
1048 IEEE CONTROL SYSTEMS LETTERS, VOL. 4, NO. 4, OCTOBER 2020

Fast, Convexified Stochastic Optimal Open-Loop
Control for Linear Systems Using Empirical

Characteristic Functions
Vignesh Sivaramakrishnan, Student Member, IEEE , and Meeko M. K. Oishi , Senior Member, IEEE

Abstract—We consider the problem of stochastic
optimal control in the presence of an unknown disturbance.
We characterize the disturbance via empirical characteris-
tic functions, and employ a chance constrained approach.
By exploiting properties of characteristic functions and
underapproximating cumulative distribution functions, we
can reformulate a nonconvex problem by a conic, convex
under-approximation. This results in extremely fast solu-
tions that are assured to maintain probabilistic constraints.
We construct algorithms to solve an optimal open-loop
control problem and demonstrate our approach on two
examples.

Index Terms—Stochastic optimal control, linear systems,
sampled-data control.

I. INTRODUCTION

STOCHASTIC optimal control typically presumes accu-
rate models of the underlying dynamics and stochastic

processes [1]–[3]. However, in many circumstances, accurate
characterization of uncertainty is difficult. Further, inaccurate
characterization of stochastic processes may have unexpected
impacts [4], [5], as optimal control actions are typically depen-
dent upon the first and second moments of the stochastic
processes [3]. Such inaccuracies could be particularly prob-
lematic when the unknown stochastic processes is asymmetric,
multimodal, or heavy-tailed. For example, in hypersonic vehi-
cles, excessive turbulence makes aerodynamic processes diffi-
cult to model accurately, and their fast time-scale means that
erroneous control actions could result in catastrophic failure.

We consider the case in which the dynamics are known,
but the noise process is not known, and focus on the
problem of data-driven stochastic optimal control in a
chance constrained setting, in which probabilistic constraints
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must be satisfied with at least a desired likelihood. Some
approaches, such as distributional stochastic optimal con-
trol, seek robustness to ill-defined distributions with finite
samples [5], [6]. Other approaches construct piecewise-affine
over-approximations of value functions by solving a chance-
constrained problem [7]. Researchers have also employed
kernel density estimation [8], [9] to approximate individual
chance constraints in nonlinear optimization problems.

One tool to characterize uncertainty through observed
data is the empirical characteristic function [10], which is
often employed in economics and statistics to characterize
models where maximum-likelihood estimation can struggle.
The empirical characteristic function generates an approxi-
mation of the true characteristic function, and has known
convergence properties [11], [12]. The advantage of this
approach is that it enables direct, closed-form approxima-
tion of the cumulative distribution function and the moments
of the underlying stochastic process [10], both of which
are typically necessary for stochastic optimal control prob-
lems. However, the main challenge then becomes one of
finding computationally efficient under-approximations of the
resulting cumulative distribution function, which may be
non-convex.

We propose to employ empirical characteristic functions to
characterize unknown disturbance processes in a linear, time-
invariant dynamical system with a quadratic cost function.
We construct a conic, convex reformulation of the resulting
stochastic optimal control problem, that ensures computa-
tional tractability [13]. Our approach employs a piecewise
under-approximation of the approximate cumulative distribu-
tion function, with a user-specified trade-off between accuracy
and the number of piecewise elements. We use confidence
intervals on the approximate cumulative distribution func-
tion to provide probabilistic bounds on the solution to the
data-driven stochastic optimal control problem. The main con-
tribution of this letter is the construction of a convex, conic
reformulation of a stochastic optimal control problem in the
presence of an unknown, additive disturbance, via empiri-
cal characteristic functions, with confidence bounds on the
optimal solution.

The outline of this letter is as follows. We first formulate
the problem in Section II. Section III presents algorithms to
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convexify the problem and proofs of its convergence prop-
erties. In Section IV, we demonstrate our approach on two
examples.

II. PRELIMINARIES AND PROBLEM FORMULATION

We use the following notation throughout this letter. We
denote real-valued vectors with lowercase w ∈ R

n, matrices
with upper case V ∈ R

n×m, and random variables via boldface
w. Concatenated vectors or matrices are indicated by an over-
line, w = [w[0]� w[1]� . . . , w[N − 1]�]� ∈ R

pN . We denote
intervals using N[a,b] where a, b ∈ N, a < b.

Consider the linear time-invariant dynamical system

x[k + 1] = Ax[k] + Bu[k] + Gw[k] (1)

with state x ∈ R
n, controlled input u ∈ R

m, disturbance input
w ∈ R

p, matrices A,B,G of the appropriate dimensions, and
timestep k ∈ [0,N]. Given a deterministic initial condition x0,
we rewrite the dynamics in concatenated form

x = Ax0 + Bu + Gw (2)

with state x ∈ R
n(N+1), input u ∈ UN = [umin, umax]N ⊂ R

mN ,
disturbance w ∈ R

pN , and matrices A,B,G, as in [14], [15].
We presume w is a stationary, independent stochastic pro-

cess, that is the concatenation of a sequence of samples,
{wj}Ns

j=1, drawn from the probability space �. The probability
space is defined by (�,B (RpN),Pw) with Pw as the induced
probability distribution of P [16, Prop. 2.1].
Problem 1: Solve the optimization problem

min
u

E

[
(x − xd)

�Q(x − xd) + u�Ru
]

(3a)

s.t. P{x /∈ S} ≤ � (3b)

u ∈ UN (3c)

subject to the dynamics in (2), for a desired trajectory xd ∈
R
n(N+1), positive definite matrices Q ∈ R

n(N+1)×n(N+1) and
R ∈ R

mN×mN , polytopic constraint set S ⊆ R
n(N+1) that is

closed and bounded, and constraint violation threshold � ∈
[0, 1], without direct knowledge of the cumulative distribution
function or moments of w, but with observations of Ns samples
{wj}Ns

j=1.
The standard approach to solving (3) when the distur-

bance process is well characterized is to tighten the joint
chance constraint (3b) via individual chance constraints [14],
[15]. However, two main challenges then arise: 1) reliance
of (3a) and (3b) upon moments and the cumulative distri-
bution function, respectively, of the unknown noise process,
and 2) non-convexity of the individual chance constraints. The
former can be seen from expanding (3a),

E

[
(x − xd)

�Q(x − xd) + u�Ru
]

= (E[x] − xd)
�Q(E[x] − xd) + u�Ru + tr(QGdiag(Cw)G

�
) (4)

with E[x] = Ax0 + Bu + GE[w], Cw = E[w2] − (E[w])2.
Characteristic functions provide a means to obtain moments

as well as the cumulative distribution function.

Definition 1: The characteristic function of a random vec-
tor w ∈ R

p is

ϕw(t) = E[ exp (it�w)] =
∫

Rp
exp (it�w) d�w(x) (5)

which is the Riemann–Stieltjes integral of exp (it�w) over
the frequency variable t ∈ R

p with respect to the cumulative
distribution function, �w(x).

Since we have no direct knowledge of w, the empirical
characteristic function can be used to compute the cumulative
distribution function and moments from samples of w.
Definition 2 (Empirical Characteristic Function [10],

[12]): Let {wj}Ns
j=1 be the sequence of Ns observations of the

random vector, w. The empirical characteristic function is

ϕ̂w(t) =
Ns∑
j=1

αj(w)Kwj(t) (6a)

Kwj(t) = exp (it�wj) exp

(
−1

2
(t��t)

)
(6b)

for some smoothing parameter matrix � ∈ R
p×p and weight-

ing function αj(w) > 0, with
∑Ns

j=1 αj(w) = 1.
A variety of approaches can be used to find a suitable

�, to avoid over-smoothing and under-smoothing [17]. The
smoothing in (6b) is important for ensuring continuity in the
cumulative distribution function [18, eq. (1.2.1)] approximated
via Theorem 1 from the empirical characteristic function.
Theorem 1 (Gil-Pileaz Inversion Theorem, [19]): The

cumulative distribution function of a random variable y ∈ R

can be written in terms of the characteristic function as

�y(x) = 1

2
− 1

π

∫ ∞

0
Im

(
exp (−ityx) ϕy(ty)

ty

)
dty (7)

where ty ∈ R and ϕy(ty) is the characteristic function of the
random variable y.

The integral in (7) is assured to converge, since it is a convex
combination of characteristic functions (Definition 2), which
exist for any random vector [18, Th. 2.1.3].
Definition 3: The dth moment of w can be written as

E[wd] = (−i)d
[

∂dϕw(t)

∂td1
· · · ∂dϕw(t)

∂tdp

]�

t=0

(8)

Hence to solve Problem 1, we first solve the following.
Problem 1.a: Using the empirical characteristic func-

tion, 1) construct a concave under-approximation of the
approximate cumulative distribution function �̂w(x), and
2) approximate the first two moments of w.

Problem 1.b: Reformulate (3) into a convex, conic stochas-
tic optimal control problem, so that feasible solutions of the
convex program are feasible solutions of (3).

III. METHOD

We first transform (3b) into a series of individual chance
constraints, each with a risk δi. We represent the set S as
S = {x ∈ R

n(N+1) : Px ≤ q} for some P ∈ R
l×n(N+1), q ∈ R

l.
Denoting the ith constraint as p�

i x ≤ qi, we obtain

P

{
p�
i Gw ≤ qi − p�

i (Ax0 + Bu)
}

≥ 1 − δi (9a)
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⇔ �p�
i Gw

(qi − p�
i (Ax0 + Bu)) ≥ 1 − δi (9b)

l∑
i=1

δi ≤ �, δi ≥ 0, � ∈ [0, 1], ∀i ∈ N[1,l] (9c)

for pi ∈ R
n(N+1), qi ∈ R, δi ∈ [0, 1] ⊆ R with δ ∈ R

l.
Then solutions of the optimization problem

min
u,δ

E

[
(x − xd)

�Q(x − xd) + u�Ru
]

(10a)

s.t.∀i ∈ N[1,l]

⎧
⎨
⎩
�p�

i Gw
(qi − p�

i (Ax0 + Bu)) ≥ 1 − δi (10b)

qi − p�
i (Ax0 + Bu) ≥ xlbi (10c)

l∑
i=1

δi ≤ �, δi ≥ 0, � ∈ [0, 1] (10d)

u ∈ UN (10e)

are also feasible solutions of (3). This is because the joint
chance constraint (3b) is enforced by (10b) and (10d) with
the additional constraint (10c), which restricts the domain of
the ith chance constraint by some lower bound xlbi .

However, several difficulties arise. Note that (10) is non-
convex due to (10b). The constraint (10c) ensures a restriction
to the concave region of �p�

i Gw
(x). For unimodal distri-

butions, the inflection point, xlbi , occurs about the mode
[20, Definition 1.1], but for arbitrary distributions, this may
not be true.

In addition, (10a) is dependent upon the first two moments
of w and (10b) is dependent upon the cumulative distribution
function of p�

i Gw, ∀i ∈ N[1,l]. Hence we seek empirical char-
acteristic functions to approximate the cumulative distribution
function and moments based on samples wj. In addition, we
also seek a method to reformulate (10b) using its approxima-
tion from the empirical characteristic function with a concave
restriction (10c) by finding xlbi to solve a convex problem.

A. Approximating the Cumulative Distribution Function
and Moments From the Empirical Characteristic Function

Applying Definition 2, we obtain

ϕ̂p�
i Gw

(t) =
Ns∑
j=1

αj(w) exp (itp�
i Gwj)

× exp
(
− 1

2 ((p�
i G)�(p�

i G)�t2)
)

(11a)

ϕ̂w(t) =
Ns∑
j=1

αj(w) exp (it�wj) exp
(
− 1

2 (t��t)
)

(11b)

where � = diag([�0 · · ·�N]) ∈ R
pN×pN , t = [t0 · · · tN]� ∈

R
pN and αj(w) = 1/Ns. To approximate �p�

i Gw
in (10b), we

use (7) to obtain �̂p�
i Gw

. For the moments in the cost (10a),
we use (8) to obtain the approximate moments of w.

B. Constructing a Convex Restriction for (10b)

We seek a conic representation of (10b) with a restriction
for which it is concave [20, Definition 1.1]. For a user-defined

Algorithm 1 Computing �̂l
w From �̂w

Evaluations of cumulative distribution function
{(xp, �̂w(xp)}Np

p=1, desired error ε, desired number of
affine terms Ndr.
Output: affine terms of �̂l

w, {(aj, cj)}zj=1, restriction xlb

1: continue ← true, p ← Np

2: while continue = true do ∀j ∈ N[1,p−1], ∀k ∈ N[j,p]

3: aj ← �̂w(xp)−�̂w(xj)
xp−xj

4: cj ← �̂w(xp) − mjxj
5: yj,k ← ajxk + cj
6: errorj,k ← �̂w(xk) − yj,k
7: w ← Smallest j such that max

j
{errorj,k} < ε and

errorj,k > 0
8: if w = ∅ or z > Ndr or ||w − p|| = 1 then
9: continue ← false

10: (aj, cj)}zj=1 ←{(0,�w(xNp))}
⋃F , xlb ← xj

11: else, F ← {(aj, cj)}j=w, p = w
12: end if
13: end while

error, ε, and desired number of affine terms, Ndr, we construct
a piecewise affine under-approximation[21, Sec. 4.3.1],

�̂l
p�
i Gw

= min
r∈N[1,zi]

{ai,rx + ci,r} (12)

such that

0 ≤ �̂p�
i Gw

(x) − �̂l
p�
i Gw

(x) ≤ ε (13)

is assured over the domain Di = [xlbi ,∞]. We define ai,r and
ci,r as the slope and intercept for the rth affine term.

We propose Algorithm 1 to construct the piecewise linear
under-approximation of the cumulative distribution function,
with a concave restriction xlb, derived from the empirical
characteristic function.

Algorithm 1 is based on the sandwich algorithm [22], and
is demonstrated in Figure 1. At each of Np evaluation points,

{(xp, �̂w(xp)}Np
p=1, the algorithm constructs affine terms, and

stores the affine terms which result in largest positive error
close to ε. This is repeated until the break conditions are met
(line 8) with a total of z piecewise affine terms. We choose
an upper bound �w(xNp) (line 10), as it is unreasonable to
infer the probability of an event beyond max

j∈N[1,Ns]

(p�
i Gwj), and

it assures (13) holds on Di. This solves Problem 1.a.

C. Underapproximative, Conic Optimization Problem

We replace the individual chance constraints in (10b) and
the lower bounds in (10c) with a conic, convex reformulation,
obtained from Algorithm 1, resulting in the following.

min
u,δ

E

[
(x − xd)

�Q(x − xd) + u�Ru
]

(14a)

s.t.∀i ∈ N[1,l]∀r ∈ N[1,zi]

⎧⎨
⎩
ai,r(qi − p�

i (Ax0 + Bu)) + ci,r ≥ 1 − δi (14b)

qi − p�
i (Ax0 + Bu) ≥ xlbi (14c)
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Fig. 1. (Left to Right) Algorithm 1 under-approximates the cumulative distribution function, �̂y(x) (red), with �̂l
y(x) (green), for some user-defined

error, ε. We use 1000 samples of y = fy1+ (1 − f)y2, with Bernoulli random variable f, y1 a Gaussian N (0, 0.2), and y2 a Weibull distribution
Weib(k = 4, θ = 2). The error �̂y(x)− �̂l

y(x)≤ ε is depicted on the far right.

Algorithm 2 Underapproximative, Conic Optimization (14)

Time horizon N, �T , polytopic set {P, q}, samples {wj}Ns
j=1,

(11a), (11b), evaluation points Np, desired error ε, desired
number of affine terms Ndr, smoothing matrix �.
Output: Open loop input u, risk allocation δ

1: for i ∈ N[1,l] do
2: Let D = [ min

j∈N[1,Ns]
(p�

i Gwj), max
j∈N[1,Ns]

(p�
i Gwj)]

3: {(xp,�p�
i Gw

(xp)}Np
p=1 ← Using (7) and (11a).

4: {(ai,r, ci,r)}zir=1 and xlbi ← From Algorithm 1
5: Let Di ← [xlbi ,∞]
6: end for
7: E[w], E[w2] ← Using (8) and (11b).
8: Cw ← E[w2] − (E[w])2

9: {u, δ} ← Solve (14).

l∑
i=1

δi ≤ �, δi ≥ 0, � ∈ [0, 1] (14d)

u ∈ UN (14e)

The optimization problem in (14) can be posed as a second-
order cone program [21, Sec. 4.4]. Algorithm 2 summarizes
how the methods described in this section solve (14).

D. Convergence and Confidence Intervals

While (14) is convex and conic, its relationship to (3) is not
clear, as it utilizes an under-approximation of the approximate
cumulative distribution function, �̂p�

i Gw
(x) and approximate

moments of w. We first establish asymptotic convergence, then
construct confidence intervals to describe a relationship to (3).
Theorem 2: If ϕ̂w(t) converges in probability to ϕw(t) as

Ns → ∞, every feasible solution of (14) is feasible for (3).
Proof: By [12, Th. 2.1] ϕ̂w(t) converges to ϕw(t) as

Ns → ∞. By the Portmanteau theorem, the cumulative
distribution function converges [23, Th. 2.1]. For ϕ̂w(t)
that is differentiable at zero, then by (11b), the moments
converge [18, Th. 2.3.2].
Remark 1: The ECF converges at a rate

√
Ns [10, Sec. 3].

Asymptotic convergence establishes the relationship
between our convex formulation and the original problem, but
it is not practical in order to solve the reformulation quickly
nor does it guarantee that (14b) is an under-approximation.

Fig. 2. (Top) Approximation �̂y(x) (yellow) of �y(x) (red) with 80% con-
fidence interval bands (blue) for 10, 100, and 1000 samples. (Bottom)
Convergence of E[y] and E[y2]. We presume y = fy1+ (1 − f)y2 for
a Bernoulli random variable f, with y1, y2, drawn from a gamma dis-
tribution Gam(k = 2, θ = 5), and a uniform distribution Unif[0, 5],
respectively.

We provide confidence intervals on the cumulative distribution
function, a worst-case under-approximation.
Definition 4 (Dvoretzky–Kiefer–Wolfowitz Inequality [24]):

Given an empirical cumulative distribution function,
�̂E

p�
i Gw

(x), from Ns samples, the probability that the worst

deviation is above some εE is

P

{
sup
x∈R

(
|�̂E

p�
i Gw

(x) − �p�
i Gw

(x)| > εE

)}
≤ α (15)

for α = 2e−2Nsε
2
E .

Hence for a desired confidence level α, using Ns samples,
we have εE = ((2Ns)

−1 ln (2/α))1/2. To make use of (15) for
�̂, we make the following assumption.
Assumption 1: For x ∈ Di, |�̂E

p�
i Gw

(x) − �̂p�
i Gw

(x)| ≤ εD.

Assumption 1 is dependent upon � and Ns, and reasonable
for � chosen to avoid under- or over-smoothing. Both terms
converge to �p�

i Gw
(x) as Ns → ∞, so their difference tends

to zero [25, Th. 20.6].
Theorem 3 (Confidence Interval for �̂p�

i Gw
(x)): Given

Def. 4 and Assumption 1, we have that with probability 1−α,

|�̂p�
i Gw

(x) − �p�
i Gw

(x)| ≤ εE + εD (16)

Proof: For x ∈ Di, by Def. 4 and by the least upper bound
property [26, Definition 5.5.5], we have that |�̂E

p�
i Gw

(x) −
�p�

i Gw
(x)| ≤ εE is satisfied with probability 1 − α. By the
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properties of absolute value [26, Proposition 4.3.3],

�̂E
p�
i Gw

(x) − εE ≤ �p�
i Gw

(x) ≤ �̂E
p�
i Gw

(x) + εE (17)

By Assumption 1 and the properties of absolute value,

�̂p�
i Gw

(x) − εD ≤ �̂E
p�
i Gw

(x) ≤ �̂p�
i Gw

(x) + εD (18)

Since �̂p�
i Gw

(x), �̂E
p�
i Gw

(x), and �p�
i Gw

(x) are positive,

bounded, right-hand continuous functions [25], we com-
bine (17) and (18), so that �̂p�

i Gw
(x)−εE−εD ≤ �p�

i Gw
(x) ≤

�̂p�
i Gw

(x) + εE + εD. Thus, we have (16) by the properties of
absolute value.
Corollary 1: Given �̂l

p�
i Gw

(x), which under-approximates

�̂p�
i Gw

(x) according to (13) on Di, and the confidence interval

εD + εE in (16) with likelihood 1 − α, we have �̂l
p�
i Gw

(x) −
ε − εE − εD ≤ �p�

i Gw
(x) with likelihood 1 − α.

Proof: Follows directly from (13) and (16).
Corollary 1 establishes a worst-case under-approximation to

the true cumulative distribution function. A similar approach
can be taken for E[w] and E[w2], using results from [27]
and [28], respectively. However, because the approximate
moments are cheap to compute (i.e., 3.22 seconds for 106

samples), numerical approximations can be quite accurate
(Figure 2). In contrast, the computational cost of sampling
is high for the chance constraint under-approximation.

Algorithm 2 and the optimization reformulation (14), along
with convergence results and confidence intervals in this
section, solve Problem 1.b.

IV. EXAMPLES

We demonstrate our approach on two examples. We pre-
sume Ns = 1000, Np = 1000, ε = 1 × 10−3, Ndr = 20,
and � = 0.2. In each case, we compare our method to
a mixed-integer particle control approach [29], which uses
disturbance samples (we chose 50) to compute an open-
loop controller. To do so, we used Monte-Carlo simulation
with 105 disturbance sequences. All computations were done
in MATLAB with a 3.80GHz Xeon processor and 32GB
of RAM. The optimization problems were formulated in
CVX [30] and solved with Gurobi [31]. The inversion (7)
uses CharFunTool [32] and system formulations are imple-
mented in SReachTools [33]. We use [34], which employs
linear diffusion and a plug-in method, to compute �.

A. Double Integrator

Consider a double integrator

x[k + 1] =
[

1 �T
0 1

]
x[k] +

[
�T2

2
�T

]
u[k] + w[k] (19)

with state x ∈ R
2, disturbance w ∈ R

2, input u ∈ U =
[−100, 100] ⊂ R, sampling time �T = 0.25, and time
horizon N = 10. Disturbance samples are drawn inde-
pendently for each dimension, from a uniform distribution
Unif[−5, 5] on w1, and from a scaled gamma distribution
0.005 · Gam(k = 8, θ = 0.5) on w2. The cost function has
Q = 10I22×22, R = 10−2I10×10. The time-varying constraint

Fig. 3. (Top) Mean trajectories for the double integrator. Algorithm 2
satisfies the desired constraint satisfaction likelihood, while particle con-
trol [29] does not. The reference trajectory is chosen to test constraint
violation. (Bottom) Mean stage cost and control input. Algorithm 2 has
higher stage cost due to constraint satisfaction.

TABLE I
EMPIRICAL EVALUATION OF THE CONSTRAINT SATISFACTION

LIKELIHOOD AND MEAN COMPUTATION TIME, BASED ON 105 SAMPLES

set is S = {t ∈ N[0,N] × R
2 : p1t + q1 ≤ x1 ≤ p2t + q2} with

p1 = −p2 = −2, q1 = −q2 = −50. The reference trajectory,
xd = [50 0]�, was chosen intentionally to be outside of the
constraint set, to test constraint violation.

While the mean state trajectories from Algorithm 2 and
from particle control are similar (Figure 3), the stage cost,
i.e., the cost at each time, and the control trajectories differ.
Algorithm 2 exceeds the constraint satisfaction likelihood of
0.8, while particle control falls well below (Table I). This is
due to the fact that Algorithm 2 is based on 1000 disturbance
samples, while particle control is based on only 50 (from inher-
ent undersampling due to computational cost). The higher cost
for Algorithm 2 is incurred because of constraint satisfaction.

B. One-Way Hypersonic Vehicle

Consider a hypersonic vehicle with longitudinal dynamics

ḣ = V sin(θ − α)

V̇ = 1

m
(T(�, α) cos α − D(α, δe)) − g sin(θ − α)

α̇ = 1

mV
(−T(�, α) sin α − L) + Q + g

V
cos(θ − α)

θ̇ = Q

Q̇ = M(α, δe, �)/Iyy (20)

with state x = [h V α θ Q]� and input u = [� δe]�,
that includes fuel-to-air ratio � and elevator deflection
δe [35]. We linearize (20) about the trim condition, xd =
[85000 ft, 7702 ft/s, 0.026 rad, 0.026 rad, 0 rad/s], which is
also the reference trajectory, and ud = [0.25, 0.2 rad], and add
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Fig. 4. (Top) Mean trajectories for the hypersonic vehicle. Constraint
satisfaction is above the desired likelihood with Algorithm 2, but not with
particle control [29]. (Bottom) Mean stage cost and input. The particle
control cost is low because constraints are not satisfied.

a disturbance w ∈ R
2, which affects ḣ and V̇ only, with w1, w2

drawn from a scaled Weibull distribution, 2 · Weib(k = 5, θ =
4), and a gamma distribution, Gam(k = 5, θ = 1), respec-
tively. We discretize in time with �T = 0.25, N = 10. The
cost function has Q = 10I55×55 and R = 10−2I20×20. The con-
straint set, S = {t ∈ N[0,N]×R

5 : h ∈ [85000 ft, 85200 ft],V ∈
[7650 ft/s, 7750 ft/s]}, and input constraints � ∈ [0.2, 1.2]
δe ∈ [−0.26 rad, 0.26 rad] arise from the flight envelope and
the operational mode [36]–[38].

Comparing Algorithm 2 to the particle filter approach, mean
trajectories (Figure 4) show a similar trend as in Section IV-A.
While constraints are satisfied under Algorithm 2 with at least
the desired likelihood, particle control violates the altitude
constraint, and is excessively conservative with respect to the
speed constraint. The constraint satisfaction likelihood is 0.889
for Algorithm 2, but only 0.629 for particle control (Table I).
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