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Abstract—Hadoop is a popular data-analytics platform based 
on the MapReduce model. When analyzing extremely big data, 
hard disk drives are commonly used and Hadoop performance can 
be optimized by improving I/O performance. Hard disk drives 
have different performance depending on whether data are placed 
in the outer or inner disk zones. In this paper, we propose a 
method that uses knowledge of job characteristics to place data in 
hard disk drives so that Hadoop performance is improved. Files of 
a job that intensively and sequentially accesses the storage device 
are placed in outer disk tracks which have higher sequential access 
speed than inner tracks. Temporary and permanent files are 
placed in the outer and inner zones, respectively. This enables 
repeated usage of the faster zones by avoiding the use of the faster 
zones by permanent files. Our evaluation demonstrates that the 
proposed method improves the performance of Hadoop jobs by 
15.0% over the normal case when file placement is not used. The 
proposed method also outperforms a previously proposed 
placement approach by 9.9%. 
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I. INTRODUCTION  
Hadoop is a popular big-data processing platform based on 

the MapReduce model [1]. Hadoop is used for a variety of 
applications which could be I/O-intensive and/or CPU-intensive. 
Intuitively, Hadoop performance can be improved by taking into 
account the nature of the applications when using storage 
resources.  

In many cases, Hadoop is used to analyze large-scale 
datasets stored in massive storage devices, such as hard disk 
drives (HDDs) accessed sequentially [2]. There are methods to 
improve the performance of such sequential storage access that 
work by placing files into locations of an HDD where I/O access 
is faster than in other locations [2][3]. These methods can be the 
basis of approaches to improve the performance of I/O-intensive 
Hadoop jobs. This paper proposes such an approach and 
evaluates it in an experimental system running a realistic 
workload using the Statistical Workload Injector for 
MapReduce (SWIM). SWIM has been recently proposed [4] to 
enable meaningful experimental evaluations of Hadoop 
performance. It can emulate many types of workloads [1]. 

We focus on a Hadoop use-case where a sequence of Hadoop 
jobs of several kinds must be executed. First, we categorize 
SWIM jobs as Map-heavy, Shuffle-heavy, or Reduce-heavy 
jobs and thoroughly investigate their I/O behaviors and CPU 
behaviors in order to reveal their features. We then show that 
Map-heavy jobs are CPU-intensive and that Shuffle-heavy and 
Reduce-heavy jobs are I/O-intensive. Second, we discuss the 

optimization of file placement for these three types of jobs. 
Third, we compare the total times to complete all these jobs 
when using (1) a default (i.e. non-optimized) file placement 
determined by the operating system underlying Hadoop (hereon 
called the normal method), (2) a file placement approach 
previously proposed by the authors (hereon referred to as the 
existing method), and (3) the new proposed method. 

The rest of this paper is organized as follows. Section II 
provides background information. Section IV reviews related 
work. Section V discusses the features of SWIM jobs and the 
relationship between file location in an HDD and the speeds of 
sequential reads and sequential writes. Section VI proposes a 
method for improving SWIM job performance. Section VII 
comparatively evaluates the three methods. Section VIII 
discusses results. Section VIII concludes the paper.  

II. BACKGROUND 
Here, we introduce MapReduce. As shown in Fig. 1, each 

MapReduce job is composed of three phases, namely the Map 
phase, Shuffle phase, and Reduce phase. In the Map phase, the 
Input Data is divided into multiple Input splits. Each Mapper 
receives an Input split, executes the user-defined Map process, 
and creates the key-value pairs. These key-value pairs are 
stored in the intermediate files. In the Shuffle phase, the 
intermediate key-value pairs are sorted, grouped by the key and 
transmitted to the reducers. In the Reduce phase, each reducer 
executes the user-defined Reduce task on its received key-
values and creates outputs. These outputs are the results of the 
Hadoop job and are stored in the Output data. 

III. RELATEd WORK 

A. SWIM 
SWIM is a workload emulator that can generate realistic 

MapReduce jobs based on real workloads from a production 
Hadoop cluster in Facebook. In addition, SWIM jobs can be 
configured by changing some parameter values. Specifically, 
each SWIM job has configurable parameters such as job ID, 
input size (bytes) per map operation, shuffle size, output size per 
reduce operation and the number of reducers. Moreover, each 
job submission interval can be controlled [4]. In this paper, we 
evaluate the performance of Hadoop for different usage 
scenarios by varying the parameters in these Facebook traces. 

B. Previously proposed file placement method 
Here, we explain methods proposed in [2][3] for improving 

sequential I/O performance by optimizing file placement. These 
methods use the fact that hard disk drives using Zone Bit 
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Recording (ZBR) provide faster sequential access in outer disk 
zones than in inner zones. They avoid placing files in the inner 
zones by controlling the block usage information of the file 
system. Many file systems, for example ext2/3/4, divide the 
entire space into 4KB blocks (the methods in [2][3] were 
implemented with ext2/3/4). These file systems construct block 
groups that contain a defined number of the blocks. The size of 
each block group is 128 MB when using the default setting. 
Every block group has its own block bitmap, an inode bitmap, 
inode table, and data blocks. The block bitmap manages block 
usage in the block group. 0 and 1 in the bitmap indicate whether 
the block is free or in-use, respectively. Inode bitmap manages 
the usage of inodes in the group. The inode table manages file 

information including file placement location. The data blocks 
store data of files. The two previously proposed methods [2][3] 
change the bitmap bits for the blocks in the inner zones in order 
to avoid using these inner zones. As a result, only the outer zones, 
which have higher sequential access speeds, are utilized by these 
methods. 

The method in [3] is static, i.e. it sets the block bitmaps of 
the inner zones to 1 prior to job execution. On the other hand, 
method in [2] is dynamic, i.e. it keeps watching the size of the 
usable area, whose block bitmaps are not set as 1, and then 
expands or shrinks the usable area according to threshold values, 
dynamically. While this dynamic method always places every 
file in the outmost zones, the proposed method optimizes the file 
placement according to the features of the job. 

IV. BASIC PERFORMANCE EVALUATION 
In this section, we explore the resource consumption 

behaviors of Map-heavy, Shuffle-heavy and Reduce-heavy jobs. 

A. Basic Behavior of Hadoop Jobs 
Here, we investigate the I/O and CPU utilization and Disk 

location usage of Map-heavy, Shuffle-heavy, and Reduce-heavy 
SWIM jobs. Our proposed method places the files according to 
these features. 

We executed SWIM jobs on an experimental Hadoop system. 
The parameters were set as follows (italics are used to refer to 
parameters). Submit time and inter job submit gap were set to 
one for all the jobs. The Input file size is 4GB. In the case of 
Map-heavy jobs, map input bytes was set to 3.0 ×  10ଵଵ  and 
shuffle bytes and reduce output bytes were set to one. In the case 
of  Shuffle-heavy jobs, shuffle bytes was set to 1.0 ×  10ଵଶ, and 
the others were set to one. In the case of Reduce-heavy jobs, 
reduce output bytes was set to 1.0 ×  10ଵଶ, and the others were 
set to one. The Hadoop system was set to run in the pseudo 
distributed mode. The specifications of the computer and HDD 
in the experiments are described in Table I and Table II, 
respectively.  

I/O usage and CPU utilization by a Map-heavy job are 
shown in Fig. 3 and those of Shuffle-heavy and Reduce-heavy 
jobs are shown in Fig. 4 and Fig. 5, respectively. The temporal 
changes of the size of the used disk space of these jobs are 
depicted in Figs. 6, 7, and 8. 

These results lead to several conclusions. First, a Map-heavy 
job is CPU-intensive. It  temporarily stores the intermediate data 
in the storage and deletes almost all of these intermediate data 
during the execution. Second, a Shuffle-heavy job is I/O-
intensive, temporarily stores the intermediate data, and deletes 
almost all the data. Third, a Reduce-heavy job is I/O-intensive 
and permanently stores the output data, i.e. the data are not 
deleted.  

B. Sequential Storage Access 
In this subsection, we investigate the relationship between 

the location of data in an HDD and the speeds of a sequential 
read and a sequential write. We repeatedly issued 64-MB read 
and write commands from the disk’s first address to its last 
address. The first and last addresses correspond to the outmost 
and innermost zones, respectively. Fig. 9 shows the time to 

 
Fig.1.  Overview of MapReduce. 
 

 
Fig.2.  Overview of ext2/3 

TABLE I. Specifications of the computer  used in experiments. 

CPU AMD Phenom 2 X4 965 
Processor 

OS CentOS 6.10 x86_64 minimal 
Kernel Linux 2.6.32.57 

Main Memory 4GB 
HDD 500GB(ext3) 

Hadoop Ver. 2.0.0-cdh4.2.1 
 

TABLE II.  Specifications of the HDD  used in experiments. 

Model Number DT01ACA050 
Interface SATA 3.0 

Interface Speed 6.0Gbps 
Device Size 500GB 
Buffer Size 32MB 

Rotation Rate 7200rpm 
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complete 64MB of a read or write at every address. The results 
indicate that the speeds decrease as the address increases. The 
access latency in the innnermost zone is almost twice that in the 
outmost zones. 

C. Merged I/O Sizes 
In addition, we investigated the frequencies of the sizes of  

the merged I/O requests [8], which were obtained by  merging 
the temporarily and spatially continuous I/O requests into one 
request, of Shuffle-heavy and Reduce-heavy jobs. 

We did expect that I/O throughput improves by placing files 
in outer zones in case of the job is I/O-intensive and the sizes of 
their merged I/O requests are large. Map-heavy jobs are CPU-
intensive and we did not expect improvement of their 

performance by optimizing file location. Then, we investigated 
the merged I/O request sizes of Shuffle-heavy and Reduce-
heavy jobs. Fig.10 and Fig.11 depict the results of Shuffle-heavy 
and Reduce-heavy jobs, respectively. The results show that 
many large I/O requests were issued, i.e. the storage device was 
accessed in a highly sequentially manner. Therefore, the 
rationale for the method proposed in Section V is to improve 
sequential I/O speed by actively utilizing the outer zones in the 
HDD in order to improve the performance of the Shuffle-heavy 
and Reduce-heavy jobs. 

 
Fig.6.  Used disk space by Map-heavy job. 

 
Fig.7.  Disk space used by Shuffle-heavy job. 

 
Fig.8.  Disk space used by Reduce-heavy job. 
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Fig.3.  CPU and I/O utilization of Map-heavy job. 

 
Fig.4.  CPU and I/O utilization of Shuffle-heavy job. 

 
Fig.5.  CPU and I/O utilization of Reduce-heavy job. 
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V. PROPOSED METHOD 

A. File placement policy 
In this section, we propose a method for improving the I/O 

performance of a sequence of Hadoop jobs by optimizing file 
placement based on job features. We assume that the jobs are 
submitted and executed sequentially (see Section VII for 
comments regarding the case when jobs are executed 
concurrently). 

 The proposed method places files in outer zones according 
to the following order of priority: 

(1)  The file is temporary and is used by an I/O intensive 
process. 

(2)  The file is temporary and is not used by an I/O intensive 
process. 

(3)  The file is not temporary and is used by an I/O intensive 
process. 

(4)  The file is not temporary and is not used by an I/O 
intensive process. 

In order to utilize the outer zones many times, the method 
avoids occupying the outer zones with permanent files. Instead, 
the proposed method actively places temporary files in the outer 
zones. 

B. Implementation 
In our implementation, the proposed method uses ext2/3/4 

file systems. These file systems create block groups and every 
block group has its own block bitmap for the blocks in the group, 
as described in Section III.BB. The method forces Map-heavy 
and Shuffle-heavy jobs to use the fastest zones by changing the 
bits of the non-fastest blocks into 1, which indicates that they are 
being used. The proposed method prevents Reduce-heavy jobs 
from using the fastest zones by changing their bits into 1. As a 
result, the output files of the Reduce-heavy jobs are not placed 
in the fastest zones.  

VI. EVALUATION 
In this section, we evaluate the performance of the proposed 

method. We executed a series of Hadoop jobs. A set of jobs is 
illustrated in Fig. 12. A set is composed of 27 job groups, 
sequenced as Map-heavy group, Shuffle-heavy group, Reduce-
heavy group, Map-heavy group, Shuffle-heavy group, Reduce-
heavy group, and so on. A set contains nine Map-heavy groups, 
nine Shuffle-heavy groups, and nine Reduce-heavy groups. 
Each job group consists of 20 jobs. We started each execution 
of a set of jobs with the hard disk drive empty and the drive was 
almost fully occupied by the output files of these Hadoop jobs 
after an execution of a set of jobs. As described, it is mainly 
consumed by the files of Reduce-heavy jobs. 

According to the proposed policy in Section V, the files are 
practically placed as follows. 

The files of Shuffle-heavy jobs are stored in the fastest zones 
because they are temporary and the process is I/O-intensive as 
described in Section IV.A. The files of Map-heavy jobs also 
stored in the fastest zones because they also are temporary as 
described. Reduce-heavy jobs’ files are not stored in the fastest 
zone because they stay permanently in the storage device as 
described. 

Figs. 13 and 14 illustrate the file placement of the existing 
and proposed methods. The existing method places files of Map-
heavy and Shuffle-heavy jobs in an inner zone than the zone of 
the files of Reduce-heavy job after execution of an Reduce-
heavy job. As the number of executions of Reduce-heavy jobs 
increases, file placement locations of the following jobs move to 
inner zones. As a result, the performance of jobs, especially I/O 
intensive Shuffle-heavy jobs, declines. On the contrary, the 
proposed method does not store permanent files in the fastest 
zones as shown in Fig. 14. The output files of the Reduce-heavy 
jobs are not stored in the fastest zones, which are for temporary 
files, and the files of Map-heavy and Shuffle-heavy jobs are 
always placed temporarily in the fastest zones. 

Fig. 15 shows the average time to complete a set of jobs by 
executing five sets. Figs. 16, 17, and 18 depict the times to 
complete Map-, Shuffle-, and Reduce-heavy jobs of the first set, 
respectively. 

 
Fig.9.  Read/Write times of HDD locations with different addresses. 

 
Fig.10. Merged I/O request size of Shuffle-heavy job. 

 
Fig.11.  Merged I/O request size of Reduce-heavy job. 
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Fig. 15 indicates that the execution time of the jobs when 
using the proposed method is smaller than the execution times 
when using the normal and existing methods by 15.0% and 9.9%, 
respectively.  

Fig. 16 implies that both the existing and proposed methods 
did not reduce the execution time of Map-heavy jobs. This is due 
to Map-heavy jobs being CPU-intensive jobs. Fig. 17 shows that 
both the existing and proposed methods improve Hadoop 
performance over the normal method. The size of improvement 
of the proposed method is larger than that of the existing method. 
In the case of the existing method, the time to complete a job 
increased as the number of executed jobs increased. This is 
mainly because faster zones were increasingly occupied as 
Reduce-heavy jobs were executed.   

Fig.18 indicates that the proposed method did not reduce 
times to complete the Reduce-heavy jobs while the existing 
method reduced them. The proposed method did not place the 
files of the Reduce-heavy jobs in the fastest zones while the 
existing method did the best effort for every Reduce-heavy job, 
which means providing the fastest zone at every execution. 
However, the difference between times of the Reduce-heavy 
jobs of the existing and proposed methods was not large because 
the time to complete a Reduce-heavy job increased with the 

existing method as the number of completed Reduce-heavy jobs 
increased. On the contrary, the difference of Shuffle-heavy jobs 
was large because the times to complete the jobs with the 
proposed method was the shortest at every execution. As a result, 
the time to complete all the groups of the proposed method was 
shorter than that of the existing method. 

VII. DISCUSSION 
The proposed method relies on knowledge of characteristics 

of Hadoop jobs to be executed, namely whether they are Map-
heavy, Reduce-heavy or Shuffle-heavy. This knowledge is often 
available in use-cases when jobs are repeatedly executed on 
different data. For example, a search engine system updates its 
index, which is a typical Shuffle-heavy job, according to newly 
crawled web pages every day. Similarly, in an electronic 
shopping site, similar online transaction processing (OLTP) jobs 
are executed every day. In the case of online analytical 
processing (OLAP) applications, the features of repeated jobs 
are also very similar. In addition, the features of jobs that our 
method required can be easily obtained. We measured the CPU 
and I/O usages by simply executing the vmstat and iostat 
commands, respectively. We got the temporal changes of the 
disk usage by simply repeating the df command. Therefore, we 
argue that the proposed method is applicable to many situations.  

An alternate method for actively using the outer zones can 
rely on splitting a storage device into multiple partitions. Placing 
volatile files in a fast partition is one of the ways to implement 
the proposed approach. This is effective only when the total size 
of the volatile files is known and strictly bounded. On the other 
hand, the method proposed in this paper is applicable to more 
situations because it can adapt to dynamic file size changes by 
modifying the bitmap. 

The proposed method evaluation considered the case when 
a set of jobs are executed sequentially. While there are many 
practical instances of this use-case, another important Hadoop 
use scenario is the case when jobs are executed concurrently. 
This case is the subject of current research, as it requires some 
modifications to the proposed method and a more extensive 
evaluation.  

Hadoop applications access files on HDFS and local file 
system of its nodes. Files on HDFS are mainly accessed by 
Hadoop for reading its input data and writing its output data. 
Files on the local file system are used for intermediate data. The 
proposed method is realized by controlling the local file system 
information. Since HDFS is constructed over the local file 
system, the proposed method is effective on files on both HDFS 
and the local file system. 

In this paper, we proposed a method to improve I/O 
performance for representative application targets generated by 
SWIM. As we describe, the method is based on characteristics 
of SWIM jobs, specifically on CPU usage, I/O usage, temporal 
changes of the size of the used disk space, and file volatility. By 
monitoring the execution of other applications we can obtain 
similar metrics thus generalizing the applicability of our method 
to those applications. 

 
Fig.12. A set of sequential jobs. 

 
Fig.13.  File placement using the previously proposed (existing) method 
[2]. 

 
Fig.14.  File placement using the method proposed in this paper. 
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VIII. CONCLUSION 
In this paper, we investigated the CPU and I/O resource 

consumptions and used disk space of SWIM jobs, which were 
categorized as Map-heavy, Shuffle-heavy, and Reduce-heavy. 
We then proposed a method for improving I/O performance 
considering the features of the target jobs. Our evaluation has 

demonstrated that the proposed method has improved the 
performance of the Hadoop jobs by 15.0% while the existing 
method did so by 5.6%. The new method also outperformed the 
existing method by 9.9%. 

In future work, we plan to extend and evaluate similar 
methods for concurrent jobs when Hadoop runs in fully 
distributed mode.  
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Fig.15.  Total execution time of job sequence. 

 
Fig.16.  Execution time of each Map-heavy job 

 
Fig.17.  Execution time of each Shuffle-heavy job 

 
Fig.18.  Execution time of each Reduce-heavy job 
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