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Abstract—Hadoop is a popular data-analytics platform based
on the MapReduce model. When analyzing extremely big data,
hard disk drives are commonly used and Hadoop performance can
be optimized by improving I/O performance. Hard disk drives
have different performance depending on whether data are placed
in the outer or inner disk zones. In this paper, we propose a
method that uses knowledge of job characteristics to place data in
hard disk drives so that Hadoop performance is improved. Files of
a job that intensively and sequentially accesses the storage device
are placed in outer disk tracks which have higher sequential access
speed than inner tracks. Temporary and permanent files are
placed in the outer and inner zones, respectively. This enables
repeated usage of the faster zones by avoiding the use of the faster
zones by permanent files. Qur evaluation demonstrates that the
proposed method improves the performance of Hadoop jobs by
15.0% over the normal case when file placement is not used. The
proposed method also outperforms a previously proposed
placement approach by 9.9%.
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L.

Hadoop is a popular big-data processing platform based on
the MapReduce model [1]. Hadoop is used for a variety of

INTRODUCTION

applications which could be I/O-intensive and/or CPU-intensive.

Intuitively, Hadoop performance can be improved by taking into
account the nature of the applications when using storage
resources.

In many cases, Hadoop is used to analyze large-scale
datasets stored in massive storage devices, such as hard disk
drives (HDDs) accessed sequentially [2]. There are methods to
improve the performance of such sequential storage access that
work by placing files into locations of an HDD where I/O access
is faster than in other locations [2][3]. These methods can be the
basis of approaches to improve the performance of I/O-intensive
Hadoop jobs. This paper proposes such an approach and
evaluates it in an experimental system running a realistic
workload using the Statistical Workload Injector for
MapReduce (SWIM). SWIM has been recently proposed [4] to
enable meaningful experimental evaluations of Hadoop
performance. It can emulate many types of workloads [1].

We focus on a Hadoop use-case where a sequence of Hadoop
jobs of several kinds must be executed. First, we categorize
SWIM jobs as Map-heavy, Shuffle-heavy, or Reduce-heavy
jobs and thoroughly investigate their /O behaviors and CPU
behaviors in order to reveal their features. We then show that
Map-heavy jobs are CPU-intensive and that Shuffle-heavy and
Reduce-heavy jobs are I/O-intensive. Second, we discuss the
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optimization of file placement for these three types of jobs.
Third, we compare the total times to complete all these jobs
when using (1) a default (i.e. non-optimized) file placement
determined by the operating system underlying Hadoop (hereon
called the normal method), (2) a file placement approach
previously proposed by the authors (hereon referred to as the
existing method), and (3) the new proposed method.

The rest of this paper is organized as follows. Section II
provides background information. Section IV reviews related
work. Section V discusses the features of SWIM jobs and the
relationship between file location in an HDD and the speeds of
sequential reads and sequential writes. Section VI proposes a
method for improving SWIM job performance. Section VII
comparatively evaluates the three methods. Section VIII
discusses results. Section VIII concludes the paper.

II. BACKGROUND

Here, we introduce MapReduce. As shown in Fig. 1, each
MapReduce job is composed of three phases, namely the Map
phase, Shuffle phase, and Reduce phase. In the Map phase, the
Input Data is divided into multiple Input splits. Each Mapper
receives an Input split, executes the user-defined Map process,
and creates the key-value pairs. These key-value pairs are
stored in the intermediate files. In the Shuffle phase, the
intermediate key-value pairs are sorted, grouped by the key and
transmitted to the reducers. In the Reduce phase, each reducer
executes the user-defined Reduce task on its received key-
values and creates outputs. These outputs are the results of the
Hadoop job and are stored in the Output data.

III. RELATEd WORK

A. SWIM

SWIM is a workload emulator that can generate realistic
MapReduce jobs based on real workloads from a production
Hadoop cluster in Facebook. In addition, SWIM jobs can be
configured by changing some parameter values. Specifically,
each SWIM job has configurable parameters such as job ID,
input size (bytes) per map operation, shuffle size, output size per
reduce operation and the number of reducers. Moreover, each
job submission interval can be controlled [4]. In this paper, we
evaluate the performance of Hadoop for different usage
scenarios by varying the parameters in these Facebook traces.

B. Previously proposed file placement method

Here, we explain methods proposed in [2][3] for improving
sequential I/O performance by optimizing file placement. These
methods use the fact that hard disk drives using Zone Bit
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TABLE I. Specifications of the computer used in experiments.

CPU AMD Phenom 2 X4 965
Processor
0S CentOS 6.10 x86 64 minimal
Kernel Linux 2.6.32.57
Main Memory 4GB
HDD 500GB(ext3)
Hadoop Ver. 2.0.0-cdh4.2.1

TABLE II. Specifications of the HDD used in experiments.

Model Number DTO01ACA050
Interface SATA 3.0
Interface Speed 6.0Gbps
Device Size 500GB
Buffer Size 32MB
Rotation Rate 7200rpm

Recording (ZBR) provide faster sequential access in outer disk
zones than in inner zones. They avoid placing files in the inner
zones by controlling the block usage information of the file
system. Many file systems, for example ext2/3/4, divide the
entire space into 4KB blocks (the methods in [2][3] were
implemented with ext2/3/4). These file systems construct block
groups that contain a defined number of the blocks. The size of
each block group is 128 MB when using the default setting.
Every block group has its own block bitmap, an inode bitmap,
inode table, and data blocks. The block bitmap manages block
usage in the block group. 0 and 1 in the bitmap indicate whether
the block is free or in-use, respectively. Inode bitmap manages
the usage of inodes in the group. The inode table manages file
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information including file placement location. The data blocks
store data of files. The two previously proposed methods [2][3]
change the bitmap bits for the blocks in the inner zones in order
to avoid using these inner zones. As a result, only the outer zones,
which have higher sequential access speeds, are utilized by these
methods.

The method in [3] is static, i.e. it sets the block bitmaps of
the inner zones to 1 prior to job execution. On the other hand,
method in [2] is dynamic, i.e. it keeps watching the size of the
usable area, whose block bitmaps are not set as 1, and then
expands or shrinks the usable area according to threshold values,
dynamically. While this dynamic method always places every
file in the outmost zones, the proposed method optimizes the file
placement according to the features of the job.

IV. BASIC PERFORMANCE EVALUATION

In this section, we explore the resource consumption
behaviors of Map-heavy, Shuffle-heavy and Reduce-heavy jobs.

A. Basic Behavior of Hadoop Jobs

Here, we investigate the I/O and CPU utilization and Disk
location usage of Map-heavy, Shuffle-heavy, and Reduce-heavy
SWIM jobs. Our proposed method places the files according to
these features.

We executed SWIM jobs on an experimental Hadoop system.
The parameters were set as follows (italics are used to refer to
parameters). Submit time and inter job submit gap were set to
one for all the jobs. The Input file size is 4GB. In the case of
Map-heavy jobs, map input bytes was set to 3.0 x 10! and
shuffle bytes and reduce output bytes were set to one. In the case
of Shuffle-heavy jobs, shuffle bytes was setto 1.0 X 1012, and
the others were set to one. In the case of Reduce-heavy jobs,
reduce output bytes was set to 1.0 X 102, and the others were
set to one. The Hadoop system was set to run in the pseudo
distributed mode. The specifications of the computer and HDD
in the experiments are described in Table I and Table II,
respectively.

I/O usage and CPU utilization by a Map-heavy job are
shown in Fig. 3 and those of Shuffle-heavy and Reduce-heavy
jobs are shown in Fig. 4 and Fig. 5, respectively. The temporal
changes of the size of the used disk space of these jobs are
depicted in Figs. 6, 7, and 8.

These results lead to several conclusions. First, a Map-heavy
job is CPU-intensive. It temporarily stores the intermediate data
in the storage and deletes almost all of these intermediate data
during the execution. Second, a Shuffle-heavy job is I/O-
intensive, temporarily stores the intermediate data, and deletes
almost all the data. Third, a Reduce-heavy job is I/O-intensive
and permanently stores the output data, i.e. the data are not
deleted.

B. Sequential Storage Access

In this subsection, we investigate the relationship between
the location of data in an HDD and the speeds of a sequential
read and a sequential write. We repeatedly issued 64-MB read
and write commands from the disk’s first address to its last
address. The first and last addresses correspond to the outmost
and innermost zones, respectively. Fig. 9 shows the time to
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Fig.5. CPU and I/O utilization of Reduce-heavy job.
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complete 64MB of a read or write at every address. The results
indicate that the speeds decrease as the address increases. The
access latency in the innnermost zone is almost twice that in the
outmost zones.

C. Merged 1/0O Sizes

In addition, we investigated the frequencies of the sizes of
the merged I/O requests [8], which were obtained by merging
the temporarily and spatially continuous I/O requests into one
request, of Shuffle-heavy and Reduce-heavy jobs.

We did expect that I/O throughput improves by placing files
in outer zones in case of the job is I/O-intensive and the sizes of
their merged /O requests are large. Map-heavy jobs are CPU-
intensive and we did not expect improvement of their
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Fig.8. Disk space used by Reduce-heavy job.

performance by optimizing file location. Then, we investigated
the merged I/O request sizes of Shuffle-heavy and Reduce-
heavy jobs. Fig.10 and Fig.11 depict the results of Shuffle-heavy
and Reduce-heavy jobs, respectively. The results show that
many large I/O requests were issued, i.e. the storage device was
accessed in a highly sequentially manner. Therefore, the
rationale for the method proposed in Section V is to improve
sequential I/O speed by actively utilizing the outer zones in the
HDD in order to improve the performance of the Shuffle-heavy
and Reduce-heavy jobs.
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V. PROPOSED METHOD

A. File placement policy

In this section, we propose a method for improving the I/O
performance of a sequence of Hadoop jobs by optimizing file
placement based on job features. We assume that the jobs are
submitted and executed sequentially (see Section VII for
comments regarding the case when jobs are executed
concurrently).

The proposed method places files in outer zones according
to the following order of priority:

(1) The file is temporary and is used by an I/O intensive
process.

(2) The file is temporary and is not used by an I/O intensive
process.

(3) The fileis not temporary and is used by an I/O intensive
process.
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(4) The file is not temporary and is not used by an I/O
intensive process.

In order to utilize the outer zones many times, the method
avoids occupying the outer zones with permanent files. Instead,
the proposed method actively places temporary files in the outer
zones.

B. Implementation

In our implementation, the proposed method uses ext2/3/4
file systems. These file systems create block groups and every
block group has its own block bitmap for the blocks in the group,
as described in Section III.BB. The method forces Map-heavy
and Shuffle-heavy jobs to use the fastest zones by changing the
bits of the non-fastest blocks into 1, which indicates that they are
being used. The proposed method prevents Reduce-heavy jobs
from using the fastest zones by changing their bits into 1. As a
result, the output files of the Reduce-heavy jobs are not placed
in the fastest zones.

VI. EVALUATION

In this section, we evaluate the performance of the proposed
method. We executed a series of Hadoop jobs. A set of jobs is
illustrated in Fig. 12. A set is composed of 27 job groups,
sequenced as Map-heavy group, Shuffle-heavy group, Reduce-
heavy group, Map-heavy group, Shuffle-heavy group, Reduce-
heavy group, and so on. A set contains nine Map-heavy groups,
nine Shuffle-heavy groups, and nine Reduce-heavy groups.
Each job group consists of 20 jobs. We started each execution
of a set of jobs with the hard disk drive empty and the drive was
almost fully occupied by the output files of these Hadoop jobs
after an execution of a set of jobs. As described, it is mainly
consumed by the files of Reduce-heavy jobs.

According to the proposed policy in Section V, the files are
practically placed as follows.

The files of Shuffle-heavy jobs are stored in the fastest zones
because they are temporary and the process is I/O-intensive as
described in Section IV.A. The files of Map-heavy jobs also
stored in the fastest zones because they also are temporary as
described. Reduce-heavy jobs’ files are not stored in the fastest
zone because they stay permanently in the storage device as
described.

Figs. 13 and 14 illustrate the file placement of the existing
and proposed methods. The existing method places files of Map-
heavy and Shuffle-heavy jobs in an inner zone than the zone of
the files of Reduce-heavy job after execution of an Reduce-
heavy job. As the number of executions of Reduce-heavy jobs
increases, file placement locations of the following jobs move to
inner zones. As a result, the performance of jobs, especially I/O
intensive Shuffle-heavy jobs, declines. On the contrary, the
proposed method does not store permanent files in the fastest
zones as shown in Fig. 14. The output files of the Reduce-heavy
jobs are not stored in the fastest zones, which are for temporary
files, and the files of Map-heavy and Shuffle-heavy jobs are
always placed temporarily in the fastest zones.

Fig. 15 shows the average time to complete a set of jobs by
executing five sets. Figs. 16, 17, and 18 depict the times to
complete Map-, Shuffle-, and Reduce-heavy jobs of the first set,
respectively.
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Fig. 15 indicates that the execution time of the jobs when
using the proposed method is smaller than the execution times
when using the normal and existing methods by 15.0% and 9.9%,
respectively.

Fig. 16 implies that both the existing and proposed methods
did not reduce the execution time of Map-heavy jobs. This is due
to Map-heavy jobs being CPU-intensive jobs. Fig. 17 shows that
both the existing and proposed methods improve Hadoop
performance over the normal method. The size of improvement
of the proposed method is larger than that of the existing method.
In the case of the existing method, the time to complete a job
increased as the number of executed jobs increased. This is
mainly because faster zones were increasingly occupied as
Reduce-heavy jobs were executed.

Fig.18 indicates that the proposed method did not reduce
times to complete the Reduce-heavy jobs while the existing
method reduced them. The proposed method did not place the
files of the Reduce-heavy jobs in the fastest zones while the
existing method did the best effort for every Reduce-heavy job,
which means providing the fastest zone at every execution.
However, the difference between times of the Reduce-heavy
jobs of the existing and proposed methods was not large because
the time to complete a Reduce-heavy job increased with the
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existing method as the number of completed Reduce-heavy jobs
increased. On the contrary, the difference of Shuffle-heavy jobs
was large because the times to complete the jobs with the
proposed method was the shortest at every execution. As a result,
the time to complete all the groups of the proposed method was
shorter than that of the existing method.

VII. DISCUSSION

The proposed method relies on knowledge of characteristics
of Hadoop jobs to be executed, namely whether they are Map-
heavy, Reduce-heavy or Shuffle-heavy. This knowledge is often
available in use-cases when jobs are repeatedly executed on
different data. For example, a search engine system updates its
index, which is a typical Shuffle-heavy job, according to newly
crawled web pages every day. Similarly, in an electronic
shopping site, similar online transaction processing (OLTP) jobs
are executed every day. In the case of online analytical
processing (OLAP) applications, the features of repeated jobs
are also very similar. In addition, the features of jobs that our
method required can be easily obtained. We measured the CPU
and I/0 usages by simply executing the vmstat and iostat
commands, respectively. We got the temporal changes of the
disk usage by simply repeating the df command. Therefore, we
argue that the proposed method is applicable to many situations.

An alternate method for actively using the outer zones can
rely on splitting a storage device into multiple partitions. Placing
volatile files in a fast partition is one of the ways to implement
the proposed approach. This is effective only when the total size
of the volatile files is known and strictly bounded. On the other
hand, the method proposed in this paper is applicable to more
situations because it can adapt to dynamic file size changes by
modifying the bitmap.

The proposed method evaluation considered the case when
a set of jobs are executed sequentially. While there are many
practical instances of this use-case, another important Hadoop
use scenario is the case when jobs are executed concurrently.
This case is the subject of current research, as it requires some
modifications to the proposed method and a more extensive
evaluation.

Hadoop applications access files on HDFS and local file
system of its nodes. Files on HDFS are mainly accessed by
Hadoop for reading its input data and writing its output data.
Files on the local file system are used for intermediate data. The
proposed method is realized by controlling the local file system
information. Since HDFS is constructed over the local file
system, the proposed method is effective on files on both HDFS
and the local file system.

In this paper, we proposed a method to improve I/O
performance for representative application targets generated by
SWIM. As we describe, the method is based on characteristics
of SWIM jobs, specifically on CPU usage, I/O usage, temporal
changes of the size of the used disk space, and file volatility. By
monitoring the execution of other applications we can obtain
similar metrics thus generalizing the applicability of our method
to those applications.
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VIII. CONCLUSION

In this paper, we investigated the CPU and I/O resource
consumptions and used disk space of SWIM jobs, which were
categorized as Map-heavy, Shuffle-heavy, and Reduce-heavy.
We then proposed a method for improving I/O performance
considering the features of the target jobs. Our evaluation has
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demonstrated that the proposed method has improved the
performance of the Hadoop jobs by 15.0% while the existing
method did so by 5.6%. The new method also outperformed the
existing method by 9.9%.

In future work, we plan to extend and evaluate similar
methods for concurrent jobs when Hadoop runs in fully
distributed mode.
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