi.org/10.3758/BF03206556
https://doi.org/10.1145/2168556.2168619
https://doi.org/10.5220/0005094201110116
https://doi.org/10.3389/fpsyg.2018.00803
https://doi.org/10.3758/BF03195486
https://doi.org/10.3758/BF03195486
https://doi.org/10.7717/peerj.7086
https://doi.org/10.1145/3025453.3025599
https://doi.org/10.1145/3025453.3025599
https://doi.org/10.3758/s13428-016-0762-9
https://doi.org/10.1145/2168556.2168563
http://msdn.microsoft.com/en-us/library/ms972319.aspx
http://msdn.microsoft.com/en-us/library/ms972319.aspx
https://doi.org/S/N
https://doi.org/10.3758/s13428-017-0863-0
https://doi.org/10.3758/s13428-017-0863-0
https://doi.org/10.3758/s13428-012-0247-4
https://doi.org/10.3758/BRM.42.1.188

	Abstract
	1 Introduction
	2 Related Work
	3 Motivation
	4 System Description
	4.1 General Overview
	4.2 Technical Specifications
	4.3 Accuracy and Precision Calculation
	4.4 Stimulus Target Presentation
	4.5 Data Collection and Reporting

	5 How to use the Tool
	6 Conclusion
	Acknowledgments
	References

