
Job-aware Optimization of File Placement in Hadoop

Makoto Nakagami
Electrical Engineering and Electronics
Kogakuin University Graduate School

Tokyo, Japan
cm19036@ns.kogakuin.ac.jp

Jose A. B. Fortes
Advanced Computer and Information

Systems (ACIS) Lab
University of Florida

Gainesville, USA
 fortes@ufl.edu

Saneyasu Yamaguchi
Department of Information and
Communications Engineering

Kogakuin University
Tokyo, Japan

sane@cc.kogakuin.ac.jp

Abstract—Hadoop is a popular data-analytics platform based
on the MapReduce model. When analyzing extremely big data,
hard disk drives are commonly used and Hadoop performance can
be optimized by improving I/O performance. Hard disk drives
have different performance depending on whether data are placed
in the outer or inner disk zones. In this paper, we propose a
method that uses knowledge of job characteristics to place data in
hard disk drives so that Hadoop performance is improved. Files of
a job that intensively and sequentially accesses the storage device
are placed in outer disk tracks which have higher sequential access
speed than inner tracks. Temporary and permanent files are
placed in the outer and inner zones, respectively. This enables
repeated usage of the faster zones by avoiding the use of the faster
zones by permanent files. Our evaluation demonstrates that the
proposed method improves the performance of Hadoop jobs by
15.0% over the normal case when file placement is not used. The
proposed method also outperforms a previously proposed
placement approach by 9.9%.

Keywords—Hadoop, MapReduce, SWIM, Filesystem

I. INTRODUCTION
Hadoop is a popular big-data processing platform based on

the MapReduce model [1]. Hadoop is used for a variety of
applications which could be I/O-intensive and/or CPU-intensive.
Intuitively, Hadoop performance can be improved by taking into
account the nature of the applications when using storage
resources.

In many cases, Hadoop is used to analyze large-scale
datasets stored in massive storage devices, such as hard disk
drives (HDDs) accessed sequentially [2]. There are methods to
improve the performance of such sequential storage access that
work by placing files into locations of an HDD where I/O access
is faster than in other locations [2][3]. These methods can be the
basis of approaches to improve the performance of I/O-intensive
Hadoop jobs. This paper proposes such an approach and
evaluates it in an experimental system running a realistic
workload using the Statistical Workload Injector for
MapReduce (SWIM). SWIM has been recently proposed [4] to
enable meaningful experimental evaluations of Hadoop
performance. It can emulate many types of workloads [1].

We focus on a Hadoop use-case where a sequence of Hadoop
jobs of several kinds must be executed. First, we categorize
SWIM jobs as Map-heavy, Shuffle-heavy, or Reduce-heavy
jobs and thoroughly investigate their I/O behaviors and CPU
behaviors in order to reveal their features. We then show that
Map-heavy jobs are CPU-intensive and that Shuffle-heavy and
Reduce-heavy jobs are I/O-intensive. Second, we discuss the

optimization of file placement for these three types of jobs.
Third, we compare the total times to complete all these jobs
when using (1) a default (i.e. non-optimized) file placement
determined by the operating system underlying Hadoop (hereon
called the normal method), (2) a file placement approach
previously proposed by the authors (hereon referred to as the
existing method), and (3) the new proposed method.

The rest of this paper is organized as follows. Section II
provides background information. Section IV reviews related
work. Section V discusses the features of SWIM jobs and the
relationship between file location in an HDD and the speeds of
sequential reads and sequential writes. Section VI proposes a
method for improving SWIM job performance. Section VII
comparatively evaluates the three methods. Section VIII
discusses results. Section VIII concludes the paper.

II. BACKGROUND
Here, we introduce MapReduce. As shown in Fig. 1, each

MapReduce job is composed of three phases, namely the Map
phase, Shuffle phase, and Reduce phase. In the Map phase, the
Input Data is divided into multiple Input splits. Each Mapper
receives an Input split, executes the user-defined Map process,
and creates the key-value pairs. These key-value pairs are
stored in the intermediate files. In the Shuffle phase, the
intermediate key-value pairs are sorted, grouped by the key and
transmitted to the reducers. In the Reduce phase, each reducer
executes the user-defined Reduce task on its received key-
values and creates outputs. These outputs are the results of the
Hadoop job and are stored in the Output data.

III. RELATEd WORK

A. SWIM
SWIM is a workload emulator that can generate realistic

MapReduce jobs based on real workloads from a production
Hadoop cluster in Facebook. In addition, SWIM jobs can be
configured by changing some parameter values. Specifically,
each SWIM job has configurable parameters such as job ID,
input size (bytes) per map operation, shuffle size, output size per
reduce operation and the number of reducers. Moreover, each
job submission interval can be controlled [4]. In this paper, we
evaluate the performance of Hadoop for different usage
scenarios by varying the parameters in these Facebook traces.

B. Previously proposed file placement method
Here, we explain methods proposed in [2][3] for improving

sequential I/O performance by optimizing file placement. These
methods use the fact that hard disk drives using Zone Bit

664

2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC)

978-1-7281-2607-4/19/$31.00 ©2019 IEEE
DOI 10.1109/COMPSAC.2019.10284

Authorized licensed use limited to: University of Florida. Downloaded on September 22,2020 at 21:11:18 UTC from IEEE Xplore. Restrictions apply.

Recording (ZBR) provide faster sequential access in outer disk
zones than in inner zones. They avoid placing files in the inner
zones by controlling the block usage information of the file
system. Many file systems, for example ext2/3/4, divide the
entire space into 4KB blocks (the methods in [2][3] were
implemented with ext2/3/4). These file systems construct block
groups that contain a defined number of the blocks. The size of
each block group is 128 MB when using the default setting.
Every block group has its own block bitmap, an inode bitmap,
inode table, and data blocks. The block bitmap manages block
usage in the block group. 0 and 1 in the bitmap indicate whether
the block is free or in-use, respectively. Inode bitmap manages
the usage of inodes in the group. The inode table manages file

information including file placement location. The data blocks
store data of files. The two previously proposed methods [2][3]
change the bitmap bits for the blocks in the inner zones in order
to avoid using these inner zones. As a result, only the outer zones,
which have higher sequential access speeds, are utilized by these
methods.

The method in [3] is static, i.e. it sets the block bitmaps of
the inner zones to 1 prior to job execution. On the other hand,
method in [2] is dynamic, i.e. it keeps watching the size of the
usable area, whose block bitmaps are not set as 1, and then
expands or shrinks the usable area according to threshold values,
dynamically. While this dynamic method always places every
file in the outmost zones, the proposed method optimizes the file
placement according to the features of the job.

IV. BASIC PERFORMANCE EVALUATION
In this section, we explore the resource consumption

behaviors of Map-heavy, Shuffle-heavy and Reduce-heavy jobs.

A. Basic Behavior of Hadoop Jobs
Here, we investigate the I/O and CPU utilization and Disk

location usage of Map-heavy, Shuffle-heavy, and Reduce-heavy
SWIM jobs. Our proposed method places the files according to
these features.

We executed SWIM jobs on an experimental Hadoop system.
The parameters were set as follows (italics are used to refer to
parameters). Submit time and inter job submit gap were set to
one for all the jobs. The Input file size is 4GB. In the case of
Map-heavy jobs, map input bytes was set to 3.0 × 10ଵଵ and
shuffle bytes and reduce output bytes were set to one. In the case
of Shuffle-heavy jobs, shuffle bytes was set to 1.0 × 10ଵଶ, and
the others were set to one. In the case of Reduce-heavy jobs,
reduce output bytes was set to 1.0 × 10ଵଶ, and the others were
set to one. The Hadoop system was set to run in the pseudo
distributed mode. The specifications of the computer and HDD
in the experiments are described in Table I and Table II,
respectively.

I/O usage and CPU utilization by a Map-heavy job are
shown in Fig. 3 and those of Shuffle-heavy and Reduce-heavy
jobs are shown in Fig. 4 and Fig. 5, respectively. The temporal
changes of the size of the used disk space of these jobs are
depicted in Figs. 6, 7, and 8.

These results lead to several conclusions. First, a Map-heavy
job is CPU-intensive. It temporarily stores the intermediate data
in the storage and deletes almost all of these intermediate data
during the execution. Second, a Shuffle-heavy job is I/O-
intensive, temporarily stores the intermediate data, and deletes
almost all the data. Third, a Reduce-heavy job is I/O-intensive
and permanently stores the output data, i.e. the data are not
deleted.

B. Sequential Storage Access
In this subsection, we investigate the relationship between

the location of data in an HDD and the speeds of a sequential
read and a sequential write. We repeatedly issued 64-MB read
and write commands from the disk’s first address to its last
address. The first and last addresses correspond to the outmost
and innermost zones, respectively. Fig. 9 shows the time to

Fig.1. Overview of MapReduce.

Fig.2. Overview of ext2/3

TABLE I. Specifications of the computer used in experiments.

CPU AMD Phenom 2 X4 965
Processor

OS CentOS 6.10 x86_64 minimal
Kernel Linux 2.6.32.57

Main Memory 4GB
HDD 500GB(ext3)

Hadoop Ver. 2.0.0-cdh4.2.1

TABLE II. Specifications of the HDD used in experiments.

Model Number DT01ACA050
Interface SATA 3.0

Interface Speed 6.0Gbps
Device Size 500GB
Buffer Size 32MB

Rotation Rate 7200rpm

Input Data

Map phase

Shuffle phase

Reduce phase

Map function

Intermediate files

Intermediate files

Reduce function

Output data

Boot
Sector

Block
Group 0

Block
Group 1

Block
Group N.

Super
Block

Group
Descriptor

Inode
Bitmap

Inode
Table

Data
Blocks

Block
Bitmap

Blocks

665

Authorized licensed use limited to: University of Florida. Downloaded on September 22,2020 at 21:11:18 UTC from IEEE Xplore. Restrictions apply.

complete 64MB of a read or write at every address. The results
indicate that the speeds decrease as the address increases. The
access latency in the innnermost zone is almost twice that in the
outmost zones.

C. Merged I/O Sizes
In addition, we investigated the frequencies of the sizes of

the merged I/O requests [8], which were obtained by merging
the temporarily and spatially continuous I/O requests into one
request, of Shuffle-heavy and Reduce-heavy jobs.

We did expect that I/O throughput improves by placing files
in outer zones in case of the job is I/O-intensive and the sizes of
their merged I/O requests are large. Map-heavy jobs are CPU-
intensive and we did not expect improvement of their

performance by optimizing file location. Then, we investigated
the merged I/O request sizes of Shuffle-heavy and Reduce-
heavy jobs. Fig.10 and Fig.11 depict the results of Shuffle-heavy
and Reduce-heavy jobs, respectively. The results show that
many large I/O requests were issued, i.e. the storage device was
accessed in a highly sequentially manner. Therefore, the
rationale for the method proposed in Section V is to improve
sequential I/O speed by actively utilizing the outer zones in the
HDD in order to improve the performance of the Shuffle-heavy
and Reduce-heavy jobs.

Fig.6. Used disk space by Map-heavy job.

Fig.7. Disk space used by Shuffle-heavy job.

Fig.8. Disk space used by Reduce-heavy job.

4.922

4.923

4.924

4.925

4.926

4.927

4.928

4.929

0 5 10 15 20 25 30 35 40 45

us
ed

 d
isk

 s
pa

ce
[G

B]

Elapsed time [sec]

4

5

6

7

8

9

10

11

12

0 50 100 150 200 250

U
se

d
di

sk
 s

pa
ce

 [G
B]

Elapsed time [sec]

0

1

2

3

4

5

6

7

8

9

0 10 20 30 40 50 60 70

us
ed

 d
isk

 s
pa

ce
 [G

B]

Elapsed time [sec]

Fig.3. CPU and I/O utilization of Map-heavy job.

Fig.4. CPU and I/O utilization of Shuffle-heavy job.

Fig.5. CPU and I/O utilization of Reduce-heavy job.

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40

U
sa

ge
 [%

]

Elapsed time [sec]

I/O CPU

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250

U
sa

ge
 [%

]

Elapsed time [sec]

I/O CPU

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80

U
sa

ge
 [%

]

Elapsed time [sec]

I/O CPU

666

Authorized licensed use limited to: University of Florida. Downloaded on September 22,2020 at 21:11:18 UTC from IEEE Xplore. Restrictions apply.

V. PROPOSED METHOD

A. File placement policy
In this section, we propose a method for improving the I/O

performance of a sequence of Hadoop jobs by optimizing file
placement based on job features. We assume that the jobs are
submitted and executed sequentially (see Section VII for
comments regarding the case when jobs are executed
concurrently).

 The proposed method places files in outer zones according
to the following order of priority:

(1) The file is temporary and is used by an I/O intensive
process.

(2) The file is temporary and is not used by an I/O intensive
process.

(3) The file is not temporary and is used by an I/O intensive
process.

(4) The file is not temporary and is not used by an I/O
intensive process.

In order to utilize the outer zones many times, the method
avoids occupying the outer zones with permanent files. Instead,
the proposed method actively places temporary files in the outer
zones.

B. Implementation
In our implementation, the proposed method uses ext2/3/4

file systems. These file systems create block groups and every
block group has its own block bitmap for the blocks in the group,
as described in Section III.BB. The method forces Map-heavy
and Shuffle-heavy jobs to use the fastest zones by changing the
bits of the non-fastest blocks into 1, which indicates that they are
being used. The proposed method prevents Reduce-heavy jobs
from using the fastest zones by changing their bits into 1. As a
result, the output files of the Reduce-heavy jobs are not placed
in the fastest zones.

VI. EVALUATION
In this section, we evaluate the performance of the proposed

method. We executed a series of Hadoop jobs. A set of jobs is
illustrated in Fig. 12. A set is composed of 27 job groups,
sequenced as Map-heavy group, Shuffle-heavy group, Reduce-
heavy group, Map-heavy group, Shuffle-heavy group, Reduce-
heavy group, and so on. A set contains nine Map-heavy groups,
nine Shuffle-heavy groups, and nine Reduce-heavy groups.
Each job group consists of 20 jobs. We started each execution
of a set of jobs with the hard disk drive empty and the drive was
almost fully occupied by the output files of these Hadoop jobs
after an execution of a set of jobs. As described, it is mainly
consumed by the files of Reduce-heavy jobs.

According to the proposed policy in Section V, the files are
practically placed as follows.

The files of Shuffle-heavy jobs are stored in the fastest zones
because they are temporary and the process is I/O-intensive as
described in Section IV.A. The files of Map-heavy jobs also
stored in the fastest zones because they also are temporary as
described. Reduce-heavy jobs’ files are not stored in the fastest
zone because they stay permanently in the storage device as
described.

Figs. 13 and 14 illustrate the file placement of the existing
and proposed methods. The existing method places files of Map-
heavy and Shuffle-heavy jobs in an inner zone than the zone of
the files of Reduce-heavy job after execution of an Reduce-
heavy job. As the number of executions of Reduce-heavy jobs
increases, file placement locations of the following jobs move to
inner zones. As a result, the performance of jobs, especially I/O
intensive Shuffle-heavy jobs, declines. On the contrary, the
proposed method does not store permanent files in the fastest
zones as shown in Fig. 14. The output files of the Reduce-heavy
jobs are not stored in the fastest zones, which are for temporary
files, and the files of Map-heavy and Shuffle-heavy jobs are
always placed temporarily in the fastest zones.

Fig. 15 shows the average time to complete a set of jobs by
executing five sets. Figs. 16, 17, and 18 depict the times to
complete Map-, Shuffle-, and Reduce-heavy jobs of the first set,
respectively.

Fig.9. Read/Write times of HDD locations with different addresses.

Fig.10. Merged I/O request size of Shuffle-heavy job.

Fig.11. Merged I/O request size of Reduce-heavy job.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 100 200 300 400 500

Ti
m

e
to

 re
ad

/w
rit

e
[s

ec
]

Disk Address [GB]

write read

0

1

2

3

4

5

6

7

8

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

4K 16K 64K 256K 1M 4M 16M 64M

To
tal

 I/
O

siz
e [

GB
]

Nu
mb

er
of

 re
qu

es
ts

Merged I/O size [B]

Read requests Write requests Total read size Total write size

0

0.5

1

1.5

2

2.5

0

500

1,000

1,500

2,000

2,500

4K 16K 64K 256K 1M 4M 16M 64M

To
tal

 I/
O

siz
e [

GB
]

Nu
mb

er
of

 re
qu

es
ts

Merged I/O size [B]

Read requests Write requests Total read size Total write size

667

Authorized licensed use limited to: University of Florida. Downloaded on September 22,2020 at 21:11:18 UTC from IEEE Xplore. Restrictions apply.

Fig. 15 indicates that the execution time of the jobs when
using the proposed method is smaller than the execution times
when using the normal and existing methods by 15.0% and 9.9%,
respectively.

Fig. 16 implies that both the existing and proposed methods
did not reduce the execution time of Map-heavy jobs. This is due
to Map-heavy jobs being CPU-intensive jobs. Fig. 17 shows that
both the existing and proposed methods improve Hadoop
performance over the normal method. The size of improvement
of the proposed method is larger than that of the existing method.
In the case of the existing method, the time to complete a job
increased as the number of executed jobs increased. This is
mainly because faster zones were increasingly occupied as
Reduce-heavy jobs were executed.

Fig.18 indicates that the proposed method did not reduce
times to complete the Reduce-heavy jobs while the existing
method reduced them. The proposed method did not place the
files of the Reduce-heavy jobs in the fastest zones while the
existing method did the best effort for every Reduce-heavy job,
which means providing the fastest zone at every execution.
However, the difference between times of the Reduce-heavy
jobs of the existing and proposed methods was not large because
the time to complete a Reduce-heavy job increased with the

existing method as the number of completed Reduce-heavy jobs
increased. On the contrary, the difference of Shuffle-heavy jobs
was large because the times to complete the jobs with the
proposed method was the shortest at every execution. As a result,
the time to complete all the groups of the proposed method was
shorter than that of the existing method.

VII. DISCUSSION
The proposed method relies on knowledge of characteristics

of Hadoop jobs to be executed, namely whether they are Map-
heavy, Reduce-heavy or Shuffle-heavy. This knowledge is often
available in use-cases when jobs are repeatedly executed on
different data. For example, a search engine system updates its
index, which is a typical Shuffle-heavy job, according to newly
crawled web pages every day. Similarly, in an electronic
shopping site, similar online transaction processing (OLTP) jobs
are executed every day. In the case of online analytical
processing (OLAP) applications, the features of repeated jobs
are also very similar. In addition, the features of jobs that our
method required can be easily obtained. We measured the CPU
and I/O usages by simply executing the vmstat and iostat
commands, respectively. We got the temporal changes of the
disk usage by simply repeating the df command. Therefore, we
argue that the proposed method is applicable to many situations.

An alternate method for actively using the outer zones can
rely on splitting a storage device into multiple partitions. Placing
volatile files in a fast partition is one of the ways to implement
the proposed approach. This is effective only when the total size
of the volatile files is known and strictly bounded. On the other
hand, the method proposed in this paper is applicable to more
situations because it can adapt to dynamic file size changes by
modifying the bitmap.

The proposed method evaluation considered the case when
a set of jobs are executed sequentially. While there are many
practical instances of this use-case, another important Hadoop
use scenario is the case when jobs are executed concurrently.
This case is the subject of current research, as it requires some
modifications to the proposed method and a more extensive
evaluation.

Hadoop applications access files on HDFS and local file
system of its nodes. Files on HDFS are mainly accessed by
Hadoop for reading its input data and writing its output data.
Files on the local file system are used for intermediate data. The
proposed method is realized by controlling the local file system
information. Since HDFS is constructed over the local file
system, the proposed method is effective on files on both HDFS
and the local file system.

In this paper, we proposed a method to improve I/O
performance for representative application targets generated by
SWIM. As we describe, the method is based on characteristics
of SWIM jobs, specifically on CPU usage, I/O usage, temporal
changes of the size of the used disk space, and file volatility. By
monitoring the execution of other applications we can obtain
similar metrics thus generalizing the applicability of our method
to those applications.

Fig.12. A set of sequential jobs.

Fig.13. File placement using the previously proposed (existing) method
[2].

Fig.14. File placement using the method proposed in this paper.

map
heavy

map
heavy

shuffle
heavy

shuffle
heavy

reduce
heavy

reduce
heavy

20jobs 20jobs 20jobs

map
heavy

map
heavy

shuffle
heavy

shuffle
heavy

20jobs

20jobs

reduce
heavy

reduce
heavy

20jobs

map
heavy

map
heavy

20jobs

Inner zoneOuter zone

usable area

Inner zoneOuter zone

delete

Map
heavy

Input
file

Input
file

Input
file

Input
file

shuffle
heavy

Input
file delete

Input
file

reduce
heavy

Input
file

reduce
heavy

Map
heavy

Input
file

reduce
heavy

Input
file

reduce
heavy

shuffle
heavy

delete

Input
file

Input
file

reduce
heavy

reduce
heavy

reduce
heavy

reduce
heavy

Map
heavy

Input
file

reduce
heavy delete

Inner zoneOuter zone

usable area

Inner zoneOuter zone

delete

Map
heavy

Input
file

Input
file

Input
file

Input
file

shuffle
heavy

Input
file

Input
file

reduce
heavy

Input
file delete

Input
file

reduce
heavy

Input
file

shuffle
heavy

delete

Input
file

Map
heavy

deleteInput
file

Input
file

reduce
heavy

reduce
heavy

Map
heavy

668

Authorized licensed use limited to: University of Florida. Downloaded on September 22,2020 at 21:11:18 UTC from IEEE Xplore. Restrictions apply.

VIII. CONCLUSION
In this paper, we investigated the CPU and I/O resource

consumptions and used disk space of SWIM jobs, which were
categorized as Map-heavy, Shuffle-heavy, and Reduce-heavy.
We then proposed a method for improving I/O performance
considering the features of the target jobs. Our evaluation has

demonstrated that the proposed method has improved the
performance of the Hadoop jobs by 15.0% while the existing
method did so by 5.6%. The new method also outperformed the
existing method by 9.9%.

In future work, we plan to extend and evaluate similar
methods for concurrent jobs when Hadoop runs in fully
distributed mode.

ACKNOWLEDGMENT
This work was supported in part by JST CREST Grant

Number JPMJCR1503, Japan. This work was also supported by
JSPS KAKENHI Grant Numbers 26730040, 15H02696,
17K00109. This work is also funded in part by a grant (NSF ACI
1550126 and supplement DCL NSF 17-077) from the National
Science Foundation, USA.

REFERENCES
[1] G. Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified

data processing on large clusters. Commun. ACM 51, 1 (January 2008),
107-113. DOI: https://doi.org/10.1145/1327452.1327492

[2] Eita Fujishima and Saneyasu Yamaguchi. 2016. Dynamic File Placing
Control for Improving the I/O Performance in the Reduce Phase of
Hadoop. In Proceedings of the 10th International Conference on
Ubiquitous Information Management and Communication (IMCOM '16).
ACM, New York, NY, USA, Article 48, 7 pages. DOI:
http://dx.doi.org/10.1145/2857546.2857595

[3] Eita Fujishima and Saneyasu Yamaguchi, "Improving the I/O
Performance in the Reduce Phase of Hadoop," 2015 Third International
Symposium on Computing and Networking (CANDAR), Sapporo, 2015,
pp. 82-88. doi: 10.1109/CANDAR.2015.24

[4] GitHub - SWIMProjectUCB/SWIM: Statistical Workload Injector for
MapReduce-Project at UC Berkeley AMP Lab,
https://github.com/SWIMProjectUCB/SWIM

[5] R.Card and T.Ts’o and S.Tweedle, “Design and Implementation of the
Second Extended Filesystem,” First Dutch International Symposium on
Linux, 1994

[6] Faraz Ahmad, Seyong Lee, Mithuna Thottethodi and T. N. Vijaykumar, ”
MapReduce with Communication Overlap (MaRCO)”, Journal of Parallel
and Distributed Computing, May 2013, Pages 608-620 ,DOI:
https://doi.org/10.1016/j.jpdc.2012.12.012

[7] Yanpei Chen, Archana Ganapathi, Rean Griffith, Randy Katz,” The Case
for Evaluating MapReduce Performance Using Workload Suites ”, 2011
IEEE 19th Annual International Symposium on Modelling, Analysis, and
Simulation of Computer and Telecommunication Systems , July. 2011 ,10
pages, DOI: 10.1109/MASCOTS.2011.1

[8] Eita FUJISHIMA Kenji NAKASHIMA Saneyasu YAMAGUCHI,
"Hadoop I/O Performance Improvement by File Layout Optimization",
IEICE TRANSACTIONS on Information and Systems, Vol.E101-D No.2
pp.415-427, doi: 10.1587/transinf.2017EDP711

[9] S. Yamaguchi, M. Oguchi and M. Kitsuregawa, "Trace system of iSCSI
storage access," The 2005 Symposium on Applications and the Internet,
Trento, Italy, 2005, pp. 392-398. doi: 10.1109/SAINT.2005.65

[10] Saneyasu Yamaguchi, Masato Oguchi, Masaru Kitsuregawa, "iSCSI
analysis system and performance improvement of sequential access in a
long-latency environment," Electronics and Communications in Japan
(Part III: Fundamental Electronic Science), Volume 89, Issue 4, Pages 55-
69, Wiley Subscription Services, Inc., A Wiley Company, April 2006.
DOI: 10.1002/ecjc.20238

[11] Yuta Nakamura, Kyosuke Nagata, Shun Nomura, and Saneyasu
Yamaguchi. 2014. I/O scheduling in Android devices with flash storage.
In Proceedings of the 8th International Conference on Ubiquitous
Information Management and Communication (ICUIMC '14). ACM,
New York, NY, USA, Article 83, 7 pages. DOI:
https://doi.org/10.1145/2557977.255802

Fig.15. Total execution time of job sequence.

Fig.16. Execution time of each Map-heavy job

Fig.17. Execution time of each Shuffle-heavy job

Fig.18. Execution time of each Reduce-heavy job

60,632
57,208

51,532

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000
Ex

ec
ut

io
n

tim
e

[s
ec

]
Normal Existing method Proposed method

550

560

570

580

590

600

610

620

630

640

650

1 2 3 4 5 6 7 8 9

Ex
ec

ut
io

n
tim

e
[s

ec
]

The sequence No. of the nine executions

Normal Eixsting Proposed
Normal_avg. Existing_avg. Proposed_avg.

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

1 2 3 4 5 6 7 8 9

Ex
ec

ut
io

n
tim

e
[s

ec
]

The sequence No. of the nine executions

Normal Eixsting Proposed
Normal_avg. Existing_avg. Proposed_avg.

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8 9

Ex
ec

ut
io

n
tim

e
[s

ec
]

The sequence No. of the nine executions

Normal Eixsting Proposed
Normal_avg. Existing_avg. Proposed_avg.

669

Authorized licensed use limited to: University of Florida. Downloaded on September 22,2020 at 21:11:18 UTC from IEEE Xplore. Restrictions apply.

