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Abstract. We prove effective equidistribution of primitive rational points and of

primitive rational points defined by monomials along long horocycle orbits in

products of the torus and the modular surface. This answers a question posed

in joint work by the first and the last named author with Shahar Mozes and Uri

Shapira. Under certain congruence conditions we prove the joint equidistribution

of conjugate rational points in the two-torus and the modular surface.

1. Introduction

Let n be a natural number and k ∈ Z coprime to n, denoted (k, n) = 1. Denote

by k ∈ Z any choice of a modular inverse of k modn. The examination of

modular forms naturally leads to the question of statistical independence of k

and k in Z/nZ, see for example [Sel65]. Naturally, such a question would be

asked in terms of asymptotics for large n. To this end, it is useful to recast the

formulation on the torus T = Z\R. Given an integer k ∈ Z coprime to n, the

tuple ( kn ,
k
n ) ∈ T2 is independent of the choice of the representatives k and k. The

group T2 carries a natural probability Haar measure m coming from the uniform

measure on the real plane and a natural way to state statistical independence of

the tuples ( kn ,
k
n ), (k, n) = 1 is to say that the average of a continuous function f
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2 M. Einsiedler, M. Luethi, N. A. Shah

on C(T2) over these tuples converges to the integral of f with respect to that natural

measure, i.e.
1

φ(n)

∑
(k,n)=1

f( kn ,
k
n )→

ˆ
T2

f(x, y)dm(x, y). (1)

By Fourier expansion this becomes a problem of estimating certain exponential

sums and in fact the above convergence has been proven by Kloosterman [Kl26]

with a rate. The rate has been optimized in seminal work by Weil [Wei48].

More recently, Jens Marklof has interpreted the above set in terms of intersection

points of certain horospheres [EMSS16]. To motivate the formulation of our

problem, we will repeat this observation here. For this introduction, consider the

lattice Γ = SL2(Z) inside G = SL2(R) and denote the subgroups

U =

{
ut =

(
1 t

0 1

)
; t ∈ R

}
V =

{
vs =

(
1 0

s 1

)
; s ∈ R

}
A =

{
ay =

(
y 0

0 1
y

)
; y ∈ (0,∞)

}
It is well known that the U and V -orbits of Γ are closed and that ΓUay and ΓV ay
equidistribute in Γ\G as y → 0 and y →∞ respectively, cf. [Sar81]. For small y one

could wonder, whether the long orbit ΓUay intersects the orbit ΓV . An elementary

calculation shows that intersections occur if and only if there is some n ∈ N so

that y = 1
n . In this case Γutay = Γvs implies that t = k

n and s = l
n for some k, l ∈ Z.

Finally, 1 = det(utayv−s) yields kl ≡ 1 modn. In particular, l = k in Z/nZ.

As ΓU ∼= T and ΓV ∼= T, the measure appearing in (1) can be identified with the

normalized counting measure on the set{
(Γuk/n,Γuk/na

−1
n ) ; (k, n) = 1

}
⊆ ΓU × ΓV.

Given n and α ∈ R, denote

P(n)α =
{

(Γuk/n,Γuk/na
−1
nα ) ; (k, n) = 1

}
⊆ ΓU × Γ

∖
G.

We have argued previously how bounds on Kloosterman sums imply

equidistribution of the sets P(n)1 inside ΓU × ΓV as n → ∞. The problem

of equidistribution of the primitive rational points P(n)α inside ΓU × Γ\G has

applications to Gauss sums and was examined in [DA14], [DAM13]. Our work

provides a considerable strengthening of some results in the first mentioned article.

For the sake of simplicity of exposition we are going to focus only on the case α = 1
2 .

Moreover, as our method of proof allows it, we are going to discuss a more general

version of the problem where instead of the primitive rational points we look at

multiplies of monomial residues. More precisely, given a, b, d ∈ N, we let

P×d(n; a, b) =
{

(ak
d

n ,Γubkd/na
−1√
n
) : (k, n) = 1

}
.

We can now state our first main result, which implies equidistribution of P(n)1/2

as n→∞.
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Primitive rational points on expanding horocycles 3

Theorem 1.1. Fix d ∈ N. There are an L2-Sobolev norm S on C∞c (T×Γ\G) and

positive constants κ, η, C such that for all n ∈ N and a, b ∈ Z satisfying (n, ab) = 1,

for all F ∈ C∞c (T× Γ\G) we have∣∣∣∣ 1

|P×d(n; a, b)|
∑

(t,x)∈P×d(n;a,b)

F (t, x)−
ˆ
T×Γ\G

F

∣∣∣∣ ≤ C(ab)ηn−κS(F ).

Denote by P×dX (n; b) ⊆ Γ\G the projection of P×d(n; a, b) to Γ\G, which does of

course not depend on a. The method of proof applied in the proof of Theorem 1.1

yields the following

Corollary 1.2. Fix d ∈ N. There exist an L2-Sobolev norm S on C∞c (Γ\G) and

positive constants κ′, C1 such that for all n ∈ N and bn ∈ Z satisfying (n, bn) = 1

and for all f ∈ C∞c (Γ\G) we have∣∣∣∣ 1

|P×dX (n; bn)|

∑
x∈P×dX (n;bn)

f(x)−
ˆ

Γ\G
f

∣∣∣∣ ≤ C1n
−κ′S(F ).

A natural generalization of the problems described above is to ask for the joint

distribution of primitive rational points for α = 0, α = 1
2 and α = 1 simultaneously,

that is the distribution of the sets{
(Γuk/n,Γuk/nan−1/2 ,Γuk/nan−1) ; (k, n) = 1

}
⊆ ΓU × Γ

∖
G× ΓV.

Rearranging factors, equidistribution of these sets can be interpreted as

orthogonality of Kloosterman sums to averages along primitive rational points on

expanding horocycles. Using Theorem 1.1 and entropy arguments, we show that

for a, b, c, d, n ∈ N the sets

Q×d(n; a, b, c) =
{

(ak
d

n , bk
d

n ,Γuckd/na
−1√
n
) ; (k, n) = 1

}
equidistribute as n → ∞ along some congruence condition. More precisely, we

prove the following

Theorem 1.3. Let p, q be two distinct primes and D(pq) = {n ∈ N : (n, pq) = 1}.
Let an, bn, cn ∈ Z be a sequence of integers coprime to n. Let F ∈ Cc(T×T×Γ\G).

Then
1

|Q×d(n; an, bn, cn)|
∑

x∈Q×d(n;an,bn,cn)

F (x)→
ˆ
T×T×Γ\G

F

as n→∞ with n ∈ D(pq).

The equidistribution of the sets P(n)1 has other natural generalizations,

e.g. to SLN (R) for N > 2, which were examined in [EMSS16]. The ineffective

equidistribution proven there has been effectivized more recently, first in the

case N = 3 by Lee and Marklof in [LM18] and later for general N by El-Baz, Huang

and Lee in [EBHL18]. These generalizations all concern variations of the problem

for the fixed scaling parameter α = 1. The generalization in the present article

concerns variation of the scaling parameter α and we want to quickly explain why we
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4 M. Einsiedler, M. Luethi, N. A. Shah

only discuss the case α = 1
2 . Assume first that α > 1, then P(n)α ⊆ ΓU ×ΓV an1−α

and the orbit in the second component diverges into the cusp uniformly. Hence

the limit measure of the normalized counting measures on these sets is trivial. The

case α < 0 shows similar behaviour. Hence, one can restrict to the case α ∈ (0, 1).

A detailed treatment for α ∈ (0, 1
2 ] can be found in [Lue19] and the case α ∈ [ 1

2 , 1)

can be reduced to the former using the above relationship between ΓU and ΓV . It

becomes clear from the arguments in [Lue19] that α = 1
2 is the most difficult case

due to the fact that the points Γuk/na
−1√
n
, 0 ≤ k < n, are separated by distance one

along the U -orbit and along the V -orbit. We also refer to [ELue18] where a weaker

version of Theorem 1.1 was announced.

A sketch of the proof of Theorem 1.1 For the sake of illustration, we sketch an

argument to prove equidistribution as in Theorem 1.1 for the second component,

assuming for simplicity that d, b = 1. To this end we assume equidistribution of the

rational points, i.e. assume that for all compactly supported continuous functions f

on Γ\G we have

1

n

n∑
k=0

f(Γuk/na
−1√
n
)
n→∞−→

ˆ
Γ\G
f.

Fix a prime p and a small value ε > 0. Let

N(p, ε) =
{
n ∈ N ; (p, n) = 1 and φ(n)

n > ε
}
,

where φ denotes Euler’s totient function counting the number of units in Z/nZ.

We denote

P(n) =
{

Γuk/na
−1√
n

; 0 ≤ k < n
}
, P(n)× =

{
Γuk/na

−1√
n

; (k, n) = 1
}
,

as well as P(n)0 = P(n) \ P(n)×. We denote by µn, µ
×
n and µ0

n the corresponding

normalized counting measures. Then

µn = φ(n)
n µ×n + n−φ(n)

n µ0
n.

Note that for all n satisfying (p, n) = 1, these measures are invariant under the

map given by Γuk/na
−1√
n
7→ Γup2k/na

−1√
n
. Assume (falsely) that there was a lattice

element γ ∈ Γ of infinite order inducing this map via right multiplication on Γ\G
and assume furthermore that γ commutes with A. As µn converges to the invariant

probability measure as n → ∞ along elements in N(p, ε), so does the right hand

side. As φ(n)
n > ε along this sequence, it follows—after possibly passing to a further

subsequence—that µ×n converges to a γ-invariant probability measure on Γ\G and

ergodicity of the invariant probability measure with respect to right multiplication

by γ implies that this limit measure has to be the invariant probability measure.

As the limit is independent of the subsequence, it follows that µ×n converges to the

invariant probability measure.

In order to make this argument precise, one can find an element γ with the desired

property by considering a different space, namely the p-adic extension of Γ\G. This
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Primitive rational points on expanding horocycles 5

is obtained by considering the group SL2(R×Qp) ∼= G×SL2(Qp) instead where Qp
is the completion of Q with respect to the p-adic norm. Then SL2(Z[ 1

p ]) is a lattice

in SL2(R×Qp) and the element

ap =

((
p 0

0 p−1

)
,

(
p 0

0 p−1

))
is an element in the lattice. For t∞ ∈ R and tp ∈ Qp one calculates

apu(t∞,tp)a
−1
p = up2(t∞,tp)

as desired and the proof sketched above actually works in this case. It remains to

take care of the fact that lim infn
φ(n)
n = 0. To this end and for the sake of a better

rate of equidistribution, we replace the proof sketched above by an effective, more

general argument which uses for every n ∈ N some finite collection of valid primes

at once.

Structure of the article The paper is organized as follows. In Section 2 we

introduce the S-arithmetic groups and identify the lattice we want to consider.

In Section 3, we introduce S-arithmetic Sobolev norms on the homogeneous spaces

under consideration. In Section 4, we prove equidistribution of long horocycle orbits

in the S-arithmetic extension, which illustrates a technical step occurring again in

the later, notationally more heavy steps of the proofs. In Section 5, we prove

equidistribution of the rational points of distance 1 in the S-arithemtic extension.

Finally, Section 6 provides a short discussion of the ×p-map in the S-arithmetic

setup, the fact that it is mixing and finally the proof of Theorem 1.1. Section 7

gives the argument involving rigidity phenomena for higher rank actions to prove

equidistribution in the product of the two-torus and the modular surface.

2. The S-arithmetic extension

2.1. The modular surface Given a finite set of places S of Q, we will denote

by QS =
∏
p∈S Qp the product of the completions Qp of Q where Q∞ = R. We let

Z[S−1] = Z
[{

1
p ; p ∈ S \ {∞}

}]
.

Given t ∈ QS and p ∈ S, we let tp be the Qp-coordinate of t. Let Sf = S \ {∞}
denote the set of finite places in S. We set ZSf

=
∏
p∈Sf

Zp and if ∞ ∈ S, then we

denote ZS = R×ZSf
. Given p ∈ S and t ∈ Qp, we denote by ıp : Qp → QS the map

sending t to the element ıp(t) satisfying ıp(t)p = t and ıp(t)q = 0 whenever q 6= p.

We set GS = SL2(QS), GS = SL2(ZS), K[0] = SL2(ZSf
) and ΓS = SL2(Z[S−1])

where we understand ΓS as a subgroup of SL2(QS) via the diagonal embedding

of Z[S−1] in QS . Note that SL2(QS) is isomorphic to the direct product of

the SL2(Qp) over all p ∈ S. For any group, we will denote its identity element

by 1. Given p ∈ S and some g ∈ SL2(Qp), we will denote by ıp(g) ∈ SL2(QS)

the element whose component equals the identity for all places in S \ {p} and g

at the place p. Conversely, given an element g ∈ GS and a place p ∈ S, we let gp
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6 M. Einsiedler, M. Luethi, N. A. Shah

denote the p-coordinate of g and more generally for a subset S′ ⊆ S, we denote

by gS′ the projection of g to SL2(QS′). Given g ∈ SL2(Q), we denote by ∆(g) the

diagonal embedding in SL2(QS). Given a place p of Q, we write Gp for G{p}. We

let G∞ = SL2(R) and Γ∞ = SL2(Z). The goal of this short section is to introduce

general notation, to establish the well-known fact that ΓS is a lattice in GS if∞ ∈ S
and to naturally relate the space XS = ΓS\GS to the space X∞ = Γ∞\G∞, which

is our space of interest. The relation is found by first proving that XS
∼= SL2(Z)\GS

where SL2(Z) is identified with its image under the embedding in GS induced by

the diagonal embedding of Z in ZS . We will denote YS = SL2(Z)\GS . The first step

towards proving that ΓS is a lattice in GS (assuming ∞ ∈ S) is to show that SL2

has class number one, which is expressed in the following proposition, for which we

refer the reader to [PR94].

Proposition 2.1. The group GS acts transitively on XS and the stabilizer of ΓS
in GS is SL2(Z). In particular the map SL2(Z)g 7→ ΓSg is an isomorphism YS ∼= XS

of GS-spaces.

The isomorphism ψS : XS → YS in Proposition 2.1 is given by writing a

representative g in GS as g = γηS with γ ∈ ΓS and ηS ∈ GS . It is relatively

easy to see that SL2(Z) is a non-uniform lattice in GS if ∞ ∈ S. One obtains the

following

Corollary 2.2. If∞ ∈ S, then ΓS is a lattice in GS. Moreover XS/K[0] and X∞
are isomorphic as G∞-spaces.

As ofGS-equivariance, the push-forward of any invariant probability measure on XS

under ψS is an invariant probability measure on YS . In particular the systems

defined by GS y YS and GS y XS are isomorphic as dynamical systems. In what

follows, we will abuse notation and denote by νS both the invariant probability

measure on YS and the invariant (under GS) probability measure on XS .

Let H ≤ GS be a closed subgroup and assume that H is the set of QS-points of

some algebraic group defined by polynomials with coefficients in Q. The ZS-points

are defined by HS = H ∩ GS . We define the groups HS , Hp and so on in the

corresponding fashion. Furthermore, we write Hf = H ∩K[0] and HΓ = H ∩ ΓS .

2.2. Periodic orbits for horospherical subgroups We define the subgroup

US =

{
ut =

(
1 t

0 1

)
; t ∈ QS

}
≤ GS ,

and in analogy to the real case, i.e. S = {∞} want to look at the closed US-orbits

in XS . To this end we fix the Haar measure mQS on QS as the product of the

Haar measures mQp on the components Qp, (p ∈ S) where mQ∞ is the Lebesgue

measure and mQp is normalized so that mQp(Zp) = 1 for p ∈ Sf . Define the Haar

measure mUS on US to be the push-forward of mQS under the isomorphism t 7→ ut.

A point x ∈ XS has periodic US-orbit if and only if there is some α ∈ Q×S such

that StabUS (x) = {uαt; t ∈ Z[S−1]}, cf. [KT07, Proposition 8.1]. This can be
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Primitive rational points on expanding horocycles 7

used to show that a point x ∈ XS has periodic US-orbit if and only if it is of the

form x = ΓSau for some u ∈ US and some a ∈ AS where

AS =

{
ay =

(
y 0

0 y−1

)
; y ∈ Q×S

}
.

In what follows, we write Uy = ΓSayUS whenever y ∈ Q×S . Let y ∈ Q×S ,

then the volume of the orbit ΓSayUS is the covolume of y−2Z[S−1] in QS ,

which equals |y−2|S =
∏
p∈S |y−2

p |p. Let |y|Sf
=
∏
p∈Sf
|yp|p ∈ Z[S−1] and note

that a|y−1|Sf
is contained in AS∩ΓS . Using ΓSayUS = ΓSazUS =⇒ yz−1 ∈ Z[S−1],

we obtain the following

Corollary 2.3. There is a one-to-one correspondence between R>0 ×
∏
p∈Sf

Z×p
and periodic US-orbits, given by sending an element y to Uy.

3. S-arithmetic Sobolev norms and congruence quotients

In this section, we will introduce Sobolev norms and collect several properties used.

These have been discussed in greater generality in [EMMV17] and we will often

provide references instead of detailed proofs. Along the discussion, we will have to

introduce the notion of a smooth function on certain S-arithmetic quotient spaces.

It will turn out, that such functions will come from smooth functions on congruence

quotients of SL2(R). This feature will be very useful for the subsequent effective

equidistribution statements, once we have found the relation between the Sobolev

norms on these real homogeneous spaces and the Sobolev norms considered in

the S-arithmetic setup.

3.1. The space of smooth functions on XS We make use of the following notation.

We denote by RSf the set of functions from Sf to R. It is convenient to think of

elements in RSf as vectors in R|Sf | whose entries are indexed by Sf . For m ∈ RSf , we

denote Sm =
∏
p∈Sf p

mp . If m ∈ NSf , then we define ZSf
[m] =

∏
p∈Sf

pmpZp, which

is an ideal in ZSf
. The Chinese Remainder Theorem yields ZSf

/ZSf
[m] ∼= Z/SmZ.

Applying the projection ZSf
→ ZSf

/ZSf
[m] in each entry, yields a homomorphism

K[0]→ SL2(ZSf

/
ZSf [m]),

whose kernel K[m] is a closed subgroup of finite index and in particular a

compact open subgroup. The restriction of the normalized Haar measure on K[0]

to the subgroups K[m] yields a finite, bi-invariant Haar measure on these

subgroups. Given p ∈ Sf and mp ∈ N0, we denote by Kp[mp] the kernel of the

homomorphism K[0] → SL2(Zp/pmpZp), g 7→ gp mod pmpZp. Given a continuous,

compactly supported function f on XS , we write Avp[mp](f) for the function

defined by

Avp[mp](f)(x) =
1

Vol(Kp[mp])

ˆ
Kp[mp]

f
(
xıp(g)

)
dg.

Furthermore we define prp[mp] = Avp[mp] − Avp[mp − 1] for mp ≥ 1 and for

simplicity write prp[0] = Avp[0]. The operator prp[mp] is called the level mp

projection at p. We note that K[m] =
∏
p∈Sf

Kp[mp] for all m ∈ NSf
0 .
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8 M. Einsiedler, M. Luethi, N. A. Shah

Definition. A continuous function f on XS is called smooth, if it is invariant

under K[m] for some m ∈ NSf
0 and if it is smooth at the real place. The space

of smooth functions is denoted by C∞(XS) and C∞c (XS) is the space of compactly

supported smooth functions.

For the notion of smoothness in the real place, recall that ΓS ≤ GS is a

lattice and thus every point in XS has a neighbourhood which is homeomorphic to

some neighbourhood of the identity in GS . This neighbourhood contains an open

neighbourhood which is a direct product of open neighbourhoods of the identity

in Gp (p ∈ S). On such a neighbourhood the notion of smoothness in the real

component is defined using the notion of smoothness for Lie groups. Given m ∈ NSf
0 ,

we let pr[m] =
∏
p∈Sf

prp[mp]. This is well-defined, as the projections for distinct

places commute. For f ∈ C∞c (XS) we have f =
∑
m∈NSf

0

pr[m]f and the right-hand

side is a finite sum. Given f ∈ C∞c (XS), we call pr[m]f the pure level-m component

of f .

Let N ∈ N, then Γ∞(N) denotes the congruence lattice for level N , i.e. the

kernel of the homomorphism SL2(Z) → SL2(Z/NZ) induced by the canonical

projection Z → Z/NZ. In what follows, we denote X∞(N) = Γ∞(N)\G∞. One

can show that XS [m] = XS/K[m] is isomorphic to X∞(Sm) as a G∞-space with

isomorphism given by

ψ(m) : X∞(Sm)→ XS [m], Γ∞(Sm)g 7→ ΓSı∞(g)K[m]. (2)

We denote by π(m) : XS → XS [m] the canonical projection. A continuous

function f defined on XS is smooth, if and only if there are m ∈ NSf
0 and a smooth

function f̃m ∈ C∞(Γ∞(Sm)\G∞) such that f = f̃m ◦ (ψ(m))−1 ◦ π(m). The picture

to keep in mind is the commuting diagram given in (3) where g denotes the action

by some element g ∈ G∞.

XS
π(m)

// //

g

��

XS [m]

g

��

X∞(Sm)
ψ(m)

oo

g

��

XS
π(m)

// // XS [m] X∞(Sm)
ψ(m)

oo

(3)

Using equivariance of π(m) for the G∞-action we observe that the push-forward

of the GS-invariant probability measure on XS to XS [m] is a G∞-invariant

probability measure on XS [m]. As the G∞-invariant probability measure mX∞(Sm)

on X∞(Sm) is unique, equivariance of ψ(m) implies that ψ(m)
∗mX∞(Sm) is the

unique G∞-invariant probability measure on XS [m] and agrees with π(m)
∗νS . Let

now f ∈ Cc(XS) and assume that f is invariant under K[m]. Then there is a

unique f̌m ∈ Cc(XS [m]) such that f = f̌m ◦ π(m). In particular, f̌m ◦ ψ(m) = f̃m
implies ˆ

XS

fdνS =

ˆ
XS [m]

f̌mdπ(m)
∗νS =

ˆ
X∞(Sm)

f̃mdmX∞(Sm). (4)

In what follows, we will ask for effective equidistribution results, i.e. we examine

the equidistribution properties of sequences of subsets of XS and quantify the error

Prepared using etds.cls



Primitive rational points on expanding horocycles 9

in terms of the parametrization of the sequence and of the test function involved.

The error rates rely on smoothness properties of the functions and we will hence only

use smooth test functions. The implicit equidistribution statements then follow,

as C∞c (XS) ⊆ Cc(XS) is a dense subspace (with respect to the uniform topology).

3.2. Noncompactness and the height function In what follows, let gZ ⊆ Mat2,2(Z)

denote the submodule generated by the elements

H =

(
−1 0

0 1

)
, X =

(
0 1

0 0

)
, Y =

(
0 0

1 0

)
. (5)

When equipped with the bracket [v, w] = vw−wv, (v, w ∈ gZ) this is an integral Lie

algebra. The commutator relations for the generating set show that for any ring R

we have [gR, gR] ⊆ gR where gR = gZ⊗ZR ∼= sl2(R). An explicit calculation shows

furthermore, that gR is preserved by the adjoint action Ad given by conjugation

with elements in SL2(R). Note that gZ[S−1] is a lattice in gQS , in the sense that

it is a finitely generated Z[S−1]-module satisfying gQS = gZ[S−1] ⊗Z[S−1] QS . For

what follows, given d ∈ N and u ∈ QdS , we let ‖u‖S =
∏
p∈S‖up‖p where ‖·‖p is

the maximum of the p-adic absolute value of the entries of up. Here the “∞-adic

absolute value” stands for the usual absolute value on R. If u ∈ GLd(QS), we

write ~u~S = max{‖u‖S , ‖u−1‖S}.

Definition. The height function on XS is defined as

htXS : XS → R, htXS (x) = sup
{
‖Ad(g−1)v‖−1

S ; v ∈ gZ[S−1],ΓSg = x
}
.

Note that the height function does not depend on the choice of the

representative g of x, as gZ[S−1] is Ad(ΓS)-invariant.

Proposition 3.1. The height function is a proper map bounded away from 0 with

the following properties:

1. For all g ∈ GS and x ∈ XS we have htXS (xg) � ~g~2
ShtXS (x). If g∞ = 1,

then the implicit constant is 1.

2. For all x ∈ XS and all g ∈ K[0], we have htXS (xg) = htXS (x).

3. There exist positive constants κ1, c1 such that for all x ∈ XS the map g 7→ xg

defined on the set {g ∈ GS ; d(g∞, 1) ≤ c1htXS (x)−κ1 , gSf
∈ K[0]} is injective.

This is discussed in Appendix A of [EMMV17]. Observe that for every pair Λ ≤ Γ

of lattices in a group G, an injectivity radius at x = Γg ∈ Γ\G is also an injectivity

radius at x̃ = Λg ∈ Λ\G. To this end we denote

htX∞(Sm)(x) = sup
{
‖Ad(g−1)v‖−1 ; v ∈ gZ,Γ∞(Sm)g = x

}

Lemma 3.2. Let x ∈ XS and identify xK[m] ∈ X∞(Sm) with its image

under (ψ(m))−1. Then htXS (x) = htX∞(Sm)(xK[m]).
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10 M. Einsiedler, M. Luethi, N. A. Shah

Proof. Let v ∈ gZ[S−1], g ∈ GS and k ∈ K[m], then

‖Ad(k)Ad(g−1)v‖S = ‖Ad(g−1)v‖S ,

as for all p ∈ Sf , the norm ‖·‖p is SL2(Zp)-invariant. Hence the height function

on XS descends to a well-defined function on X∞(Sm). It remains to show that

htXS (x) = sup
{
‖Ad(g−1)v‖−1

∞ ; v ∈ gZ, π
(m)(x) = Γ∞(Sm)g

}
.

Let g∞ ∈ G∞ satisfy π(m)(x) = Γ∞(Sm)g∞, then for any g ∈ GS with the property

that ΓSg = x, we know g ≡ g∞modK[0], so that htXS (x) = htXS (ΓSg∞) as

argued above. We first show that the supremum is achieved for some w ∈ gZ.

First, it follows from discreteness of Ad(g−1
∞ )gZ[S−1] and properness of ‖·‖S that the

supremum is achieved for some v ∈ gZ[S−1]. Let α ∈ Z be a common denominator

for the entries of v, so that v = α−1w for some w ∈ gZ. We can assume that α is a

product of the primes in Sf . It follows that

‖Ad(g−1
∞ )v‖S = ‖Ad(g−1

∞ )w‖S
∏
p∈S
|α−1|p = ‖Ad(g−1

∞ )w‖S

and the supremum is achieved at w ∈ gZ. We show that we can

assume ‖(Ad(g−1
∞ )w)p‖p = 1 for all p ∈ Sf . First, note that (Ad(g−1

∞ )w)p = w

for p ∈ Sf . This already implies that ‖(Ad(g−1
∞ )w)p‖p = ‖w‖p ≤ 1. Assume

that ‖w‖ < 1, then w = pu for some u ∈ gZ and thus ‖Ad(g−1
∞ )w‖S = ‖Ad(g−1

∞ )u‖S
as |p|q = 1 for all q ∈ Sf \ {p}. In particular, after replacing w finitely many

times in this way, we can assume that p−1w 6∈ gZ for all p ∈ Sf and in particular

that ‖w‖p = 1 for all p ∈ Sf . This shows the claim. 2

For what follows, we denote by X a choice of a basis of gR—i.e. a maximal

linearly independent set of degree 1 differential operators at the identity in G∞—

and by DD(X) the set of all monomials in X of degree at most D. These monomials

define differential operators on C∞c (XS). To this end, a differential operator X at

the identity of G∞ defines a differential operator X̄ on XS which for f ∈ C∞c (XS)

is given by

X̄f(x) = X(f ◦ p ◦ lg) (x = ΓSg ∈ XS),

where p : GS → XS is the canonical projection and lg is left-multiplication on GS
by g. In what follows, we will abuse notation and just write Xf instead of X̄f .

Definition. The L2-Sobolev norm of degree D with respect to the basis X

on C∞c (XS) is the norm SD : C∞c (XS)→ [0,∞) given by

SD(f)2 =
∑

m∈NSf
0

∑
X∈DD(X)

SDm‖pr[m](1 + htXS )DXf‖22 (f ∈ C∞c (XS)).

It is easy to see that for D ≤ D′ and two L2-Sobolev norms SD, SD′ with respect

to bases X and X′ respectively, we have

SD(f)� SD′(f) (f ∈ C∞c (XS)).
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If X = X′, then the implicit constant can be set to one. In what follows, we will

usually implicitly assume a fixed choice of a basis of gR; it could be useful to think

of the basis provided in (5). We will use some properties of L2-Sobolev norms,

which we list below. For the proofs we refer the reader to [EMMV17, Appendix A]

and [ERW17, Section 3.3].

Proposition 3.3. Let S be an L2-Sobolev norm of degree D on C∞c (XS). Then

the following are true.

1. (Sobolev Embedding) There is some D0 ∈ N0 such that D ≥ D0 implies

‖f‖∞ � S(f) for all f ∈ C∞c (XS).

2. (Continuity of the regular representation) Let g ∈ GS and f ∈ C∞c (XS).

Define a function g · f ∈ C∞c (XS) by g · f(x) = f(xg), (x ∈ XS). Then

S(g · f)� ~g~4D
S S(f).

3. There is some L2-Sobolev norm SD+r of degree D + r, r ∈ N0, such that for

all f1, f2 ∈ C∞c (XS) we have

S(f1f2)� SD+r(f1)SD+r(f2).

An important feature of these Sobolev norms is their relation to Sobolev norms on

the congruence quotients. Note that the definition of an L2-Sobolev norm as above

includes the case S = {∞} and in fact works for any lattice Λ ≤ G∞. Hence by

the L2-Sobolev norm S on C∞c (Λ\G∞) of degree D with respect to the basis X we

mean the map

S(f)2 =
∑

X∈DD(X)

‖(1 + ht)DXf‖22 (f ∈ C∞c (Λ
∖
G∞)), (6)

where the height function ht is the height function for Λ. This sort of Sobolev norm

also satisfies the properties listed in Proposition 3.3. The following lemma yields

the desired relation between L2-Sobolev norms on C∞c (XS) and on C∞c (X∞(Sm))

for m ∈ NSf
0 . It will be helpful to introduce a bit of notation.

Lemma 3.4. Let X denote a basis of gR and let D ∈ N0 be a degree. Let SD
denote the L2-Sobolev norm on C∞c (XS) of degree D with respect to X and

for m ∈ NSf
0 let SD,m denote the L2-Sobolev norm on C∞c (X∞(Sm)) of degree D

with respect to X. Let f ∈ C∞c (XS) and for m ∈ NSf
0 let f̃m ∈ C∞c (X∞(Sm)) such

that pr[m]f = f̃m ◦ (ψ(m))−1 ◦ π(m). Then

SD(f)2 =
∑
m

SDmSD,m(f̃m)2.

Proof. In this proof we write φ(m) = (ψ(m))−1 ◦ π(m). Note that G∞-equivariance

of ψ(m) and π(m) implies that for all X ∈ gR and h ∈ C∞c (X∞(Sm)) we have

X(h ◦ φ(m))(x) =
(
Xh ◦ φ(m)

)
(x).
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12 M. Einsiedler, M. Luethi, N. A. Shah

Inductively this then extends to polynomials in elements of gR. Using Lemma 3.2,

we have htXS = htX∞(Sm) ◦ φ(m), so that mX∞(Sm) = φ(m)
∗νS implies

SD,m(f̃m)2 =
∑

X∈DD(X)

‖pr[m](1 + htXS )DXf‖2L2(XS ,νS),

by Proposition 3.1 (2) and the fact that the differential operators in gR commute

with the level mp projections for all p ∈ Sf . The lemma now follows from the

definition of SD. 2

Of course any Sobolev norm extends to the space C∞c (XS) ⊕ C1XS which is

defined to be the space of smooth functions f : XS → C for which there is a

constant c ∈ C satisfying f − c ∈ C∞c (XS).

3.3. Sobolev norms on S-arithmetic extensions of tori We will also be interested

in the S-arithmetic extension Z[S−1]\QS of the torus T = Z\R. More generally,

given an integer N , we will use the notation T(N) = NZ\R. We will give a quick

discussion of this space, as well as of smooth functions and of Sobolev norms.

Most of it can be seen as a special case of what was done previously, up to some

simplifications. Hence we will keep the discussion fairly brief.

Let S be a finite set of primes including ∞ and denote TS = Z[S−1]\QS . The

space TS is locally isomorphic to QS , as Z[S−1] is a lattice, cf. [KT07]. Hence we

can make the following

Definition. A function ϕ : TS → C is smooth, if it is smooth in the real direction

and if there is some m ∈ NSf
0 such that ϕ is invariant under the subgroup ZSf

[m].

We denote by C∞(TS) the vector space of smooth functions on TS .

Note that in this case, the quotient TS is compact, as follows from the discussion

below. Given p ∈ Sf and mp ∈ N0, we will denote by Avp[mp] : C∞(TS)→ C∞(TS)

the averaging operator for the subgroup pmpZp. As before, denote prp[0] = Avp[0]

and prp[mp] = Avp[mp] − Avp[mp − 1] if mp > 0. For m ∈ NSf
0 , we again

set Av[m] =
∏
p∈Sf

Avp[mp] and pr[m] =
∏
p∈Sf

prp[mp]. Every f ∈ C∞(TS)

satisfies f =
∑
m∈NSf

0

pr[m]f and the right-hand side is a finite sum. Fix a basis X—

i.e. any non-zero element—of the Lie algebra of R. The L2-Sobolev norm S of

degree D on C∞(TS) with respect to the basis X is the norm given by

S(f)2 =
∑

m∈NSf
0

SDm
∑

X∈DD(X)

‖pr[m]Xf‖22,

where again DD(X) is the set of monomials of degree at most D in X. We remark

here that as of compactness of TS (and similarly for T(Sm), m ∈ NSf
0 ), there is a

uniform injectivity radius and hence we were able to choose the height function,

cf. Section 3.2, to be constant equal to 1.

Similarly to the discussion of S-arithmetic quotients of SL2, one has

Z[S−1]
∖QS/ZSf [m]

∼= Z
∖R× ZSf

/
ZSf [m]

∼= T(Sm).
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The first isomorphism follows immediately from the fact that R × ZSf
acts

transitively on Z[S−1]\QS , which again follows from density of Z[S−1] in QSf
.

For the second isomorphism define a map

T(Sm)→ Z
∖R× ZSf

/
ZSf [m], SmZ + v 7→ Z + ı∞(v) + ZSf

[m].

This is well-defined, onto and injective, where injectivity follows from strong

approximation [Cas08, Chapter 3, Lemma 3.1]. Using exactly the same argument

as for the proof of Lemma 3.4, one obtains

SD(f)2 =
∑

m∈NSf
0

SDmSD,m(f̃m)2, (7)

where SD is the L2-Sobolev norm of degree D on C∞(TS) with respect to the

basis X on the Lie algebra of R and SD,m is the L2-Sobolev norm of degree D

on C∞(T(Sm)) with respect to the basis X.

For the sake of completeness, let us point out that there is an analog to the

Sobolev embedding theorem for functions on TS , cf. Proposition 3.3.

Proposition 3.5. Let S be an L2-Sobolev norm of degree D on C∞(TS). Then

the following are true.

1. (Sobolev Embedding) There is some D0 ∈ N0 such that D ≥ D0 implies

‖f‖∞ � S(f) for all f ∈ C∞(TS).

2. There is some L2-Sobolev norm SD+r of degree D + r, r ∈ N0, such that for

all f1, f2 ∈ C∞(TS) we have

S(f1f2)� SD+r(f1)SD+r(f2).

We leave it to the reader to adapt to this simpler situation the corresponding proofs

in the references provided for Proposition 3.3.

Remark. The above discussion also has a higher dimensional generalization, i.e. to

smooth functions on the S-arithmetic cover TnS of the n-dimensional torus Tn.

3.4. The maximal cross norm on the product We are mainly interested in

examining equidistribution properties of subsets in the product TS × XS . For

this we make use of a special kind of Sobolev norms on TS × XS , the so-called

maximal cross norms, cf. [BEG]. We will consider the following set of test functions.

Let A∞c (TS × XS) be the linear hull generated by the set of functions ϕ ⊗ f

for ϕ ∈ C∞(TS) and f ∈ C∞c (XS) where we define ϕ ⊗ f(t, x) = ϕ(t)f(x) for

all t ∈ TS and all x ∈ XS . Then A∞c (TS×XS) is a dense subspace of Cc(TS×XS).

Definition. An L2-maximal cross norm of degree (D1, D2) on A∞c (TS × XS) is a

norm SA which for F ∈ A∞c (TS ×XS) is given by

SA(F ) = inf

{∑
i

SD1,TS (ϕi)SD2,XS (fi) ; F =
∑
i

ϕi ⊗ fi

}
,

where SD1,TS and SD2,XS denote the L2-Sobolev norms of degree D1 and D2

on C∞(TS) and C∞c (XS) for some fixed bases of Lie(R) and sl2(R) respectively.
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14 M. Einsiedler, M. Luethi, N. A. Shah

In what follows we will call L2-maximal cross norms on A∞c (TS ×XS) just cross

norms. We note that for any cross norm SA on A∞c (TS ×XS) of degree (D1, D2)

there is a cross norm S ′A onA∞c (TS×XS) of degree (D′1, D
′
2) with Di ≤ D′i (i = 1, 2)

such that for all F,G ∈ A∞c (TS ×XS) we have

SA(FG) ≤ S ′A(F )S ′A(G). (8)

To this end assume F =
∑
i ϕi ⊗ fi and G =

∑
j ψj ⊗ gj . Then using

Propositions 3.3 (3) and 3.5 (2), we obtain

SA(FG) ≤
∑
i,j

SD1
(ϕiψj)SD2

(figj)

≤

(∑
i

SD1+r(ϕi)SD2+r(fi)

)∑
j

SD1+r(ψj)SD2+r(gj)


for r sufficiently large but independent of F and G. Choose D′i = Di+r for i = 1, 2

and let S ′A be the cross norm defined using SD′1 and SD′2 . Let ε > 0 arbitrary and

assume that the representations of F and G were chosen so that

S ′A(F ) + ε ≥
∑
i

SD′1(ϕi)SD′2(fi) and S ′A(G) + ε ≥
∑
j

SD′1(ψj)SD′2(gj).

Using this for the preceding estimate, one obtains

SA(FG) ≤ S ′A(F )S ′A(G) +OF,G(ε),

and as ε was arbitrary, the claim follows.

For later use, let us explicitly state the following

Proposition 3.6. There exist D1, D2 ∈ N such that the following is true. Given

any cross norm SA on A∞c (TS×XS) of degree (D′1, D
′
2) with D1 ≤ D′1 and D2 ≤ D′2

and any function F ∈ A∞c (TS ×XS), we have

‖F‖∞ �D′1,D
′
2
SA(F ).

Proof. Let ϕ⊗ f be any pure tensor, then

‖ϕ⊗ f‖∞ = ‖ϕ‖‖f‖∞.

Hence, as of Propositions 3.3 (1) and 3.5 (1), we obtain

‖ϕ⊗ f‖∞ �D′1,D
′
2
SD′1(ϕ)SD′2(f)

for all sufficiently large D′1 and D′2. The claim now follows from the triangle

inequality. 2

3.5. Comparing maximal cross-norms and L2-Sobolev norms The maximal cross-

norms defined above are well-defined on a dense subspace of C∞c (TS × XS). We

want to close the discussion with a treatment of the relation between maximal
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cross-norms and Sobolev norms on C∞c (TS × XS). This justifies our decision to

restrict to functions in A∞c (TS ×XS) for the remainder of the article.

Let us first define L2-Sobolev norms on C∞c (TS×XS). Given m ∈ NSf
0 we denote

by the operator pr[m] from C∞c (TS ×XS) to C∞c (T(Sm) ×X∞(Sm)) the level-m

projection with respect to the compact-open subgroup ZSf
[m]×K[m] of QS ×GS .

Let X denote a basis of the Lie algebra of R×G∞ and let DD(X) denote the set of

monomials of degree at most D in X. An L2-Sobolev norm of degree D is a map S
from C∞c (TS ×XS) to [0,∞) of the form

S(F )2 =
∑

m∈NSf
0

SDm
∑

X∈DD(X)

‖pr[m](1 + htXS )DXF‖22.

In order to give a clear relation between maximal cross-norms and L2-Sobolev

norms, we are going to show the following

Theorem 3.7. Let SA be a cross norm on A∞c (TS ×XS). There is an L2-Sobolev

norm S on C∞c (TS ×XS) such that the following are true.

1. For all F ∈ A∞c (TS ×XS) we have SA(F ) ≤ S(F ).

2. The space A∞c (TS × XS) ⊆ C∞c (TS × XS) is a dense subspace for the

topology defined by S. That is, for every F ∈ C∞c (TS × XS) there is a

sequence FN ∈ A∞c (TS ×XS) such that S(F − FN )
N→∞−→ 0.

This implies the following

Corollary 3.8. Let µ, ν denote two probability measures on TS×XS and assume

that ε > 0 is such that∣∣∣∣ ˆ
TS×XS

Fdµ−
ˆ
TS×XS

Fdν

∣∣∣∣ ≤ εSA(F )

for all F ∈ A∞c (TS ×XS) and some cross norm SA on A∞c (TS ×XS). Then there

is an L2-Sobolev norm S on C∞c (TS ×XS) such that∣∣∣∣ ˆ
TS×XS

Fdµ−
ˆ
TS×XS

Fdν

∣∣∣∣� εS(F )

for all F ∈ C∞c (TS ×XS).

Before we deduce Corollary 3.8 from Theorem 3.7, for the sake of completeness,

we want to quickly deduce a Sobolev embedding theorem for L2-Sobolev norms

on C∞c (TS×XS) of sufficiently large degree. Of course, it would also be possible to

prove a more general version of Proposition 3.3 instead. We fix a cross norm SA as

in Proposition 3.6 and let S be a corresponding L2-Sobolev norm on C∞c (TS×XS)

as in Theorem 3.7. Let F ∈ C∞c (TS × XS) arbitrary. Choose any sequence of

functions Fn ∈ A∞c (TS × XS) such that Fn → F as n → ∞ with respect to S.

As S bounds the L2-norm of functions on TS ×XS , we can assume without loss of

generality that Fn converges to F pointwise almost surely. In particular continuity

implies that Fn converges to F pointwise. Let now (t, x) ∈ TS×XS arbitrary, then

|F (t, x)| = lim
n→∞

|Fn(t, x)| � lim
n→∞

SA(Fn) ≤ lim
n→∞

S(Fn) ≤ S(F ).
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16 M. Einsiedler, M. Luethi, N. A. Shah

As (t, x) was arbitrary, it follows that

‖F‖∞ � S(F ) (9)

with implicit constant independent of F .

Proof of Corollary 3.8. We write µ(F ) and ν(F ) for the integral of F against µ

and ν respectively. We choose an L2-Sobolev norm as in Theorem 3.7 and assume

without loss of generality that the degree of S is sufficiently large for Equation (9)

to hold. Using Theorem 3.7, there is a function Fε ∈ A∞c (TS ×XS) such that

S(F − Fε) ≤ min{ε, 1}S(F ).

Hence we have SA(Fε) ≤ 2S(F ) and thus

|µ(F )− ν(F )| ≤ 2‖F − Fε‖∞ + |µ(Fε)− ν(Fε)|
≤ 2εS(F ) + εSA(Fε) ≤ 4εS(F ).

2

Corollary 3.8 implies that effective equidistribution of a sequence of measures

(with a rate) with respect to test functions in A∞c (TS ×XS) and a maximum cross

norm SA implies effective equidistribution (with the same rate) of the sequence with

respect to test functions in C∞c (TS × XS) and some L2-Sobolev norm S. Hence

after the proof of Theorem 3.7 we will use A∞c (TS×XS) as our set of test functions

and we will use the term L2-Sobolev norm also for cross norms. The proof of

Theorem 3.7 makes use of Fourier series. Let F ∈ C∞c (TS×XS) and m ∈ NSf
0 . The

function pr[m]F is a function on T(Sm)×X∞(Sm) and hence it has an associated

Fourier expansion, i.e. for all t ∈ TS , x ∈ XS we have

pr[m]F (t, x) =
∑
n∈Z

a(m)
n (F )(x)χ(m)

n (t), (10)

where

χ(m)
n (t) = e2πin t

Sm
(
t ∈ T(Sm)

)
,

a(m)
n (F )(x) =

1

Sm

ˆ
T(Sm)

pr[m]F (t, x)χ
(m)
−n (t)dt

(
x ∈ XS

)
.

Let X be a differential operator on TS × XS and assume that X can be written

as X = X2X1 where X1 is a differential operator on TS and X2 is a differential

operator on XS . We denote by ‖X1‖1 the total degree of the differential

operator X1. Then by Parseval’s and Fubini’s Theorems we get

‖pr[m](1+htXS )DXF‖22 =
∑
n∈Z

(2πn

Sm

)2‖X1‖1
‖(1+htX∞(Sm))

DX2a
(m)
n (F )‖22. (11)

In particular, for any L2-Sobolev norm S of degree D on C∞c (TS ×XS) we obtain

S(F )2 �
∑

m∈NSf
0

SDm
∑
n∈Z

(1 + n2D)SD,m
(
a(m)
n (F )

)2
, (12)
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where we denote by SD,m a family of L2-Sobolev norms on C∞c (X∞(Sm)) for

a uniform choice of a basis of the Lie algebra of G∞. In what follows, we will

suppress the dependence of the norm on m using the correspondence between

smooth functions on X∞(Sm) and functions on XS invariant exactly under K[m].

At first glance it might not be obvious why the right-hand side is finite. Recall

however that smoothness of F implies that the outer sum is actually a finite sum.

It suffices to prove finiteness for each of the finitely many summands. This is done

in the following

Lemma 3.9. Let F ∈ C∞c
(
T(Sm) ×X∞(Sm)

)
. Let SD be an L2-Sobolev norm of

degree D on C∞c
(
X∞(Sm)

)
. Then∑

n∈Z
(1 + n2D)SD

(
a(m)
n (F )

)2
<∞.

Proof. Let X be any differential operator on X∞(Sm), then a
(m)
n (XF ) = Xa

(m)
n (F )

as of Lebesgue’s Dominated Convergence Theorem. Let F (l) denote the l-th

derivative of F in the torus component. Note that the set K defined as the

projection of the support of F to X∞(Sm) is a compact set and that a
(m)
n (F )(x) = 0

for all x 6∈ K. Moreover, the height function is bounded on K. For every

fixed x ∈ X∞(Sm), the function defined by t 7→ XF (t, x) is smooth in t and

thus by Fubini’s Theorem we get
ˆ
X∞(Sm)

∑
n∈Z

(1 + n2D)
∣∣(1 + htX∞(Sm)(x)

)D
Xa(m)

n (F )(x)
∣∣2dx

�K

ˆ
X∞(Sm)

∑
n∈Z

(1 + n2D)
∣∣a(m)
n (XF )(x)

∣∣2dx

=

ˆ
X∞(Sm)

‖XF (·, x)‖22 + ‖XF (D)(·, x)‖22dx

= ‖XF‖22 + ‖XF (D)‖22 <∞,

where we again used Parseval’s Theorem in the first equality. Applying Fubini once

more, we can exchange integration and summation for the expression we need to

bound, i.e. letting X denote the basis of the Lie algebra of G∞ used to define SD,

we have∑
n∈Z

(1 + n2D)SD
(
a(m)
n (F )

)2
=
∑
n∈Z

(1 + n2D)
∑

X∈DD(X)

‖(1 + htX∞(Sm))
DXa(m)

n (F )‖22

�K

∑
X∈DD(X)

‖XF‖22 + ‖XF (D)‖22.

By the preceding discussion, the latter is a finite sum of finite expressions. 2

We next show that the right hand side in (12) can be bounded from above by

an L2-Sobolev norm of larger degree. Using this, we will be able to finally prove

Theorem 3.7.
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18 M. Einsiedler, M. Luethi, N. A. Shah

Lemma 3.10. Let SD be an L2-Sobolev norm of degree D on C∞c (XS), then

there is an L2-Sobolev norm S2D of degree 2D on C∞c (TS × XS) such that for

all F ∈ C∞c (TS ×XS) we have∑
m∈NSf

0

SDm
∑
n∈Z

(1 + n2D)SD
(
a(m)
n (F )

)2 � S2D(F )2

with implicit constant independent of F .

Proof. We assume that SD is defined using the basis X. We fix a generator Y

of the Lie algebra of R and let X′ = X ∪ {Y }. Define an L2-Sobolev norm S2D

on C∞c (TS ×XS) using the basis X′. We again denote by ‖X1‖1 the total degree

of the differential operator X1. Using (11), Proposition 3.1 and Lemma 3.2 one

calculates

S2D(F )2 �
∑

m∈NSf
0

S2Dm
∑

X∈D2D(X′)

∑
n∈Z

n2‖X1‖1‖(1 + htX∞(Sm))
2DX2a

(m)
n (F )‖22

=
∑

m∈NSf
0

S2Dm
∑

X∈D2D(X)

∑
n∈Z
‖(1 + htX∞(Sm))

2DXa(m)
n (F )‖22

+
∑

m∈NSf
0

S2Dm
2D∑
`=1

∑
X∈D2D−`(X)

∑
n∈Z

n2`‖(1 + htX∞(Sm))
2DXa(m)

n (F )‖22

≥
∑

m∈NSf
0

S2Dm
∑
n∈Z

(1 + n2D)
∑

X∈DD(X)

‖(1 + htX∞(Sm))
DXa(m)

n (F )‖22

=
∑

m∈NSf
0

SDm
∑
n∈Z

(1 + n2D)SD
(
a(m)
n (F )

)2
.

2

Proof of Theorem 3.7. Before we start with the proof, we introduce a natural

sequence of approximations to a compactly supported smooth function on TS×XS .

Let F ∈ C∞c (TS ×XS) arbitrary and fix N ∈ N0. We define FN by

FN (t, x) =
∑

m∈NSf
0

∑
|n|≤N

a(m)
n (F )(x)χ(m)

n (t) (t ∈ TS , x ∈ XS).

It will be convenient to set F−1 = 0. Note that FN ∈ A∞c (TS×XS) for all N ≥ −1

and that there is some D ∈ N such that

SA(FN − FN+k) ≤
∑
m∈N0

N+k∑
|n|=N+1

SD,TS (χ(m)
n )SD,XS

(
a(m)
n (F )

)
.

We also note for later use that∑
m∈NSf

0

S−Dm =
∏
p∈Sf

(1− pD)−1 <∞
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as well as ∑
n∈Z

1

(1 + n2D)α
<∞

for all α > 1
2 . Furthermore we notice that SD,TS (χ

(m)
n )� (1 +nD). Using Cauchy-

Schwarz, we obtain

SA(FN − FN+k)2 �
∑

m∈NSf
0

SDm
( N+k∑
|n|=N+1

SD,TS (χ(m)
n )SD,XS

(
a(m)
n (F )

))2

�
∑

m∈NSf
0

SDm
N+k∑
|n|=N+1

(1 + n2D)SD,XS
(
a(m)
n (F )

)2
. (13)

We now turn to the actual proof of the theorem. We assume throughout the

discussion that all Sobolev norms are chosen of sufficiently large degree for the

various Sobolev Embedding Theorems to hold. In order to show the first claim,

let F ∈ A∞c (TS×XS) arbitrary. Combining the bound from (13) with the finiteness

in Lemma 3.10 the sequence of approximations FN is a Cauchy-sequence with

respect to SA. Using the Sobolev Embedding Theorem on the product, we know

that FN converges to F pointwise, i.e. by smoothness that F is the limit of the

sequence FN with respect to SA. Hence, using the bound from (13) once again, we

find

SA(F )2 � lim
N→∞

SA(FN )2 = lim
N→∞

SA(F−1 − FN )2

� lim
N→∞

∑
m∈NSf

0

SDm
N∑

n=−N
(1 + n2D)SD,XS

(
a(m)
n (F )

)2
.

Hence the first claim of Theorem 3.7 follows from Lemma 3.10 with S of degree 2D.

For the second claim, let F ∈ C∞c (TS ×XS) and define the approximations FN
as above. Using (12) and Lemma 3.9, we know that

S2D(F − FN )2 �
∑

m∈NSf
0

S2Dm
∑
|n|>N

(1 + n4D)S2D,XS

(
a(m)
n (F )

)2 N→∞−→ 0.

As FN ∈ A∞c (TS ×XS) for all N ∈ N, the second part of Theorem 3.7 follows. 2

4. Congruence quotients and effective S-arithmetic equidistribution

In this section we want to illustrate the relation between equidistribution of

orbits in congruence quotients and equidistribution in S-arithmetic quotients.

We illustrate the relationship by proving effective equidistribution of horocycle

orbits Uy, cf. Section 2.2, for y ∈ (0,∞) as y → 0. This is not new and strictly

speaking, the equidistribution in the S-arithmetic quotient is formally not required

for what follows. However, we will later prove equidistribution of certain sparse

subsets of Uy, so that it is natural to ask whether the full set equidistributes.
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20 M. Einsiedler, M. Luethi, N. A. Shah

Moreover, the argument used here gives a simple illustration of part of the procedure

that will be applied for the equidistribution of rational points.

The effective equidistribution of the orbits Γ∞(Sm)ayU∞ for varying m ∈ ZSf

follows from a theorem by Sarnak [Sar81]. We will use this to prove equidistribution

of rational points of a certain denominator along these periodic orbits. From our

perspective, these results lie in the realm of unitary representations, which naturally

occur as follows. Given a locally compact, σ-compact group G acting continuously

on the right of a locally compact space X equipped with a Borel measure µ invariant

under some closed subgroup H ≤ G, we obtain a unitary representation of H on

the space L2
µ(X) of functions on X defined µ-almost everywhere, whose absolute

value squared is integrable with respect to µ. The unitary representation is induced

by the action of G on X and the element h ∈ H sends the element f ∈ L2
µ(X) to

the element h ·f ∈ L2
µ(X) which is given by (h ·f)(x) = f(xh) for almost all x ∈ X.

We will denote by g the map defined by the action of an element g ∈ G on X.

Note that for any f ∈ Cc(X) the function g · f is again continuous with compact

support. In particular, the measure g∗µ is the measure defined by
ˆ
X

fdg∗µ =

ˆ
X

g · fdµ (f ∈ Cc(X)).

We denote by µU1
the US-invariant measure on the periodic orbit U1 = ΓSUS .

We are interested in the behaviour of the push-forward (ay)∗µU1 as y∞ → 0. As

discussed previously, the calculation ayuta
−1
y = uy2t implies that Uy = ΓSUSay has

volume |y−2|S . As one would expect, the behaviour of long periodic orbits Uy can be

deduced from the equidistribution of long closed horocycles in X∞(Sm), m ∈ NSf
0 .

Recall that the map sending Z + t ∈ Z\ZS to Z[S−1] + t ∈ Z[S−1]\QS is an

isomorphism and the projection Z\ZS → T∞ sending Z + t to Z + t∞ is onto with

fibers homeomorphic to ZSf
. Hence [0, 1)×ZSf

is a fundamental domain for Z[S−1]

in QS . In particular, the orbit measure on U1 is given by

ˆ
XS

f(x)dµU1(x) =

ˆ
ZSf

ˆ 1

0

f(ΓSu(t∞,tSf
))dt∞dtSf

(f ∈ Cc(XS)).

As the smooth functions form a dense subset of Cc(XS), it suffices to show that

lim
y∞→0

y∈R>0×Z×Sf

ˆ
ZSf

ˆ 1

0

f(ΓS(ut∞ , utSf
)ay)dt∞dtSf

=

ˆ
XS

f(x)dνS(x)
(
f ∈ C∞c (XS)

)
.

In fact, we will prove this with a bound on the error term. Recall that

the isomorphism ψ(m) : X∞(Sm) → XS [m] maps Γ∞(Sm)g to ΓSı∞(g)K[m].

Thus Γ∞(Sm)U∞ay∞ is mapped to the set

{ΓSı∞(ut∞ay∞)K[m] ; t∞ ∈ R} = ΓSUSı∞(ay∞)K[m].

The equality of the sets follows from compactness of Γ∞(Sm)U∞ay∞ and density

of Z[S−1] in QSf
. Indeed, for arbitrary t ∈ QS we can find some n ∈ Z[S−1]
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such that u(tSf
−n) ∈ K[m]. Using un ∈ ΓS and ΓSgK[m] = ΓSg∞K[m]

whenever gSf
∈ K[m], we thus obtain

ΓSutı∞(ay∞)K[m] = ΓSut−nı∞(ay∞)K[m]

= ΓSı∞(u(t∞−n)ay∞)K[m].

Let now a ∈ AS such that aSf
= 1. In what follows, we identify a with

its projection a∞. Let µΓSUSa be the unique US-invariant probability measure

on ΓSUSa. This measure extends to a measure on XS and thus π(m)
∗µΓSUSa is

a probability measure on XS [m] with support given by ΓSUSaK[m]. As π(m)

is G∞-equivariant, the push-forward measure is invariant under U∞. Using

the isomorphism ψ(m) : X∞(Sm) → XS [m] and the preceding discussion, it

follows that π(m)
∗µΓSUSa is actually the push-forward of the unique U∞-invariant

measure µΓ∞(Sm)U∞a on the orbit Γ∞(Sm)U∞a under ψ(m). If now f ∈ C∞c (XS),

then f =
∑
m∈NSf

0

pr[m]f is a finite sum. Denote by f̃m ∈ C∞c (X∞(Sm)) the unique

function so that pr[m](f) = f̃m ◦ (ψ(m))−1 ◦ π(m). It follows that

µΓSUSa(f) =
∑

m∈NSf
0

π(m)
∗µΓSUSa

(
f̃m ◦ (ψ(m))−1

)
=

∑
m∈NSf

0

ψ(m)
∗µΓ∞(Sm)U∞a

(
f̃m ◦ (ψ(m))−1

)
=

∑
m∈NSf

0

µΓ∞(Sm)U∞a(f̃m).

Fix any basis of gR. For D ∈ N0 let SD,m denote the L2-Sobolev norm of degree D

with respect to this basis on C∞c (X∞(Sm)), and let SD denote the L2-Sobolev

norm of degree D with respect to this basis on C∞c (XS). Given y ∈ (0,∞),

the formula (4) and the above description of µΓSUSa in terms of measures on

closed horocycles in congruence quotients combined with effective equidistribution

of long horocycles [Sar81] and uniformity of the spectral gap on congruence

quotients [Sel65] imply that there is some degree D (in fact one can choose D = 1)

and some κ0 > 0 such that

|µΓSUSay (f)− νS(f)| ≤
∑

m∈NSf
0

|µΓ∞(Sm)U∞ay (f̃m)−mX∞(Sm)(f̃m)|

� y−κ0

∑
m∈NSf

0

SD,m(f̃m)�Sf
y−κ0SD(f),

where the last bound follows from Cauchy-Schwarz and Lemma 3.4.

5. Effective equidistribution of rational points in the torus and the modular surface

Let n ∈ N and set

P∞(n) =
{(

k
n , a
√
nuk/n · Γ∞

)
; k ∈ {0, 1, · · · , n− 1}

}
⊆ T∞ ×X∞.
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It is well-known that the projection of P∞(n) to T equidistributes effectively

and it was recently explained in [Lue19] that the same holds for the projection

of P∞(n) to the modular surface. However, we will have to refine this result a

bit and hence will give a complete proof of said statement here. The goal is to

show joint equidistribution with a rate. To this end we will proceed as follows.

Equidistribution for the modular surface can be improved to rational points along

pieces of closed horocycle orbits, i.e. to sets of the form

P∞,X(n;α, β) =
{
a√nuk/n · Γ∞ ; k/n ∈ [α, β]

}
, 0 ≤ α < β ≤ 1.

Using effective equidistribution for these sets, one can show effective

equidistribution of the sets P∞(n) in the following way. Given any smooth

function ϕ on the torus and a smooth function f on the modular surface, uniform

continuity of ϕ implies that P∞(n) decomposes as a disjoint union of sets of the

form

P∞(n;α, β) =
{

( kn , a
√
nuk/n · Γ∞) ; k/n ∈ [α, β]

}
⊆ T∞ ×X∞,

for 0 ≤ α < β ≤ 1 partitioning the unit interval, such that on each of these sets

the function ϕ⊗ f is, up to some small error, constant in the first component. The

choice of α and β depends on the smoothness properties of ϕ and can be captured in

the Sobolev norm of ϕ⊗f . Applying effective equidistribution of rational points in

short pieces of closed horocycle orbits will then imply the statement on the product

space.

In fact, we prove equidistribution of rational points for products of a congruence

quotient with a torus. This is then used to prove effective equidistribution of

the lift of P∞(n) to S-arithmetic extensions. For what follows, it will be useful to

introduce some additional notation. Given m,m′ ∈ ZSf , we denote by m∨m′ ∈ ZSf

the coordinate-wise maximum of m and m′. Furthermore, we denote by ∆ the

embedding of the Q-points of a group in the QS-points of the group. Let

P(n) =
{(

Z[S−1] + ∆( kn ),ΓS∆(u k
n

)
)

; k ∈ Z
}
⊆ TS ×XS

be the lift of the rational points to the S-arithmetic extension.

Lemma 5.1. Let n ∈ N and let S be a finite set of places including ∞ such

that (Sf , n) = 1. Given l,m ∈ NSf
0 , let

Πl,m : Z[S−1]
∖QS × ΓS

∖
GS → SlZ

∖R× Γ∞(Sm)
∖
G∞

denote the canonical projection. Then

Πl,mP(n) =
{

(SlZ + Sl∨m k
n ,Γ∞(Sm)uSl∨m k

n
) ; k ∈ Z

}
.

Proof. Let k ∈ Z be fixed. Using strong approximation, we can find some r ∈ Z
such that for all p ∈ Sf we have

|r − k
n |p < S−(l∨m).
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In particular, k
n = r + q for a q ∈ Q satisfying |q|p < S−(l∨m) for all p ∈ Sf .

Let b′ = k − nr, so that q = b′

n . The preceding bound combined with (Sf , n) = 1

implies that Sl∨m|b′. Thus there is some b ∈ Z such that

Z[S−1] + ∆( kn ) + SlZSf
= Z[S−1] + ı∞(Sl∨m b

n ) + SlZSf
,

ΓS∆(u k
n

)K[m] = ΓSı∞(uSl∨mb/n)K[m].

It remains to show that the map is onto this set of points. To this end let k ∈ Z
be given arbitrarily. Then |Sl∨m k

n |p ≤ p
−max{lp,mp} for all p ∈ Sf and thus

Z[S−1] + ı∞(Sl∨m k
n ) + SlZSf

= Z[S−1] + ∆(Sl∨m k
n ) + SlZSf

,

ΓSı∞(uSl∨m k
n

)K[m] = ΓS∆(uSl∨m k
n

)K[m].

2

Corollary 5.2. Let S be a finite set of places of Q containing the infinite place.

There is some L2-Sobolev norm S on C∞(TS), such that the following is true.

Let ϕ ∈ C∞(TS) and n ∈ N such that (Sf , n) = 1. Then∣∣∣∣ 1n
n−1∑
k=0

ϕ
(
∆( kn )

)
−
ˆ
TS
ϕ(x)dmTS (x)

∣∣∣∣� S(ϕ)

n
.

Proof. Assume that ϕ ∈ C∞(TS). For m ∈ NSf
0 denote by π

(m)
TS : TS → SmZ\R

the projection obtained by the isomorphism TS/SmZSf
∼= SmZ\R. We denote

by ϕ̃m ∈ C∞(SmZ\R) the unique function such that pr[m]ϕ = ϕ̃m◦π(m)
TS . If Epr[m]ϕ

denotes the integral of pr[m]ϕ on TS , then

Epr[m]ϕ =

ˆ
TS

pr[m]ϕ(x)dmTS (x) =

ˆ
SmZ\R

ϕ̃m(t)dt

combined with Lemma 5.1 and the Mean Value Theorem, imply that∣∣∣∣ 1n
n−1∑
k=0

ϕ
(
∆( kn )

)
− Eϕ

∣∣∣∣ ≤ ∑
m∈NSf

0

∣∣∣∣ 1n
n−1∑
k=0

pr[m]ϕ
(
∆( kn )

)
− Epr[m]ϕ

∣∣∣∣
=

∑
m∈NSf

0

∣∣∣∣ 1n
n−1∑
k=0

ϕ̃m(Sm k
n )−

ˆ
SmZ\R

ϕ̃m(t)dt

∣∣∣∣
≤

∑
m∈NSf

0

1

n

n−1∑
k=0

1

Sm

ˆ Sm

2

−Sm2
|ϕ̃m(Sm k

n )− ϕ̃m(Sm k
n + t

n )|dt

�
∑

m∈NSf
0

Sm

n
‖ϕ̃′m‖∞ �

1

n

∑
m∈NSf

0

SmSD,m(ϕ̃m)�D,Sf

1

n
SD(ϕ),

where the last bound followed from the Sobolev Embedding Theorem 3.3 (1) for

an L2-Sobolev norm SD,m on C∞(SmZ\R) with respect to a basis independent

of m, as well as the Cauchy-Schwarz inequality and (7) for the L2-Sobolev norm of

degree D on C∞(TS) with respect to the same basis. 2
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In order to obtain equidistribution of the rational points in the product, we want

to apply the above equidistribution in the S-arithmetic extension of the torus and

the corresponding result in the modular surface. As mentioned in the beginning, we

partition the torus into pieces on which the function varies very little and reduce it

to a problem on the S-arithmetic extension of the modular surface only. To this end

we need to show the equidistribution of rational points for pieces of the horocycle

orbits, i.e. of the sets{
a√nuN k

n
· Γ∞(N) ; k ∈ Z ∩ [nαN , nβN ]

}
(0 ≤ α < β < N).

In what follows, given real numbers a < b, we will denote [a, b]Z = [a, b]∩Z. Recall

that for a natural number N ∈ N we denote X∞(N) = Γ∞(N)\G∞.

Proposition 5.3. There is a basis X of sl2(R), some D ∈ N and positive

constants κ1, c1 > 0 such that the following is true. Let N ∈ N, a ∈ N, and

assume that 0 ≤ α < β < N satisfy β − α < 1. For all f ∈ C∞c
(
X∞(N)

)
we have∣∣∣∣ 1

|[nαa ,
nβ
a ]Z|

∑
k∈[nαa ,

nβ
a ]Z

f
(
a√nua kn

· Γ∞(N)
)
−
ˆ
X∞(N)

f(x)dx

∣∣∣∣� ac1

β − α
n−κ1SD(f),

where SD is an L2-Sobolev norm defined by the monomials of degree at most D

in X.

Proof. Given a real-valued function f ∈ C∞c (X∞(N)), define the discrepancy (for K

and γ ∈ G∞) as

DKf(x) =
1

K

K−1∑
`=0

f(xγ`)− Ef
(
x ∈ X∞(N)

)
,

where Ef is the integral of f over X∞(N). The goal is to use the spectral gap

for the action of γ = ua in combination with the right degree of averaging in the

discrepancy. Given f : X∞(N) → C, we denote by Aα,βn,a (f) the average of f

on [nαa ,
nβ
a ]Z along the closed horocycle a√nU∞ · Γ∞(N).

We note that Aα,βn,a (f − Ef ) − Aα,βn,a (DKf) is the difference between the

average Aα,βn,a (f − Ef ) and—exchanging the order of summation—an average of

the averages Aα,βn,a (f ◦ γ` − Ef ) for 0 ≤ ` < K where f ◦ γ` is defined by

precomposing f with right-multiplication by γ`. More concisely, the term in

question is the difference between an average and an average of moving averages.

Such a difference is bounded by an appropriate count of the boundary terms and

the maximum norm of the underlying sequence. Hence Proposition 3.3 (1) implies

the existence of an L2-Sobolev norm SD0
of degree D0 on C∞c (X∞(N)) such that

for general F ∈ C∞c (X∞(N)) we have∣∣Aα,βn,a (F − EF )−Aα,βn,a (DKF )
∣∣� K

|[nαa ,
nβ
a ]Z|
SD0

(F ). (14)

Let I = (− a
2nδ

, a
2nδ

) for δ ∈ (0, 1) to be determined later. For any such δ, the

map sending t ∈ I and k ∈ [nαa ,
nβ
a ]Z to uta√nua kn

·Γ∞(N) is injective. In order to

see injectivity, note that for s ∈ (−1, 1) we have

us a

2nδ
a√nua kn

= a√nu(k+ s

2nδ
) an
.
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Using the Mean Value Theorem for f and Proposition 3.3 (1) there is an L2-Sobolev

norm of degree D1 so that by (14)

Aα,βn,a (f)− Ef = nδ

a

ˆ
I

Aα,βn,a (u−t · f − Ef )dt+O( a
nδ

)SD1(f)

= nδ

a

ˆ
I

Aα,βn,a (DKu−t · f)dt+O
(

K
|[nαa ,

nβ
a ]Z|

)
nδ

a

ˆ
I

SD0
(u−t · f)dt

+O( a
nδ

)SD1(f)

Using Proposition 3.3 (2), SD0
(u−t · f) � (1 + |t|)η0SD0

(f) for some η0 > 0

depending on D0, so that

|Aα,βn,a (f)− Ef | � nδ

a|[nαa ,
nβ
a ]Z|

∑
k∈[nαa ,

nβ
a ]Z

ˆ
I

|DKf(a√nu ak+t
n
· Γ∞(N))|dt

+ Knδ

a|[nαa ,
nβ
a ]Z|
SD0

(f)

ˆ
I

(1 + |t|)η0dt+ a
nδ
SD1

(f)

The first summand is the average of |DK(f)| along On;E(N) = a√nUE · Γ∞(N),

where we denote E =
⊔
q∈ anZ∩[α,β] q + 1

nI. If E = [s, t] for s < t, we denote this

by On;s,t(N). Given a real number t, write t−(nδ) = t− a
2nδ

and t+(nδ) = t+ a
2nδ

.

Using Cauchy-Schwarz, we haveˆ
On;E(N)

|DKf(x)|dx =

ˆ
O
n;α−(nδ),β+(nδ)

(N)

1On;E(N)(x)|DKf(x)|dx

≤
√

Vol(On;E(N))

( ˆ
O
n;α−(nδ),β+(nδ)

(N)

|DKf(x)|2dx

) 1
2

.

Given 0 ≤ α′ < β′ ≤ N , denote by µN,n;α′,β′ the probability measure defined by

µN,n;α′,β′(F ) =
1

β′ − α′

ˆ β′

α′
F (a√nut · Γ∞(N))dt

(
F ∈ C∞c (X∞(N))

)
.

Then it follows from the preceding bound, that

|Aα,βn,a (f)− Ef | �
(Vol(O

n;α−(nδ),β+(nδ)
(N))

Vol(On;E(N))

) 1
2

µN,n;α−(nδ),β+(nδ)

(
|DKf |2

) 1
2 (15)

+
(
1 + a

nδ

)1+η0 K
Vol(On;E(N))(1+η0)SD0

(f) + a
nδ
SD1

(f),

Using effective equidistribution of pieces of closed horocycle orbits, cf. [KM96], we

know that

µN,n;α−(nδ),β+(nδ)(F ) =

ˆ
X∞(N)

FdmX∞(N) +O
(

n−κ0√
β−α+n−δa

)
SD2(F ) (16)

for all F ∈ C∞c (X∞(N)) ⊕ C1X∞(N), for some κ0 > 0 and some L2-Sobolev

norm of degree D2, where neither the implicit constant nor κ0 depend on N by

the uniformity of the spectral gap, cf. [Sel65]. We will apply this bound to the
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function F = (DKf)2. We first try to control the error term on the right of (16).

To this end we use Proposition 3.3 (3) to find some L2-Sobolev norm of degree D3,

such that for all F, F̃ ∈ C∞c (X∞(N)) we have

SD2
(FF̃ )� SD3

(F )SD3
(F̃ ).

In order to control SD3
(DKf) use Proposition 3.3 (2) in combination with the

choice γ = ua to find some exponent c0 > 0 depending only on the degree D3, such

that

SD3(DKf)� 1

K

K−1∑
k=0

(1 + ka)c0SD3(f)� (aK)c0SD3(f).

Hence we have shown

SD2

(
(DKf)2

)
� (aK)2c0SD3

(f)2.

We now turn to bounding the L2-norm of DKf on X∞(N), i.e. the first term in

the expression resulting from (16). As of [Sel65] there is some ε0 > 0 independent

of N and without loss of generality less than 1
2 such that for all k ∈ N we have

∣∣〈uk · f, f〉L2(X∞(N)) − |Ef |2
∣∣� (

1 + k
)−2ε0SD4

(f)2.

The independence of N is known as uniform effective decay of matrix coefficients

for the action of G∞ on congruence quotients. For the explicit calculation of the

Harish-Chandra spherical function, we note that the maximal singular value of the

matrix ut is comparable to 1+|t| and refer the reader to [Oh02, Sect. 3.7] for further

details. Observe that for any sequence (xk)k∈N we have

K−1∑
k1=1

k1−1∑
k2=0

xk1−k2 =

K−2∑
k1=0

K−1∑
k2=k1+1

xk2−k1 . (17)

Combining these two facts and using that f is real-valued we obtain

ˆ
X∞(N)

(DKf)2dmX∞(N) ≤
1

K2

K−1∑
k1,k2=0

∣∣〈u(k1−k2)a · f, f〉L2(X∞(N)) − E2
f

∣∣
� 1

K2

K−1∑
k1=1

k1−1∑
k2=0

∣∣〈u(k1−k2)a · f, f〉L2(X∞(N)) − E2
f

∣∣
+

1

K

∣∣Ef2 − E2
f

∣∣
� 1

K2

K−1∑
k1=1

k1−1∑
k2=0

(
1 + (k1 − k2)a

)−2ε0SD4
(f)2 +K−1SD0

(f)2.
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It remains to bound the first sum. To this end one calculates

1

K2

K−1∑
k1=1

k1−1∑
k2=0

(
1 + (k1 − k2)a

)−2ε0 ≤ 1

aK2

K−1∑
k1=1

ˆ 1+k1a

1

t−2ε0dt

≤ 1

a(1− 2ε0)K2

K−1∑
k1=1

(1 + k1a)1−2ε0

≤ 1

a2(1− 2ε0)K2

ˆ 1+Ka

1+a

t1−2ε0dt

� (1 +Ka)2−2ε0

(2− 2ε0)(1− 2ε0)(Ka)2

� (1 +Ka)−2ε0 .

Thus, combining the two steps we obtainˆ
X∞(N)

(DKf)2 � (1 + aK)−2ε0SD4
(f)2 +K−1SD0

(f)2 (18)

for some L2-Sobolev norm of degree D4. As |E| � β−α
nδ

, we have

Vol(On;E(N)) � β−α
nδ−1 .

We also note that

Vol(On;α−(nδ),β+(nδ)(N)) = n(β − α+ a
nδ

).

Let D = max{D0, . . . , D4}, so that SDi � SD. Combining this with the bounds

from (15), (16) and (18), denoting c1 = max{1+η0, c0}, and plugging in the bounds

for the volumes of the pieces On;E(N) and On;α−(nδ),β+(nδ)(N) respectively, we

found that

|Aα,βn,a (f)− Ef | � SD(f)
{(

nδ(β−α+n−δa)
β−α

) 1
2
[

1
(1+aK)ε0 + n−κ0/2(aK)c1

(β−α+n−δa)1/4 +K−
1
2

]
+ Knδ−1

(β−α)(1+η0)

(
1 + a

nδ

)1+η0

+ a
nδ

}
� ac1SD(f)

{(
nδ(β−α+n−δa)

β−α

) 1
2
[
K−ε0 + n−κ0/2Kc1

(β−α+n−δa)1/4 +K−
1
2

]
+ Knδ−1

(β−α)(1+η0)

(
1 + 1

nδ

)1+η0

+ 1
nδ

}

We can always assume that δ, κ0 and ε0 are sufficiently small. In particular, we

assume that 0 < δ < min{ ε0κ0

c1+ε0
, 1− ε0κ0

2c1+ε0
}. This implies, that

κ1 = min
{
ε0

κ0

2ε0+2c1
− δ

2 ,
κ0−δ

2 − c1 κ0

2ε0+2c1
, 1− δ − κ0

2ε0+2c1
, δ
}
,

is a positive number. If we choose K � n
κ0

2ε0+2c1 and assume that β−α+n−δa ≤ 1,

we finally obtain

|Aα,βn,a (f)− Ef | � ac1

β−αn
−κ1SD(f).

2
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For XS , the equidistribution of rational points on long horocycles follows

from Proposition 5.3 by combining the relation between rational points on

long horocycles in XS and rational points on long horocycles in congruence

quotients X∞(Sm), m ∈ NSf
0 , as explicated in the proof of Corollary 5.2. We

will not use this later and thus leave this case to the reader.

As a corollary, we can now show effective equidistribution of the rational points

in the product of a torus and a congruence quotient. More generally, we have the

following

Corollary 5.4. There are η1, κ2 > 0, fixed bases X1,X2 of Lie(R) and sl2
respectively, and a degree D ∈ N such that for all N1, N2, a, b ∈ N, for all

functions ϕ ∈ C∞(N1Z\R) and f ∈ C∞c (X∞(N2)), and for all n ∈ N, we have∣∣∣∣ 1

nN1N2

nN1N2−1∑
k=0

ϕ(N1Z+ak
n )f(Γ∞(N2)u bk

n

a−1√
n
)−EϕEf

∣∣∣∣� (ab)η1n−κ2S1(ϕ)S2(f),

where S1,S2 denote the L2-Sobolev norm of degree D with respect to X1 and X2

on C∞(N1Z\R) and C∞c (X∞(N2)) respectively.

Proof. We can assume that f ∈ C∞c (X∞(N2)) ⊕ C1X∞(N2) and in particular we

assume Eϕ = Ef = 0. Using Proposition 5.3, we can assume without loss of

generality that ϕ is non-constant. Let δ ∈ (0, 1) arbitrary. By the Mean Value

Theorem, we have

d(s, t) < δ =⇒ |ϕ(s)− ϕ(t)| < δ‖ϕ′‖∞
(
s, t ∈ N1Z

∖R).
Set Kδ = bN1

δ c and write

N1Z
∖R =

[
Kδδ,N1

)︸ ︷︷ ︸
=PKδ

t
Kδ−1⊔
l=0

[
lδ, (l + 1)δ

)︸ ︷︷ ︸
=Pl

,

and note that by 3.3 (1), for all tl ∈ Pl, if t ∈ Pl, then ϕ(t) = ϕ(tl) + O(δ)SDT(ϕ)

where SDT is some L2-Sobolev norm on C∞(N1Z\R) of degree DT ∈ N. For the

remainder the points {tl; l = 0, . . . ,Kδ} ⊆ N1Z\R are chosen so that tl ∈ Pl and

we denote zl = ϕ(tl). We will write

Bn(ϕ, f) =
1

nN1N2

nN1N2−1∑
k=0

ϕ(N1Z + ak
n )f(Γ∞(N2)u bk

n
a−1√

n
).

Note that the sum might contain some multiplicity which we will have to take

into account. In total, the interval [0, N1) contains nN1

(a,nN1) -many points of the

form ak
n modN1 with 0 ≤ k < nN1N2. In order to see this we examine the

map Z/nN1Z → Z/nN1Z given by k 7→ ak. Denote by L the lowest common

multiple of a and nN1. The kernel of the map then is a cyclic subgroup generated

by L
a and in particular has cardinality nN1

L/a = (a, nN1), or alternatively, the map

is (a, nN1)-to-one. Thus the image has cardinality nN1

(a,nN1) and as we let k run
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through a full set of representatives of Z/nN1Z, the claim follows. Using this, we

can rewrite

Bn(ϕ, f) =
1

N2

N2−1∑
r=0

(a, nN1)

nN1

Kδ∑
l=0

∑
k∈naPl∩Z

ϕ(N1Z + ak
n )f(Γ∞(N2)u

b
rnN1+k

n
a−1√

n
).

Given 0 ≤ r < N2, let

Bn,r =
(a, nN1)

nN1

Kδ∑
l=0

∑
k∈naPl∩Z

ϕ(N1Z + ak
n )f(Γ∞(N2)u

b
rnN1+k

n
a−1√

n
).

Using the notation introduced and applying Proposition 5.3, assuming δ < a
b , we

have ∣∣∣ 1

|naPl ∩ Z|
∑

k∈naPl∩Z
f(Γ∞(N2)u

b
rnN1+k

n
a−1√

n
)
∣∣∣� δ−1abc1−1n−κ1SD(f)

for some degree-D L2-Sobolev norm SD on C∞c (X∞(N2)), where we assume without

loss of generality that d was chosen so that the Sobolev Embedding Theorem 3.3 (1)

applies. We also used that the U∞-orbit of Γ∞(N2) identifies with R\N2Z, which

implies that the bound is valid independent of the value of r. Next we note

that |naPl∩Z| � δ
n
a and thus again denoting by L the lowest common multiple of a

and nN1, we get
|naPl∩Z|

nN1/(a,nN1) � δ
n
L . Note next that N1 � δKδ and thus Kδδ

n
L ≤ 1.

Hence combining all these, we find

|Bn,r| �
∣∣∣Kδ−1∑
l=0

zl
|naPl∩Z|

nN1/(a,nN1)
1

|naPl∩Z|

∑
k∈naPl∩Z

f(Γ∞(N2)u
b
rnN1+k

n
a−1√

n
)
∣∣∣

+ δSDT(ϕ)
∣∣∣Kδ−1∑
l=0

|naPl∩Z|
nN1/(a,nN1)

1
|naPl∩Z|

∑
k∈naPl∩Z

f(Γ∞(N2)u
b
rnN1+k

n
a−1√

n
)
∣∣∣

+
|naPKδ∩Z|

nN1/(a,nN1)‖ϕ‖∞‖f‖∞
� δ−1abc1−1n−κ1‖ϕ‖∞Kδδ

n
L + δSDT(ϕ)‖f‖∞Kδδ

n
L + δ nL‖ϕ‖∞‖f‖∞

�
(
δ−1abc1−1n−κ1 + 2δ

)
SD′(ϕ)SD(f),

where DT ≤ D′ was chosen so that Proposition 3.5 (1) applies. Choose κ2 = κ1

2

and η1 = max{1, c1}. If n−κ2 < a
b , then we can choose δ = n−κ2 and obtain

|Bn(ϕ, f)| ≤ 1

N2

N2−1∑
r=0

|Bn,r| � (ab)η1n−κ2SD′(ϕ)SD(f).

Otherwise, we have (ab)η1n−κ2 ≥ a2b
b ≥ 1 and thus for these n the inequality holds

with implicit constant equal to two. This proves the Corollary. 2

We can now prove an effective equidistribution statement for rational points of

a certain denominator along expanding closed horospheres.
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Corollary 5.5. Let F ∈ A∞c (TS ×XS), a, b ∈ N. Then∣∣∣∣ 1n
n−1∑
k=0

F
(
Z[S−1] + ∆(akn ),ΓS∆(ubk/n)a−1√

n

)
−
ˆ
TS×XS

F

∣∣∣∣ ≤ C(ab)η1n−κ2S(F ),

for positive constants κ2, C, η1 independent of n, S and F , and some L2-Sobolev

norm S on A∞c (TS ×XS) that does not depend on F or n.

Proof. It suffices to prove that for any pure tensor F = ϕ⊗ f we have∣∣∣∣ 1n
n−1∑
k=0

ϕ
(
Z[S−1] + ∆(akn )

)
f
(
ΓS∆(ubk/n)a−1√

n

)
−
ˆ
TS
ϕ

ˆ
XS

f

∣∣∣∣
≤ C(ab)η1n−κ2STS (ϕ)SXS (f),

where C and κ2 do not depend on n, S and F . But this is a by now immediate

consequence of Lemma 5.1, Corollary 5.4, Lemma 3.4, Equation (7) and the

Cauchy-Schwarz inequality. Note that we have to apply Corollary 5.4 to the

pure level components with multiplicative parameters of the form Sla and Smb

for varying l,m ∈ NSf
0 . 2

6. Effective equidistribution of degree-d residues

In this section we will prove Theorem 1.1. Given g ∈ GS and (t, x) ∈ TS × XS ,

we write (t, x)g = (t, xg). Let S be a finite set of places of Q such that ∞ ∈ S

and (Sf , n) = 1 and define

P(n)× =
{(

Z[S−1] + ∆( kn ),ΓS∆(uk/n)
)

; (k, n) = 1
}
⊆ TS ×XS .

The set P(n)× is an invariant subset of TS × XS for the action ZSf y TS × XS

given by Mm(t, x) = (S2mt, x)aS−m , where m ∈ ZSf , t ∈ QS and x ∈ ΓS\GS .

Indeed, S2m is a unit mod n and hence the equality ΓSu k
n
aS−m = ΓSaS−muS2m k

n

together with aS−m ∈ ΓS implies the claim. For every a ∈ AS the set P(n)×a is

also invariant under ZSf , as AS is abelian.

6.1. Effective mixing for the ×q map The proof of Theorem 1.1 will exploit

effective mixing of the action M on the torus component, which we want to discuss

in the beginning. In fact, the proof of the desired result works quite a bit more

generally, i.e. we will prove effective mixing for a class of toral endomorphisms on

the S-arithmetic extension.

For R ∈ (0,∞)n, denote |R| =
∏n
i=1Ri and CR =

∏n
i=1[0, Ri) ⊆ Rn. We denote

by T(R) the torus T(R) =
∏n
i=1 T(Ri). The Pontryagin dual T̂(R) ∼= Zn is given

by the family of functions

χn,R : T(R)→ S1, x 7→ exp(2πi
∑n
i=1

xini
Ri

).

For what follows, we will use the following notation: Given v ∈ Rn and R ∈ (0,∞)n,

we denote by v/R ∈ Rn the vector obtained by componentwise division of the entries
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of v by the corresponding entries of R. For any smooth function f : T(R)→ C, we

have the Fourier series expansion

f =
∑
n∈Zn

αn(f)χn,R, where αn(f) =
1

|R|

ˆ
CR

f(t)χn,R(t)dt,

and the convergence for the series holds both for the uniform topology and the

topology defined by the L2-norm. The L2-norm of f ∈ C(T(R)) is then given by

the norm of the sequence of Fourier coefficients (αn(f))n∈Zn in l2(Zn), i.e.

‖f‖22 =
∑
n∈Zn
|αn(f)|2.

Note that |R|a0(f) =
´
T(R)

f . Differentiability is characterized by the rate of

convergence of the Fourier series: For a continuous function f on T(R) to be k

times continuously differentiable implies
∑

n∈Zn |αn(f)|2‖n/R‖2k <∞. Combining

these, any degree-D L2-Sobolev norm S on C∞(T(R)) hence satisfies

S(f)2 �
∑
n∈Zn
|αn(f)|2(1 + ‖n/R‖)2D.

Let N ∈ Nn. A map T : T(N) → T(N) is an expanding endomorphism of T(N)

if it is defined by multiplication with a matrix A ∈ Mn(Z) ∩ GLn(Q) which is

diagonalizable over C and whose eigenvalues are all larger than 1 in absolute value.

We will denote such a map by TA to indicate its relation to the matrix A. We can

now prove the following

Proposition 6.1. Let N ∈ Nn and let TA : T(N) → T(N) be an expanding

endomorphism. There exists some % > 0 independent of N such that the following

is true. If D ∈ N and f, g ∈ C∞(T(N)). Then

|〈f ◦ TA, g〉L2(T(N)) − α0(f)α0(g)| � |N |De−%DS(f)S(g),

where S is the L2-Sobolev norm on C∞(T(R)) defined by

S(f)2 =
∑
n∈Zn
|αn(f)|2(1 + ‖n/N‖)2D.

The implicit constant depends only on A.

Proof. Using Fourier series, the orthogonality relations for unitary characters and

Cauchy-Schwarz this becomes a relatively simple calculation:

|〈f ◦ TA, g〉L2(T(N)) − α0(f)α0(g)| =
∣∣∣∣ ∑
n∈Zn\{0}

αn(f)αtAn(g)

∣∣∣∣
≤ ‖f‖2

( ∑
n∈Zn\{0}

|αtAn(g)|2
) 1

2

≤ ‖f‖2S(g) sup
n∈Zn\{0}

1

‖tAn/N‖D
.
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If A is diagonalizable over C, then so is tA and thus fix an eigenbasis B = (vi)
n
i=1

of Cn. Denote by λi ∈ C the eigenvalue corresponding to vi and define a norm

‖α1v1 + · · ·+ αnvn‖B = max {|αi| ; i = 1, . . . , n} .

Then ‖tAv‖B ≥ ‖v‖Bmin {|λi| ; i = 1, . . . , n}. Hence setting

% = log min {|λi| ; i = 1, . . . , n} ,

the claim follows from equivalence of norms on finite dimensional vector spaces. 2

Remark. The implicit constant in Proposition 6.1 depends only on the choice of the

norm ‖·‖B, i.e. the choice of an eigenbasis for the matrix tA. Given a commuting

family of diagonalizable matrices {Ai; i ∈ I} as in the proposition, the implicit

constant can hence be chosen uniformly for this family.

By Proposition 6.1 we obtain effective mixing of expanding toral endomorphisms

on the S-arithmetic extension of the torus. To this end we extend TA to a

map TA : Zn\ZnS → Zn\ZnS by TA(Zn + x) = Zn +Ax.

Note that the isomorphism Z[S−1]n\QnS ∼= Zn\ZnS is TA equivariant. Therefore

this defines an extension of TA to an endomorphism of Z[S−1]n\QnS .

If `(1), . . . , `(n) ∈ NSf
0 are arbitrary, then the same is true for the

isomorphism Zn\ZnS/(ZSf
[`(1)]× · · · × ZSf

[`(n)]) ∼= T(S`
(1)

, . . . , S`
(n)

). For what

follows, we abuse notation as follows. Given a matrix ` ∈ NSf×n
0 and denoting

by `(1), . . . , `(n) ∈ NSf
0 the columns of `, we denote

ZSf
[`] = ZSf

[`(1)]× · · · × ZSf
[`(n)].

Similarly, we denote by S` ∈ Rn the vector (S`
(1)

, . . . , S`
(n)

).

Corollary 6.2. Let A be an expanding toral endomorphism, S be a finite set

of places of Q. For every degree-2D L2-Sobolev norm S on C∞(TnS) and for

all f, g ∈ C∞(TnS) we have∣∣∣∣〈f ◦ TA, g〉L2(TnS) −
ˆ
TnS
f

ˆ
TnS
g

∣∣∣∣�S e−%DS(f)S(g),

with % > 0 as in Proposition 6.1.

Proof. Let `, `′ ∈ NSf×n
0 and assume that f, g ∈ C∞(TnS) are invariant under ZSf

[`]

and ZSf
[`′] respectively. Recall that ` ∨ `′ ∈ NSf×n

0 denotes the coordinate-wise

maximum of ` and `′, so that ZSf
[` ∨ `′] ≤ ZSf

[`] and ZSf
[` ∨ `′] ≤ ZSf

[`′]. In

particular, both f and g are invariant under ZSf
[` ∨ `′].

Let f̃`∨`′ , g̃`∨`′ ∈ C∞(T(S`∨`
′
)) such that f = f̃`∨`′◦π(`∨`′)

TnS
and g = g̃`∨`′◦π(`∨`′)

TnS
.

As π
(`∨`′)
TnS

◦ TA = TA ◦ π(`∨`′)
TnS

, it follows that

〈f ◦ TA, g〉L2(TnS) = 〈f̃`∨`′ ◦ TA, g̃`∨`′〉L2(T(S`∨`′ )).

Using Proposition 6.1, we know∣∣∣∣〈f ◦ TA, g〉L2(TnS) −
ˆ
TnS
f

ˆ
TnS
g

∣∣∣∣� |S`∨`′ |De−%DS(f̃`∨`′)S(g̃`∨`′).
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If q`∨`
′

` : T(S`∨`
′
) → T(S`) denotes the quotient map and f̃` ∈ C∞(T(S`)) is

the unique function satisfying f = f̃` ◦ π(`)
TnS

, then f̃`∨`′ = f̃` ◦ q`∨`
′

` and similarly

to the proof of Lemma 3.4 we have X(f̃`∨`′) = X(f̃`) ◦ q`∨`
′

` for any differential

operator X in the Lie algebra of Rn. If λ` and λ`∨`′ denote the Haar probability

measures on T(S`) and T(S`∨`
′
) respectively, then λ` = (q`∨`

′

` )∗λ`∨`′ . Combining

these, we find S(f̃`∨`′) = S(f̃`) and similarly for g. Clearly |S`∨`′ |D ≤ |S`+`′ |D.

Hence ∣∣∣∣〈f ◦ TA, g〉L2(TnS) −
ˆ
TnS
f

ˆ
TnS
g

∣∣∣∣� |S`+`′ |De−%DS(f̃`)S(g̃`′). (19)

Using this, the proof now works just like the effective equidistribution of periodic

horocycle orbits discussed in Section 4.

Given ` ∈ NSf×n, denote by f̃`, g̃` ∈ C∞(T(S`)) the unique functions so

that pr[`]f = f̃` ◦ π(`)
TnS

and pr[`]g = g̃` ◦ π(`)
TnS

. Here, pr[`] denotes componentwise

application of the operator pr[`(i)], i = 1, . . . , n. Let SD,` denote the L2-Sobolev

norm of degree D on C∞(T(S`)) and S2D the L2-Sobolev norm of degree 2D

on C∞(TnS). Then what we just showed combined with the Cauchy-Schwarz

inequality and Equation (7) implies∣∣∣∣〈f ◦ TA, g〉L2(TnS) −
ˆ
TnS
f

ˆ
TnS
g

∣∣∣∣
≤

∑
`,`′∈NSf×n

∣∣∣∣〈pr[`]f ◦ TA, pr[`′]g〉L2(TnS) −
ˆ
TnS

pr[`]f

ˆ
TnS

pr[`′]g

∣∣∣∣
� e−%D

∑
`,`′∈NSf×n

|S`+`
′
|DSD,`(f̃`)SD,`(g̃`′) ≤ e−%DS2D(f)S2D(g).

2

Corollary 6.3. Let q ∈ N \ {1}. Then the ×q-map Tq on TS is exponentially

mixing at arbitrary rate, i.e. given D ∈ N, there is some L2-Sobolev norm S
depending only on D, such that for all f, g ∈ C∞(TS), we have∣∣∣∣〈f ◦ Tq, g〉L2(TS) −

ˆ
TS
f

ˆ
TS
g

∣∣∣∣� q−DS(f)S(g).

The implicit constant is independent of q.

Proof. The family of ×q-maps, q ∈ N \ {1}, is a commuting family of expanding

toral endomorphisms with smallest eigenvalue q. 2

For the remainder of the paper we will look at the ×S2m map on TS and the

action of aS−m on XS . The latter is also mixing with a spectral gap. In fact this

holds for any element which is not contained in a compact subgroup.

Proposition 6.4. There are an L2-Sobolev norm S of degree D on C∞c (XS) and

a positive constant %0 such that for all f1, f2 ∈ C∞c (XS) and for all g ∈ GS we have∣∣∣∣〈g · f1, f2〉 −
ˆ
XS

f1

ˆ
XS

f2

∣∣∣∣� ~g~
−%0

S S(f1)S(f2).
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The degree of S, the implicit constant and %0 are independent of S.

Remark. In the discussions to follow, g will be a diagonal matrix with diagonal

entries of all components given by Sm and S−m with m ∈ ZSf fixed. In this

case, ~g~
−%0

S ≤ S−%1m for some %1 > 0 where m ∈ NSf
0 denotes the vector whose

entries are the absolute values of the entries of m.

We do not give a proof of Proposition 6.4, but refer the reader to [Oh02]

and [GMO08, p. 19] for more details. Assuming Proposition 6.4, we can deduce

that ZSf y TS ×XS as introduced in the beginning of this section is mixing.

Proposition 6.5. Let S be a finite set of primes containing ∞ and m ∈ ZSf .

Then Mm is a mixing transformation on TS × XS. Moreover, there exist % > 0

and an L2-Sobolev norm S on A∞c (TS ×XS), both independent of m, such that for

all F,G ∈ A∞c (TS ×XS) we have∣∣∣∣〈F ◦Mm, G〉 −
ˆ
XS

F

ˆ
XS

G

∣∣∣∣� S−%mS(F )S(G).

The constants do not depend on S.

Proof. This follows immediately from Corollary 6.3 and Proposition 6.4. Assume

first that F = ϕ⊗f and G = ψ⊗g with ϕ,ψ ∈ C∞(TS) and f, g ∈ C∞c (XS). Then

|〈F ◦Mm, G〉 − EFEG| ≤
∣∣〈ϕ ◦ TS2m , ψ〉 − EϕEψ

∣∣‖f‖2‖g‖2
+ |Eϕ||Eψ|

∣∣〈f ◦ aSm , g〉 − EfEg∣∣
� S−DmSD,TS (ϕ)SD,TS (ψ)SD,XS (f)SD,XS (g)

+ ~aSm~
−%0

S SD,TS (ϕ)SD,TS (ψ)SD,XS (f)SD,XS (g),

where D was chosen so that Proposition 3.3 (1) holds on TS and so that SD,XS
is a valid choice in Proposition 6.4. Using the remark following Proposition 6.4,

we deduce the claim. For general functions in A∞c (TS × XS), the statement now

follows from the triangle inequality. 2

6.2. An adelic discrepancy operator In order to complete the proof of

Theorem 1.1, we will need a similar tool like the discrepancy operator introduced

in the proof of Proposition 5.3. Given n ∈ N and x > 0 we denote by P(n, x) the

set of primes p coprime to n and satisfying 1 < p < x. We denote by πn(x) the

cardinality of P(n, x). We fix 0 < β < 1
2 and focus on primes contained in P(n, nβ).

Note that throughout this section we allow implicit constants to depend on β.

This dependency is often implicit. Let π : (0,∞) → N denote the prime counting

function, i.e. π(x) is defined to be the number of primes p satisfying p ≤ x. We

know from the Prime Number Theorem, that

π(x) � x

log x

for sufficiently large x. Let ω(n) denote the number of distinct prime divisors of n,

then

ω(n) ≤ log n,
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and hence

π(nβ) ≥ πn(nβ) ≥ π(nβ)− log n� π(nβ) (20)

for sufficiently large n. We will later depend on the stronger result that ω(n) log log n
logn

is bounded [HW08, Sec. 22.10]. We let Sn,β = {∞}∪P(n, nβ). Given some natural

number d ∈ N, a function F ∈ C∞c (TSn,β ×XSn,β ) and (t, x) ∈ TSn,β ×XSn,β , we

define

(Dn,β,dF )(t, x) =
1

πn(nβ)

∑
p∈P(n,nβ)

F ◦Mdep(t, x)− EF , (21)

where ep ∈ ZP(n,nβ) is defined by ep(q) = δp,q. Using Proposition 6.5, we can bound

the L2-norm of Dn,β,df .

Lemma 6.6. There exist an L2-Sobolev norm S on A∞c (TSn,β ×XSn,β ) and σ > 0

independent of n and β such that for all real-valued F ∈ A∞c (TSn,β × XSn,β ) we

have ˆ
TSn,β×XSn,β

(Dn,β,dF )2 � βn−σβS(F )2. (22)

Proof. We can always choose a weaker exponent in Proposition 6.5 so that d% < 1.

Combining Proposition 3.3 (1) with Proposition 6.5, for sufficiently large n we

obtainˆ
TSn,β×XSn,β

(Dn,β,dF )2 ≤ 1

πn(nβ)2

∑
p,q∈P(n,nβ)

|〈F ◦Md(ep−eq), F 〉 − E
2
F |

� 1

πn(nβ)
|EF 2 − E2

F |+
S(F )2

πn(nβ)2

∑
p∈P(n,nβ)

p−d%
∑

1<q<p

q−d% (23)

� S(F )2

πn(nβ)
+
S(F )2

πn(nβ)2

∑
p∈P(n,nβ)

p1−d% . (24)

The last inequality is obtained using that∑
1<q<p

q−d% ≤
ˆ p

1

t−d%dt� p1−d% .

Let δ > 0 arbitrary, then we similarly get

∑
p∈P(n,nβ)

pδ ≤
ˆ nβ+1

1

tδdt� nβ(1+δ). (25)

Using that πn(nβ) � nβ

β logn for sufficiently large n, we obtain that for all d ∈ N
ˆ
XSn,β

(Dn,β,df)2 � βS(f)2(n−β + n−βd%)(log n)2 � βn−σβS(f)2 (26)

for some σ > 0. 2
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The next step is to bound S(Dn,β,df).

Corollary 6.7. Let S be an L2-Sobolev norm on A∞c (TSn,β × XSn,β ). There is

a positive constant c depending only on the degree of the norm S such that for

all F ∈ A∞c (TSn,β ×XSn,β ) we have

S(Dn,β,dF )� nβcS(F ),

where the implicit constant depends only on the degree of S and on β.

Proof. Using the bound in (25) and Proposition 3.3 (2), we find some c > 0

depending only on the degree of S such that

S(Dn,β,df) ≤ 1

πn(nβ)

∑
p∈P(n,nβ)

p
c
2S(f)� (log n)nβ( c2 +1)

nβ
S(f)� nβcS(f).

The implicit constant depends on the bounds given by (25), the inequalities (20),

and the bound log n� nβc/2. In particular, it depends only on β and c. 2

Given a, b, n, l ∈ N with (ab, n) = 1, define

P×d∞ (n; a, b) = {(Z + akd

n ,Γ∞ubkd/na
−1√
n
) : (k, n) = 1} ⊆ T∞ ×X∞

P×dβ (n; a, b) =
{(

Z[(Sn,β)−1] + ∆(ak
d

n ),ΓSn,β∆(ubkd/n)a−1√
n

)
: (k, n) = 1

}
⊆ TSn,β ×XSn,β .

We denote by µ×dn;a,b the normalized counting measure on P×d∞ (n; a, b) and by µ×dn,β;a,b

the normalized counting measure on P×dβ (n; a, b). Using Lemma 5.1, we know that

the natural projection

TSn,β ×XSn,β → T∞ ×X∞

maps the set P×dβ (n; a, b) injectively onto P×d∞ (n; a, b) and thus the push-forward

of µ×dn,β;a,b under the natural projection equals µ×dn;a,b.

Lemma 6.8. Let n, a, b, d as above, then

|P×d∞ (n; a, b)| � φ(n)

dω(n)
,

where φ(n) denotes the Euler totient function.

Proof. Since (n, ab) = 1, we can assume without loss of generality that a = b = 1.

Furthermore, using the Chinese Remainder Theorem, we know that m ∈ (Z/nZ)×

is a degree-d residue mod n, i.e. there is some k ∈ (Z/nZ)× such that kd ≡ m modn,

if and only if m is a degree-d residue mod pνp(n) for all primes p dividing n where

νp(n) = sup{ν ∈ N : pν |n}.

In particular, we have

|P×d∞ (n; 1, 1)| =
∏
p|n

|P×d∞ (pνp(n); 1, 1)|
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and it suffices to consider prime powers. Fix an arbitrary prime p and r ∈ N. Define

fd :
(Z/

prZ
)× → (Z/

prZ
)×
, k 7→ kd.

By the First Isomorphism Theorem, we know that

|P×d∞ (pr; 1, 1)| = pr−1(p− 1)

|ker fd|
.

In particular, we know that
(
d, pr−1(p− 1)

)
= 1 =⇒ |P×d∞ (pr; 1, 1)| = φ(pr). Now

assume that
(
d, pr−1(p− 1)

)
6= 1 and assume that p is odd. In that case, it is well

known that (Z/prZ)× is a cyclic group, i.e.

(Z
/
prZ)× ∼= Z/

pr−1(p− 1)Z

and as in general

m|dk ⇐⇒ m

(m, d)
|k,

the kernel of multiplication by d in Z/mZ is given by

{k m
(m,d) : k = 0, . . . , (m, d)− 1},

i.e. the kernel of fd in Z/pr−1(p− 1) has cardinality
(
d, pr−1(p− 1)

)
. In particular

|P×d∞ (pr; 1, 1)| = φ(pr)

(φ(pr), d)
.

If p = 2 and r ≥ 2, then (Z/
2rZ
)× ∼= Z/

2Z× Z/
2r−2Z.

Let x ∈ Z/2Z and k ∈ Z/2r−2Z. Then d(x, k) = 0 if and only if 2|dx and 2r−2|dk.

As 2|d by assumption, we know that 2|dx. Let d = (2r−2, d)d′. If (2r−2, d) = 2r−2,

then d(x, k) = 0 for all (x, k) ∈ Z/2Z × Z/2r−2Z. Otherwise let (2r−2, d) = 2m.

Then in the second component the kernel of multiplication by d is generated

by 2r−2−m and thus has cardinality 2m = (2r−2, d) and in particular

|P×d∞ (2r; 1, 1)| = φ(2r)

2(2r−2, d)
.

Combining all of these, we obtain

|P×d∞ (n; 1, 1)| =
∏
p|n

|P×d∞ (pνp(n); 1, 1)| � φ(n)
∏
p|n

1

(pνp(n), d)
� φ(n)

dω(n)
.

2

Proof of Theorem 1.1. In what follows, we denote by µn,β;a,b the normalized

counting measure over the rational points as in Corollary 5.5 for the places Sn,β .

Assume that F ∈ A∞c (TSn,β ×XSn,β ) is real-valued. Note that the set P×dβ (n; a, b)
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is invariant under Mdep for all p ∈ Sn,β . Using Corollary 5.5 and Lemma 6.8, we

have

|µ×dn,β;a,b(F )− EF |2 = |µ×dn,β;a,b(Dn,β,dF )|2 � dω(n)n
φ(n) µn,β;a,b

(
(Dn,β,dF )2

)
� (ab)η1 ne

(log d)ω(n)

φ(n)

ˆ
TSn,β×XSn,β

(Dn,β,dF )2

+ (ab)η1 n
1−κ2e(log d)ω(n)

φ(n) S
(
(Dn,β,dF )2

)
,

for some L2-Sobolev norm S on A∞c (TSn,β ×XSn,β ). Using Proposition 3.3 (3) and

Corollary 6.7, we can find an L2-Sobolev norm S1 on A∞c (TSn,β ×XSn,β ) such that

S
(
(Dn,β,dF )2

)
≤ S1(Dn,β,df)2 � n2βcS1(F )2.

Recall that ω(n) � logn
log log n , cf. [HW08, §22.10]. Set β = κ2

2c+σ . This choice is

independent of n, a, b and F . Combining all this with the result in Lemma 6.6, we

find an L2-Sobolev norm S2 and positive numbers c′, κ3 > 0 such that

|µ×dn,β;a,b(F )− EF |2 � (ab)η1
n1+(log d) c′

log log n

φ(n)
(n−σβ + n2βc−κ2)S2(f)2

� (ab)η1S2(f)2n
1−κ3

φ(n)
.

Now we use

lim inf
φ(n) log log n

n
> 0

to obtain that for sufficiently large n we have

n1−δ

φ(n)
=

n

φ(n) log log n

log log n

nδ
�δ n

−δ/2

for all δ ∈ (0, 1). Plugging this into the above result, we find

|µ×dn,β;a,b(F )− EF |2 � (ab)η1S2(F )2n−
κ3
2 . (27)

Identifying A∞c (T∞ × X∞) with a subspace of A∞c (TSn,β × XSn,β ) as outlined in

Section 3, Theorem 1.1 now follows from Theorem 3.7. 2

Remark. It follows immediately from the argument that the degree-d residues

without coprimality assumption equidistribute with a rate. Indeed, the argument

only used the invariance of the subsets under Mdep and the fact that it is not too

small in comparison to the set of all rational points.

We end this section with a proof of Corollary 1.2, which shows the

equidistribution of sequences of cosets of degree-d residues in the separate factors.

That is, we show that for any sequence bn ∈ Z satisfying (bn, n) = 1 the sets

{Γ∞ubnkd/na
−1√
n

: (k, n) = 1} ⊆ X∞ (28)

equidistribute with a polynomial rate independent of the sequence bn. It will be

immediate that the proof can easily be adapted to prove the analog for the torus.
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It will be useful for later purposes to state the corollary in the S-arithmetic setup.

In what follows, we denote by πX : TSn,β × XSn,β → XSn,β the projection onto

the second coordinate. Note that for any an ∈ Z coprime to n, the image of the

set P×dβ (n; an, bn) under πX is independent of an and coincides with the lift of the

set in (28) to XSn,β .

Corollary 6.9. Fix d ∈ N and a finite set S of places containing the infinite place.

There exist an L2-Sobolev norm SXS on C∞c (XS) and positive constants C1, κ5 > 0

such that the following holds. Given n ∈ N and b ∈ Z, denote by µ×dn,b;XS the

normalized counting measure on

{ΓS∆(ubkd/n)a−1√
n

: (k, n) = 1} ⊆ XS .

For all f ∈ C∞c (XS) and for all sequences bn ∈ Z satisfying (n, bn) = 1 we have∣∣∣∣µ×dn,bn;XS
(f)−

ˆ
XS

fdνS

∣∣∣∣ ≤ C1n
−κ5SXS (f).

Proof. We assume without loss of generality that f is real-valued. Given two finite

sets of places S ⊆ S′, denote K¬Sf
=
∏
p∈S′f\Sf

Kp[0]. Fix a function f ∈ C∞c (XS)

and note that for any β > 0 and sufficiently large n we can view f as an element

in C∞c (XSn,β ), as similarly to Corollary 2.2 we have

SL2(Z[S−1
n,β ])

∖
SL2(QSn,β )

/
K¬Sf

∼= SL2(Z[S−1])
∖
SL2(QS)

as SL2(QS)-spaces. Thus we can embed C∞c (XS) in C∞c (XSn,β ), identifying it

with the subspace of K¬Sf
-invariant functions for n ∈ D(

∏
p∈Sf

p) sufficiently large,

where we recall that for any natural number m ∈ N we denote by D(m) the set of

natural numbers coprime to m. For any basis X of sl2(R) and any fixed degree D,

with respect to the corresponding L2-Sobolev norms this embedding is an isometry

onto that subspace. Note that the analog of this holds for smooth functions defined

on TS . In particular, it suffices to prove the bound for functions on XSn,β for

sufficiently large n. Also note that µ×dn,b;XSn,β
= (πX)∗µ

×d
n,β;a,b for all (a, n) = 1, as

the projection is independent of the torus component.

The crucial point of the argument to follow is that the degree-d residues form

a not too thin subset of the set of the primitive rational points, and the latter,

for a single factor, are invariant under multiplication by units mod n. Hence,

after projection to a single factor, we can apply Theorem 1.1 for the primitive

rational points. More precisely, Lemma 6.8 implies that for all sequences an, bn ∈ Z
with (n, anbn) = 1 we have

|µ×dn,β;an,bn
(f ◦ πX)− Ef◦πX |2 =

∣∣µ×dn,β;an,bn

(
Dn,β,d(f ◦ πX)

)∣∣2
� dω(n)µ×1

n,β;an,bn

((
Dn,β,d(f ◦ πX)

)2)
.

As Dn,β,d(f ◦ πX) is constant in the TSn,β -component and as multiplication by bn
acts by permutation on the group of units mod n, we have

µ×1
n,β;an,bn

((
Dn,β,d(f ◦ πX)

)2)
= µ×1

n,β;1,1

((
Dn,β,d(f ◦ πX)

)2)
.
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In particular, Theorem 1.1 implies that

|µ×dn,β;an,bn
(f ◦ πX)− Ef◦πX |2 � dω(n)

ˆ
TSn,β×XSn,β

(
Dn,β,d(f ◦ πX)

)2
+ dω(n)n−κS

((
Dn,β,d(f ◦ πX)

)2)
.

Now we again combine Lemma 6.6 and Corollary 6.7 with ω(n)� logn
log log n to obtain

|µ×dn,β;an,bn
(f ◦ πX)− Ef◦πX | ≤ C1n

−κ5SXSn,β (f)

just like we did in the proof of Theorem 1.1. Combining this with our initial

remarks, the corollary follows. 2

7. Equidistribution in the product of the two-torus and the modular surface

In this section, we are going to provide an ineffective argument for equidistribution

of the primitive rational points in both the two-torus and the unit tangent bundle

to the modular surface under certain congruence conditions. For what follows,

given n, a, b, c, d ∈ N, we will denote

Q×d∞ (n; a, b, c) =
{

(ak
d

n , bk
d

n ,Γ∞uckd/na
−1√
n
) ; (k, n) = 1

}
⊆ T2

∞ ×X∞,

where k ∈ Z is any integer satisfying kk ≡ 1 modn. Recall that we have previously

identified T∞ ∼= Γ∞U∞ ∼= Γ∞V∞. Using this identification, the set Q×d∞ (n; a, b, c)

identifies with{
(Γ∞uakd/n,Γ∞uckd/na

−1√
n
,Γ∞ubkd/na

−2√
n
) ; (k, n) = 1

}
⊆ Γ∞U∞ ×X∞ × Γ∞V∞.

Denote by µ×dn;a,b,c the normalized counting measure on Q×d∞ (n; a, b, c). In what

follows, we will have to restrict ourselves to denominators n coprime to two distinct,

fixed finite primes p, q. For convenience we recall Theorem 1.3 in this notation.

Theorem. Let p, q be distinct finite places for Q and let κ, η > 0 as in Theorem 1.1.

If an, bn, cn ∈ Z satisfy (anbncn, n) = 1, then µ×dn;an,bn,cn
equidistributes towards the

invariant probability measure on the product T2
∞×X∞ as n→∞ with n ∈ D(pq).

As was the case for the preceding results, we will prove Theorem 1.3 via a

corresponding statement in the S-arithmetic extension. From now on, unless stated

otherwise, S is a fixed set of places containing the infinite place and at least two

distinct finite places, i.e. |S| ≥ 3. Given n ∈ N such that (n,
∏
p∈Sf

p) = 1, we

consider the subsets Q×d(n; a, b, c) ⊆ T2
S ×XS consisting of all triplets of the form(

Z[S−1] + ∆(ak
d

n ),Z[S−1] + ∆( bk
d

n ),ΓS∆(uckd/n)a−1√
n

)
,

where k is coprime to n. Denote by ν×dn;a,b,c the normalized counting measure

on Q×d(n; a, b, c).

Proposition 7.1. Let an, bn, cn ∈ Z be chosen so that (anbncn, n) = 1,

then ν×dn;an,bn,cn
equidistributes towards the invariant probability measure on the

product T2
S ×XS as n→∞ with n ∈ D(

∏
p∈Sf

p).

Prepared using etds.cls



Primitive rational points on expanding horocycles 41

In fact, what we show is disjointness of certain higher rank actions on TS and

on XS . In the proof of Proposition 7.1 we will show that any limit is a joining of

the ZSf actions on TS and on XS given by the times-p maps, their inverses, and

right-multiplication with the diagonal lattice elements a−1
p for p ∈ Sf . The heart

of the argument consists of showing that the trivial joining is the only joining for

these actions.

Proof of Theorem 1.3 assuming Proposition 7.1. Set S = {∞, p, q}. As (n, pq) = 1,

we have ank
d

n , bnk
d

n , cnk
d

n ∈ ZS and thus the projection Π : T2
S ×XS → T2

∞ ×X∞
defined by mapping to the space of Z2

S × K[0]-orbits sends Q×d(n; an, bn, cn)

injectively onto Q×d∞ (n; an, bn, cn). The sets Q×d(n; an, bn, cn) equidistribute

with respect to the Q2
S × GS-invariant probability measure mT2

S
⊗ νS by

Proposition 7.1. Therefore the projections Q×d∞ (n; an, bn, cn) equidistribute with

respect to Π∗(mT2
S
⊗νS) = mT2

∞
⊗mX∞ , the R2×G∞-invariant probability measure

on T2
∞ ×X∞. 2

In order to prove Proposition 7.1, we proceed as follows. We will first show that

every measure ν×dn;an,bn,cn
is invariant under the action of ZSf on T2

S ×XS given by

Tm(t, s, x) = (S2dmt, S−2dms, xa−1
Sdm

) (t, s ∈ TS , x ∈ XS ,m ∈ ZSf ), (29)

where aSdm ∈ ΓS is the diagonal embedding of the matrix
(
Sdm 0

0 S−dm

)
. Hence every

weak∗ limit is invariant under this action. We will show that every weak∗ limit is

a measure of maximal entropy and hence uniqueness of the measure of maximal

entropy will imply that the unique weak∗ limit is the invariant probability measure.

In the proof we will apply higher rank rigidity arguments and more precisely apply

a result from [EL17].

Lemma 7.2. The sets Q×d(n; an, bn, cn) are invariant under ZSf . In particular,

the measures ν×dn;an,bn,cn
are ZSf -invariant.

Proof. Let u ∈ Z such that uSm ≡ 1 modn. For any k ∈ Z and for every a ∈ Z we

have

Sm(uak
d

n ) ≡ akd

n modZ

and thus it follows that

uak
d

n + Z[S−1] = S−makd

n + Z[S−1].

In particular we get

Tm
(
Z[S−1] + ∆(ank

d

n ),Z[S−1] + ∆( bnk
d

n ),ΓSucnkd/na
−1√
n

)
=
(
Z[S−1] + ∆(anS

2dmkd

n ),Z[S−1] + ∆( bnS
2dmkd

n ),ΓSucnS2dmkd/na
−1√
n

)
.

This implies the claim. 2

Prepared using etds.cls



42 M. Einsiedler, M. Luethi, N. A. Shah

7.1. Lyapunov exponents and coarse Lyapunov subgroups We denote by HS the

group

HS = US × VS ×GS ≤ SL2(QS)3.

Let HΓ = HS ∩ SL2(Z[S−1])3 and note that there is a natural isomorphism

ΨS : T2
S ×XS → HΓ

∖
HS.

The action of ZSf described in (29) above can be described as follows. Given p ∈ Sf ,

let αp ∈ SL2(QS)3 denote the element given as αp = (apd , apd , apd). Note

that conjugation by αp preserves the lattice HΓ. Hence for all g ∈ HS the

map HΓg 7→ αp · HΓg = HΓαpgα
−1
p is well-defined. We denote by ep ∈ ZSf

the vector satisfying (ep)q = δp,q for all q ∈ Sf , so that αp ◦ ΨS = ΨS ◦ Tdep .

Setting αSm =
∏
p∈Sf

α
mp
p for m ∈ ZSf , we have

αSm ◦ΨS = ΨS ◦ Tdm, (30)

where Tdm was defined in (29). For the dynamics, we are particularly interested

in the following subgroups of HS . We denote by H(1) and H(2) the embeddings

of U and V in the first and second coordinates respectively. Furthermore, the

groups H(−) and H(+) shall denote the upper- and lower-triangular unipotent

groups in the third coordinate respectively. These groups shall be called the

elementary unipotent subgroups. We set I = {1, 2,+,−} and remark here

that HS = 〈H(i)
S ; i ∈ I〉 for all finite sets of places S of Q. A similar statement

holds for HS . In what follows, a Lyapunov exponent for α is a non-trivial additive

functional χ : ZSf → R for which there exist an elementary unipotent subgroup H(i)

and a place p ∈ S—i.e. χ is a Lyapunov exponent on H(i)—such that

‖αSm(h− 1)αS−m‖p = eχ(m)‖h− 1‖p (h ∈ H(i)
p ).

We let

Φi,p =
{
χ ; χ is a Lyapunov exponent on H(i)

p

}
,

as well as Φp =
⋃
i∈I Φi,p, Φi =

⋃
p∈S Φi,p, and Φ =

⋃
i∈I Φi =

⋃
p∈S Φp.

One calculates

αp(h− 1)α−1
p = p2d(h− 1) if h ∈ H(1)

S or h ∈ H(−)
S , and

αp(h− 1)α−1
p = p−2d(h− 1) if h ∈ H(2)

S or h ∈ H(+)
S .

In particular, for all distinct p, q ∈ Sf , we have

‖αp(h− 1)α−1
p ‖q = ‖h− 1‖q if h ∈ H(i)

q , i ∈ {1, 2,+,−}, and

‖αp(h− 1)α−1
p ‖p = p−2d‖h− 1‖p if h ∈ H(1)

p or h ∈ H(−)
p , and

‖αp(h− 1)α−1
p ‖p = p2d‖h− 1‖p if h ∈ H(2)

p or h ∈ H(+)
p ,

‖αp(h− 1)α−1
p ‖∞ = p2d‖h− 1‖∞ if h ∈ H(1)

∞ or h ∈ H(−)
∞ , and

‖αp(h− 1)α−1
p ‖∞ = p−2d‖h− 1‖∞ if h ∈ H(2)

∞ or h ∈ H(+)
∞ .

As the map ZSf → HS , m 7→ αSm is a homomorphism, we obtain the following
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Corollary 7.3. The functionals in Φ are of the form χ = εχp, where ε ∈ {±1}
and

χp(m) =

{
mp2d log p if p ∈ Sf ,∑
q∈Sf

mq2d log q else.

Furthermore, we have

Φ1,p = Φ−,p = {−χp}, Φ2,p = Φ+,p = {χp}, (p ∈ Sf)

Φ1,∞ = Φ−,∞ = {χ∞}, Φ2,∞ = Φ+,∞ = {−χ∞}.

Given a Lyapunov exponent χ ∈ Φ, we define the corresponding Lyapunov subgroup

by

H−χ =
∏

p∈S,i∈I
−χ∈Φi,p

H(i)
p .

Corollary 7.4. The Lyapunov subgroups are given as follows:

H−χp = H(1)
p H(−)

p , H−−χp = H(2)
p H(+)

p (p ∈ Sf),

H−χ∞ = H(2)
∞ H(+)

∞ , H−−χ∞ = H(1)
∞ H(−)

∞ .

We note that in our case two Lyapunov exponents are equivalent in the sense

of [EL17, Section 2.2] if and only if they are equal. Thus each Lyapunov

exponent is in fact a coarse Lyapunov exponent. This is of importance as the

statements we will use in general hold for coarse Lyapunov subgroups as opposed

to Lyapunov subgroups defined here. In Corollary 7.4 we made use of the higher-

rank assumption |S| > 2, as in the case S = {∞, p} we would have χ∞ = χp and

thus Hχp = Hχ∞ .

7.2. Two disjointness results Using our understanding of the (coarse) Lyapunov

subgroups discussed in Section 7.1, in particular Corollary 7.4, we can prove

two disjointness results for the ZSf -actions under consideration. The proofs are

applications of the product structure of leafwise measures for higher rank actions

and the classical Abramov-Rokhlin formula, where the factors are chosen so that

the Lyapunov subgroup for the factors are trivial. The first disjointness result gives

rise to ineffective equidistribution in the setup of Section 6 discussed in Corollary

7.6 but more importantly serves as an input to the second disjointness result.

Before we formulate the first disjointness result, let us recall the following notion.

The ZSf -actions on (TS ,mTS ) and (XS , νS) naturally induce an action of ZSf

on TS ×XS , where an element m ∈ ZSf acts by mapping a tuple (t, x) ∈ TS ×XS

to the point

m.(t, x) = (S2dmt, xa−1
Sdm

).

A joining of the ZSf -actions on (TS ,mTS ) and (XS , νS) is a Borel probability

measure µ on TS × XS which is invariant under the action of ZSf on TS × XS

and satisfying (πTS )∗µ = mTS and (πXS )∗µ = νS .
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Proposition 7.5 (Disjointness for two factors) Let µ be an ergodic joining

of the ZSf -actions on (TS ,mTS ) and (XS , νS). Then µ = mTS ⊗ νS, that is, the

systems are disjoint. The corresponding statement also holds for the action of ZSf

on TS ×XS given by m.(t, x) = (S−2dmt, xa−1
Sdm

).

Proof. We only prove the first case. The second follows by interchanging the roles

of the subgroups US and VS . Using the discussion from Section 7.1 and restricting

to the subgroup US ×GS = H̃S , we note that the Lyapunov exponents are exactly

the same for this smaller system, however, the Lyapunov subgroups are given by

H̃−χp = H̃(1)
p H̃(−)

p , H̃−−χp = H̃(+)
p (p ∈ Sf)

H̃−χ∞ = H̃(+)
∞ , H̃−−χ∞ = H̃(1)

∞ H̃(−)
∞ ,

where H̃(1) denotes the embedding of U in the first coordinate of H̃ and H̃(−)

and H̃(+) denote the upper- and lower-triangular unipotents in the second

coordinate. We now apply a consequence of the product structure for leafwise

measures and the Abramov-Rokhlin formula, namely Corollary 6.5 from [EL17], to

obtain

hµ(αp, H̃
−
χ∞) = hνS (αp, H̃

−
χ∞) + hµ(αp, H̃

−
χ∞ ∩ US︸ ︷︷ ︸

={1}

) = hνS (αp, H̃
−
χ∞),

where hµ(α, H̃−χ∞) denotes the entropy contribution for the (coarse) Lyapunov

subgroup H̃−χ∞ . Using Theorem 7.9 in [EL10], it follows that µ is H̃−χ∞ -invariant.

By a similar argument one obtains that µ is H̃−−χp -invariant for any p ∈ Sf . In

particular, µ is H̃
(+)
S -invariant.

Let BTS be the Borel-σ-algebra on TS and let C = π−1
TS BTS be the σ-algebra

defined by the fibers of the canonical projection to TS . Consider the disintegration

µ =

ˆ
µC(t,x)dµ(t, x) (31)

of µ with respect to C. As the atoms of C are H̃
(+)
S -invariant and as on a set

of full measure the conditional measure µC(t,x) is determined by the atom [(t, x)]C ,

almost all measures appearing in the disintegration are H̃
(+)
S -invariant. We refer

to Chapter 5 in [EW11] for details on conditional measures. As νS is ergodic

for the action of H̃
(+)
S , extremality of ergodic measures among invariant measures

implies (πXS )∗µ
C
(t,x) = νS for almost all (t, x). As µC(t,x) is concentrated on the

atom [(t, x)]C = {t} ×XS , we get µC(t,x) = δt ⊗ νS for almost all (t, x) ∈ TS ×XS

where δt denotes the Dirac measure at t. Hence by means of Fubini’s Theorem and

the assumption that (πTS )∗µ = mTS it follows that µ = mTS ⊗ νS . 2

We show how to deduce an ineffective S-arithmetic equidistribution result in the

spirit of Theorem 1.1 for sequences of values (an, cn).

Corollary 7.6. Assume that an, cn ∈ Z are sequences such that (n, ancn) = 1 for

all n ∈ N. Let µ×dn,S;an,cn
denote the normalized counting measure on the set

P×dS (n; an, cn) =
{(

Z[S−1] + ∆(ank
d

n ),ΓS∆(ucnkd/n)a−1√
n

)
: (k, n) = 1

}
.
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Then the measures µ×dn,S;an,cn
equidistribute towards the unique QS ×GS-invariant

probability measure on TS ×XS as n→∞ in D(
∏
p∈Sf

p).

Proof. Denote by πXS : TS × XS → XS and πTS : TS × XS → TS the canonical

projections. Corollary 6.9 implies that any weak∗ limit of the sequence µ×dn,S;an,cn

projects to the unique GS-invariant probability measure νS on XS under πXS and

similarly to the unique QS-invariant probability measure mTS on TS under πTS . For

every p ∈ Sf the measure µ×dn,S;an,cn
is invariant under simultaneous multiplication

by p2d in the first component and right multiplication by a−1
pd

in the second

component. Hence any weak∗ limit is a joining for the actions of ZSf on (TS ,mTS )

and on (XS , νS).

Let now µ be a weak∗ limit of a sequence of measures µ×dn,S;an,bn
and let

µ =

ˆ
TS×XS

µE(t,x)dµ(t, x)

be an ergodic decomposition of µ. Then almost every µE(t,x) is an ergodic joining

for the ZSf actions on (TS ,mTS ) and (XS , νS) respectively. It thus suffices to show

that the only ergodic joining is the trivial joining mTS ⊗ νS . This was done in

Proposition 7.5. 2

The second disjointness result forms the heart of this section and is the main

input for the completion of the proof of Proposition 7.1.

Proposition 7.7 (Disjointness for three factors) Fix d ∈ N and let ν be a

probability measure on TS × TS × XS which is ZSf -invariant and ergodic for the

action defined by

m.(t, s, x) = (S2dmt, S−2dms, xa−1
Sdm

) (t, s ∈ TS , x ∈ XS).

Assume that ν projects to mTS in the first two factors and to νS in the last factor.

Then ν equals the product measure, i.e. ν = mTS ⊗mTS ⊗ νS.

Proof. In what follows, we denote by m1 the unique US ×GS-invariant probability

measure on UΓ ×GΓ\US ×GS and by π1 the projection sending (t, s, x) ∈ HΓ\HS

to (t, x) ∈ TS × XS . Similarly, we let m2 denote the unique VS × GS-invariant

probability measure on VΓ ×GΓ\VS ×GS and π2 the projection that maps a

triplet (t, s, x) ∈ HΓ\HS to (s, x) ∈ TS × XS . As of Proposition 7.5, we know

that (πi)∗ν = mi for both i = 1, 2. Thus by Corollary 6.5 from [EL17], we know

that for any p ∈ Sf we have

hν(αp, H
−
χp) = hm1(αp, H

−
χp) + hν(αp, H

−
χp ∩ VS︸ ︷︷ ︸
={1}

) = hm1(αp, H
−
χp).

Again, Theorem 7.9 in [EL10] implies that ν is H−χp -invariant. The same argument

shows

hν(αp, H
−
−χp) = hm2

(αp, H
−
−χp) + hν(αp, H

−
−χp ∩ US︸ ︷︷ ︸

={1}

) = hm2
(αp, H

−
−χp),

Prepared using etds.cls



46 M. Einsiedler, M. Luethi, N. A. Shah

and thus ν is Up × Vp × SL2(Qp)-invariant. Applying the same argument to the

subgroups H−χ∞ and H−−χ∞ , one obtains invariance of ν under U∞ × V∞ × SL2(R).

Hence ν is HS-invariant. 2

7.3. Completion of the proof of Theorem 1.3 Using the disjointness results form

Section 7.2, we can prove Proposition 7.1.

Proof of Proposition 7.1. Let ν be a weak∗ limit of a sequence of measures ν×dn;an,bn,cn

where n ∈ D(
∏
p∈Sf

p). Then ν is invariant under the action of ZSf given by

m.(t, s, x) = Tdm(t, s, x) (t, s ∈ TS , x ∈ XS)

where Tdm was defined in (29). Using our assumptions on an, bn, cn together

with Corollary 6.9, the measure ν projects to mTS in the first two components

respectively and to νS in the third component. In particular, every ergodic

component of ν with respect to the ZSf -action satisfies the assumptions of

Proposition 7.7 and thus equals the product measure as of Proposition 7.7. This

completes the proof. 2
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