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Spatial Multiplexing With Limited RF Chains:
Generalized Beamspace Modulation (GBM)

for mmWave Massive MIMO
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Abstract— Millimeter wave (mmWave) massive multiple-input
multiple-output (mMIMO) has been recognized as a promising
candidate for 5G communications for its capability of support-
ing Gb/s transmission. However, it is a common exercise to deploy
a limited number of radio-frequency (RF) chains at mmWave
mMIMO transceivers due to hardware complexity and cost.
As a result, the potential multiplexing gain (MG), which is
restricted by the smaller number of RF chains at the transmitter
and receiver, is markedly compromised. In order to boost the
MG and spectral efficiency (SE), we innovatively develop a
novel index modulation termed as the generalized beamspace
modulation (GBM). The acquisition of (sub-)beamspace is owing
to a natural exploitation of the unique features of mmWave
mMIMO. Based on the (sub-)beamspace, a complete GBM
transceiver is designed and optimized. Unlike existing alternatives
that are largely digital based, our GBM is tailored for the hybrid
structure of mmWave mMIMO and can, thereby, realize efficient
spatial multiplexing despite the limited RF chains. Extensive
analyses and simulations have demonstrated remarkable supe-
riority of GBM over existing counterparts in terms of the error
performance and SE.

Index Terms— Millimeter wave, massive multiple-input
multiple-output, generalized beamspace modulation, multiplexing
gain, spectral efficiency.

I. INTRODUCTION

IN mmWave mMIMO, the potential multiplexing gain (MG)
is fundamentally limited by the minimum number of radio

frequency (RF) chains at both ends. To cope with this funda-
mental limit and further boost the spectral efficiency (SE),
there is an urgent need to develop index modulation (IM)
techniques suitable for mmWave mMIMO.
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Fig. 1. The transmitter of mmWave AG-GSM.

As a matter of fact, similar problems have already been
investigated in existing centimeter wave (cmWave) MIMO
systems, and an effective solution is the generalized spatial
modulation (GSM). The main idea of GSM is to convey the
so-called index bits by utilizing the activation status of
antennas [2]–[5], therefore a higher MG can be achieved by
activating a subset of RF chains [6]–[8]. Although GSM has
demonstrated remarkable superiority in cmWave MIMO,
it does not directly apply to mmWave mMIMO. First,
unlike cmWave MIMO where a digital structure is employed,
mmWave mMIMO typically adopts an economic hybrid struc-
ture for power consumption and hardware cost concerns
[9]–[11]. Secondly, different from the typically isotropic envi-
ronment in cmWave propagation, mmWave channels are well
known to exhibit limited scattering [12]–[16], thus the highly
correlated channels may severely affect the error performance.
As a result, a simple transplantation of existing cmWave IM
techniques into mmWave mMIMO is not feasible. Instead,
the ultimate solution requires a judicious design by accounting
for the unique properties of mmWave mMIMO. To this end,
the first step, which is also the top priority, is to seek a proper
space where the index mapping can take place. We will first list
existing options, and then introduce our proposed approach.

A. IM in Spatial Domain

A natural implementing space is the spatial domain; that
is, the index bits directly determine which antennas are acti-
vated. In [17], an antenna-group (AG-) GSM is designed for
mmWave MIMO, with transmitter structure shown in Fig. 1.
Clearly, in mMIMO, directly (de-)activating each and every
antenna will incur unbearable complexity, together with a
huge number of RF chains. AG-GSM is adapted to hybrid
mmWave structures by (de-)activating groups of (as opposed
to individual) antennas. However, this approach essentially
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Fig. 2. The transmitter of mmWave EDC-IM.

Fig. 3. The transmitter of mmWave GBM.

divides the entire array to a few groups of smaller ones, and
will thus suffer from a severe loss of array gain and angle
resolution. In addition, as the MG is dictated by the number
of groups, there is clearly a tradeoff between the achievable
MG and the array gain/angle resolution.

B. IM in Digital Domain

Recall that GSM is essentially a digital technique, thus can
be directly applied to the equivalent digitized channel (EDC)
that is encountered before the RF chains at the transmitter (Tx)
and after the RF chains at the receiver (Rx). The Tx structure
of EDC-IM is shown in Fig. 2. Although only a subset of
RF chains are activated when performing IM, all antennas
are employed for transmission. Hence EDC-IM is not only
applicable to hybrid structures, but can also fully exploit the
large array gain. However, its maximum MG is clearly limited
by the minimum number of RF chains at the transceivers.

In view of the limitations of the abovementioned options,
one may have realized that a proper domain has to leverage
both the channel properties and the hybrid hardware structures
that are unique to mmWave mMIMO. In this work, we inno-
vatively resort to the beamspace, and the index mapping in
GBM takes place neither at the antennas as the AG-GSM
nor before the RF chains as the EDC-IM. Instead, the index
mapping occurs after the RF chains but before the selecting
network. Different from both aforementioned options, all RF
chains and all antennas at the Tx are always active. As a result,
not only that the array gain is fully exploited, but also the
achievable MG is no longer restricted by the number of RF
chains. The resultant GBM design is also perfectly compatible
with prevalent mmWave mMIMO systems. Due to the unique
placement of the index mapping module, the GBM design
consists of two parts: i) the digital part accounting for the index
mapping and demodulation functionality; and ii) the analog
part involving the selecting network that optimizes the beam
selection. All these, together with the precoder options, will
be discussed in detail herein.

Our contributions can be briefly summarized as follows:

• By exploiting the unique propagation characteristics of
mmWave channels and the hybrid transceiver structure,
we propose GBM that facilitates an MG exceeding the

number of Tx-end RF chains, without compromising the
array gain or system compatibility.

• For the digital part of GBM, we design its modula-
tor prototype with optimized pattern selection, and the
demodulation with both the optimal maximum likelihood
(ML) detector and a low-complexity zero-forcing with
2-step quantization (ZF-2Q) detector.

• For the analog part of GBM, we derive a probability
bound of the maximum achievable MG and show that
when the array size approaches infinity, the maximum
MG approaches the rank of channel matrix with prob-
ability 1. Given an achievable MG, a low-complexity
yet near-optimal beam selection scheme is proposed to
optimize the error performance.

• We validate the performance of GBM in terms of the
asymptotic pairwise error probability (APEP) and the SE
via extensive theoretical analyses and simulations.

The remainder of this paper is organized as follows.
Section II introduces the generic mmWave mMIMO system
and the beamspace. Sections III and IV elaborate on the digital
and analog parts of GBM design, respectively. Section V
provides performance analyses and discussions. Extensive
simulations and comparisons are presented in Section VI,
followed by conclusions in Section VII.

Notation: a, a and A represent a scalar, a vector and a
matrix, respectively. a[i] represents the i-th element of a.
A[m, n], A[m, :] and ‖A‖F are denoted as the (m, n) entry,
the m-th row and the Frobenius norm of A. �·� and �·�
represent the floor and ceiling operation, respectively. Ck

n

denotes the number of k combinations from a given set of
n elements. E stands for expectation. CN (0, σ2) represents
the distribution of a circularly symmetric complex Gaussian
random value with variance σ2. Q(·), I(·) and B(·) represent
the Gaussian Q-function, the binary indicating function and
the Beta function, respectively.

II. SYSTEM AND THE BEAMSPACE

In this paper, we consider an uplink mmWave mMIMO sys-
tem, where the mobile station (MS) and the base station (BS)
are equipped with lens arrays, each having M and N anten-
nas, respectively. Essentially, an M -dimensional lens array
plays the role of an M × M spatial FFT matrix, which
contains orthogonal steering beams covering the entire beam
domain [16]. To alleviate the high power consumption and
deployment cost, the numbers of RF chains at both ends are
much smaller than that of the antennas.

At the MS, let M = {m1, m2, · · · , mK} with K ≤
min(M, N) be the set containing the indices of selected beams
from the M -dimensional FFT matrix FM . The function of the
selecting network (SN) can be described by

SM = [eM (m1), eM (m2), · · · , eM (mK)] (1)

where eM (m) is the m-th column of IM . Let s =
[s1, s2, · · · , sK ]T be the symbol vector to be transmitted from
the SN port. After propagation through the N × M channel
H, the received signal at the BS is

r = HFM SMs + n (2)

where n ∼ CN (0, σ2IN ) is the Gaussian noise vector.
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Fig. 4. The system model of the uplink mmWave beamspace mMIMO.

Similar to [18], [19], we consider a narrow-band block
fading channel. The propagation environments between the
MS and the BS are modeled as the widely accepted geometric
channel consisting of P paths.1 With uniform linear array
(ULA) antennas configured at both ends, the channel matrix
is given by

H =

√
MN

P

P∑
p=1

αpar(θp)a∗
t (φp) (3)

where αp ∼ CN (0, 1) is the complex gain of the p-th path;
θp and φp represent the corresponding angle of arrival (AoA)
and angle of departure (AoD), respectively, both modeled as
uniformly distributed variables on [0, 2π); at(·) and ar(·) stand
for the transmitting and receiving array responses, respectively.
When half-wavelength spaced ULAs are employed at both
ends, at(·) and ar(·) can be written as

at(φ) =
1√
M

[1, ejπ sin φ, · · · , ej(M−1)π sin φ]T (4a)

ar(θ) =
1√
N

[1, ejπ sin θ, · · · , ej(N−1)π sin θ]T . (4b)

At the BS, we define N = {n1, n2, · · · , nK}, which con-
tains the selected indices of the combing beams from the
N -dimensional FFT matrix FN . Accordingly, the function of
SN at the BS end can be expressed as

SN = [eN (n1), eN (n2), · · · , eN (nK)]. (5)

After analog combing, the signal to be detected in the digital
baseband is given by

y = S∗
N F∗

N HFM SMs + ξ (6)

where ξ = S∗
N F∗

N n ∼ CN (0, σ2IK) remains white.
Let us now take a closer look to the effective N×M channel

matrix

H = F∗
N HFM . (7)

Note that the FFT basis is similar to the array responses shown
in Eqs. (4a) and (4b). Therefore, H[n, m] can be interpreted
as the beam “path” coming from 2π(m−1)

M and arriving at
2π(n−1)

N . From this perspective, H essentially captures the
channel in the “beamspace.”

Proposition 1: The beam with AoA θp and AoD φp is mainly
captured by H[n, m], with m and n satisfying

∣∣ arcsin
(φp

2

)−
m−1
M

∣∣ ≤ 1
M and

∣∣ arcsin( θp

2 )− n−1
N

∣∣ ≤ 1
N , respectively.

Proof: See Appendix A.

1Here, each path refers to a cluster of multipath components traveling
closely in time and/or spatial domains [20].

Fig. 5. The amplitude comparison between the spatial domain and
beamspace.

To illustrate the capturing effect in beamspace, we randomly
generate a channel with three paths, and plot the channel
amplitude in the spatial domain and beamspace, respectively.
It is clear that each path is localized within a small bin in the
beamspace.

Given the N × M effective beamspace channel matrix H,
one can potentially apply GBM directly therein. It is worth
noting that though H has the same size as H, GBM on
H is fundamentally different from AG-GSM (see Section I),
because GBM implements selection of beams but activate all
antennas and thus exploit the full array gain. Even though
this is the case, it is not wise to apply GBM directly on H.
With M and N both being large, GBM directly on H will
incur high complexity and imply a huge number of RF chains.
In addition, the resultant MG and error performance will both
be compromised due to the sparsity in H (see Fig. 5) caused
by the limited scattering of mmWave mMIMO channels.

To this end, the SN comes as a natural help, and one can
obtain the sub-beamspace as follows

HK = S∗
N HSM. (8)

The corresponding I/O relationship accordingly becomes

y = HKs + ξ. (9)

Evidently, the system performance heavily relies on HK

(SNs), whose optimization will be detailed in Section IV.
At this point, it is worth emphasizing that we are simply

describing the practical mmWave transceiver without any alter-
ation, except for revealing that the lens arrays naturally project
the spatial domain to the beamspace and the SNs naturally
facilitate the dimensional reduction and beam selection. Next,
we are going to introduce GBM that is judiciously designed for
the (sub-)beamspace. As will be seen next, GBM will facilitate
the multiplexing in ready-for-deployment mmWave systems
under limited number of RF chains.
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Fig. 6. An illustration of GBM modulator.

III. THE DIGITAL PART OF GBM

In this section, we will focus on the digital part of GBM.
The modulation along with the pattern selection is first intro-
duced, followed by the demodulation design.

A. The GBM Modulator

The prototype of GBM modulator is shown in Fig. 6. With
R ≤ K RF chains at Tx, there are η = R log2 X +�log2(C

R
K�

incoming bits every transmission, with R log2 X symbol bits
and �log2(CR

K)� index bits. The symbol bits are modulated
into a symbol vector x = [x1, · · · , xR]T , whose elements are
chosen from S, e.g., the constellation of an X-ary phase shift
keying/quadrature amplitude (PSK/QAM) modulation. In this
paper, S is assumed to be normalized, so the signal-to-noise
ratio (SNR) per bit is defined as Eb/N0 = R/(ησ2).

Evidently, one only needs R ≤ K RF chains to transmit
these R PSK/QAM symbols. However, it is worth emphasizing
that this reduction in RF chains is not at the price of compro-
mised SE, because the actual transmitted signal s has a higher
dimension than x. The conversion from x to s is realized by
a K × R index mapping matrix BR. Let R be a length-R
lexicographical sequence, whose elements range from [1, K]
and are sorted in an ascending order, then BR is constructed
as follows:

• ∀n /∈ R, BR[n, :] = 0T
1×R

• BR[R, :] = IR.

To make it more clear, we take (K = 4, R = 3) as an example.
Suppose the 1st, the 2nd and the 4th beams are selected, i.e,
R = {1, 2, 4}, then s is given by

s = BRx =

⎡⎢⎢⎣
1 0 0
0 0 0
0 1 0
0 0 1

⎤⎥⎥⎦
⎡⎣x1

x2

x3

⎤⎦ =

⎡⎢⎢⎣
x1

0
x2

x3

⎤⎥⎥⎦. (10)

Each BR corresponds to a unique R, which essentially repre-
sents a specific index pattern. If log2 CR

K is an integer, all index
patterns will be used. However, if log2 CR

K is not an integer,
then CR

K − 2�log2 C
R
K� index patterns become redundant.

For GSM, these 2�log2 C
R
K� index patterns are often just

arbitrarily selected or lexicographically selected via a look-
up table as in [21]. For GBM, K is not entirely a design
parameter but is rather dictated by the channel as we will
discuss in SectionVI. In addition, the beam quality may vary
significantly. Therefore, if there are redundant index patterns,

pattern selection is expected to have a non-negligible influence
on the overall error performance.

An algorithm is henceforth proposed herein to select the
preferred index patterns. The detailed procedure is described
as follows

• Let pi and pj represent two index patterns,2 then
the pattern distance (PD) between them is defined as
di,j = |HK(pi − pj)|;

• Choose the index combination with the maximal minimal
PD (max-MPD), and the corresponding index patterns
are recognized as preferred.

The total number of index combinations is upper-bounded

by max
(
C

�K
2 �

K , C
�K

2 �
K

)
. Since the maximum K is restricted

by the low-rank mmWave channels, it is typically very small
(typically less than 12 as we will discuss in Section V). Thus
the additional complexity involved by the pattern selection
is minimal. From simulations in Section VI, we will see
that such a simple scheme can bring a noticable performance
improvement.

B. The GBM Demodulator

To meet different implementing requirements, we provide
two detectors, namely the ML detector and the ZF-2Q detector.

1) ML Detector: The ML criterion is expressed as

ŝ = argmin
s∈G

‖ y − HKs‖2 (11)

where G is the ensemble containing all effective GBM vectors.
Since the noise samples after RF combining remain uncor-
related, the ML detector can achieve the optimal detection
performance. The overall computational complexity in terms
of the number of multiplications is O(2η).

2) ZF-2Q: As a low-complexity alternative to the ML
detector, the ZF detector is a popular option. A standard ZF
detector consists of two components: i) the linear ZF filter
s = H

†
Ky; ii) the non-linear vector quantization:

ŝ = argmin
s∈G

‖ s − s‖2 . (12)

However, in the context of IM as GBM here, the vector
quantization actually induces exponential complexity O(2η),
which is identical to ML! To this end, we propose the 2-step
quantization (2Q) following the linear ZF filter.

2a: Quantization-I (Per-symbol quantization)

ŝ[i] = arg min
s∈S

|s[i] − s|2. (13)

2b: Quantization–II (Index pattern quantization)

p̂ = arg max
p∈P

K∑
i=1

(
real{s[i]∗ × ŝ[i]} − |̂s[i]|2/2

)
p[i]

(14)

where P contains all preferred index patterns.

Along the lines of Page. 5 (L-C ML detector) in our earlier
work [22], it can be readily proved that this 2-step quantization

2For a mapping matrix, its corresponding index pattern is the sum of all its
columns.
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is equivalent to the vector quantization given in Eq. (12), but
achieves a complexity reduction from O(2η) to O(CR

K). Plus
the complexity of the first-step ZF equalization, the overall
computational complexity of ZF-2Q is O(CR

K + K3), which
has polynomial complexity. It is worth noting that, when all
beams are strictly orthogonal as the array size M and N
approach infinity, no performance degradation will be incurred
by ZF-2Q detector.

IV. THE ANALOG PART OF GBM

In this section, we concentrate on the analog part of GBM.
Via a careful beam selection design, highly reliable commu-
nications can be guaranteed by GBM.

A. Optimizing the Size of HK

Let MGGBM denote the maximum achievable MG facili-
tated by mmWave mMIMO beamspace channel H in Eq (7).
We have the following result:

Proposition 2: In mmWave mMIMO channels modeled as in
Eq. 3, the maximum achievable MG MGGBM is determined
by the number of exclusively resolvable beams (ERBs) sharing
no common AoA or AoD.

Proof: See Appendix B.
Clearly, MGGBM is upper bounded by the number of

paths (P ) in the channel. In conventional MIMO systems,
MGGBM is typically regarded as the rank of the channel
matrix. The unique beamspace behavior of the mmWave
mMIMO channels, together with the sparsity therein lead to
Proposition 2. Though MGGBM is in general not precisely
equal to rank(H), they remain very close to each other. The
difference of these two is induced by the finite beamspace
(or angle-domain resolution of the antenna array). Such limited
resolution leads to beamspace leakages which may contribute
to rank(H) but does not contribute meaningful MG. As the
array size M and N approach infinity, the beam resolution
approaches zero and the beam leakage vanishes. In such an
extreme case, one will find that both MGGBM and rank(H)
converge to the number of paths P . We further investigate the
probability distribution of MGGBM and obtain the following
result.

Proposition 3: In a mmWave mMIMO channel with P
spatial paths, the maximum achievable MG MGGBM follows a
cumulative mass function (CMF) that can be upper bounded by

CMFMG(p)
�
= Pr(MGGBM < p) ≤ CMFMG(p)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1−

p−1∏
i=0

(
1 − f(i)

))P
p

, if mod(P, p) = 0(
1−

p−1∏
i=0

(1 − f(i))
)�P

p �−1

(
1−

p∏
i=0

(1−f(i))− ( p∑
i=1

f(i)
) p∏

i=1

(
1 − f(i)

))
,

o.w.

(15)

with f(i) = i(M+N−i)
MN .

Proof: See Appendix C.

Fig. 7. The upper-bound CMFMG of the achievable MG under different
number of paths.

As M and N approach infinity, CMFMG(P ) → 0, imply-
ing that MGGBM → P . In addition, as the size of the
array increases, the array resolution approaches zero and thus
rank(H) → P as well. An example of CMFMG(p) with
a finite array size (M = 32 and N = 64) is presented
in Fig. 7. Existing measurements show that mmWave channels
typically have 8 ∼ 12 dominant paths in “rich” scattering
environments [23], so we set P = 8, 10 and 12.

Lemma 1: The probability that the size of SNs K is no
smaller than the maximum achievable MG MGGBM can be
lower bounded by

Pr(MGGBM ≤ K) ≥ 1 − CMFMG(K) (16)

where CMFMG(·) has been defined in Proposition 3.
Based on Lemma 1, one can learn that choosing the size

of sub-beamspace channel K too large may lead to HK with
insufficient beams to support GBM. Whereas choosing K too
small will not fully exploit MGGBM facilitated by the channel.
Hence given M , N and P , Eq. (15) provides a valuable
guidance for choosing the size of SNs.

B. Optimizing the Entries of HK

Even with K determined, not all HK candidates can support
reliable communications because the beam quality may vary
significantly. To optimize the entries of HK , the immediate
objective is to minimize the bit error rate (BER). Considering
that the exact BER expression is mathematically intractable,
we resort to the APEP. We use PGBM(HK) to stand for the
conditional APEP under HK . According to [22], PGBM(HK)
can be approximated as

PGBM(HK) ≈ 1
η2η

∑
∀s

∑
∀�s

Q

⎛⎝√
d2(HK , s, ŝ)

2σ2

⎞⎠ e(s, ŝ)

(17)
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where d(HK , s, ŝ) =‖ HK(s − ŝ) ‖F ; e(s, ŝ) represents the
number of differing bits between s and ŝ after demodulation.

Existing IM-related works have shown IM manifests promi-
nent advantages mainly at high SNR (see, e.g., [3] and
[24], [25].) Therefore, we will seek a simplified form of
Eq. (17) at high SNR. A proposition relating to PGBM(HK)
is made as follows.

Proposition 4: At high SNR, the conditional APEP
PGBM(HK) can be approximated as a monotonic decreasing

function of d(HK), where d(HK)
�
= min

∀�s 
=s
d(HK , s, ŝ).

Proof: See Appendix D.
Note that this monotonicity is independent of the SNR, so

the original SNR-coupled APEP minimization problem can
be simplified to the SNR-independent problem of d(HK)
maximization.

Ideally, the maximal d(HK) can be obtained via exhaustive
search among all M’s and N ’s. However, the computational
burden would be badly severe under mMIMO (over 7.8×1012

for M = 64, N = 32 and K = 4). For practical implementa-
tion, it is necessary to shrink the searching space.

Thanks to the sparsity of H, a power-based criterion can be
used to screen out weak beams:

P1 =
{

(i, j)
∣∣∣∣ |H[i, j]|2
max

i,j
|H[i, j]|2 ≥ λ

}
, (18)

where λ is a small threshold (e.g., 0.05). Although the cardi-
nality of P1 is much smaller than MN , further modifications
are still required to avoid two extreme cases.

1) The cardinality of P1 may be too large such that the
searching complexity is still unacceptable.

2) The cardinality of P1 may be too small such that it does
not provide K entries for H.

Case.1 can be addressed via a trimming procedure if the
cardinality of P1 exceeds a certain threshold. For case.2,
we can choose the first K largest and exclusive indices from
H, and these selected indices are collected by B.

Proposition 5: Define H(A) to be the A-th (A > K) largest
entry from H, then the searching space is given by

P =

{
P1

⋃B; Cal(P1) ≤ A{
(i, j)

∣∣|H[i, j]| ≥ H(A)
}⋃B; Cal(P1) > A.

(19)

The union of B in Eq. (19) is to guarantee the effectiveness
of the searching set. Denote (ni, mi) as the index of the
i-th selected beam, then the optimal beam indices can be
obtained via{
(n1, m1), (n2, m2), · · · , (nK , mK)

}
= arg max
∀i,(ni,mi)∈P

d(HK , s).

(20)

Replacing N = (n1, n2, · · · , nK) and M = (m1, m2, · · · ,
mK) in Eq. (8), we can get HK .

In summary, the GBM design procedures can be listed as
follows:

1: Determine the number of selected beams at the
transceiver SNs (K) based on MGGBM.

2: Choose the number of RF chains R at the MS satisfying
R < K;

3: Select the preferred beams based on the min-APEP
criterion;

4: Trim redundant index patterns based on “max-MPD”
algorithm; and

5: Choose the ML or ZF-2Q detector.

V. ANALYSES FOR GBM

To gain a better understanding of GBM and evaluate its per-
formance, extensive analyses and discussions will be provided
in this section.

A. APEP Analysis

Due to the uncertainty of the sub-beamspace and the off-
grid beam leakage, it is extremely difficult to derive an exact
APEP. Here we attempt to derive an APEP bound to evaluate
the error performance. As the array size approaches infinity,
the actual APEP will also approach the derived bound.

Let β = [β1, · · · , βK ]T with βi = P
MN H

2
K [i, i], and neglect

the off-grid beam leakage. The pairwise error probability
PGBM(s, ŝ) can be approximated as

PGBM(s, ŝ) = Q

⎛⎝√d2(HK , s, ŝ)
2σ2

⎞⎠
(a)≈ Eβ

{
1
12

exp
(
−

K∑
i=1

MNβiΔs2
i /4Pσ2

)

+
1
4

exp
(
−

K∑
i=1

MNβiΔs2
i /3Pσ2

)}
(21)

where (a) comes from Q(x) � 1
12e−

x2
2 + 1

4e−
2x2
3 , which is a

tight approximation of Q(x) [26].
Proposition 6: At high SNR, when K beams are selected

from a mmWave channel with P paths, the pairwise error
probability PGBM(s, ŝ) can be approximated as

PGBM(s, ŝ) � PK

12

K∏
i=1

B

(
MNΔs2

i Ebη

4PRN0
+P + 1−κ, κ

)

+
PK

4

K∏
i=1

B

(
MNΔs2

i Ebη

3PRN0
+P + 1−κ, κ

)
(22)

where κ is the diversity gain ranging from 1 to P .
Proof: See Appendix E.

In practice, the selected beams are generally strong, so the
actual achieved diversity gain is very unlikely close to the
lower-bound. However, the off-grid leakage not only incurs
interference but also influences the beam selection, preventing
one from achieving the diversity upper-bound. Therefore,
we can infer that the actual diversity gain should be moderately
high. This will be verified by simulations. In addition, Eq. (22)
also reveals that the power gain achieved by GBM is MN ,
which is in fact the full array gain.
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Fig. 8. The nSE comparisons among GBM, non-GBM and EDC-IM.

Fig. 9. The nSE gain of GBM over non-GBM and EDC-IM.

B. SE Analysis

With R and K RF chains at the Tx and Rx, respectively,
the achievable SE of GBM is

C=
{
�log2 CR

K� + R log2 X

∣∣∣∣K ≤ MGGBM; R < K

}
. (23)

To understand the advantages of GBM over other alternatives,
we will next compare their SE peformances. Considering that
comparing SE under different setups is somewhat “unfair,” we
adopt the normalized spectral efficiency (nSE) for comparison,
and the nSE is defined as the ratio of the SE and the
number of Tx-end RF chains. According to [27], the energy
efficiency (EE) is defined as the ratio of the SE and the
sum of the transmit power consumption and hardware power
consumption. The consumed power is roughly proportional to
the number of RF chains, so nSE can roughly imply the EE
as well.

In Fig. 8, GBM is compared with the EDC-IM and the non-
GBM cases in terms of the nSE. In Fig. 9, the nSE gain of

GBM over EDC-IM and non-GBM is further presented. For all
cases, we adopt two modulation orders: X = 4 and X = 16,
both with K = 8. Based on these two figures, we make the
following remarks:

• Using the same RF chains, GBM is always superior over
non-GBM in terms of the nSE. This is because GBM can
exploit a higher MG.

• Under the same MG, GBM is always superior over
EDC-IM in terms of the nSE. This is because GBM
requires less RF chains at the Tx.

• The nSE gain of GBM over non-GBM decreases with
the modulation order, while the nSE gain of GBM over
EDC-IM is irrelevant to the modulation order.

C. Variants of GBM

Recall that in Fig. 3, the optional precoder is essentially
set as I in GBM. In this case, the Tx needs minimal or no
CSI. The only information needed are the AoD indices of the
selected beams, leading to a lightweight feedback overhead
of K log2 M (as opposed to MN with full CSI). Never-
theless, GBM can have different variants by altering the
precoder or other system parameters.

1) Spatial Scattering Modulation (SSM): If only one RF
chain is employed at the Tx, GBM is similar to SSM [28].
However, SSM assumes (and works if and only if) there is no
leakage among the selected beams, whereas GBM explicitly
cope with beam leakage that is inevitable due to the finite
array size.

2) Generalized Eigenspace Modulation (GEM): The pre-
coder in Fig. 3 can be configured such that the combined
digital precoding and analog SN selection can approximate the
(sub-)eigenspace of the channel. By selecting different hybrid
precoders in each transmission, GBM subsumes to GEM,
which is the mmWave counterpart of the authors’ earlier work
in [29]. By optimizing the power allocation, GEM can poten-
tially achieve an improved end-to-end mutual information.
If the array size approaches infinity, GBM and GEM become
identical. However, the GEM variant of the GBM comes at
much increased complexity and compromised practicality in
that i) frequent transmitter reconfiguration; ii) complicated
power allocation and bit loading; and iii) extremely heavy
feedback overhead.

3) Precoded Beamspace Modulation (PBM): The precoder
in Fig. 3 can also implement pre-equalization, such as the
ZF precoding, to lower the receiver complexity at the cost of
increased feedback overhead of CSI.

VI. SIMULATIONS

In this section, extensive simulations are presented for an
uncoded mmWave mMIMO system. The size of lens-array is
set as M = 32 at the MS and N = 64 at the BS. Each
BER curve is on the average of 20000 independent channel
realizations, with a block length of 500 for each. For all
figures, we set P = 12, λ = 0.05 and A = 2P . Without a
specific statement, the receiver adopts ML detector to perform
demodulation. To understand the critical importance of HK ,
in Fig. 10, we compare BER using different HK construction
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Fig. 10. BER comparisons among different sub-beamspace construction
methods.

Fig. 11. BER comparisons for different index pattern selection schemes.

methods for non-GBM with K = 4 and BPSK modulation.
It is clear to see that a random construction will result
in an unusable system. Another two methods, namely the
power-based (PB) method and eigen-based (EB) method are
also provided. For PB method, those strongest beams are
selected. For EB method, those transmitting/receiving beams
best matching the channel left/right singular vectors (EB) will
be selected. Our proposed method can achieve an optimal
performance at almost whole SNR region, even though the
optimality is derived at high SNR.

In Fig. 11, to validate the advantages of the proposed
index pattern selection algorithm, we consider two GBM
cases: (K = 3, R = 1, BPSK) and (K = 4, R = 2,
BPSK), both of which have a proportion of 1/3 redundant
patterns. Simulations show that with max-MPD scheme, more
than 0.5dB BER advantage can be achieved over the lexico-
graphically sequential selection (LSS) and random selection.

Fig. 12. BER comparisons between GBM and non-GBM under η = 4bits/Hz.

Fig. 13. BER comparisons between GBM and non-GBM under η = 8bits/Hz.

Unlike LSS, max-MPD method requires an additional feed-
back of �CR

K� bits to indicate the selected index combina-
tion, but this overhead is obviously negligible. Therefore,
our method is an appealing option when index patterns have
redundancy.

In Fig. 12, we compare the BER performance of GBM
and non-GBM with a spectral efficiency of 4 bits/Hz. For the
GBM, we set (K = 4, R = 1) with 4-QAM modulation.
To achieve the same spectral efficiency, the non-GBM uses
BPSK modulation. With an increase of SNR, the BER advan-
tage of GBM over non-GBM gradually becomes noticeable.
At high SNR, the BER advantage is over 2dB. This advantages
owe to a large ratio (50%) of index bits, which are more robust
compared to the index bits in high SNR region. Furthermore,
we observe that the BER curves of GBM and non-GBM can
be well described by Eq. (22), and the diversity gain of GBM
is slightly larger than that of non-GBM. Besides, the actual
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diversity gain of both systems is about 6 (1 < 6 < 12), which
is also consistent with our previous analysis.

In Fig. 13, we compare the BER performance with a higher
system spectral efficiency. (K = 4, R = 3, 4-QAM) is set
for GBM. To get the same spectral efficiency (8 bits/Hz),
the non-GBM adopts 4-QAM modulation. At low SNR, GBM
is inferior to non-GBM, as the index bits are vulnerable to
be wrongly detected. However, GBM soon outperforms non-
GBM with a small increase of SNR. Even though the ratio
of index bits is only 25%, the BER advantage is still over
0.5dB combined with a 33% nSE enhancement. In addition to
the ML detector, the BER performance using ZF-2Q detector
is also presented here. Although the detection complexity
has been largely reduced, the performance gap compared to
the ML detector is also notable. However, when both adopt
ZF-2Q detector, we find the advantage of GBM over non-
GBM is about 1.5dB. This signifies the GBM can partially
compensate the performance loss arising from the suboptimal
equalizer. In the future, it is of great significance to design a
near-optimal detector for GBM, which can constitute a better
tradeoff between the complexity and BER performance.

VII. CONCLUSIONS

By exploiting the unique features of mmWave channels and
the hybrid transceiver structures, a novel IM design termed
as GBM has been judiciously devised for mmWave mMIMO.
Under limited RF chains, GBM can achieve improved MG and
SE, without compromising the array gain or the compatibility
with prevalent mmWave mMIMO systems. Based on the
(sub-)beamspace, a complete GBM transceiver is designed and
optimized from the digital and analog parts. Extensive theoret-
ical analyses and numerical simulations have demonstrated the
remarkable advantages of GBM over non-GBM alternatives in
terms of both the BER and SE.

APPENDIX A
PROOF OF PROPOSITION 1

Without loss of generality, we take the p-th path as an
example. The 2-D beamforming gain at grid point [n, m]
is F∗

N [:, n]ar(θp) × a∗t (φp)FM [:, m]. Due to the symmetry,
we consider the left part only, which is calculated as

a∗t (φp)FM [:, m]=
1
M

∣∣∣∣∣ sinπM
(
arcsin

(φp

2

)−m−1
M

)
sin π

(
arcsin

(φp

2

)−m−1
M

) ∣∣∣∣∣. (24)

The main-lobe of Eq. (24) is limited to
∣∣ arcsin

(φp

2

)−m−1
M

∣∣ ≤
1
M , and the beamforming gain decreases rapidly in large M .
Similarly, the main-lobe of the BS-end beamforming gain is
limited to

∣∣ arcsin
( θp

2

)−n−1
N

∣∣ ≤ 1
N . Both M and N are quite

large in mmWave mMIMO, thus the 2-D beamforming gain at
[m, n] tends to be negligible for either

∣∣ arcsin
(φp

2

)−m−1
M

∣∣ >
1
M or

∣∣ arcsin( θp

2 )− n−1
N

∣∣ > 1
N .

APPENDIX B
PROOF OF PROPOSITION 2

The sufficiency is easy to be verified thus being omitted,
so we focus on the necessity only. When less than K exclusive

elements exist in beamspace, at least one common column
(row) will be shared by SN (or SM), leading to two columns
(rows) in HK linearly dependent. Therefore, the rank of HK

will be smaller than K .

APPENDIX C
PROOF OF PROPOSITION 3

Let p(a, b) represent the probability that at least b out of
a(b ≤ a) entries are exclusive, then one can readily get

p(m, m) =
m−1∏
i=0

(
1 − i(M + N − i)

MN

)
.

p(m+1, m) includes two cases: all m+1 entries are exclusive,
and only m entries are exclusive, thus p(m + 1, m) is lower-
bounded by

p(m + 1, m) ≥ p(m + 1, m + 1)

+

(
m∑

i=1

i(M + N − i)
MN

)

×
m∏

i=1

(
1 − i(M + N − i)

MN

)
.

If �a
b � = 1, it is clear that P (a, b) ≥ p(min(b+1, a), b). Thus

when �a
b � > 1, if mod (a, b) = 0, one can get p(a, b) ≥

1−(1−p(b, b))�
a
b �; if mod (a, b) �= 0, one can get p(a, b) ≥

(1 − p(b + 1, b))(1 − p(b, b))�
a
b �−1.

APPENDIX D
PROOF OF PROPOSITION 4

Let d(HK) = min
∀�s
=s

d(HK , s, ŝ). By using the following

result in [30] inductively

a1Q(x1) + a2Q(x2) � aQ(min(x1, x2))

with

a =

⎧⎨⎩aμ, μ = argmin
i=1,2

xi; if x1 �= x2

2; if x1 = x2

at high SNR, PGBM in Eq. (17) can be approximated as

PGBM(HK) � 1
η2η Q

(√
d(HK)/2σ2

)C
where C =

∑
∀s

∑
∀�s

e(s, ŝ)I(d(HK , s, ŝ) == d(HK)). Hence

PGBM can be approximated as a monotonically decreasing
function of d(HK).

APPENDIX E
PROOF OF PROPOSITION 6

Since the amplitude of each path obeys a complex norm
distribution, its square obeys a unit exponential distribution.
The distribution of βi corresponding to the strongest path is

f(βi) = P (1 − e−βi)P−1e−βi . Denote C = EbMNη
N0P , and the

first item in Eq. (21) can be bounded by

1
12

K∏
i=1

∫ ∞

0

f(βi)e−Cβi
Δs2

i
4 dβi

(b)
=

PK

12

K∏
i=1

B(
CΔs2

i

4R
+ 1, P )
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where (b) is according to Eq.(3.251) in [31]. Thus lower-bound
of Eq. (21) is derived as

PK

12

K∏
i=1

B

(CΔs2
i

4R
+ 1, P

)
+

PK

4

K∏
i=1

B

(CΔs2
i

3R
+ 1, P

)
.

For the weakest path,f(βi) = Pe−Pβi . Following the same
procedure, the upper-bound of Eq. (21) can be derived as

PK

12

K∏
i=1

B

(CΔs2
i

4R
+ P, 1

)
+

PK

4

K∏
i=1

B

(CΔs2
i

3R
+ P, 1

)
.

At high SNR, it can be verified that

K∏
i=1

B

(CΔs2
i

4R
+ P + 1 − κ, κ

)

�
K∏

i=1

(CΔs2
i /4R + P − κ)!(κ − 1)!
(P + CΔs2

i /4R)!

� M0

(
Eb

N0

)−κ

+ o

{(
Eb

N0

)−κ}
where M0 is a constant irrelevant to Eb/N0. Therefore κ rep-
resents the diversity gain, whose lower-bound and upper-bound
is 1 and P , respectively. Thus, the APEP can be described as
the form of Eq. (22).

REFERENCES

[1] S. Gao, X. Cheng, and L. Yang, “Generalized beamspace modulation
for mmWave MIMO,” in Proc. Global Telecommun. Conf., Abu Dhabi,
United Arab Emirates, Dec. 2018, pp. 1–6.

[2] Y. Bian, X. Cheng, M. Wen, L. Yang, H. V. Poor, and B. Jiao,
“Differential spatial modulation,” IEEE Trans. Veh. Technol., vol. 64,
no. 7, pp. 3262–3268, Jul. 2015.

[3] M. Di Renzo, H. Haas, A. Ghrayeb, S. Sugiura, and L. Hanzo,
“Spatial modulation for generalized MIMO: Challenges, opportunities
and implementation,” Proc. IEEE, vol. 102, no. 1, pp. 56–103, Jan. 2014.

[4] P. Yang, M. Di Renzo, Y. Xiao, S. Li, and L. Hanzo, “Design guidelines
for spatial modulation,” IEEE Commun. Surveys Tuts., vol. 17, no. 1,
pp. 6–26, 1st Quart., 2015.

[5] M. Zhang, M. Wen, X. Cheng, and L. Yang, “Pre-coding aided dif-
ferential spatial modulation,” in Proc. IEEE Global Commun. Conf.
(GLOBECOM), Dec. 2015, pp. 1–6.

[6] W. Qu, M. Zhang, X. Cheng, and P. Ju, “Generalized spatial modulation
with transmit antenna grouping for massive MIMO,” IEEE Access,
vol. 5, pp. 26798–26807, 2017.

[7] R. Y. Mesleh, H. Haas, S. Sinanovic, C. W. Ahn, and S. Yun, “Spatial
modulation,” IEEE Trans. Veh. Technol., vol. 57, no. 4, pp. 2228–2241,
Jul. 2008.

[8] A. Younis, N. Serafimovski, R. Mesleh, and H. Haas, “Generalised
spatial modulation,” in Proc. Asilomar Conf. Signals, Syst., Comput.,
Pacific Grove, CA, USA, Nov. 2010, pp. 1498–1502.

[9] O. El Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, and R. W. Heath, Jr.,
“Spatially sparse precoding in millimeter wave MIMO systems,” IEEE
Trans. Wireless Commun., vol. 13, no. 3, pp. 1499–1513, Mar. 2014.

[10] C. Chen, Y. Dong, X. Cheng, and L. Yang, “Low-resolution PSs based
hybrid precoding for multiuser communication systems,” IEEE Trans.
Veh. Technol., vol. 67, no. 7, pp. 6037–6047, Jul. 2018.

[11] X. Gao, L. Dai, S. Han, C.-L. I, and X. Wang, “Reliable beamspace
channel estimation for millimeter-wave massive MIMO systems with
lens antenna array,” IEEE Trans. Wireless Commun., vol. 16, no. 9,
pp. 6010–6021, Sep. 2017.

[12] Y. Dong, C. Chen, and Y. Jin, “Joint beamforming with low-resolution
PSs for millimetre-wave communications,” Electron. Lett., vol. 52,
no. 18, pp. 1541–1543, Sep. 2016.

[13] F. Sohrabi and W. Yu, “Hybrid digital and analog beamforming design
for large-scale antenna arrays,” IEEE J. Sel. Topics Signal Process.,
vol. 10, no. 3, pp. 501–513, Apr. 2016.

[14] S. Han, C.-L. I, Z. Xu, and C. Rowell, “Large-scale antenna systems
with hybrid analog and digital beamforming for millimeter wave 5G,”
IEEE Commun. Mag., vol. 53, no. 1, pp. 186–194, Jan. 2015.

[15] J. Brady, N. Behdad, and A. Sayeed, “Beamspace MIMO for millimeter-
wave communications: System architecture, modeling, analysis, and
measurements,” IEEE Trans. Antennas Propag., vol. 61, no. 7,
pp. 3814–3827, Jul. 2013.

[16] X. Gao, L. Dai, S. Han, C.-L. I, and R. W. Heath, Jr., “Energy-efficient
hybrid analog and digital precoding for mmWave MIMO systems with
large antenna arrays,” IEEE J. Sel. Areas Commun., vol. 34, no. 4,
pp. 998–1009, Apr. 2016.

[17] L. He, J. Wang, and J. Song, “Spatial modulation for more spatial mul-
tiplexing: RF-chain-limited generalized spatial modulation aided mm-
wave MIMO with hybrid precoding,” IEEE Trans. Commun., vol. 66,
no. 3, pp. 986–998, Mar. 2018.

[18] S. Gao, Y. Dong, C. Chen, and Y. Jin, “Hierarchical beam selection in
mm wave multiuser MIMO systems with one-bit analog phase shifters,”
in Proc. IEEE 8th Int. Conf. Wireless Commun. Signal Process. (WCSP),
Yangzhou, China, Oct. 2016, pp. 1–5.

[19] A. Alkhateeb, G. Leus, and R. W. Heath, Jr., “Limited feedback hybrid
precoding for multi-user millimeter wave systems,” IEEE Trans. Wireless
Commun., vol. 14, no. 11, pp. 6481–6494, Nov. 2015.

[20] S. Sun and T. S. Rappaport, “Millimeter wave MIMO channel estimation
based on adaptive compressed sensing,” in Proc. IEEE Int. Conf.
Commun. Workshops (ICC Workshops), May 2017, pp. 47–53.

[21] B. Zheng, X. Wang, M. Wen, and F. Chen, “Soft demodulation algo-
rithms for generalized spatial modulation using deterministic sequen-
tial Monte Carlo,” IEEE Trans. Wireless Commun., vol. 16, no. 6,
pp. 3953–3967, Jun. 2017.

[22] S. Gao, M. Zhang, and X. Cheng, “Precoded index modulation for multi-
input multi-output OFDM,” IEEE Trans. Wireless Commun., vol. 17,
no. 1, pp. 17–28, Jan. 2018.

[23] C. Gustafson, K. Haneda, S. Wyne, and F. Tufvesson, “On mm-wave
multipath clustering and channel modeling,” IEEE Trans. Antennas
Propag., vol. 62, no. 3, pp. 1445–1455, Mar. 2014.

[24] X. Cheng, M. Zhang, M. Wen, and L. Yang, “Index modulation for 5G:
Striving to do more with less,” IEEE Wireless Commun., vol. 25, no. 2,
pp. 126–132, Apr. 2018.

[25] M. Wen, X. Cheng, and L. Yang, Index Modulation for 5G Wireless
Communications. Cham, Switzerland: Springer, 2017.

[26] E. Basar, U. Aygölü, E. Panayirci, and H. V. Poor, “Orthogonal
frequency division multiplexing with index modulation,” IEEE Trans.
Signal Process., vol. 61, no. 22, pp. 5536–5549, Nov. 2013.

[27] X. Gao, L. Dai, and A. M. Sayeed, “Low RF-complexity technologies to
enable millimeter-wave MIMO with large antenna array for 5G wireless
communications,” IEEE Commun. Mag., vol. 56, no. 4, pp. 211–217,
Apr. 2018.

[28] Y. Ding, K. J. Kim, T. Koike-Akino, M. Pajovic, P. Wang, and P. Orlik,
“Spatial scattering modulation for uplink millimeter-wave systems,”
IEEE Commun. Lett., vol. 21, no. 7, pp. 1493–1496, Jul. 2017.

[29] J. Li, M. Wen, M. Zhang, and X. Cheng, “Virtual spatial modulation,”
IEEE Access, vol. 4, pp. 6929–6938, 2016.

[30] T. P. Do, J. S. Wang, I. Song, and Y. H. Kim, “Joint relay selection
and power allocation for two-way relaying with physical layer network
coding,” IEEE Commun. Lett., vol. 17, no. 2, pp. 301–304, Feb. 2013.

[31] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and
Products. San Diego, CA, USA: Elsevier, 2007.

Shijian Gao received the B.Sc. and M.Sc. degrees
in electrical engineering from Nankai University and
Peking University in 2014 and 2017, respectively.
He is currently pursuing the Ph.D. degree with the
Department of Electrical and Computer Engineering,
Colorado State University, Fort Collins, CO, USA.
His research interests are in the areas of wireless
communications and related fields.

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on September 22,2020 at 23:34:42 UTC from IEEE Xplore.  Restrictions apply. 



GAO et al.: SPATIAL MULTIPLEXING WITH LIMITED RF CHAINS: GBM FOR mmWave MASSIVE MIMO 2039

Xiang Cheng (S’05–M’10–SM’13) received the
Ph.D. degree from Heriot-Watt University and The
University of Edinburgh, Edinburgh, U.K., in 2009,
where he received the Postgraduate Research Thesis
Prize. He is currently a Professor with Peking Uni-
versity. His general research interests are in areas
of channel modeling, wireless communications, and
data analytics, subject on which he has published
more than 200 journal and conference papers, five
books, and holds six patents. He was a recipient
of the IEEE Asia Pacific (AP) Outstanding Young

Researcher Award in 2015, the co-recipient for the 2016 IEEE JSAC Best
Paper Award: Leonard G. Abraham Prize, the NSFC Outstanding Young
Investigator Award, the both First-Rank and Second-Rank Award in Natural
Science, Ministry of Education in China. He has also received the Best Paper
Awards at IEEE ITST’12, ICCC’13, ITSC’14, ICC’16, ICNC’17, GLOBE-
COM’18, ICCS’18, and ICC’19. He has served as the Symposium Leading-
Chair, the Co-Chair, and a member of the Technical Program Committee
for several international conferences. He is currently an Associate Editor for
the IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

and Journal of Communications and Information Networks, and an IEEE
Distinguished Lecturer.

Liuqing Yang (S’02–M’04–SM’06–F’15) received
the Ph.D. degree from the University of Min-
nesota, Minneapolis, MN, USA, in 2004. Her
main research interests include communications
and signal processing. She received the Office of
Naval Research Young Investigator Program Award
in 2007, the National Science Foundation Career
Award in 2009, the IEEE GLOBECOM Outstand-
ing Service Award in 2010, the George T. Abell
Outstanding Mid-Career Faculty Award, and the
Art Corey Outstanding International Contributions

Award from CSU in 2012 and 2016, respectively, and Best Paper Awards at
IEEE ICUWB’06, ICCC’13, ITSC’14, GLOBECOM’14, ICC’16, WCSP’16,
GLOBECOM’18, ICCS’18, and ICC’19. She has been actively serving in the
technical community, including the organization of many IEEE international
conferences, and on the editorial boards of a number of journals, including the
IEEE TRANSACTIONS ON COMMUNICATIONS, the IEEE TRANSACTIONS
ON WIRELESS COMMUNICATIONS, the IEEE TRANSACTIONS ON INTEL-
LIGENT TRANSPORTATION SYSTEMS, and the IEEE TRANSACTIONS ON

SIGNAL PROCESSING. She is currently serving as the Editor-in-Chief for IET
Communications.

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on September 22,2020 at 23:34:42 UTC from IEEE Xplore.  Restrictions apply. 


