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Abstract. We prove effective equidistribution of primitive rational points and of
primitive rational points defined by monomials along long horocycle orbits in
products of the torus and the modular surface. This answers a question posed
in joint work by the first and the last named author with Shahar Mozes and Uri
Shapira. Under certain congruence conditions we prove the joint equidistribution
of conjugate rational points in the two-torus and the modular surface.

1.  Introduction

Let n be a natural number and k € Z coprime to n, denoted (k,n) = 1. Denote
by k € 7Z any choice of a modular inverse of k modn. The examination of
modular forms naturally leads to the question of statistical independence of k
and k in Z/nZ, see for example [Sel65]. Naturally, such a question would be
asked in terms of asymptotics for large n. To this end, it is useful to recast the
formulation on the torus T = Z\R. Given an integer k € Z coprime to n, the
tuple (%, %) € T? is independent of the choice of the representatives k and k. The
group T2 carries a natural probability Haar measure m coming from the uniform
measure on the real plane and a natural way to state statistical independence of
the tuples (£, %), (k,n) = 1 is to say that the average of a continuous function f
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on C(T?) over these tuples converges to the integral of f with respect to that natural
measure, i.e.

= X D [ faadmi) m

¢(n) T2

(k,n)=1
By Fourier expansion this becomes a problem of estimating certain exponential
sums and in fact the above convergence has been proven by Kloosterman [K126]
with a rate. The rate has been optimized in seminal work by Weil [Wei48].
More recently, Jens Marklof has interpreted the above set in terms of intersection

points of certain horospheres [EMSS16]. To motivate the formulation of our

problem, we will repeat this observation here. For this introduction, consider the
lattice I = SLo(Z) inside G = SLy(R) and denote the subgroups

o~ funy §res
el (L Yeen)

A:{ay: (g ?);ye(o,oo)}

It is well known that the U and V-orbits of I' are closed and that I'Ua, and I'Va,
equidistribute in I'\G as y — 0 and y — oo respectively, cf. [Sar81]. For small y one
could wonder, whether the long orbit I'Ua, intersects the orbit I'V. An elementary
calculation shows that intersections occur if and only if there is some n € N so
that y = % In this case I'uza, = I'vg implies that ¢ = % and s = % for some k,l € Z.
Finally, 1 = det(utayv_s) yields kI = 1 modn. In particular, | = k in Z/nZ.
AsTU 2 T and IT'V = T, the measure appearing in (1) can be identified with the
normalized counting measure on the set

{(Fuk/n,Fuk/nagl); (k,n) = 1} CTU xTI'V.
Given n and o € R, denote
Pn)a = {(Fuk/n,l’uk/na;(}); (k,n) = 1} CTIU x F\G.

We have argued previously how bounds on Kloosterman sums imply
equidistribution of the sets P(n); inside T'U x I'V as n — oo. The problem
of equidistribution of the primitive rational points P(n), inside T'U x I'\G has
applications to Gauss sums and was examined in [DA14], [DAM13]. Our work
provides a considerable strengthening of some results in the first mentioned article.
For the sake of simplicity of exposition we are going to focus only on the case o = %
Moreover, as our method of proof allows it, we are going to discuss a more general
version of the problem where instead of the primitive rational points we look at

multiplies of monomial residues. More precisely, given a,b,d € N, we let
d _
P*4(n;a,b) = {(%,Fubkd/na\;ﬁ) : (k,n) =1}.

We can now state our first main result, which implies equidistribution of P(n); /o
as n — oo.
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Primitive rational points on expanding horocycles 3

THEOREM 1.1. Fiz d € N. There are an L?-Sobolev norm S on C°(T x I'\G) and
positive constants k,n,C such that for alln € N and a,b € Z satisfying (n,ab) =1,
for all F € C(T x I'\G) we have

1
_ Pt o) — / F’ < C(ab)m—"S(F).
Xd (- Z ’
[P a,b)l | e Tx G

Denote by P)X(d(n; b) C I'\G the projection of P*¢(n;a,b) to '\G, which does of
course not depend on a. The method of proof applied in the proof of Theorem 1.1
yields the following

COROLLARY 1.2. Fiz d € N. There exist an L*-Sobolev norm S on C2°(T'\G) and
positive constants k', Cy such that for alln € N and b, € Z satisfying (n,b,) = 1
and for all f € C(I'\G) we have

1
Py 2 1@ / o

zep;d(n;bn) r

< CynF S(F).

A natural generalization of the problems described above is to ask for the joint
distribution of primitive rational points for a = 0, a = % and o = 1 simultaneously,
that is the distribution of the sets

{(FUk/n,FUk/nan—l/z,r'U;k/nanfl); (k,n) = 1} CIU x F\G x T'V.

Rearranging factors, equidistribution of these sets can be interpreted as
orthogonality of Kloosterman sums to averages along primitive rational points on
expanding horocycles. Using Theorem 1.1 and entropy arguments, we show that
for a,b,c,d,n € N the sets

d —
Q%4 (n;a,b,c) = {(%, %,Fuckd/na\/}l); (k,n) = 1}

equidistribute as n — oo along some congruence condition. More precisely, we
prove the following

THEOREM 1.3. Let p,q be two distinct primes and D(pq) = {n € N : (n,pq) = 1}.
Let ay,, by, cn, € Z be a sequence of integers coprime ton. Let F' € C.(T x T xT'\G).
Then

! > F(z) — F

d(p-
|Q%(1; b,y )| ©€QX T (mian bn,cn) TxTx G
as n — oo with n € D(pgq).

The equidistribution of the sets P(n); has other natural generalizations,
e.g. to SLy(R) for N > 2, which were examined in [EMSS16]. The ineffective
equidistribution proven there has been effectivized more recently, first in the
case N = 3 by Lee and Marklof in [LM18] and later for general N by El-Baz, Huang
and Lee in [EBHL18]. These generalizations all concern variations of the problem
for the fixed scaling parameter o = 1. The generalization in the present article
concerns variation of the scaling parameter o and we want to quickly explain why we
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only discuss the case a = % Assume first that a > 1, then P(n), C TU xI'Va,i-a
and the orbit in the second component diverges into the cusp uniformly. Hence
the limit measure of the normalized counting measures on these sets is trivial. The
case o < 0 shows similar behaviour. Hence, one can restrict to the case a € (0,1).
A detailed treatment for a € (0, 3] can be found in [Luel9] and the case a € [5,1)
can be reduced to the former using the above relationship between I'U and T'V. It
becomes clear from the arguments in [Luel9] that o = % is the most difficult case
due to the fact that the points Fuk/najﬁ, 0 < k < n, are separated by distance one
along the U-orbit and along the V-orbit. We also refer to [ELuel8] where a weaker
version of Theorem 1.1 was announced.

A sketch of the proof of Theorem 1.1 For the sake of illustration, we sketch an
argument to prove equidistribution as in Theorem 1.1 for the second component,
assuming for simplicity that d,b = 1. To this end we assume equidistribution of the

rational points, i.e. assume that for all compactly supported continuous functions f
on I'\G we have

1 _1y n—oo
o> HCugua )5 [
k=0 A
Fix a prime p and a small value € > 0. Let

n

N(p,e) = {nGN; (p,n) =1 and W] >5},

where ¢ denotes Euler’s totient function counting the number of units in Z/nZ.
We denote

P(n) = {Fuk/na\_/lﬁ; 0<k< n}, P(n)* = {Fuk/nay%; (k,n) = 1},

as well as P(n)? = P(n) \ P(n)*. We denote by j,, 1 and pl the corresponding
normalized counting measures. Then

Hn = @H; + nii(n)ﬂ%

Note that for all n satisfying (p,n) = 1, these measures are invariant under the

map given by T'u/na Ly Fupzk/na;%. Assume (falsely) that there was a lattice

element v € T' of inﬁn\i/‘fe order inducing this map via right multiplication on T'\G
and assume furthermore that v commutes with A. As p,, converges to the invariant
probability measure as n — oo along elements in N(p,¢), so does the right hand
side. As @ > ¢ along this sequence, it follows—after possibly passing to a further
subsequence—that ¢ converges to a y-invariant probability measure on I'\G and
ergodicity of the invariant probability measure with respect to right multiplication
by ~ implies that this limit measure has to be the invariant probability measure.
As the limit is independent of the subsequence, it follows that p,¢ converges to the
invariant probability measure.

In order to make this argument precise, one can find an element v with the desired
property by considering a different space, namely the p-adic extension of I'\G. This
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Primitive rational points on expanding horocycles 5

is obtained by considering the group SL2(R x Q,) = G x SL2(Q,) instead where Q,
is the completion of Q with respect to the p-adic norm. Then SLQ(Z[%]) is a lattice
in SLo(R x Qp) and the element

w= (0 5) (6 5)

is an element in the lattice. For toc € R and ¢, € Q, one calculates

Ut 1) = U2 (1 1)
as desired and the proof sketched above actually works in this case. It remains to
take care of the fact that liminf,, @ = 0. To this end and for the sake of a better
rate of equidistribution, we replace the proof sketched above by an effective, more
general argument which uses for every n € N some finite collection of valid primes
at once.

Structure of the article The paper is organized as follows. In Section 2 we
introduce the S-arithmetic groups and identify the lattice we want to consider.
In Section 3, we introduce S-arithmetic Sobolev norms on the homogeneous spaces
under consideration. In Section 4, we prove equidistribution of long horocycle orbits
in the S-arithmetic extension, which illustrates a technical step occurring again in
the later, notationally more heavy steps of the proofs. In Section 5, we prove
equidistribution of the rational points of distance 1 in the S-arithemtic extension.
Finally, Section 6 provides a short discussion of the Xp-map in the S-arithmetic
setup, the fact that it is mixing and finally the proof of Theorem 1.1. Section 7
gives the argument involving rigidity phenomena for higher rank actions to prove
equidistribution in the product of the two-torus and the modular surface.

2. The S-arithmetic extension
2.1.  The modular surface Given a finite set of places S of Q, we will denote
by Qg = Hpes Qp the product of the completions @, of Q where Q, = R. We let

Z[S™ =2[{}:p € S\ {oo}}].

Given t € Qg and p € S, we let ¢, be the Q,-coordinate of t. Let Sy = S\ {00}
denote the set of finite places in S. We set Zs, = [[ g, Zp and if 0o € S, then we
denote Zg = Rx Zg,. Given p € S and t € Q,, we denote by 1, : Q, = Qg the map
sending ¢ to the element 4,(t) satisfying 2,(t), = ¢ and 2,(t), = 0 whenever ¢ # p.
We set G5 = SL2(Qs), G¥ = SLa(Zs), K[0] = SLy(Zs,) and T's = SLa(Z[S™1])
where we understand I's as a subgroup of SLy(Qg) via the diagonal embedding
of Z[S71] in Qs. Note that SLy(Qg) is isomorphic to the direct product of
the SL2(Qp) over all p € S. For any group, we will denote its identity element
by 1. Given p € S and some g € SL2(Q,), we will denote by 2,(g) € SL2(Qs)
the element whose component equals the identity for all places in S\ {p} and ¢
at the place p. Conversely, given an element g € Gg and a place p € S, we let g,
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6 M. FEinsiedler, M. Luethi, N. A. Shah

denote the p-coordinate of ¢ and more generally for a subset S’ C S, we denote
by gss the projection of g to SL2(Qg/). Given g € SLy(Q), we denote by A(g) the
diagonal embedding in SL2(Qs). Given a place p of Q, we write G, for Gy,). We
let Goo = SL2(R) and I'so = SL2(Z). The goal of this short section is to introduce
general notation, to establish the well-known fact that I'g is a lattice in Gg if co € S
and to naturally relate the space Xg = I's\Gs to the space Xoo = I'oo\G oo, which
is our space of interest. The relation is found by first proving that Xg = SLo(Z)\G*
where SLy(Z) is identified with its image under the embedding in G induced by
the diagonal embedding of Z in Zg. We will denote Ys = SL2(Z)\G®. The first step
towards proving that I'g is a lattice in Gg (assuming oo € S) is to show that SLq
has class number one, which is expressed in the following proposition, for which we
refer the reader to [PR94].

PROPOSITION 2.1. The group G° acts transitively on Xg and the stabilizer of I's
in G° is SLo(Z). In particular the map SLa(Z)g +— T'sg is an isomorphism Ys = Xg
of G°-spaces.

The isomorphism g : Xg — Ysg in Proposition 2.1 is given by writing a
representative g in Gg as g = yng with v € I's and ng € G°. It is relatively
easy to see that SLy(Z) is a non-uniform lattice in G° if co € S. One obtains the
following

COROLLARY 2.2. Ifoo € S, thenT'g is a lattice in Gg. Moreover Xg/K|[0] and X o
are isomorphic as Go-spaces.

As of G®-equivariance, the push-forward of any invariant probability measure on Xg
under g is an invariant probability measure on Yg. In particular the systems
defined by G¥ ~ Yy and G° ~ X are isomorphic as dynamical systems. In what
follows, we will abuse notation and denote by rg both the invariant probability
measure on Yg and the invariant (under Gg) probability measure on Xg.

Let H < Gg be a closed subgroup and assume that H is the set of Qg-points of
some algebraic group defined by polynomials with coefficients in Q. The Zg-points
are defined by H° = H N G°®. We define the groups Hg, H, and so on in the
corresponding fashion. Furthermore, we write H = H N K[0] and Hr = HNTg.

2.2.  Periodic orbits for horospherical subgroups We define the subgroup

1 ¢t
US:{Ut:<0 1>;t€QS}SGs,

and in analogy to the real case, i.e. S = {oco} want to look at the closed Ug-orbits
in Xg. To this end we fix the Haar measure mqg, on Qg as the product of the
Haar measures mg, on the components Q,, (p € S) where mq_, is the Lebesgue
measure and mgq, is normalized so that mq,(Z,) = 1 for p € S;. Define the Haar
measure myg on Ug to be the push-forward of mgg under the isomorphism ¢ — u,.
A point € Xg has periodic Ug-orbit if and only if there is some o € Qg such
that Staby,(z) = {ua;t € Z[S7}, cf. [KT07, Proposition 8.1]. This can be
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Primitive rational points on expanding horocycles 7

used to show that a point x € Xg has periodic Ug-orbit if and only if it is of the
form z = I"'sau for some u € Us and some a € Ag where

om0 1) ves)

In what follows, we write U, = I'sa,Us whenever y € QF. Let y € QF,
then the volume of the orbit I'sa,Us is the covolume of y~2Z[S™'] in Qg,
which equals |y~2%|s = Hpes|y;2|p' Let |yls, = [lpes,|¥plp € Z[S~'] and note

that aj,-1|4_is contained in AsNlg. Using 'sa,Us = ga,Us = yz—' € Z[S™],
we obtain the following
COROLLARY 2.3. There is a one-to-one correspondence between R~ X Hpesf Zy

and periodic Ug-orbits, given by sending an element y to U,.

3.  S-arithmetic Sobolev norms and congruence quotients

In this section, we will introduce Sobolev norms and collect several properties used.
These have been discussed in greater generality in [EMMV17] and we will often
provide references instead of detailed proofs. Along the discussion, we will have to
introduce the notion of a smooth function on certain S-arithmetic quotient spaces.
It will turn out, that such functions will come from smooth functions on congruence
quotients of SLg(R). This feature will be very useful for the subsequent effective
equidistribution statements, once we have found the relation between the Sobolev
norms on these real homogeneous spaces and the Sobolev norms considered in
the S-arithmetic setup.

3.1.  The space of smooth functions on Xg We make use of the following notation.
We denote by RS the set of functions from S to R. It is convenient to think of
elements in R®* as vectors in RISfl whose entries are indexed by S¢. For m € R, we
denote S™ =[] cq, p™7. Ifm € N®¢, then we define Zsg,[m] = [],¢g, P Zp, which
is an ideal in Zg,. The Chinese Remainder Theorem yields Zg, /Zs,[m] = Z/S™Z.
Applying the projection Zs, — Zs,/Zs,[m] in each entry, yields a homomorphism

K[0] = SLa(%8t/z,¢ 1m])»

whose kernel K[m] is a closed subgroup of finite index and in particular a
compact open subgroup. The restriction of the normalized Haar measure on K[0]
to the subgroups K[m] yields a finite, bi-invariant Haar measure on these
subgroups. Given p € S¢ and m, € Ny, we denote by K,[m,] the kernel of the
homomorphism K[0] — SLo(Z,/p™ Zy), g — gp mod p™»Z,. Given a continuous,
compactly supported function f on Xg, we write Av,[m,|(f) for the function
defined by

Avp[my](f)(z) = \m /Kp[m,,] f(z1(9))dg.
Furthermore we define pr,[m;,] = Av,[m,] — Av,[m, — 1] for m;, > 1 and for
simplicity write pr,[0] = Av,[0]. The operator pr,[m,] is called the level m,
projection at p. We note that K[m| = [ g, Kp[m,| for all m € NSt
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8 M. FEinsiedler, M. Luethi, N. A. Shah

Definition. A continuous function f on Xg is called smooth, if it is invariant
under K[m] for some m € Ngf and if it is smooth at the real place. The space
of smooth functions is denoted by C*°(Xg) and C2°(Xg) is the space of compactly
supported smooth functions.

For the notion of smoothness in the real place, recall that I's < Gg is a
lattice and thus every point in Xg has a neighbourhood which is homeomorphic to
some neighbourhood of the identity in Gg. This neighbourhood contains an open
neighbourhood which is a direct product of open neighbourhoods of the identity
in G, (p € S). On such a neighbourhood the notion of smoothness in the real
component is defined using the notion of smoothness for Lie groups. Given m € Ng y
we let pr[m] = [ g, pr,[m;]. This is well-defined, as the projections for distinct
places commute. For f € C°(Xg) we have f = ZmeNgf pr[m]f and the right-hand
side is a finite sum. Given f € C2°(Xg), we call pr[m]f the pure level-m component
of f.

Let N € N, then I'oo(IN) denotes the congruence lattice for level N, i.e. the
kernel of the homomorphism SLs(Z) — SLy(Z/NZ) induced by the canonical
projection Z — Z/NZ. In what follows, we denote Xoo (V) = T'oo(N)\Goo. One
can show that Xg[m| = Xg/K|[m] is isomorphic to X (S™) as a G-space with
isomorphism given by

P X (S™) = Xs[m], Twuo(S™)g — Tsino(g)K[m). (2)

We denote by 7(™ : Xg — Xg [m] the canonical projection. A continuous
function f defined on Xg is smooth, if and only if there are m € Ng f and a smooth
function f,, € C°°(Cao(S™)\Goo) such that f = f,, o (™) ~1 o (™) The picture
to keep in mind is the commuting diagram given in (3) where g denotes the action
by some element g € Go.

(m) (m)
Xy —" 5 Xglm] ¢ Xoo(S™)

N

Xg T Xg[m] T Xoo(S™)

Using equivariance of 7(™) for the Guc-action we observe that the push-forward
of the Gg-invariant probability measure on Xg to Xg[m| is a Geo-invariant
probability measure on Xg[m]. As the G-invariant probability measure mx_ (gm)
on X, (S™) is unique, equivariance of (™) implies that 1/J(m)*mxoo(5m) is the
unique Goo-invariant probability measure on Xg[m| and agrees with 7™, vg. Let
now f € C.(Xg) and assume that f is invariant under K[m]. Then there is a
unique f,,, € Co(Xg[m]) such that f = f,, o 7™, In particular, fn, o ™ = f,,
implies

fdl/s :/ ]Emdﬂ—(m)*ys :/ fmdeoo(Sm)- (4)
Xs Xg[m] X oo (S™)

In what follows, we will ask for effective equidistribution results, i.e. we examine
the equidistribution properties of sequences of subsets of Xg and quantify the error
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Primitive rational points on expanding horocycles 9

in terms of the parametrization of the sequence and of the test function involved.
The error rates rely on smoothness properties of the functions and we will hence only
use smooth test functions. The implicit equidistribution statements then follow,
as C°(Xg) C Co(Xg) is a dense subspace (with respect to the uniform topology).

3.2.  Noncompactness and the height function In what follows, let gz C Matq 2(Z)
denote the submodule generated by the elements

I R\ R O R

When equipped with the bracket [v, w] = vw—wwv, (v, w € gz) this is an integral Lie
algebra. The commutator relations for the generating set show that for any ring R
we have [gr, gr] C gr where gr = gz ®z R = sl5(R). An explicit calculation shows
furthermore, that gr is preserved by the adjoint action Ad given by conjugation
with elements in SLy(R). Note that gz[s-1) 1s a lattice in ggg, in the sense that
it is a finitely generated Z[S~']-module satisfying gos = gz(5-1) ®z;s-1) Qs. For
what follows, given d € N and u € Q%, we let |julls = [Leslluplly where |||l is
the maximum of the p-adic absolute value of the entries of u,. Here the “co-adic
absolute value” stands for the usual absolute value on R. If u € GL4(Qg), we
write [Jufls = max{||ulls, [lu™]s}-

Definition. The height function on Xg is defined as
hty, : Xs = R, htx,(z) =sup {||[Ad(g " )v[[5';v e gzis-1. Tsg=x}.

Note that the height function does not depend on the choice of the
representative g of , as gz;g-1) is Ad(I's)-invariant.

PrOPOSITION 3.1. The height function is a proper map bounded away from 0 with

the following properties:

1. Forallg € Gs and x € X we have htx,(zg) < ||g||Zhtxs(®). If goo = 1,
then the tmplicit constant is 1.

2. Foralx e Xg and all g € K[0], we have htx,(xg) = htx, ().

3. There exist positive constants k1, c1 such that for all x € Xg the map g — xg
defined on the set {g € Gg; d(goo, 1) < crhtxq(z)7"1, gs, € K[0]} is injective.

This is discussed in Appendix A of [EMMV17]. Observe that for every pair A <T
of lattices in a group G, an injectivity radius at z = I'g € T'\G is also an injectivity
radius at £ = Ag € A\G. To this end we denote

htx_(gm)(z) = sup{HAd(g_l)vH_1 ;0 € gz, Too(S™)g = x}

LEMMA 3.2. Let ¢ € Xg and identify xK[m] € Xo(S™) with its image
under (™) 71, Then htx(z) = htx__(gm)(zK[m]).
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10 M. FEinsiedler, M. Luethi, N. A. Shah

Proof. Let v € gz5-1], g € Gs and k € K[m], then
[Ad(k)Ad(g™ )vlls = [|Ad(g™ )]s,

as for all p € S, the norm ||-||, is SLg(Z,)-invariant. Hence the height function
on Xg descends to a well-defined function on X, (S™). It remains to show that

htox, (2) = sup { [ Ad(g ™ol 5 v € gz, 7" (&) = T (S™)g}

Let goo € Goo satisty (™) (z) = ' (S™)goo, then for any g € Gs with the property
that T'sg = z, we know g = g, mod K[0], so that htx,(z) = htx,(T'sgeo) as
argued above. We first show that the supremum is achieved for some w € gz.
First, it follows from discreteness of Ad(g')gz;s-1) and properness of ||-||s that the
supremum is achieved for some v € gzg-17. Let a € Z be a common denominator
for the entries of v, so that v = a~ 1w for some w € gz. We can assume that « is a
product of the primes in St. It follows that

|Ad(g s = [[Ad(gwlls [ Tle™" 1, = [1Ad(gz ) wlls
pEeS

and the supremum is achieved at w € ggz. We show that we can
assume |[(Ad(g)w)pll, = 1 for all p € S;. First, note that (Ad(gt)w), = w
for p € S;. This already implies that |[(Ad(gs)w)pll, = [w], < 1. Assume
that ||w|| < 1, then w = pu for some u € gz and thus [|Ad(gH)w||ls = [[Ad(g:))ulls
as |plg = 1 for all ¢ € S¢\ {p}. In particular, after replacing w finitely many
times in this way, we can assume that p~'w & gz for all p € S; and in particular
that ||w||, =1 for all p € S¢. This shows the claim. ad

For what follows, we denote by X a choice of a basis of gg—i.e. a maximal
linearly independent set of degree 1 differential operators at the identity in Go—
and by Dp(X) the set of all monomials in X of degree at most D. These monomials
define differential operators on C°(Xg). To this end, a differential operator X at
the identity of G, defines a differential operator X on Xg which for f € C°(Xg)
is given by

Xf(z)=X(fopol,) (z=Tgg€ Xg),

where p : Gg — Xy is the canonical projection and I, is left-multiplication on G
by ¢. In what follows, we will abuse notation and just write X f instead of X f.

Definition. The L2-Sobolev norm of degree D with respect to the basis X
on C°(Xg) is the norm Sp : C°(Xg) — [0, 00) given by

So(f)*= Y D SP"pr[m](1+htx,)PX |5 (f € C(Xs)).

meNSt XE€Dp (X)

It is easy to see that for D < D’ and two L2-Sobolev norms Sp, Spr with respect
to bases X and X’ respectively, we have

Sp(f) < Sp/(f) (f € CF(Xs)).
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Primitive rational points on expanding horocycles 11

If X = X', then the implicit constant can be set to one. In what follows, we will
usually implicitly assume a fixed choice of a basis of gg; it could be useful to think
of the basis provided in (5). We will use some properties of L?-Sobolev norms,
which we list below. For the proofs we refer the reader to [EMMV17, Appendix A]
and [ERW17, Section 3.3].

PROPOSITION 3.3. Let S be an L*-Sobolev norm of degree D on C°(Xg). Then
the following are true.
1. (Sobolev Embedding) There is some Do € Ny such that D > Dy implies

[flleo < S(f)  for all f € CZ(Xs).

2. (Continuity of the regular representation) Let ¢ € Gg and f € C*(Xg).
Define a function g- f € CX(Xg) by g- f(x) = f(zg), (x € Xs). Then

S(g- f) < llglls”S(f)-

3. There is some L?-Sobolev norm Sp., of degree D +r, r € Ny, such that for
all fi1, f2 € C°(Xs) we have

S(f1f2) < Sp4r(f1)Sp4r(f2)-

An important feature of these Sobolev norms is their relation to Sobolev norms on
the congruence quotients. Note that the definition of an L2-Sobolev norm as above
includes the case S = {00} and in fact works for any lattice A < G,. Hence by
the L?-Sobolev norm & on C°(A\Gw,) of degree D with respect to the basis X we
mean the map

S(P= Y IA+)PXF5 (f € CZ(,\0)), (6)

XeDp(X)

where the height function ht is the height function for A. This sort of Sobolev norm
also satisfies the properties listed in Proposition 3.3. The following lemma yields
the desired relation between L2-Sobolev norms on C2°(Xg) and on C° (X (S™))
for m € N3*. Tt will be helpful to introduce a bit of notation.

LEMMA 3.4. Let X denote a basis of gr and let D € Ny be a degree. Let Sp
denote the L*-Sobolev norm on C(Xg) of degree D with respect to X and
for m € N3* let Sp.,, denote the L*-Sobolev norm on C°(Xo(S™)) of degree D
with respect to X. Let f € C°(Xg) and for m € N§* let f,, € C°(Xo0(S™)) such
that prim]f = fy o (™)L o 7™ Then

SD(f)z = ZSDmSD,m(fm)z'

m

Proof. In this proof we write ¢(™ = ()(™)~1 o 7(™) Note that G-equivariance
of (™ and 7(™ implies that for all X € gg and h € C°(X o (S™)) we have

X(ho¢™)(x) = (Xhoo™)(a).
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12 M. FEinsiedler, M. Luethi, N. A. Shah

Inductively this then extends to polynomials in elements of gr. Using Lemma 3.2,
we have ht y, = htx_(gm) o #™) so that mx.(sm) = ™) vg implies

Spom(fm)? = Y lIprlm](1+htxe) "X 122 x g )
XG'DD(%)

by Proposition 3.1 (2) and the fact that the differential operators in ggr commute
with the level m, projections for all p € S¢. The lemma now follows from the
definition of Sp. O

Of course any Sobolev norm extends to the space C2°(Xg) @& Cly, which is
defined to be the space of smooth functions f : Xg — C for which there is a
constant ¢ € C satisfying f — ¢ € C°(Xg).

3.3.  Sobolev norms on S-arithmetic extensions of tori We will also be interested
in the S-arithmetic extension Z[S™!|\Qs of the torus T = Z\R. More generally,
given an integer N, we will use the notation T(N) = NZ\R. We will give a quick
discussion of this space, as well as of smooth functions and of Sobolev norms.
Most of it can be seen as a special case of what was done previously, up to some
simplifications. Hence we will keep the discussion fairly brief.

Let S be a finite set of primes including oo and denote Tg = Z[S~!]\Qg. The
space Tg is locally isomorphic to Qg, as Z[S™!] is a lattice, cf. [KT07]. Hence we
can make the following

Definition. A function ¢ : Tg — C is smooth, if it is smooth in the real direction
and if there is some m € N3 such that ¢ is invariant under the subgroup Zg, [m].
We denote by C°(Tg) the vector space of smooth functions on Tg.

Note that in this case, the quotient Tg is compact, as follows from the discussion
below. Given p € S; and m,, € Ny, we will denote by Av,[m,] : C°(Tg) = C*(Tg)
the averaging operator for the subgroup p”Z,. As before, denote pr,[0] = Av,[0]
and pr,[my] = Avp[m,| — Avy[m, — 1] if m, > 0. For m € N3, we again
set Av[m| = [],cs, Avplmy| and prim| = [[ g, pry[my]. Every f € C*(Ts)
satisfies f = ZmeNgf pr[m]f and the right-hand side is a finite sum. Fix a basis X—
i.e. any non-zero element—of the Lie algebra of R. The L2-Sobolev norm S of
degree D on C*°(Tg) with respect to the basis X is the norm given by

SHP=D_ 8" > |pr[m)X £,

mENgf XG'DD(.’{)

where again Dp(X) is the set of monomials of degree at most D in X. We remark
here that as of compactness of Tg (and similarly for T(S™), m € Nj'), there is a
uniform injectivity radius and hence we were able to choose the height function,
cf. Section 3.2, to be constant equal to 1.

Similarly to the discussion of S-arithmetic quotients of SLo, one has

2[5 \8/z5. [m] = 2R X LSt/gs (] = T(S™).

Prepared using etds.cls



Primitive rational points on expanding horocycles 13

The first isomorphism follows immediately from the fact that R x Zg, acts
transitively on Z[S~!]\Qg, which again follows from density of Z[S~!] in Qg,.
For the second isomorphism define a map

T(Sm) — Z\R X ZSf/ZSf [m]s ST"L +v— 7+ ’LOO(U) + Zsf [m]

This is well-defined, onto and injective, where injectivity follows from strong
approximation [Cas08, Chapter 3, Lemma 3.1]. Using exactly the same argument
as for the proof of Lemma 3.4, one obtains

Sp(f)> =Y S""Spm(fm), (7)
meNgf
where Sp is the L2-Sobolev norm of degree D on C*°(Ts) with respect to the
basis X on the Lie algebra of R and Sp,, is the L2-Sobolev norm of degree D
on C*°(T(S™)) with respect to the basis X.
For the sake of completeness, let us point out that there is an analog to the
Sobolev embedding theorem for functions on Tg, cf. Proposition 3.3.

PROPOSITION 3.5. Let S be an L2-Sobolev norm of degree D on C*(Ts). Then
the following are true.
1. (Sobolev Embedding) There is some Do € Ny such that D > Dg implies

Ifllo € S(f) forall f e C®(Tg).

2. There is some L*-Sobolev norm Sp., of degree D +r, r € Ny, such that for
all f1, fa € C(Tg) we have

S(f1f2) < Sp4r(f1)Sp+r(f2)-

We leave it to the reader to adapt to this simpler situation the corresponding proofs
in the references provided for Proposition 3.3.

Remark. The above discussion also has a higher dimensional generalization, i.e. to
smooth functions on the S-arithmetic cover T of the n-dimensional torus T".

3.4. The maximal cross norm on the product We are mainly interested in
examining equidistribution properties of subsets in the product Tg x Xg. For
this we make use of a special kind of Sobolev norms on Tg x Xg, the so-called
maximal cross norms, cf. [BEG]. We will consider the following set of test functions.
Let AX(Ts x Xg) be the linear hull generated by the set of functions ¢ ® f
for ¢ € C*(Ts) and f € C°(Xs) where we define ¢ ® f(t,z) = (t)f(z) for
allt € Tg and all z € Xg. Then A°(Tg x Xg) is a dense subspace of C.(Tg x Xg).

Definition. An L?-maximal cross norm of degree (Dy, D3) on AX(Ts x Xg) is a
norm S4 which for F' € AX(Tg x Xg) is given by

SA( ) lnf{sthTS Wz)SDz,Xs fl 5 ZQO%@]C%}’

where Sp, 1, and Sp, x¢ denote the L?-Sobolev norms of degree D; and Do
on C*(Tg) and C°(Xg) for some fixed bases of Lie(R) and sly(R) respectively.
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14 M. FEinsiedler, M. Luethi, N. A. Shah

In what follows we will call L?-maximal cross norms on AX(Ts x Xg) just cross
norms. We note that for any cross norm Sy on A°(Tg x Xg) of degree (D1, D3)
there is a cross norm S’y on A (T x Xg) of degree (D7, Dy) with D; < Dj (i =1,2)
such that for all F,G € A%°(Tgs x Xg) we have

SA(FG) < SY(F)SL(G). (8)

To this end assume F = >3, ¢; ® fi and G = },¢; ® g;. Then using
Propositions 3.3 (3) and 3.5 (2), we obtain

SA(FG) <Y Sp, (¢it);)Sp, (fi9;)

< (Z SD1+r(<Pi)SD2+T(fi)> ZSD1+r(¢j)5D2+r(9j)

for r sufficiently large but independent of F' and G. Choose D} = D;+r fori = 1,2
and let S’; be the cross norm defined using S p; and Sp;. Let € > 0 arbitrary and
assume that the representations of F' and G were chosen so that

SW(F)+e> ZSD; (¢i)Spy(fi) and  Si4(G)+e> ZSD; (¥j)Spy(95)-
% J

Using this for the preceding estimate, one obtains
SA(FG) < SW(F)S4(G) + Oral(e),

and as € was arbitrary, the claim follows.
For later use, let us explicitly state the following

PROPOSITION 3.6. There exist D1, Do € N such that the following is true. Given
any cross norm S on AL (Tsx Xg) of degree (D7, Db) with Dy < D} and Dy < D
and any function F € A°(Tg x Xg), we have

[ F'l|oc <p1,py Sa(F).
Proof. Let ¢ ® f be any pure tensor, then
19 @ flloo = llplH1f lloo-
Hence, as of Propositions 3.3 (1) and 3.5 (1), we obtain
e ® flloo <py,0y Sp;(9)SDy(f)

for all sufficiently large D7 and D). The claim now follows from the triangle
inequality. O

3.5.  Comparing mazimal cross-norms and L?-Sobolev norms The maximal cross-
norms defined above are well-defined on a dense subspace of C°(Tg x Xg). We
want to close the discussion with a treatment of the relation between maximal
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cross-norms and Sobolev norms on C°(Tg x Xg). This justifies our decision to
restrict to functions in AP (Tg x Xg) for the remainder of the article.

Let us first define L2-Sobolev norms on C°(Tg x Xg). Given m € N5* we denote
by the operator pr[m] from C°(Tg x Xg) to C°(T(S™) x X (S™)) the level-m
projection with respect to the compact-open subgroup Zg,[m] x K[m] of Qg x Gs.
Let X denote a basis of the Lie algebra of R x G, and let Dp(X) denote the set of
monomials of degree at most D in X. An L2-Sobolev norm of degree D is a map S
from C°(Ts x Xg) to [0,00) of the form

S(EP= Y 8P Y lpr[m](1 +htx )P XF3.
meNSt XeDp(X)

In order to give a clear relation between maximal cross-norms and L2-Sobolev
norms, we are going to show the following

THEOREM 3.7. Let Sy be a cross norm on AX(Tg x Xg). There is an L*-Sobolev
norm S on CX(Ts x Xg) such that the following are true.

1. Foral F e A (Tg x Xg) we have S4(F) < S(F).

2. The space A (Tg x Xg) C CX(Ts x Xg) is a dense subspace for the

topology defined by S. That is, for every F € C(Tg x Xg) there is a

N—o0

sequence Fy € AX(Tg x Xg) such that S(F — Fy) — 0.
This implies the following

COROLLARY 3.8. Let u, v denote two probability measures on Tg X Xg and assume
that € > 0 is such that

/ qu—/ Fdv
TsxXg TsxXs

forall F € AX(Ts x Xg) and some cross norm Sq on AX(Ts x Xg). Then there
is an L?-Sobolev norm & on C°(Ts x Xg) such that

‘/ Fd,u—/ Fdv
TsxXs TsxXs

for all F € C*(Tg x Xg).

< eSa(F)

< eS(F)

Before we deduce Corollary 3.8 from Theorem 3.7, for the sake of completeness,
we want to quickly deduce a Sobolev embedding theorem for L2-Sobolev norms
on CX(Tg x Xg) of sufficiently large degree. Of course, it would also be possible to
prove a more general version of Proposition 3.3 instead. We fix a cross norm S4 as
in Proposition 3.6 and let S be a corresponding L2-Sobolev norm on C2°(Tg x Xg)
as in Theorem 3.7. Let F' € C°(Tg x Xg) arbitrary. Choose any sequence of
functions F,, € AX(Ts x Xg) such that F,, — F as n — oo with respect to S.
As S bounds the L2-norm of functions on Tg x Xg, we can assume without loss of
generality that F;, converges to I’ pointwise almost surely. In particular continuity
implies that F,, converges to F' pointwise. Let now (¢,z) € Tg x Xg arbitrary, then

|F(t,z)| = lim |F,(t,z)| < lim S4(F,) < lim S(F,) < S(F).
n—oo n—o0 n—oo
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16 M. FEinsiedler, M. Luethi, N. A. Shah

As (t,x) was arbitrary, it follows that
[F|loe < S(F) (9)
with implicit constant independent of F.

Proof of Corollary 3.8. We write u(F) and v(F) for the integral of F against p
and v respectively. We choose an L2-Sobolev norm as in Theorem 3.7 and assume
without loss of generality that the degree of S is sufficiently large for Equation (9)
to hold. Using Theorem 3.7, there is a function F. € AS°(Tg x Xg) such that

S(F — F.) < min{e, 1}S(F).
Hence we have S4(F:) < 2S(F) and thus

[W(F) —v(F)] < 2||F = Felloo + [u(FL) — v(F2)]
< 2eS(F) 4+ eSa(F:) < 4eS(F).

0O

Corollary 3.8 implies that effective equidistribution of a sequence of measures
(with a rate) with respect to test functions in A%°(Tg X Xg) and a maximum cross
norm S 4 implies effective equidistribution (with the same rate) of the sequence with
respect to test functions in C>°(Tg x Xg) and some L?-Sobolev norm S. Hence
after the proof of Theorem 3.7 we will use AS°(Tg x Xg) as our set of test functions
and we will use the term L2-Sobolev norm also for cross norms. The proof of
Theorem 3.7 makes use of Fourier series. Let F' € C°(Tg x Xg) and m € Ng‘. The
function pr[m]F is a function on T(S™) x X (S™) and hence it has an associated
Fourier expansion, i.e. for all ¢t € Tg, x € Xg we have

prm|F(t,z) = Y al™ (F)(@)x{™ (), (10)
nez
where
X (t) = i (t € T(S™)),
a\™(F)(x) = Sim /11‘(Sm) pr[m]F(t,x)X(jl)(t)dt (z € Xg).

Let X be a differential operator on Tg X Xg and assume that X can be written
as X = XX where X; is a differential operator on Tg and X5 is a differential
operator on Xg. We denote by | Xi]1 the total degree of the differential
operator X7. Then by Parseval’s and Fubini’s Theorems we get

2mn

2[| X1l D (m) 9
Tr) I htx (sm)P Xeal (F)3. (11)

Ipr{m] (1+htx ) PXFI3 = 3 (
ne”L

In particular, for any L2-Sobolev norm S of degree D on C°(Ts x Xg) we obtain

2

S(P? < > 8PS (14 n?P)Spm (aM(F))", (12)

mENgf nez
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where we denote by Sp,, a family of L2-Sobolev norms on C°(X,(S™)) for
a uniform choice of a basis of the Lie algebra of G.. In what follows, we will
suppress the dependence of the norm on m using the correspondence between
smooth functions on X (S™) and functions on Xg invariant exactly under K[m)].
At first glance it might not be obvious why the right-hand side is finite. Recall
however that smoothness of F' implies that the outer sum is actually a finite sum.
It suffices to prove finiteness for each of the finitely many summands. This is done
in the following

LEMMA 3.9. Let F € C2°(T(S™) x Xoo(S™)). Let Sp be an L?-Sobolev norm of
degree D on C°(Xo(S™)). Then

31+ n2P)Sp (al™ (F))? < .
nez

Proof. Let X be any differential operator on Xo(S™), then a'/™ (X F) = Xa'i™ (F)
as of Lebesgue’s Dominated Convergence Theorem. Let F() denote the I-th
derivative of F' in the torus component. Note that the set K defined as the
projection of the support of F to X, (S™) is a compact set and that aglm)(F)(x) =0
for all + ¢ K. Moreover, the height function is bounded on K. For every
fixed z € X (S™), the function defined by ¢ — XF(t,z) is smooth in t and

thus by Fubini’s Theorem we get

/ S+ 522)| (1 + bt (s (@) " Xa™ (F) (@)
Xaols™) 2%

<K /XOO(SW)Z(1+n2D)|a;m)(XF)(x){2dx

neZ
- / IXF(,2)|2 + | XFP) (-, 2)[2dx
Xoo(S™)
— |XFIZ 4+ [XFP)3 < o,

where we again used Parseval’s Theorem in the first equality. Applying Fubini once
more, we can exchange integration and summation for the expression we need to
bound, i.e. letting X denote the basis of the Lie algebra of G used to define Sp,
we have

S+ wP)Sp(a(F)’ =321+ 0?P) ST (1 bty sm) DXl ()]

ne”Z neEZ XeDp (%)
2 D)2
<k Y IXFl3+[XFP3.
XeDp (%)
By the preceding discussion, the latter is a finite sum of finite expressions. |

We next show that the right hand side in (12) can be bounded from above by
an L2-Sobolev norm of larger degree. Using this, we will be able to finally prove
Theorem 3.7.
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18 M. FEinsiedler, M. Luethi, N. A. Shah

LEMMA 3.10. Let Sp be an L*-Sobolev norm of degree D on C®°(Xg), then
there is an L2?-Sobolev mnorm Sap of degree 2D on C°(Ts x Xg) such that for
all F € C*(Ts x Xg) we have

S S0P (o E) < San(

mENgf neZ

with implicit constant independent of F'.

Proof. We assume that Sp is defined using the basis X. We fix a generator Y
of the Lie algebra of R and let X’ = X U {Y}. Define an L2-Sobolev norm Szp
on C°(Tg x Xg) using the basis X’. We again denote by || X1]||; the total degree
of the differential operator X;. Using (11), Proposition 3.1 and Lemma 3.2 one
calculates

82D(F)2 > Z §2Dm Z ZnQHX1H1||(1+htho(Sm))ZDXQng)(F)H%

meNSf XeDyp(X')nEL
0
= D S 30 Yl bty (sm)*PXalM (F)]3

meNgf X€eDyp(X)ne€Z

2D
0 ST 3 Dol s Xl (P
meNSt €=1 X€Dyp_¢(X) n€Z

> > Sy (1+n?) D0 (1 bty om)” Xal™ ()3

meNgf neZ XeDp(X)
= > 8PN+ n?P)Sp (alM (F)).

mENif nez

O

Proof of Theorem 3.7. Before we start with the proof, we introduce a natural
sequence of approximations to a compactly supported smooth function on Tg x Xg.
Let F' € C*°(Tg x Xg) arbitrary and fix N € Ny. We define Fy by

Fy(ta)= ) > ai”(E)@)x(™ () (te€Ts,z € Xs).

mENif In|<N

It will be convenient to set F_; = 0. Note that Fiy € AX(Tg x Xg) forall N > —1
and that there is some D € N such that

N+k

SA(FN — Fyy) < Z Z Sprs(XU™)Sp x (al™M(F)).
meNp [n|=N+1

We also note for later use that

Z S—bm — H(l—pD)71<oo

meNgf PES;
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as well as

1
s <0
% (1+n2P)e
for all @ > 3. Furthermore we notice that Sp (X;m)) < (1+nP). Using Cauchy-
Schwarz, we obtain

N+k 2
SA(Fy — Fnip)? < Z SDm( Z SD,TS(Xﬁzm))SDst(a%m)(F)))
meNg! [nl=N+1
N—+k
< St N 4 ntP)Spx (@M ()% (13)

mENif [n|=N+1

We now turn to the actual proof of the theorem. We assume throughout the
discussion that all Sobolev norms are chosen of sufficiently large degree for the
various Sobolev Embedding Theorems to hold. In order to show the first claim,
let F € A(Ts x Xg) arbitrary. Combining the bound from (13) with the finiteness
in Lemma 3.10 the sequence of approximations Fy is a Cauchy-sequence with
respect to S4. Using the Sobolev Embedding Theorem on the product, we know
that Fy converges to F' pointwise, i.e. by smoothness that F' is the limit of the

sequence Fy with respect to S4. Hence, using the bound from (13) once again, we
find

SA(F)? < lim Sa(Fy)? = lim Su(F_, — Fy)?
N—o0 N—o0

N

< Jim 3T 8PS (14 02P)Sp . (o ().

mENgf n=-N

Hence the first claim of Theorem 3.7 follows from Lemma 3.10 with S of degree 2D.
For the second claim, let F' € C°(Tg x Xg) and define the approximations Fi
as above. Using (12) and Lemma 3.9, we know that

Sop(F = Fy)* < Z §2om Z (1+n*P)Sap x4 (a%m)(F))2 NZee g,

meN*gf In|>N

As Fy € A®(Tg x Xg) for all N € N, the second part of Theorem 3.7 follows. O

4.  Congruence quotients and effective S-arithmetic equidistribution

In this section we want to illustrate the relation between equidistribution of
orbits in congruence quotients and equidistribution in S-arithmetic quotients.
We illustrate the relationship by proving effective equidistribution of horocycle
orbits U, cf. Section 2.2, for y € (0,00) as y — 0. This is not new and strictly
speaking, the equidistribution in the S-arithmetic quotient is formally not required
for what follows. However, we will later prove equidistribution of certain sparse
subsets of U,, so that it is natural to ask whether the full set equidistributes.
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20 M. FEinsiedler, M. Luethi, N. A. Shah

Moreover, the argument used here gives a simple illustration of part of the procedure
that will be applied for the equidistribution of rational points.

The effective equidistribution of the orbits '« (S™)a,Us for varying m € 75
follows from a theorem by Sarnak [Sar81]. We will use this to prove equidistribution
of rational points of a certain denominator along these periodic orbits. From our
perspective, these results lie in the realm of unitary representations, which naturally
occur as follows. Given a locally compact, o-compact group G acting continuously
on the right of a locally compact space X equipped with a Borel measure p invariant
under some closed subgroup H < G, we obtain a unitary representation of H on
the space Li (X) of functions on X defined p-almost everywhere, whose absolute
value squared is integrable with respect to u. The unitary representation is induced
by the action of G on X and the element h € H sends the element f € Li (X) to
the element & - f € L2 (X) which is given by (h- f)(x) = f(xh) for almost all z € X.
We will denote by g the map defined by the action of an element ¢ € G on X.
Note that for any f € C.(X) the function g - f is again continuous with compact
support. In particular, the measure g,u is the measure defined by

/ Fdgu = / g-fdp (f € C(X)).
X X

We denote by piy, the Ug-invariant measure on the periodic orbit U; = I'sUs.
We are interested in the behaviour of the push-forward (ay).«pe, as Yoo — 0. As
discussed previously, the calculation ayuta, ™ = uy2; implies that U, = I'sUgay has
volume |y~2|s. As one would expect, the behaviour of long periodic orbits U, can be
deduced from the equidistribution of long closed horocycles in X (S™), m € Ngf.

Recall that the map sending Z +t € Z\Zgs to Z[S™'] +t € Z[S7]\Qs is an
isomorphism and the projection Z\Zg — To, sending Z +t to Z + t is onto with
fibers homeomorphic to Zg,. Hence [0,1) x Zg, is a fundamental domain for Z[S~!]
in Qg. In particular, the orbit measure on U; is given by

1
(2)dpu () = / / F(Cst 1o )dtacdts,  (f € Cu(Xs)).

Xs

As the smooth functions form a dense subset of C.(Xg), it suffices to show that

Yoo —0
yER< X Zéf

1
lim / / F(@s (Ut s urg, )ay)dtodts, = f(@)dvs(z) (f € C(Xsg)).
Zsf 0 XS

In fact, we will prove this with a bound on the error term. Recall that
the isomorphism (™) : X (8™) — Xg[m] maps T'oo(S™)g to Dsis(g9)K[m).
Thus I'eo (S™)Usay,, is mapped to the set

{Tstoo (Ut ay. )Km]; too € R} =TsUstoo(ay. ) K[m)].
The equality of the sets follows from compactness of I'o (S™)Uscay,, and density

of Z[S7'] in Qs,. Indeed, for arbitrary ¢ € Qg we can find some n € Z[S™!]
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such that wig —n) € K[m]. Using u, € TI's and I'sgK[m] = I'sgecK[m]
whenever gs, € K[m/|, we thus obtain

Csugtoo(ay ) K[m] = Tsui—nioo(ay ) K[m]

= D500 (Ut —n)ay.. ) K[m].

Let now a € Ag such that as, = 1. In what follows, we identify a with
its projection a~. Let pursuge be the unique Ug-invariant probability measure
on I'sUga. This measure extends to a measure on Xg and thus W(m)*,LLFSUSa is
a probability measure on Xg[m] with support given by T'sUsaK[m]. As m(™)
is Geo-equivariant, the push-forward measure is invariant under U,. Using
the isomorphism (™) : X, (S™) — Xg[m] and the preceding discussion, it
follows that 7™, up sUsa 1S actually the push-forward of the unique Uy -invariant
measure fr__(smyu..a o0 the orbit I'o (S™)Usa under Y™ If now f € C2(Xy),
then f = ZmeNgf pr[m|f is a finite sum. Denote by f,, € C° (X (S™)) the unique

function so that pr[m](f) = fm o (™)~ o 7(m) Tt follows that
;U’l"sUsa(f) = Z 71—(m)*,ul“sUsa(fm © (1/J(m))_1)
meNgf
= Z w(M)*uFN(S’m)Uma(fm © (w(m))*l)
meNyt

Z ,UIFOO(S’")UOOa(fm)'

mGNgf

Fix any basis of gg. For D € Ny let Sp ,,, denote the L?-Sobolev norm of degree D
with respect to this basis on C°(X,,(S™)), and let Sp denote the L?-Sobolev
norm of degree D with respect to this basis on C®°(Xg). Given y € (0,00),
the formula (4) and the above description of prgsuge in terms of measures on
closed horocycles in congruence quotients combined with effective equidistribution
of long horocycles [Sar81] and uniformity of the spectral gap on congruence
quotients [Sel65] imply that there is some degree D (in fact one can choose D = 1)
and some kg > 0 such that

lursvsa, (f) —vs(f)] < Z r o (s Um ay (Fm) — mx (sm) ()]

mGNf?f

< y—no Z 8D7m(fm) <<Sf y_HOSD(f)v

mENgf

where the last bound follows from Cauchy-Schwarz and Lemma 3.4.

5.  Effective equidistribution of rational points in the torus and the modular surface
Let n € N and set

Poo(n) = {(£,aymtr/n Too) 1 K €{0,1,--+ ,n—1}} C Too X Xoo.
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It is well-known that the projection of P (n) to T equidistributes effectively
and it was recently explained in [Luel9] that the same holds for the projection
of Poo(n) to the modular surface. However, we will have to refine this result a
bit and hence will give a complete proof of said statement here. The goal is to
show joint equidistribution with a rate. To this end we will proceed as follows.
Equidistribution for the modular surface can be improved to rational points along
pieces of closed horocycle orbits, i.e. to sets of the form

Pooyx(n;mﬁ):{a\/ﬁuk/n-Fm;k/ne[a,ﬁ]}, 0<a<p<l.

Using effective equidistribution for these sets, one can show effective
equidistribution of the sets Py (n) in the following way. Given any smooth
function ¢ on the torus and a smooth function f on the modular surface, uniform
continuity of ¢ implies that Py (n) decomposes as a disjoint union of sets of the
form

Poo(n;a, 8) = {(%,aﬁuk/nI‘o@); k/n € o, B]} C Too X Xoo,

for 0 < a < B < 1 partitioning the unit interval, such that on each of these sets
the function ¢ ® f is, up to some small error, constant in the first component. The
choice of o and 8 depends on the smoothness properties of ¢ and can be captured in
the Sobolev norm of ¢ ® f. Applying effective equidistribution of rational points in
short pieces of closed horocycle orbits will then imply the statement on the product
space.

In fact, we prove equidistribution of rational points for products of a congruence
quotient with a torus. This is then used to prove effective equidistribution of
the lift of Py (n) to S-arithmetic extensions. For what follows, it will be useful to
introduce some additional notation. Given m,m’ € Z°, we denote by mvm’ € Z°
the coordinate-wise maximum of m and m’. Furthermore, we denote by A the
embedding of the Q-points of a group in the Qg-points of the group. Let

P(n) = {(ZIS7'] + A(),TsA(us))  k € Z} € T x X
be the lift of the rational points to the S-arithmetic extension.

LEMMA 5.1. Let n € N and let S be a finite set of places including oo such
that (Sg,n) = 1. Given l,m € N3*, let

i 2 7[5 \28 X 1 \Fs = g12\R x p__(5m)\Goe
denote the canonical projection. Then
I, P(n) = {(Slz +SMTE D (S ugim ) k € Z} .

Proof. Let k € Z be fixed. Using strong approximation, we can find some r € 7Z
such that for all p € S; we have

= Ky < 570,

Prepared using etds.cls



Primitive rational points on expanding horocycles 23

In particular, % = r + ¢ for a ¢ € Q satistying |¢|, < S=(vm) for all p € Si.
Let b = k — nr, so that ¢ = %/ The preceding bound combined with (Sg,n) = 1
implies that S'™|[b’". Thus there is some b € Z such that
ZIST+ AE) + S'Zs, = Z[STY] + 100 (S L) + S'Zs,,
I‘SA(u%)K[m] = [st00 (Ugtvmyn) K [m].
It remains to show that the map is onto this set of points. To this end let k € Z
be given arbitrarily. Then |Slvm%|p < p~max{lyme} for all p € S¢ and thus
ZIST + 100 (S E) 4+ 8'Zg, = Z[STV + A(S™VTE) + S'Zg,,
I‘Szoo(uslv,n%)K[m] = FSA(uSlv,,L%)K[m].

O

COROLLARY 5.2. Let S be a finite set of places of Q containing the infinite place.
There is some L*-Sobolev norm S on C®(Tg), such that the following is true.
Let o € C*(Tg) and n € N such that (Sg,n) = 1. Then

/T ey, @)

Proof. Assume that ¢ € C*(Tg). For m € Ngf denote by 71'1(;:) : Tg — S™Z\R
the projection obtained by the isomorphism Tg/S™Zg, = S™Z\R. We denote
by @ € C°°(S™Z\R) the unique function such that pr{m]p = gbmom(;:). If Eprpmle
denotes the integral of pr[m]y on Tg, then

Epr[m]ap :/’]1‘ pr[m}ﬁp(x)mes (SU) :/ X @m(t)dt
S ST’I'ZIR

Ste).

n

<

M |

15
n

k=0

combined with Lemma 5.1 and the Mean Value Theorem, imply that

1
;ZSO(A(E))*E Z ZPY 2)) = Eppmle
k=0 mGN
- %z (sm8) / ¢m<t>dt;
meN k=0 sma
Sm P57 = (54 + Dl
mEN
gm 1 " : 1
< ). THsomlloo <= Y S"Spm(@m) s ~Sple),
meNgt meNyt

where the last bound followed from the Sobolev Embedding Theorem 3.3 (1) for
an L2-Sobolev norm Sp, on C*(S™Z\R) with respect to a basis independent
of m, as well as the Cauchy-Schwarz inequality and (7) for the L?-Sobolev norm of
degree D on C*°(Tg) with respect to the same basis. a
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In order to obtain equidistribution of the rational points in the product, we want
to apply the above equidistribution in the S-arithmetic extension of the torus and
the corresponding result in the modular surface. As mentioned in the beginning, we
partition the torus into pieces on which the function varies very little and reduce it
to a problem on the S-arithmetic extension of the modular surface only. To this end
we need to show the equidistribution of rational points for pieces of the horocycle
orbits, i.e. of the sets

{aﬁuN§~Foo(N);k€Zﬁ[%,"—1€}} (0<a<p<N).

In what follows, given real numbers a < b, we will denote [a, bz = [a,b] NZ. Recall
that for a natural number N € N we denote X (N) = 'o (NVN)\Go

PROPOSITION 5.3. There is a basis X of sla(R), some D € N and positive
constants k1,c1 > 0 such that the following is true. Let N € N, a € N, and
assume that 0 < o < 8 < N satisfy f — o < 1. For all f € C2°(Xoo(N)) we have

Hmlng]Z' Z f(aﬁua% To(N)) —/ f(x)dx n~ " Sp(f),

a’ a ke[na M]z Xoo(N)

c1

8-«

<

where Sp is an L?-Sobolev norm defined by the monomials of degree at most D
n X.

Proof. Given a real-valued function f € C2° (X (N)), define the discrepancy (for K
and v € G) as
K—1

Di f(x Z f(x (z € Xo(N)),
£=0

where Ey is the integral of f over X (NN). The goal is to use the spectral gap
for the action of v = wu, in combination with the right degree of averaging in the
discrepancy. Given f : Xo(N) — C, we denote by Ao"ﬁ(f) the average of f
on [ ™ 781, along the closed horocycle a viUso - Too(NV).

We note that Ap B(f — Ep) — AQF(DKf) is the difference between the
average An,a (f — Ey) and—exchanging the order of summation—an average of
the averages A%f(f o~ — Ey) for 0 < ¢ < K where f o’ is defined by
precomposing f with right-multiplication by ~¢. More concisely, the term in
question is the difference between an average and an average of moving averages.
Such a difference is bounded by an appropriate count of the boundary terms and
the maximum norm of the underlying sequence. Hence Proposition 3.3 (1) implies
the existence of an L?-Sobolev norm Sp,, of degree Dy on C°(X o (N)) such that

for general F' € C°(Xo(N)) we have
’Aaﬁ F — EF) Aa’ﬁ DKF | < W‘SDO( ) (14)

na

Let I = (—50, 505) for 6 € (0,1) to be determined later. For any such 4§, the
map sending ¢ € I and k € [22, "ﬂ]z to wa, /i, x T () is injective. In order to
see injectivity, note that for s € (—1,1) we have

n
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Using the Mean Value Theorem for f and Proposition 3.3 (1) there is an L2-Sobolev
norm of degree D so that by (14)

ASB(f)— By = / A% (u_y - [ — Ey)dt + 0(55)Sp, (f)

/Aaﬁ DKU t f)dt+0 na’n[i]‘ /SDO U t: f
%)SD1(f)

Using Proposition 3.3 (2), Sp,(u—¢ - f) < (1 + [t])™Sp,(f) for some 1y > 0
depending on Dy, so that

[e% né
|A ’B( ) Ef‘ << m /|DKf anak+t . oo(N))|dt

al
a

L
a

+ |[m,é—wéspo(f) [ ttymat + g,
I

The first summand is the average of |[Dg(f)| along On.5(N) = a 7Ur - eo(N),
where we denote E = I—lqE%Zﬂ[(x,B] g+ i1 If E = [s,t] for s < t, we denote this
by Opise(N). Given a real number ¢, write t_(n®) =t — 5% and t4(n°) =t + 5%.
Using Cauchy-Schwarz, we have

[ pef@ls = [ Lo,,4(0)(@)|Dic f(@)|da
Onie(N) Onia_ (n8),54 (n8) (V)
< ,/VO1((9,L;E(N))< / IDKf(x)zdx)
On;a,(nf‘),ﬁ“né)(]\])

Given 0 < o/ < 8/ < N, denote by pn n.ar g the probability measure defined by
1 A N
;U'N,n;a',ﬂ’(F) = m/ F(a\/ﬁut FOO(N))dt (F € Oc (XOO(N)))

’

Then it follows from the preceding bound, that

[ AYE(f) — Byl <

Vol(O,,., w8y, (n5)(N))\ 2 o L
( vO1(omE(7\/)) ) #N,n;af(n‘s),m(né)(|DKf\ )2 (15)

)1+’flo

+ (1455 Voo s (TSP () + 358D, (f),

Using effective equidistribution of pieces of closed horocycle orbits, cf. [KM96], we
know that

ﬂN,n;a,(né),ﬁJr(nL‘)(F) = / deX (N) + O(\/ﬁ)sDz (F) (16)

Xoo(N)

for all F € C®(Xw(N)) ® Clx_(n), for some ko > 0 and some L?-Sobolev
norm of degree Dy, where neither the implicit constant nor ko depend on N by
the uniformity of the spectral gap, cf. [Sel65]. We will apply this bound to the

Prepared using etds.cls



26 M. FEinsiedler, M. Luethi, N. A. Shah

function F' = (Dg f)%. We first try to control the error term on the right of (16).
To this end we use Proposition 3.3 (3) to find some L2-Sobolev norm of degree D3,
such that for all F, F' € C°(X(N)) we have

SDQ (FF) < SD:} (F)SDs (F)

In order to control Sp,(Dk f) use Proposition 3.3 (2) in combination with the
choice v = u, to find some exponent ¢y > 0 depending only on the degree D3, such
that

K—-1

S0, (Dicf) < 2 3 (14 ka)* S, (f) < (aK)*Sp,(f).
k=0

Hence we have shown
Sp, ((Dk f)?) < (aK)**Sp,(f)*.

We now turn to bounding the L?-norm of D f on X, (N), i.e. the first term in
the expression resulting from (16). As of [Sel65] there is some ¢ > 0 independent
of N and without loss of generality less than % such that for all £ € N we have

(ur - £, F) iz vy — |Bs 2] < (1+ k) 72Sp, ()%

The independence of N is known as uniform effective decay of matrix coefficients
for the action of G, on congruence quotients. For the explicit calculation of the
Harish-Chandra spherical function, we note that the maximal singular value of the
matrix u; is comparable to 1+ |¢| and refer the reader to [Oh02, Sect. 3.7] for further
details. Observe that for any sequence (x)gen we have

K—1ki—1 K—-2 K-1
E § Thy—y = E E Thy—ky - (17)
P — fer =0 ka1 +1

Combining these two facts and using that f is real-valued we obtain

K-1

1
/ (Dk f)*dmx__ vy < 2 Z (ks —k2)a  fo ) rz2xe vy — EF|
Xoo(N) k1,k2=0

K—-1k—1

1
< Z Z | (ks —ka)a - F)r2(x vy — EF|

k1=1ko=0
+ i|Ef2 — E]%|

K—-1k—1

o 3 (1 (= kaa) S, (£ 4+ K S, (1)

k1=1 k=0
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It remains to bound the first sum. To this end one calculates

1 K—1k1—1 5 1 K-1 14+kia
Y (L k)a) < o Y / 2004y
k1=1ky=0 ans =
1 K-1
< 1 k 1—2¢g
= a(1 - 269) K2 2 (1t ha)
k=1
1 1+Ka
< - t1—260dt
S 21 - 2:0)K? /1+a

(1+ Ka)?—2
(2 — 260)(1 — 250)(K(L)2
< (14 Ka)™2.

<

Thus, combining the two steps we obtain

/ (Dicf)? < (1+aK) 208, (f)* + K18, (f)? (18)
Xoo(N)

for some L2-Sobolev norm of degree Dy. As |E| < ﬁ;;“, we have

Vol(Op;(N)) < 255

We also note that

Vol(O (ns),8, (n5) (V) = n(B — a + %).

Let D = max{Dy,..., D4}, so that Sp, < Sp. Combining this with the bounds
from (15), (16) and (18), denoting ¢; = max{1+mnyo, ¢o}, and plugging in the bounds
for the volumes of the pieces Oy.p(N) and Oy.q_(ns),5, (no)(IN) respectively, we

found that
[ 1 4 0K +K*%}

[N

a, 'rL'S 7a+n_‘sa
1452(0) = Byl < So(N{ (E5) s + i
Knd—1 1+n0o
+ TaiT (1 + %) + %}

1
< aclsp(f){<—né(5_a+n %)) 2 |:K—60 + —(Bn*“o/ K-t + K‘%}

B—a —a+n=9%q)l/4

_ 1+n0
Knl~t 1 1
T Tra)drm) (1 t W) T F}

We can always assume that J, ko and eg are sufficiently small. In particular, we
assume that 0 < § < min{-22f> 1 — j£0%_1 This implies, that

ci1+eo 2c1+e0

— : Ko _ é Ko—(; _ Ko _
k1 = min {50 Seot2e; 20 2 Clozyyae 1 —0

— ko
2e0+2c¢1? 6}’

is a positive number. If we choose K = n7o+71 and assume that B—a+nda<1,
we finally obtain

|AVE(f) = Byl < 42507 Sp(f).
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For Xg, the equidistribution of rational points on long horocycles follows
from Proposition 5.3 by combining the relation between rational points on
long horocycles in Xg and rational points on long horocycles in congruence
quotients X, (S™), m € N€f7 as explicated in the proof of Corollary 5.2. We
will not use this later and thus leave this case to the reader.

As a corollary, we can now show effective equidistribution of the rational points
in the product of a torus and a congruence quotient. More generally, we have the
following

COROLLARY 5.4. There are n,ke > 0, fized bases X1,%X2 of Lie(R) and sly
respectively, and a degree D € N such that for all Ni,Nso,a,b € N, for all
functions ¢ € C°(N1Z\R) and f € C°(Xo(N2)), and for all n € N, we have

’ILNlNgfl
1 ak N1y —HK2
NN kZ:O (N1 ZA) F(Tog (Ng)ub:af) _E,Ef| < (ab) S1(2)Sa (),

where S1, Sy denote the L?-Sobolev norm of degree D with respect to ¥, and X
on C®°(N1Z\R) and C°(Xoo(N2)) respectively.

Proof. We can assume that f € C2°(Xoo(N2)) © Clx__(n,) and in particular we
assume E, = E; = 0. Using Proposition 5.3, we can assume without loss of
generality that ¢ is non-constant. Let § € (0,1) arbitrary. By the Mean Value
Theorem, we have

d(s,t) <3 = |p(s) — o) <dl¢'lle (s:t € N2\F).-

Set K5 = | 21| and write

le\R K5(5 N1 |_| Z—i—l
W—’ — H_/

—PK5 =P

and note that by 3.3 (1), for all t; € P, if t € B}, then o(t) = ¢(t;) + O(5)Sp.(p)
where Sp, is some L2-Sobolev norm on C*°(N;Z\R) of degree Dy € N. For the
remainder the points {t;;1 = 0,..., Ks} € N1Z\R are chosen so that t; € P, and
we denote z; = p(t;). We will write

1 ’I’LNlszl
_ k -1
Bule /) = oy ;0 P(NZ + %) f(Loo(Na)ussa ).
Note that the sum might contain some multiplicity which we will have to take
into account. In total, the interval [0, N1) contains %—many points of the

form %mod Ny with 0 < kK < nNyN>. In order to see this we examine the
map Z/nN1Z — Z/nN1Z given by k — ak. Denote by L the lowest common

multiple of @ and nN;. The kernel of the map then is a cyclic subgroup generated

by % and in particular has cardinality "])[ L = (a,nNy), or alternatively, the map

is (a,nN7)-to-one. Thus the image has cardinality (”Nll) and as we let k& run
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through a full set of representatives of Z/nN1Z, the claim follows. Using this, we
can rewrite

Nzl

Ny)
B B Z a n 1 Z Z le+ ak)f(l"oo(]\fz)ubmzvﬁka;%)-

=0 ke P,NZ

Given 0 < r < No, let

(a, an . )
By, = Z Z o(N1Z + k)f(Foo(Ng)ubwa\/%).
=0 ke PII'TZ

Using the notation introduced and applying Proposition 5.3, assuming 0 < 7, we
have

= f(r rnN1+ka, ) < 6 taprt n~ " Sp(f)
AN, B, O

for some degree-D L2-Sobolev norm Sp on C°(X o (Na)), where we assume without
loss of generality that d was chosen so that the Sobolev Embedding Theorem 3.3 (1)
applies. We also used that the Us-orbit of T'so(N2) identifies with R\NoZ, which
implies that the bound is valid independent of the value of r. Next we note
that [2P,NZ| < §2 and thus again denoting by L the lowest common multiple of a
and nNy, we get % < 07. Note next that N1 < §Ks and thus K507 < 1.
Hence combining all these, we find

Ks—1
|2 P,NZ| 1 -1
|Bn.rl <<‘ Z tawiremn mRrm D Too(Na)uymmsna )
ke PNz
Ks—1
\%sz\ 1 1
+ 05D (¢ ‘ Z vty zaeE D S (Coo(No)uy ranysrals)
kE%PLﬂZ
‘E'PKSQZ‘

+ antanmn 1l fllo
<07 1ab" T oo K50 + 08D (01 lloo K50 F + 0l llool oo
< (67 ab I 4+ 28)Sp (9)Sh (),

where Dy < D’ was chosen so that Proposition 3.5 (1) applies. Choose ry = -
and 7y = max{1,c;}. If n7"2 < ¢, then we can choose § = n™"2 and obtain

B (e Z B.r| < (ab)"n="8p/ (0)Sp (f).

r=0

Otherwise, we have (ab)™n~—"2 > # > 1 and thus for these n the inequality holds
with implicit constant equal to two. This proves the Corollary. O

We can now prove an effective equidistribution statement for rational points of
a certain denominator along expanding closed horospheres.
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COROLLARY 5.5. Let F € A®(Tg x Xg), a,b € N. Then

> F(ZIST 4 A, DsAungm)at) - |

n—1
‘ TsxXs

- F‘ < C(ab)mn="S(F),
k=0

for positive constants ks, C,1; independent of n,S and F, and some L?*-Sobolev
norm S on AX(Tg x Xg) that does not depend on F or n.

Proof. 1t suffices to prove that for any pure tensor F' = ¢ ® f we have

‘inzlw(zw‘l}+A(‘if))f(FsA(“bk/n Jaym) /T /xf‘

k=0
< C(ab)"n™">Srg(0)Sxs(f)s

where C' and ko2 do not depend on n,S and F. But this is a by now immediate
consequence of Lemma 5.1, Corollary 5.4, Lemma 3.4, Equation (7) and the
Cauchy-Schwarz inequality. Note that we have to apply Corollary 5.4 to the
pure level components with multiplicative parameters of the form S'a and S™b
for varying I,m € Ngf. |

6. Effective equidistribution of degree-d residues

In this section we will prove Theorem 1.1. Given g € Gg and (t,z) € Tg x Xg,
we write (¢,z)g = (t,xg). Let S be a finite set of places of Q such that co € §
and (Sy,n) =1 and define

P(n)* = {(Z[S7']+ A(E), TsA(ugn)) 5 (k,n) =1} C Ty x Xs.

The set P(n)* is an invariant subset of Tg x Xg for the action Z% ~ Tg x Xg
given by M,,(t,x) = (S*™t,x)ag-m, where m € Z°, t € Qg and = € I's\Gs.
Indeed, S*™ is a unit mod n and hence the equality Isurag-m = Dsag-mUgam k
together with ag-» € I'g implies the claim. For every ane Ag the set P(n)*a is
also invariant under Z%f, as Ag is abelian.

6.1. Effective mizing for the xq map The proof of Theorem 1.1 will exploit
effective mixing of the action M on the torus component, which we want to discuss
in the beginning. In fact, the proof of the desired result works quite a bit more
generally, i.e. we will prove effective mixing for a class of toral endomorphisms on
the S-arithmetic extension.

For R € (0,00)™, denote |R| = [[;_, R; and Cr = [[;—,[0, R; ) C R™. We denote
by T(R) the torus T(R) = [[\; T(R;). The Pontryagin dual 'H‘(R) Z" is given
by the family of functions

Xnr:T(R) =S 2z~ exp(2miy ;) TH).

For what follows, we will use the following notation: Given v € R™ and R € (0, 00)",
we denote by v/R € R"™ the vector obtained by componentwise division of the entries
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of v by the corresponding entries of R. For any smooth function f : T(R) — C, we
have the Fourier series expansion

F= 3 anlfxmn where an(f) = = [ F()mm@dt,

nezn ‘Iﬂ Cr

and the convergence for the series holds both for the uniform topology and the
topology defined by the L?-norm. The L?-norm of f € C(T(R)) is then given by
the norm of the sequence of Fourier coefficients (an(f))nezn in 12(Z"), i.e.

IF13 =" lan ().
nezm
Note that |Rlao(f) = fT( R) f. Differentiability is characterized by the rate of
convergence of the Fourier series: For a continuous function f on T(R) to be k
times continuously differentiable implies >, ;. |an(f)[?[n/R||** < co. Combining
these, any degree-D L?-Sobolev norm S on C*°(T(R)) hence satisfies

S(f)? = lan(H)P(1+[In/R)>".
nezr
Let N € N*. Amap T : T(N) — T(N) is an expanding endomorphism of T(N)
if it is defined by multiplication with a matrix A € M,(Z) N GL,(Q) which is
diagonalizable over C and whose eigenvalues are all larger than 1 in absolute value.
We will denote such a map by T4 to indicate its relation to the matrix A. We can
now prove the following

PROPOSITION 6.1. Let N € N™ and let T4 : T(N) — T(N) be an expanding
endomorphism. There exists some o > 0 independent of N such that the following
is true. If D € N and f,g € C*(T(N)). Then

[(f 0 T, 9)2(1(w)) — a0 (fao(g)| < [NPe2PS(£)S(g),
where S is the L?-Sobolev norm on C*°(T(R)) defined by

S(f)?= Y lan(HF(L+ n/N|)*P.

nezn"

The implicit constant depends only on A.

Proof. Using Fourier series, the orthogonality relations for unitary characters and
Cauchy-Schwarz this becomes a relatively simple calculation:

> anlf)ana)

neZ™\{0}
1
2
< f||2( 3 |atAn<g>2)
neZ™\{0}

1
<|flloS(g) sup —-——.
171:59) 510, TAn/ NP

|(f o Ta,g)r2(n(vy) — @o(f)eo(g)| =
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If A is diagonalizable over C, then so is *A and thus fix an eigenbasis B = (v;)"_;
of C™. Denote by A; € C the eigenvalue corresponding to v; and define a norm

larvy 4+ - + apun|lp = max{|ay|; i =1,...,n}.
Then ||*Av||g > ||Jv|]|gmin {|\;|; i = 1,...,n}. Hence setting
o=logmin{|N];i=1,...,n},

the claim follows from equivalence of norms on finite dimensional vector spaces. O

Remark. The implicit constant in Proposition 6.1 depends only on the choice of the
norm ||-||s, i.e. the choice of an eigenbasis for the matrix ‘A. Given a commuting
family of diagonalizable matrices {A4;;¢ € I} as in the proposition, the implicit
constant can hence be chosen uniformly for this family.

By Proposition 6.1 we obtain effective mixing of expanding toral endomorphisms
on the S-arithmetic extension of the torus. To this end we extend T4 to a
map T4 : Z"\ZE — Z"\Z% by TA(Z" + z) = L™ + Ax.

Note that the isomorphism Z[S™!"\Q% = Z"\Z% is T4 equivariant. Therefore
this defines an extension of T4 to an endomorphism of Z[S~1]"\Q%.

If ¢ e e Ngf are arbitrary, then the same is true for the
isomorphism Z"\Z%/(Zs,[(M] x - -+ x Zg, [(™)]) = ']I‘(SN), . .,Se(m). For what
follows, we abuse notation as follows. Given a matrix ¢ € N
A 4O Ngf the columns of ¢, we denote

Zs,[0) = Zs [(V] x - x Zs [(V)].
Similarly, we denote by S* € R™ the vector (Sf(l) e, Sl(n))_

and denoting

COROLLARY 6.2. Let A be an expanding toral endomorphism, S be a finite set
of places of Q. For every degree-2D L*-Sobolev norm S on C*°(T%) and for
all f,g € C>(T%) we have

<fOTA79>L2(1rg) */ f g‘ <s E*QDS(f)S(Q)v
Ty JTs
with o > 0 as in Proposition 6.1.

Proof. Let £,¢ € N3™*™ and assume that f,g € C°°(T%) are invariant under Zsg, [(]
and Zg,[¢'] respectively. Recall that £V ¢ € N™*™ denotes the coordinate-wise
maximum of ¢ and ¢, so that Zg,[( V ¢'] < Zs,[¢] and Zg, [t V V'] < Zg,[¢']. In
particular, both f and g are invariant under Zg, [¢ V ¢'].

Let fover, Gover € C(T(S*Y)) such that f = fe\wom(regw) and g = §M/o7rq(r%ve,).
As Wq(l‘znvy) oTy=Txo0 wq(ri”’), it follows that
s S
(foTa,g)r2(rn) = (fover o Ta, Gever) 2 (n(seve'y)-

Using Proposition 6.1, we know

<fOTAag>L2(Tg) 7/ f g‘ < ‘Se\/[‘DeigDS(fgvg/)S(ggvy).
T"'L

n
S TS
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If g0V : T(S™Y) — T(S%) denotes the quotient map and f, € C(T(S%)) is
the unique function satisfying f = fy o Wr(ﬂéz, then frye = froqfV? and similarly
to the proof of Lemma 3.4 we have X(fgvg/) = X(fg) o qf\/[ for any differential
operator X in the Lie algebra of R™. If Ay and Ay, denote the Haar probability
measures on T(S¢) and T(S*V*') respectively, then Ay = (g5 )xApver. Combining
these, we find S(fover) = S(f¢) and similarly for g. Clearly |S¢V¢|P < [SEH|P,
Hence

FoTusim - [ 1] g« Persiis@. a9

Using this, the proof now works just like the effective equidistribution of periodic
horocycle orbits discussed in Section 4.

Given ¢ € NS denote by fs,5¢ € C°(T(S)) the unique functions so
that pr[f]f = fr o 7r§r‘iS? and pr[flg = ge o 7T1(1‘2~ Here, pr[{] denotes componentwise
application of the operator pr[/(D], i = 1,...,n. Let Sp¢ denote the L2-Sobolev
norm of degree D on C*(T(S%)) and Ssp the L?-Sobolev norm of degree 2D
on C*°(T%). Then what we just showed combined with the Cauchy-Schwarz
inequality and Equation (7) implies

(foTa,g)r2(rn) —/T f 9‘

n n
S T S

< Y |wilaroranteloy - [ wiar [ ol
€7elestXTL TZ@L T.’SL'
<e P 3 SHNPSD (£)Spe(Ge) < e P Sap(£)Sap(9)-
E,Z’ENSfX"
O

COROLLARY 6.3. Let ¢ € N\ {1}. Then the xg-map Ty on Tg is exponentially
mizing at arbitrary rate, i.e. given D € N, there is some L?-Sobolev norm S
depending only on D, such that for all f,g € C(Ts), we have

(f oTy,9)r2(Ts) f/T f g‘ < q PS(f)S(9).

s Ts

The implicit constant is independent of q.

Proof. The family of xg-maps, ¢ € N\ {1}, is a commuting family of expanding
toral endomorphisms with smallest eigenvalue q. O

For the remainder of the paper we will look at the x.S?™ map on Tg and the
action of ag-=~ on Xg. The latter is also mixing with a spectral gap. In fact this
holds for any element which is not contained in a compact subgroup.

PROPOSITION 6.4. There are an L?-Sobolev norm S of degree D on C°(Xg) and
a positive constant pg such that for all f1, fo € C(Xg) and for all g € Gg we have

‘<9'f17f2>—/Xsf1/XSf2
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The degree of S, the implicit constant and o¢ are independent of S.

Remark. In the discussions to follow, g will be a diagonal matrix with diagonal
entries of all components given by S™ and S~™ with m € Z% fixed. In this
case, ||g]lg? < ST for some g; > 0 where m € N5 denotes the vector whose
entries are the absolute values of the entries of m.

We do not give a proof of Proposition 6.4, but refer the reader to [Oh02]
and [GMOO08, p. 19] for more details. Assuming Proposition 6.4, we can deduce
that Z% ~ Tg x Xg as introduced in the beginning of this section is mixing.

PROPOSITION 6.5. Let S be a finite set of primes containing oo and m € Z°F.
Then M, is a mizing transformation on Tg x Xg. Moreover, there exist o, > 0
and an L*-Sobolev norm S on A(Tg x Xg), both independent of m, such that for
all F,G € AX(Ts x Xg) we have

(F o M,,,G) —/ F/ G‘ K STHRS(F)S(G).
Xs JXs
The constants do not depend on S.

Proof. This follows immediately from Corollary 6.3 and Proposition 6.4. Assume
first that FF = ¢® f and G = ¢ ® g with p,¢ € C*(Tg) and f,g € C°(Xgs). Then

[(F o My,G) — ErEg| < [(¢ 0 Tsam,¥0) — EoEy ||| fll2llgll2
+ |EQ||Eyl|(f 0 asm, g) — EfEq|
< STPED 14 (9)Sp,1s (¥)SD, x5 (£)SD x5 (9)
+ lasn 5% Sp,rs (©)Sp,1s (¥)Sp, x5 (f)SD, X5 (9):

where D was chosen so that Proposition 3.3 (1) holds on Tg and so that Sp x4
is a valid choice in Proposition 6.4. Using the remark following Proposition 6.4,
we deduce the claim. For general functions in A°(Tg x Xg), the statement now
follows from the triangle inequality. O

6.2. An adelic discrepancy operator In order to complete the proof of
Theorem 1.1, we will need a similar tool like the discrepancy operator introduced
in the proof of Proposition 5.3. Given n € N and z > 0 we denote by P(n,z) the
set of primes p coprime to n and satisfying 1 < p < z. We denote by 7, (x) the
cardinality of P(n,z). We fix 0 < 8 < 1 and focus on primes contained in P(n, n?).
Note that throughout this section we allow implicit constants to depend on f.
This dependency is often implicit. Let 7 : (0,00) — N denote the prime counting
function, i.e. 7(z) is defined to be the number of primes p satisfying p < z. We

know from the Prime Number Theorem, that
T

m(x) < gz

for sufficiently large x. Let w(n) denote the number of distinct prime divisors of n,
then
w(n) < logn,
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and hence
m(n”) = mp(n”) = w(n”) —logn > 7 (n”) (20)

for sufficiently large n. We will later depend on the stronger result that %

is bounded [HWO08, Sec. 22.10]. We let S,, 5 = {oo} UP(n,n”). Given some natural
number d € N, a function F' € C°(Ts, , x Xg, ,) and (t,z) € Tg, , x Xg, ,, we

define )
) 2. FoMu,(te) - Br, (21)

peP(n,nP)

(Dn,g,al)(t, x) =

where e, € ZP(n”) s defined by ep(q) = 6p,4. Using Proposition 6.5, we can bound
the L?-norm of D,, g 4f-

LEMMA 6.6. There exist an L*-Sobolev norm S on A (Ts, , x Xg, ,) and o0 >0
independent of n and B such that for all real-valued F € AX(Ts, , x Xg, ;) we
have

n,B
/ (Dyp.aF)? < B oPS(F)?. (22)
Tsn,ﬂ XXSn.ﬁ

Proof. We can always choose a weaker exponent in Proposition 6.5 so that do, < 1.
Combining Proposition 3.3 (1) with Proposition 6.5, for sufficiently large n we

obtain
1
/ (Dp.p.aF)? < P T > [(FoMye,.,) F) - Ef|
Ts, 6% Xsn,6 " p.a€P(n,n?)
1 2 S(F)2 —do, —do,
SmlPe B e 2 v D a (39)
pEP(n,nf) 1<g<p
S(F)2 S(F)2 1—dp
5 24
S R o (24)
pG]P’(n,nﬁ)

The last inequality is obtained using that
P
Y gt < / t=edt <« ptdes,
1<qg<p 1
Let § > 0 arbitrary, then we similarly get

nf 41
: dt < nPU+o), (25)

> pég/

pEP(n,nf)

Using that 7, (n”) < % for sufficiently large n, we obtain that for all d € N

/ (Dngaf)? < BS(f)*(n77 +n=7) (logn)* < pn=S(f)*  (26)
Xs,.

B

for some o > 0. O
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The next step is to bound S(D,, g.qf).

COROLLARY 6.7. Let S be an L*-Sobolev norm on A (Ts, , x Xs, ,). There is

a positive constant ¢ depending only on the degree of the norm S such that for
all F € AX(Ts, , X Xs, ;) we have

n.g
S(Dn,g,dF) < nﬁCS(F),
where the implicit constant depends only on the degree of S and on .

Proof. Using the bound in (25) and Proposition 3.3 (2), we find some ¢ > 0
depending only on the degree of S such that

1
T (P

c n)nfE+)
> pist) < WEM () < i ()

pEP(n,nf)

S(Dn,,@,df) <

The implicit constant depends on the bounds given by (25), the inequalities (20),
and the bound logn < n%/2. In particular, it depends only on § and c. O

Given a,b,n,l € N with (ab,n) = 1, define
d —
Psod(’n, a, b) = {(Z -+ %,qubkd/na\/lﬁ)
_ a _
Pgd(n;mb) = {(Z[(Sn,g) s A(%),I‘snﬁA(ubkd/n)a\/%) : (k,n) = 1}
CTs

t(kyn) =1} C T X Xoo

.8 X XSn,B'

We denote by ,u;_fll , the normalized counting measure on PX%(n; a, b) and by 11 %.a b

the normalized counting measure on Pgd(n; a,b). Using Lemma 5.1, we know that
the natural projection
Ts, s X Xs, 5 = Too X Xeo

n,B

maps the set Pgd(n; a,b) injectively onto PX%(n;a,b) and thus the push-forward
xd

of MX,%;a,b under the natural projection equals fi,,7, .

n

LEMMA 6.8. Let n,a,b,d as above, then

¢(n)
dwn)’

[PXn;a,b)| >

where ¢(n) denotes the Euler totient function.

Proof. Since (n,ab) = 1, we can assume without loss of generality that a = b = 1.
Furthermore, using the Chinese Remainder Theorem, we know that m € (Z/nZ)*
is a degree-d residue mod n, i.e. there is some k € (Z/nZ)* such that k% = m modn,
if and only if m is a degree-d residue mod p*»("™ for all primes p dividing n where

vp(n) =sup{rv € N: p”|n}.
In particular, we have

PX ;1,1 = [[IPL (™51, 1)

pln
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and it suffices to consider prime powers. Fix an arbitrary prime p and » € N. Define
X X d
fu: (Gyz) = Ehrz) s &,
By the First Isomorphism Theorem, we know that

P —1)

|ker fd‘
In particular, we know that (d,p" " *(p—1)) =1 = |PL4p";1,1)| = ¢(p"). Now
assume that (d,p"~'(p — 1)) # 1 and assume that p is odd. In that case, it is well
known that (Z/p"Z)* is a cyclic group, i.e.

&) = Z/JDT‘I(p ~1)Z

PP 1,1)| =

and as in general
m

(m, d)

the kernel of multiplication by d in Z/mZ is given by

m|dk <= Ik,

{kﬁ Ik':O,...,(m,d)—l}7
i.e. the kernel of fy in Z/p"~1(p — 1) has cardinality (d,pr_l(p — 1)) In particular

P(p")

Xd (. _
PRI Gy

If p=2andr > 2, then

(Zfyrg)™ =2 Loy, x Lfor-27.

Let © € Z/2Z and k € Z/2"?Z. Then d(x,k) = 0 if and only if 2|dz and 2"~2|dk.
As 2|d by assumption, we know that 2|dx. Let d = (2772, d)d’. If (2772,d) = 2" 2,
then d(z,k) = 0 for all (z,k) € Z/27 x 7Z/2"~27Z. Otherwise let (2"72,d) = 2™.
Then in the second component the kernel of multiplication by d is generated
by 2"~2=™ and thus has cardinality 2™ = (2”72, d) and in particular

Xd(or. _ ¢(2T)
|Poo (2 7171)| - 2(27«_27d)'
Combining all of these, we obtain
1 p(n)
xd(, . _ xd( vp(n). -
Pt 1)) = [P 00 = 6 [T o >

pln pln

Proof of Theorem 1.1. In what follows, we denote by . g.ap the normalized
counting measure over the rational points as in Corollary 5.5 for the places S, 3.
Assume that F' € A°(Tg, , x Xs, ,) is real-valued. Note that the set Pﬁx‘i(n; a,b)

n,B
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is invariant under My, for all p € S,, 5. Using Corollary 5.5 and Lemma 6.8, we
have

w(n)
17 o (F) = Ep|* = X% (DnpaF)? < S i gia s (Dnop.aF)?)
(n)

(log d)w(n)
< (abym nelE e / (D p.aF)?
Tsn 8 ><XS

n,B
1-r3 ,(log d)w(n)

T (ab) 220 S(D, o F)?),

for some L?-Sobolev norm S on A (Ts, , X Xg, ,). Using Proposition 3.3 (3) and
Corollary 6.7, we can find an L?-Sobolev norm 8; on AX(Ts, , x Xg, ,) such that

S((Dn,g,aF)?) < S1(Dnpaf)* < n*PeS(F)>.

Recall that w(n) < log’ign, cf. [HWO08, §22.10]. Set 3 = 3. This choice is
independent of n,a,b and F. Combining all this with the result in Lemma 6.6, we

find an L2-Sobolev norm Sy and positive numbers ¢, k3 > 0 such that
n1+(10g d)logfiogn

¢(n)

1—k3

1% 0 o (F) — Ep[* < (ab)™ (n™7F 4 n?Pemr2) Sy (f)?

oM

< (ab)"S2(f) FOR

Now we use

o(n)loglogn

_— >
n

lim inf 0

to obtain that for sufficiently large n we have

nlfé

B n loglogn —5/2
#(n)  é(n)loglogn  nd <5
for all 6 € (0,1). Plugging this into the above result, we find
_ra
17 50 (F) = B[ < (ab)" Sa(F)*n™ (27)
Identifying A (Toe x Xo) with a subspace of AZ°(Ts, , x X, ;) as outlined in
Section 3, Theorem 1.1 now follows from Theorem 3.7. O

Remark. It follows immediately from the argument that the degree-d residues
without coprimality assumption equidistribute with a rate. Indeed, the argument
only used the invariance of the subsets under Mye, and the fact that it is not too
small in comparison to the set of all rational points.

We end this section with a proof of Corollary 1.2, which shows the
equidistribution of sequences of cosets of degree-d residues in the separate factors.
That is, we show that for any sequence b,, € Z satisfying (b,,n) = 1 the sets

-1 . _
oo Wp n . ) - = o)
{Lootp, a_g (k,n)=1} C X (28)

equidistribute with a polynomial rate independent of the sequence b,. It will be
immediate that the proof can easily be adapted to prove the analog for the torus.
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It will be useful for later purposes to state the corollary in the S-arithmetic setup.
In what follows, we denote by 7x : Ts, , x X5, , = Xg, , the projection onto
the second coordinate. Note that for any a,, € Z coprime to n, the image of the
set ’Pg d(n; an,b,) under mx is independent of a,, and coincides with the lift of the
set in (28) to Xg

n,B "

COROLLARY 6.9. Fizd € N and a finite set S of places containing the infinite place.
There exist an L*-Sobolev norm Sx, on C2°(Xg) and positive constants Cy, k5 > 0
such that the following holds. Given n € N and b € Z, denote by u;"i;XS the
normalized counting measure on

{PsA(ubkd/n)a&% : (kyn) =1} C Xg.

For all f € C°(Xs) and for all sequences b,, € Z satisfying (n,b,) =1 we have

S Cln_’“"’SXS (f)

i )= [ pvs
Xs

Proof. We assume without loss of generality that f is real-valued. Given two finite
sets of places S C 5’, denote K_g, = Hpesf’\sf K,[0]. Fix a function f € C(Xg)
and note that for any 5 > 0 and sufficiently large n we can view f as an element
in C°(Xs, ,), as similarly to Corollary 2.2 we have

SLa(2s, 1N Qoo = sLa(zs P (@9)

as SLa(Qs)-spaces. Thus we can embed C*(Xs) in C°(Xg, ,), identifying it
with the subspace of K_g,-invariant functions for n € D([[,c,
where we recall that for any natural number m € N we denote by D(m) the set of
natural numbers coprime to m. For any basis X of sl3(R) and any fixed degree D,
with respect to the corresponding L?-Sobolev norms this embedding is an isometry
onto that subspace. Note that the analog of this holds for smooth functions defined
on Tg. In particular, it suffices to prove the bound for functions on Xg, , for

sufficiently large n. Also note that “:,(é;Xsn = (WX)*‘[L;%;(LIJ for all (a,n) =1, as

p) sufficiently large,

the projection is independent of the torus cbmponent.

The crucial point of the argument to follow is that the degree-d residues form
a not too thin subset of the set of the primitive rational points, and the latter,
for a single factor, are invariant under multiplication by units mod n. Hence,
after projection to a single factor, we can apply Theorem 1.1 for the primitive
rational points. More precisely, Lemma 6.8 implies that for all sequences a,,, b,, € Z
with (n,anb,) =1 we have

2
|/“‘L'r>§,c,é’;a”,bn (f © ﬂ-X) - EfOﬂ'X ‘2 = |lur>z<,dﬂ;a,,“b,,t (Dn,ﬂ,d(f © 7TX)) |

< dw(n)/‘:;%;an,bn ((Dn,ﬁ,d(f °© WX))z)'

As Dy pq(f omx) is constant in the Tg, ,-component and as multiplication by b,
acts by permutation on the group of units mod n, we have

“Txt,lﬁ;an,bn((D"ﬁvd(fOWX))z) = /“L:Z,lﬂ;l,l((Dn,ﬁyd(fOWX))2>~
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In particular, Theorem 1.1 implies that

2
|lur>;,l,13;an7bn (f © 7TX> - EfOTFX |2 < dw(n) / (D”n&d(f o 7Tx))
Tsn,ﬁ XXSn,B

+d*n 7S ((Dnpalf o 7x))%).

logn

to obtain
loglogn

Now we again combine Lemma 6.6 and Corollary 6.7 with w(n) <

|N;L<7d[j’;an,bn (f o ﬂ-X) - EfOTrx| S ClninssXSn,B (f)

just like we did in the proof of Theorem 1.1. Combining this with our initial
remarks, the corollary follows. O

7.  Equidistribution in the product of the two-torus and the modular surface

In this section, we are going to provide an ineffective argument for equidistribution
of the primitive rational points in both the two-torus and the unit tangent bundle
to the modular surface under certain congruence conditions. For what follows,
given n,a,b,c,d € N, we will denote

Q! (nsa,b,¢) = { (2 B2 T ougpayma L) (ki) =1} € T x Xoo,

where k € Z is any integer satisfying kk = 1 mod n. Recall that we have previously
identified Too = TooUs = T'ooVio. Using this identification, the set QX%(n;a, b, c)
identifies with

{(rwuakd/n,rwuckd/na;%,Foougkd/na;‘%); (k,n) = 1} CTolUs X Xoy x TV
xd

n;a,b,c
follows, we will have to restrict ourselves to denominators n coprime to two distinct,

Denote by 7 the normalized counting measure on QX¢(n;a,b,c). In what

fixed finite primes p, q. For convenience we recall Theorem 1.3 in this notation.

Theorem. Let p, g be distinct finite places for Q and let x,n > 0 as in Theorem 1.1.
If ap, by, ¢ € Z satisty (anbncn,n) =1, then ﬁi_‘én b, ., equidistributes towards the
invariant probability measure on the product T2, x X, as n — oo with n € D(pq).

As was the case for the preceding results, we will prove Theorem 1.3 via a
corresponding statement in the S-arithmetic extension. From now on, unless stated
otherwise, S is a fixed set of places containing the infinite place and at least two
distinct finite places, i.e. [S| > 3. Given n € N such that (n,[[,cq, p) = 1, we
consider the subsets 9*%(n;a,b,c) C T% x Xg consisting of all triplets of the form

(2157 + M), 2[5 + AT, Ds Ao )ah).

xd  the normalized counting measure

where k is coprime to n. Denote by Za

on Q%4(n;a,b,c).

PROPOSITION 7.1. Let ay,by,c, € Z be chosen so that (apbpcn,n) = 1,
then P:_in by, Ccquidistributes towards the invariant probability measure on the

product T% x Xg as n — 0o with n € D(I1,es, P)-
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In fact, what we show is disjointness of certain higher rank actions on Tg and
on Xg. In the proof of Proposition 7.1 we will show that any limit is a joining of
the Z% actions on Tg and on Xg given by the times-p maps, their inverses, and
right-multiplication with the diagonal lattice elements a,, ! for p € S¢. The heart
of the argument consists of showing that the trivial joining is the only joining for
these actions.

Proof of Theorem 1.8 assuming Proposition 7.1. Set S = {o0,p,q}. As (n,pq) =1,
we have %, #, # € Zs and thus the projection II : T2S x Xg — Tgo X Xoo
defined by mapping to the space of Z% x K[0]-orbits sends Q*%(n;an,bn,cn)
injectively onto QX¥(n;an,bn,c,). The sets Q*4(n;an, by, c,) equidistribute
with respect to the Q% x Gg-invariant probability measure myy, ® Vs by
Proposition 7.1. Therefore the projections QX%(n;ayn, by, c,) equidistribute with
respect to H*(ng ®ug) = mr2, @mx_, the R? x G -invariant probability measure
on T2 x X. a

In order to prove Proposition 7.1, we proceed as follows. We will first show that

every measure 7., is invariant under the action of Z* on T% x X given by
T, (t,s,z) = (S2%m¢, S’_Qdms,xa;dlm) (t,s € Tg,x € Xg,m € Z7), (29)

where agam € I'g is the diagonal embedding of the matrix (S 2m S,Odm ) Hence every
weak* limit is invariant under this action. We will show that every weak* limit is
a measure of maximal entropy and hence uniqueness of the measure of maximal
entropy will imply that the unique weak™* limit is the invariant probability measure.
In the proof we will apply higher rank rigidity arguments and more precisely apply

a result from [EL17].

LEMMA 7.2. The sets Q*%(n;an, by, c,) are invariant under Z5. In particular,

the measures 7<%

Sf_' o
P by e ATE 7>t -invariant.

Proof. Let u € Z such that «S™ = 1 modn. For any k € Z and for every a € Z we
have

Sm(u%d) = 2%’ 10d7Z

n n

and thus it follows that

w4 Z[§7Y = §7m ekt 4 Z[57Y,

n

In particular we get

T (2[5 + A(%E5), Z[S ™) + A5, Dgug, o jna t)

— (Z[S7Y] + A(e=EEY) 71571 + A(M),rsucnsmkd/najﬁ).

This implies the claim. O
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7.1.  Lyapunov exponents and coarse Lyapunov subgroups We denote by Hg the
group
Hg=Ug x Vg x Gg < SLQ(@S)?).
Let Hr = Hg N SL2(Z[S71])? and note that there is a natural isomorphism
s : T x Xg = pp\s.

The action of Z% described in (29) above can be described as follows. Given p € S,
let a, € SL2(Qg)? denote the element given as a, = (apa,a,e,a,4). Note
that conjugation by «j, preserves the lattice Hr. Hence for all ¢ € Hg the
map Hrg — op - Hrg = Hpcupgcu;1 is well-defined. We denote by e, € 7.5t
the vector satisfying (e,)q = 6p,q for all ¢ € St, so that o o ¥g = Wg o Ty, .
Setting agm = [[,cs, ap™ for m € 75, we have

agm O \I’S = \IIS o Tdm, (30)

where Ty, was defined in (29). For the dynamics, we are particularly interested
in the following subgroups of Hg. We denote by H®) and H® the embeddings
of U and V in the first and second coordinates respectively. Furthermore, the
groups H(™) and H() shall denote the upper- and lower-triangular unipotent
groups in the third coordinate respectively. These groups shall be called the
elementary unipotent subgroups. We set Z = {1,2,4+,—} and remark here
that Hg = (Hg);i € 7) for all finite sets of places S of Q. A similar statement
holds for HS. In what follows, a Lyapunov exponent for o is a non-trivial additive
functional x : Z5 — R for which there exist an elementary unipotent subgroup H (%)
and a place p € S—i.e. x is a Lyapunov exponent on H(®)—such that

s (b = Dagnlly = X [n=1],  (h e HY).
We let
Qip = {X; X is a Lyapunov exponent on ngi)} ,

as well as @, = ;7 Pip, i = Upes ipy and @ = ;7 P Upes Q.
One calculates

ap(h — 1)04;1 =p*4(h—1) ifhe Hél) or h e Hé_), and
ap(h — 1)04;1 =p24h—-1) ifhe Héz) or h e Hg”.
In particular, for all distinct p, q € St, we have
lop(h = Doy tlg = |h =1y ifheHP, ie{1,2,+ -}, and
lap(h — Doz, = p~ 2| h—1||, ithe H or he HS, and
lo(h — Do, Hlp = p*H|h = 1|, if he H® or he H{P,
Hozp( Do 1||oo—102d||h—1||Oo it he HY or h e H), and
- Do

o =p b~ 1| ifheHZ or he HI.

As the map Z% — Hg, m + agm is a homomorphism, we obtain the following
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COROLLARY 7.3. The functionals in ® are of the form x = ex,p, where ¢ € {£1}
and

mp2dlog p if p € Sk,
Xp(m) =
> qes; Mq2dlogq else.

Furthermore, we have

P1p =0, ={-xp}, P2p=P1,={xp}, (PE S
(bl,oo = (I)f,oo = {XOO}7 (1)2,00 = q)+7oo = {_Xoo}-

Given a Lyapunov exponent x € ®, we define the corresponding Lyapunov subgroup

by
H =[] HY.
pESET
—XEP;,p

COROLLARY 7.4. The Lyapunov subgroups are given as follows:

- _ 1 _ _ o 2 +
pr = Hz(n )Hzg ), fop _Hé )Hz(n ) (peSe),
Hy =HPHD, H-, =HYH).

We note that in our case two Lyapunov exponents are equivalent in the sense
of [EL17, Section 2.2] if and only if they are equal. Thus each Lyapunov
exponent is in fact a coarse Lyapunov exponent. This is of importance as the
statements we will use in general hold for coarse Lyapunov subgroups as opposed
to Lyapunov subgroups defined here. In Corollary 7.4 we made use of the higher-
rank assumption |S| > 2, as in the case S = {00, p} we would have . = x, and
thus H, , = H,_.

7.2.  Two disjointness results Using our understanding of the (coarse) Lyapunov
subgroups discussed in Section 7.1, in particular Corollary 7.4, we can prove
two disjointness results for the Z-actions under consideration. The proofs are
applications of the product structure of leafwise measures for higher rank actions
and the classical Abramov-Rokhlin formula, where the factors are chosen so that
the Lyapunov subgroup for the factors are trivial. The first disjointness result gives
rise to ineffective equidistribution in the setup of Section 6 discussed in Corollary
7.6 but more importantly serves as an input to the second disjointness result.

Before we formulate the first disjointness result, let us recall the following notion.
The Z%-actions on (Tg,mr,) and (Xg,vs) naturally induce an action of Z5¢
on Tg x Xg, where an element m € Z5t acts by mapping a tuple (t,z) € Tg x X5
to the point

m.(t,x) = (S2dmt,xa§(}m).

A joining of the Z%t-actions on (Ts,mr,) and (Xg,vs) is a Borel probability
measure p on Tg X Xg which is invariant under the action of Z% on Tg x Xg
and satisfying (mpg)«p = mr, and (Txg)«p = vs.
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PROPOSITION 7.5 (DISJOINTNESS FOR TWO FACTORS) Let u be an ergodic joining
of the Z% -actions on (Ts,mry) and (Xs,vs). Then u = mr, ® vs, that is, the
systems are disjoint. The corresponding statement also holds for the action of Z5¢

on Ts x Xs given by m.(t,x) = (S~24m¢, xa;dlm).

Proof. We only prove the first case. The second follows by interchanging the roles
of the subgroups Ug and Vg. Using the discussion from Section 7.1 and restricting
to the subgroup Ugs x Gg = Hg, we note that the Lyapunov exponents are exactly
the same for this smaller system, however, the Lyapunov subgroups are given by
7- — g - - — g+

Hy,=Hy Hzg ), HZ\, =H, ) (p € 5t)

oy =HJ, -, =HYH,
where HM denotes the embedding of U in the first coordinate of H and H()
and H() denote the upper- and lower-triangular unipotents in the second
coordinate. We now apply a consequence of the product structure for leafwise
measures and the Abramov-Rokhlin formula, namely Corollary 6.5 from [EL17], to
obtain

hu(apaH;m) = hus(apaH;m) + hu(apaH;oo NUs) = hus(%?vH;w)’
={1}

where hu(a,ﬁ;oo) denotes the entropy contribution for the (coarse) Lyapunov
subgroup H, . Using Theorem 7.9 in [EL10], it follows that u is H,_-invariant.
By a similar argument one obtains that u is H:Xp—invariant for any p € S¢. In
particular, p is H §+)—invariant.

Let Brg be the Borel-o-algebra on Tg and let C = ﬂ'fsll’j’qys be the o-algebra
defined by the fibers of the canonical projection to Tg. Consider the disintegration

p= [ mdutt.z) (31)

of pu with respect to C. As the atoms of C are H gr)—invariant and as on a set

of full measure the conditional measure ,u(ct ») is determined by the atom [(Z,z)]c,
)

to Chapter 5 in [EW11] for details on conditional measures. As vg is ergodic

almost all measures appearing in the disintegration are H f; -invariant. We refer
for the action of H é+), extremality of ergodic measures among invariant measures
implies (WXS)*Mft s = Vs for almost all (¢,z). As uft ») 18 concentrated on the
atom [(¢,2)]e = {t} x Xg, we get M%t,x) = 0; ® vg for almost all (¢,2) € Tg x Xg
where §; denotes the Dirac measure at t. Hence by means of Fubini’s Theorem and
the assumption that (7, ).p = mr, it follows that p = mr, ® vs. O

We show how to deduce an ineffective S-arithmetic equidistribution result in the

spirit of Theorem 1.1 for sequences of values (a,, ¢,).

COROLLARY 7.6. Assume that a,,c, € Z are sequences such that (n,a,c,) =1 for

alln € N. Let u:é;amcn denote the normalized counting measure on the set

P3n; an, n) = {(ZIST] + A(%E), Do A(ue, jajm)a ) + (k) =1}
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Then the measures u:é;amcn equidistribute towards the unique Qg x G g-invariant
probability measure on Ts x Xg asn — oo in D([],cg, p)-

Proof. Denote by mx, : Ts x Xg = Xg and 7y : Tg X Xg — Tg the canonical
projections. Corollary 6.9 implies that any weak* limit of the sequence urf"fg;amcn
projects to the unique Gg-invariant probability measure vg on Xg under mx, and
similarly to the unique Qg-invariant probability measure mr, on Tg under 7r,. For
every p € St the measure u;é;amc" is invariant under simultaneous multiplication
by p?* in the first component and right multiplication by a;dl in the second
component. Hence any weak* limit is a joining for the actions of Z°t on (Tg, mrg)
and on (Xg,vs).
Let now p be a weak™ limit of a sequence of measures ,u;fg; an.b, and let

p= / 16 2y dpalt, @)
TsxXs

be an ergodic decomposition of . Then almost every LL(EM) is an ergodic joining
for the Z° actions on (Tg,mt,) and (Xg, vg) respectively. It thus suffices to show
that the only ergodic joining is the trivial joining mr, ® vg. This was done in
Proposition 7.5. O

The second disjointness result forms the heart of this section and is the main
input for the completion of the proof of Proposition 7.1.

PROPOSITION 7.7 (DISJOINTNESS FOR THREE FACTORS) Fiz d € N and let v be a
probability measure on Tg x Tg x Xg which is Z°t -invariant and ergodic for the
action defined by

m.(t,s,x) = (2t S_2dms,xa§jm) (t,s € Tg,x € Xg).

Assume that v projects to mrg in the first two factors and to vs in the last factor.
Then v equals the product measure, i.e. v =mrg ® mry @ Vg.

Proof. In what follows, we denote by m; the unique Ug x G g-invariant probability
measure on Ur X Gr\Ug x Gg and by 7 the projection sending (¢, s,z) € Hr\Hg
to (t,xz) € Tg x Xg. Similarly, we let mo denote the unique Vg x Gg-invariant
probability measure on Vr x Gr\Vs x Gg and my the projection that maps a
triplet (¢,s,z) € Hr\Hg to (s,z) € Ts x Xg. As of Proposition 7.5, we know
that (m;).v = m; for both ¢ = 1,2. Thus by Corollary 6.5 from [EL17], we know
that for any p € S¢ we have

ho(ap, Hy ) = huny (ap, H ) + by (ap, Hy O Vs) = hp, (ap, Hy ).
—_———
={1}
Again, Theorem 7.9 in [EL10] implies that v is H_ -invariant. The same argument
shows

ho(ap, HZ ) = huny (ap, HZ, ) + ha (0, HZ

,NUs) = hpn,(ap, HZ, ),
={1}
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and thus v is U, x V,, x SLa(Qp)-invariant. Applying the same argument to the
subgroups H;oc and H:Xoo’ one obtains invariance of v under U, X Vo x SLa(R).
Hence v is Hg-invariant. O

7.3.  Completion of the proof of Theorem 1.3 Using the disjointness results form
Section 7.2, we can prove Proposition 7.1.

Proof of Proposition 7.1. Let U be a weak™ limit of a sequence of measures ?S_‘fl b e
»YnyYnstbn

where n € D([] s, p)- Then 7 is invariant under the action of 7% given by
m.(t,s,2) = Tam(t, s, x) (t,s € Tg,x € Xg)

where Ty, was defined in (29). Using our assumptions on a,,b,,c, together
with Corollary 6.9, the measure T projects to mr, in the first two components
respectively and to vg in the third component. In particular, every ergodic
component of 7 with respect to the Z“-action satisfies the assumptions of
Proposition 7.7 and thus equals the product measure as of Proposition 7.7. This

completes the proof. |
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