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Estimating Doubly-Selective Channels for Hybrid
mmWave Massive MIMO Systems:
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Abstract— In mmWave massive multiple-input multiple-output
(mMIMO) systems, hybrid (digital/analog) structure has been
a prevalent option to balance system cost and performance.
To facilitate transceiver design in hybrid mmWave mMIMO,
acquiring an accurate channel state information is critical.
To this end, a novel doubly-sparse approach is proposed
to estimate doubly-selective mmWave channels under hybrid
mMIMO. Via the judiciously designed training pattern, the well-
utilized beamspace sparsity alongside the under-investigated
delay-domain sparsity that mmWave channels exhibit can be
jointly exploited to assist channel estimation. Thanks to our
careful two-stage (random-probing and steering-probing) design,
the proposed channel estimator possesses strong robustness
against the double (frequency and time) selectivity whilst enjoying
the benefits brought by the exploitation of double sparsity.
Compared with existing alternatives, our proposed mmWave
channel estimator not only works in doubly-selective channels,
but also largely reduces the training overhead, storage demand
as well as computational complexity.

Index Terms—mmWave, hybrid massive multiple-input
multiple-output, channel estimation, double selectivity, double
sparsity.

I. INTRODUCTION

HANKS to the abundant frequency resources at

millimeter-wave (mmWave) band, mmWave communica-
tions have been recognized as one of key technologies for
the 5G & beyond wireless systems [2]-[5]. However, a major
concern impeding the wide deployment of mmWave systems
comes from the severe propagation loss [6]-[9]. Fortunately,
as a much shorter wavelength at mmWave band allows the
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deployment of massive antennas at the transceiver, the prop-
agating attenuation can therefore be compensated for by the
large array gains [10]-[12].

To facilitate the transceiver design, the top priority is to
acquire an accurate channel state information (CSI) [13].
However, compared to the centimeter-wave (cmWave) MIMO
systems, channel estimation for mmWave mMIMO faces
unprecedented challenges. First, mmWave mMIMO typically
adopts a hybrid structure for power and cost concerns [7], [14],
so the high-dimensional channel matrix has to be recovered via
very few RF chains. Since the latter essentially determines the
number of effective training symbols that can be transmitted
simultaneously, it can take significant amount of time to
transmit sufficient training symbols for mMIMO. When it
comes to the mobile scenarios, the problem becomes even
more challenging, because the channel turns out to be time-
varying in the presence of Doppler.

As mmWave channels exhibit limited scattering, a unique
sparsity holds in beamspace under mMIMO. Thanks to this
sparsity, it may not be necessary to estimate the channel
matrix element by element. Instead, one can resort to the com-
pressed sensing (CS) theory to reduce the training overhead
while ensuring a high accuracy. Following this idea, in [15],
a hierarchical beam training coupled with orthogonal matching
pursuit (OMP) [16] is devised to estimate static narrowband
mmWave channels. In [17], block-OMP (BOMP) is applied
to estimate narrowband & time-varying mmWave channels.
The static wideband channel estimation in the line-of-sight
(LoS) scenarios is considered in [18], and the relevant work
has been further extended to the non-LoS (NLoS) scenarios
like [19] and [20], where OMP is applied either in the time-
domain or the frequency-domain to assist channel estimation.

Due to the wideband nature of mmWave, the narrowband
channel model suffers from severe limitations, motivating us
to focus on the wideband channel model. Generally speak-
ing, existing wideband channel estimation works can be
divided into two main categories: time-domain estimation vs.
frequency-domain. The former is to estimate all channel taps
jointly, while the latter is to estimate individual subcarri-
ers independently. By exploiting the sparsity in beamspace,
both schemes achieve similar performance in the sense of
the normalized mean square error (NMSE), with a largely
reduced training overhead compared to the least-squares (LS)
estimator. However, to effectively exploit the sparsity so
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that OMP could be applied, either the demanding storage
requirement or the heavy computational burden is inevitable.
On top of that, these works have not taken into account of
the Doppler effects, rendering their feasibility in mobility
scenarios questionable. To address these issues, there is an
urgent need for a more generalized and more efficient channel
estimation approach.

To achieve significant reduction in training overhead and
computational complexity, we resort to the under-exploited
delay-domain sparsity in combination with the well-known
beamspace sparsity. Aiming at a high-performance and easy-
to-implement channel estimator, a novel channel estimator is
proposed by exploiting the double sparsity. As a matter of
fact, the idea of using either the delay-domain sparsity or the
double sparsity can be also found in some works, such as
[21], [22], and [23]. However, these works are not specifically
designed for hybrid mMIMO, and their studied channels have
not taken time selectivity into account. In fact, once the time
selectivity is involved, how to exploit either the delay-domain
sparsity or the beamspace sparsity becomes a thorny problem.
Furthermore, the introduction of the hybrid structure makes
channel estimation a totally different topic as before, because
the design flexibility is severely restricted by the hardware
constraints.

To address the aforementioned deficiencies, we propose a
novel doubly-sparse approach to estimate mmWave mMIMO
channels. Specifically, the so-called DSDS channel estimator
comprises the following steps:

e To deal with the sparsity in delay domain, a special
training pattern is judiciously designed to successfully
separate each channel tap. Based on the energy detector,
only a small proportion of channel taps will be identi-
fied effective regardless of Doppler effects and awaits a
further processing.

o To deal with the beamspace sparsity, an enhanced OMP
algorithm termed as A-BOMP is proposed to recover the
beam direction. Given the maximum Doppler, A-BOMP
can adjust basis matching & residue update with properly
determined iterations, such that a high accuracy can be
guaranteed even under strong Doppler effects.

o To jointly estimate the amplitudes and Doppler, repeti-
tive steering-probing is applied based on the estimated
beam direction. As a result, both the amplitudes and
Doppler can be reliably estimated with low training
overhead.

Compared with existing work, the doubly-sparse approach
can remarkably improve the estimation accuracy, and largely
reduce the training overhead, storage demand as well as
computational complexity. As many implementing issues are
also considered in the specific design, the proposed channel
estimator has a great potential to be applied in practice.

The rest of this paper is organized as follows: Section II
describes the system and channel models. Sections III and IV
introduce how to exploit the beamspace and delay-domain
sparsity, respectively. Section IV explains the estimation of
amplitudes and Doppler. Extensive numerical results and dis-
cussions are presented in Section V, followed by conclusions
in Section VI.
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Fig. 1. The system model of hybrid mmWave mMIMO transceivers with
one RF chain deployed at either end.

Notation: In the remainder of the paper, a, a and A
represent a scalar, a vector and a matrix, respectively. |A| is
the cardinality of the support A. A[m,n|, A[m,:] and A[:, m]
are denoted as the (m,n) entry, the m-th row, and the m-
th column of A, respectively. A’, A* and AT denote the
transpose, the hermitian transpose and the pseudo-inverse of
A, respectively. |-] and [-] represent the floor and ceiling
operation, respectively. cal(.) represents the cardinality. diag(.)
and vec(.) represent the operations of diagonalization and vec-
torization, respectively. E stands for expectation. CA/(0, o?)
represents the distribution of a circularly symmetric complex
Gaussian random variable with variance o2.

II. SYSTEM AND CHANNEL DESCRIPTION
A. System Model

A mmWave mMIMO system is considered, where N;
and N, antennas are employed at the transmitter (Tx) and
receiver (Rx), respectively. Since the proposed channel estima-
tion approach does not rely on the channel reciprocity, we sim-
ply assume channel estimation is implemented at Rx. For the
power consumption and hardware cost concerns, mmWave
mMIMO typically adopts a hybrid structure, in which the
number of RF chains at the transceivers is much smaller than
that of the antennas. Similar to [7], [24], a fully-connected
hybrid structure is studied here, where the RF chains and
antennas are connected via a digitally controlled analog phase
shifter (APS) network. Suppose each APS component has a
resolution of b bits, then all adjustable angles are contained in

B=1{0,2m/2" - 2m(2" — 1)/2°} (1)

with | B |= 2. Accordingly, the angular quantization function
is expressed as

Q(z) = B(i*),i* = argmin  mod (z — B(i),27). (2)

As in [25], let the transceivers each employ a single RF chain
as shown in Fig. 1. Note that, since we focus on channel
estimation in this paper, this setup is without loss of generality
and can be readily generalized to cope with arbitrary number
of RF chains at the transceivers.

B. Geometric Channel

In this paper, we adopt the modified Sen-Matolak channel
model [26], which is an extension of the narrowband geometric
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model by taking the path delay and the Doppler effect into
account. Denote the maximum number of delay taps as IN..
At time instant n, the sampled version of the tap-d channel
(0 <d < N.) is given by

=3

p=1

r(0p)ay (¢p)eijn

3)

where «, ~ CN(0,1) is the complex gain of the p-th
path; h(-) is the pulse shaping filter response; 7, is the
propagation delay of the p-th path that obeys a uniform
distribution on [0, (N.—1)T%); 6, and ¢,, represent the angle of
arrival (AoA) and angle of departure (AoD), respectively, both
of which being modeled as uniformly distributed variables
n [0,27). Define the system carrier frequency to be f,
the velocity of light to be c¢,, and the maximum relative
velocity to be v,,. Then the normalized Doppler shift is
wp = 27 fevp T sin(6),) / ¢,.. For notational simplicity, an array
response generating function is defined as

In(y) =

1 , ; /
—— (1,62, ... I (N=1y]", 4)
vk }

With half-wavelength uniform linear arrays (ULAs) employed
at the transceivers we have a;(¢) = fn,(sin(¢)/2) and

a.(0) = (srn( )/2)

C. Beamspace Representation

To simplify expression, one can rewrite the geometric model
into the following compact form [17]

H,(n) = Ardiag(ga(n)) A% 3)

where A = [at(¢>1),at(¢2),~' ,at(qﬁp)] € CNexP and
Ap = [ar(Ql),ar(ﬁg),-~ ,ar(9p)} € CN»*P are steering
matrices that remain unchanged during the channel estimation
stage. The time-varying effects are incorporated in g4(n)
given by

NN, .
- ,aph(dT — mp)elr™]’

(6)

[ h(dT, — Ty )edn L.

which contains the path gains at time instant n.

In Eq. (5), A1, AR as well as gq(n) are all associated with
the physical channel taps, which are not always resolvable due
to the finite resolution of the receiver in time and space, and
thus cannot be directly estimated. To seek an equally general
but more practical representation, we first construct the Tx-end
and Rx-end angular dictionary matrices as in [15]

Dy = [fn.(0), fn,(1/Ge), -+ v, ((Ge = 1)/ Gy)]
D, = [fn.(0), fn,(1/Gr), - fn, ((Gr = 1)/Gy)]

where G; and G, represent the size of corresponding dic-
tionaries. Taking D, as an example, it contains the steering
vectors ranging from [0, 27] with resolution 27/G:. As G
approaches infinity, the resolution becomes zero, thus leading
to a continuous dictionary. For practical implementation, most
work show that setting G as 2 ~ 4 times the array size can

(7a)
(7b)
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provide sufficient resolution for separating the AoAs/AoDs
of the propagation paths. Based on the dictionary matrices,
the channel representation in Eq. (5) can be re-expressed as

Hgy(n) = Ardiag(ga(n)) A7 = D,Ha(n)D;. (8

Under the mMIMO setup, P propagation paths result in
P dominant non-zero entries in H,. As D, and D, are
irrelevant to H,, H, essentially gathers the entire channel
information that was originally contained by Ap, Agr and
ga(n). Specifically, by omitting the time instant and assuming
on- grid AoA/AoD pairs, Vp € [1,P], n, = 27?/_pr my, =
27r/G , Hg(my,n,) = galp]. From this sense, H, can
be interpreted as the channel representation in beamspace.
Because a limited scattering effect in mmWave propagation
leads to P < G,G; [24], H, exhibits an evident sparse
nature.'

Revisiting Eq. (3), the prior information available at both
ends are Ny, N,, N, the steering pattern of ay/rs while
the remaining parameters are unknown to the transceivers,
and thus have to be recovered via channel estimation. In the
following, we will heavily rely on the beamspace representa-
tion to recover the beam direction (AoA & AoD), the beam
amplitude, as well as the associated Doppler shift.

D. Input-Output Relationship

Let s(n) be the training symbol at instant-n. At the Tx,
s(n) is first processed at the APS network, and the transmitted
signal is x(n) = pi(n)s(n) € CN**1. Since each APS
component can only adjust the phase, the probing vector p;(n)
bears the form as

pi(n) = VN, [l goatm ..

with a;(n) € B, Vi € [1, Ny].
After channel propagation, the received signal is

Ne—1
= Z Hy(n)x(n
d=0

which is the convolution of multiple time-varying channel taps.
n(n) ~ CN(0,0%Iy,) is the receiver noise vector. (n) then
goes through the Rx-end APS network, whose function is
described by an N, x 1 probing vector pr(n), so the received
sample after APS becomes

ZPT

where £(n) = pi(n)n(n) ~ CN(0,0?) remains white. Let
p,(n) = Dypi(n) and P, (n) = D,p,(n). Based on the
beamspace representation in Eq. (8), we have

ZpT

'In practice, the off-grid leakage may lead to extra non-zero entries in H 4.
Since the leakage is typically very weak under mMIMO, the ensemble of
dominant entries in H 4 is still similar to g4. Regardless of whether the non-
zero entries of H 4 corresponds to a single channel path p or to some leakage
terms, these entries are the resoluble ones that can be estimated.

edan, (n)]’ )

—d)+n(n) (10)

n)pi(n —d)s(n —d) +£&(n).  (11)

(n)Py(n —d)s(n —d) +&(n). (12)
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Without loss of generality, we consider the general I-O
relationship for the first frame only unless otherwise spec-
ified. The length-N; training frame is simply denoted as
[5(0),s(1),---,s(Ny — 1)], and its specific form will be
explained later. By concatenating all received samples, we
write the I-O relationship in matrix form shown in Eq. (13) at
the bottom of this page, with

p.(0) 0 0
. o mm- 0
Pr: . . .

0
0 0 pr(Ny—1)
and

p,(0) ©

_ 0 p,(1)

III. EXPLOIT DELAY-DOMAIN SPARSITY

As described in Section II, mmWave channels exhibit
sparsity in beamspace. Apart from this well-known sparsity,
this section will further show that mmWave channels exhibit
sparsity in the delay domain as well. We first analyze why
existing approaches fail to exploit the delay-domain sparsity,
and then explain how one can effectively benefit this largely
overlooked sparsity.

A. Sparsity in Delay Domain

To eliminate inter-frame interferences (IFIs) in block trans-
mission, a commonly adopted approach amounts to zero-
padding (ZP) a guard interval with length at least (N, — 1)
to each frame. For example, the data-frame length is 512 in
IEEE 802.11ad, while the prefix length can be up to 128.
However, a long delay spread with large N, due to the high
symbol rate does not mean a rich multi-path environments.
In fact, mmWave channels have very few dominant paths’
Hence, a majority of the channel taps are actually too weak to
be considered, rendering sparsity in the delay domain. To gain
some intuitive insight, we plot the colormap of a randomly
generated channel in Fig. 2, where the double sparsity in both
the beamspace and delay domain can be clearly observed.

2typically 8 ~ 12 even in “rich” scattering environments, and is much less
in other environments [28].
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Fig. 2. The delay-beamspace colormap of a randomly generated mmWave
channel with Ny = N,- = 32, N. = 64 and P = 5.

B. Conventional Training Pattern

The currently adopted training pattern [20] is given by

[5(0)75(1)7 aS(Nf_l)]: [505817527"' aSN—1;O7"' 50]
—_————

N,
(14)

Specifically, each frame contains Ny = N + N. symbols,
where N and N, are the length of the data sequence and ZP,
respectively. Clearly, the I-O relationship of this pattern still
follows the general one in Eq. (13), but some specifics need
to be clarified.

In wideband mmWave systems, symbols are pumped out at
a very high rate, thus leaving insufficient buffer time for the
APS network reconfiguration except for the ZP interval [19].
As a result, the probing vectors remain unchanged over the
entire frame, that is

pt/T(n) :pt/r(o)a Vn € [OaNf> (15)
Accordingly, P, = I, ® 5:(0) and Py = Iy, ®B,(0).

Although the introduction of ZP ensures IFI-free, N, chan-
nel taps remain unresolvable after convoluting with the training
sequence. In consequence, channel estimation requires joint
processing across all taps, leading to high storage demand and
heavy computational burden. More importantly, exploiting the
delay-domain sparsity becomes an intractable task.

y = [y(0),y(1),- - y(Ny = 1))
_ H(T(O) _0 0 0 T { 5(0) ]
Ho(1) 0 0 :
— P | Hy (N 1) P, [ s(N.—1) | +¢ (13)
: 0 :
I 0 Hy,_1(N;—1) - Ho(N; — 1) ] sWNy—1)

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on September 22,2020 at 23:31:17 UTC from IEEE Xplore. Restrictions apply.



GAO et al.: ESTIMATING DOUBLY-SELECTIVE CHANNELS FOR HYBRID mmWAVE MASSIVE MIMO SYSTEMS: A DOUBLY-SPARSE APPROACH

C. Proposed Training Pattern

To avoid these limitations, there is a great urgency to devise
a new training pattern, by which the delay-domain sparsity
could be exploited to facilitate channel estimation, and the
pattern itself must be friendly to implementation. To this end,
a new training pattern is designed as follows

[s(0), s(1), -+, s(Ny = 1)]
Ne—1 Ne—1 =1
——
:[30,0,-~,0 51,0, - 70‘ ...... s5—1,0, 70],
(1) (2) (L)
(16)

As can be seen, each frame is further divided into
L =Ny /N, subframes.? Owing to the ZP in each subframe,
sufficient buffer time is left to reconfigure the APS network
after each non-zero training symbol. In other words, the
probing vectors can be updated L times per frame, i.e.,

pt/r(n) = pt/r(Nc\_n/NCJ)vvn € [OaNf)'

An interesting fact is that, when it comes to the frequency-
selective channel estimation in conventional MIMO setup,
the training pattern in Eq. (16) has been proved optimal in
the sense of both the mean squared error (MSE) and system
mutual information [27]. Before taking a closer look at the I-O
relationship with the new pattern, we first make the following
definition.

Random-probing vector: At the random-probing stage,
the probing vectors are generated by randomly adjusting the
angle of each APS component from B. The resultant vector is
termed as the random-probing vector and denoted as

A7)

P (1) = Piyr(INc+ 1), (1 < Line < Ne). (18)

Applying random probing is simply because no prior CSI
is available at this stage. Note that, the above definition
implies that pf}r possesses both the randomness and subframe-
updatability property. Applying a similar notational change to
ﬁe/r’ ﬁ: becomes Eq. (19), shown at the bottom of this page,
and P, is obtained likewise. Substituting the new P, and P,
together with the training frame into Eq. (13), the received
signal becomes

Y(INe +ne) = (PF(1) Ha, (IN + ne)pf (1)s)

+E(IN: + ne). (20)

Clearly, the received samples are now associated with a single
channel tap. Hence, our proposed pattern facilitates separating

3Without loss of generality, L is assumed to be an integer here. If N t/Ne
is not an integer, one can simply use L = [Ny/Nc].
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channel taps and thus rendering it possible to exploit the delay-
domain sparsity easily. Since the success of tap separation does
not rely on the non-zero training symbol s; in Eq. (16), s; is
set as 1 in the rest of paper without loss of generality.

D. Identification of Effective Taps

To determine the existence of tap-d channel, we gather all
H ;-related samples, i.e., y(IN. + d), VI € [0,L — 1]. If at
least one dominant path exists in the tap-d channel, y(IN.+d)
includes both the signal and noise parts. Otherwise, y(IN.+d)
contains noise only. Hence, detecting the existence of the tap-
d channel is a binary hypothesis testing problem that can be
dealt with via energy detector. We first average the power of
all samples associated with H,, and get the test statistics (TS)
and its normalized version nTS as

L—1
1 2
Y=< ; |ly(INe + d)| (2la)
— Yd — 0'2
Y, = . 21b
d max (Y, —02,0) (210)
0<m< N,

When applying CS, random probing is necessary in estimating
both the time-invariant and time-varying channels. While for
the latter, another important function of random probing is to
remain robust against Doppler.

Proposition 1 [Validity of test statistics with Doppler]: With
sufficient random probings, the test statistics Y, is approxi-
mately irrelevant to the channel’s time variation.

Proof: Letn =IN.+d and gq4,(n) be the p-th element
of gq(n), then

N.—1
y(n) = Y () Ha(n)p,(n — d) + &(n)
d=0

=
=Y (pF(1) ar(By)ai (6p)pf ()gap(n) +E(n).

(22)

Denote p,(l) = '(pg(l))*ar(Hp)afl(%)p?(l). By using
9d,p(n) = ga,p(0)e?“»™, we have

P P |
=>_pp(n)gap(O)* + 2R{ > pp(l)gd,p(o)g(n)ewpln}

p=1

+2R{ DD o (D9ap, (005, (1)g p, (0)7 W —r2)m }

P1 P2

(23)

Since pf* and pZ are random probing vectors with zero
mean, it can be readily verified E{p,(/)} = 0, ¥p € [1, P].

Iy, ® (PE(0))" 0 0
. 0 Iy, ® (pF(1)" --- 0
P, - . v ® (1) (19)
: . 0
0 0 Iy, ® (PE(L—1))°
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By averaging sufficient |y(n)|?> terms, the last two
terms in Eq. (23) approach zero, thus the TS becomes
irrelevant to wy,. [ |
Proposition 1 guarantees the exploitation of the delay-
domain sparsity regardless of Doppler effects. With the energy
detector, the effective taps can be roughly selected as

Pl—{d ?d>u}ﬂ{d‘Yd>02}

where p is the threshold.* To avoid extreme cases where
cal(Py) is either 0 or unreasonably large, a tuning procedure
is added, and the ultimately determined taps are given by

(24)

Py, 0< cal(Pl)
P=<{dlYq>Aa}, cal(Py)> (25)
{d|Yd>)\A} cal( 731)—0

with A4 and A4 representing the A-th largest TS and nTS,
respectively.

Up till now, we have accomplished the first part of the
random-probing stage. Summarizing, the main steps can be
described as follows:

e Transmit judiciously designed training frames with
random APS probing.

o Calculate the TS/nTS for each channel tap based on the
corresponding received samples.

o Determine the non-negligible channel taps based on the
energy detector P.

IV. EXPLOITING THE BEAMSPACE SPARSITY

As outlined in Section II, the beamspace channel exhibits
sparsity under mMIMO settings. Therefore, instead of estimat-
ing the original geometric channel matrix H; with dimension
N¢N,, we estimate the sparse beamspace channel H . Since
the time variation imposes a great difficulty in recovering
the exact values of non-zero entries from H 4, we focus on
locating the non-zero entries (essentially the angle support)
first in this section, and leaving the estimation of exact values
to the next section.

A. Sparse Transformation

After tap detection, n. out of N, taps are recognized effec-
tive, with their indices collected by D = {d;,ds, - ,dp}.
Using the samples already obtained at the random-probing
stage, we proceed to determine the angle support for those
taps belonging to D. It has to be stressed that this step does
not require extra training frames.

Due to the similarity, we take tap-d; (d; € D) for example,
and the subscript of d; is omitted for brevity. To apply CS, let
us first derive the sparse representation for received samples.
Stacking all H j-related samples from y yields

Ya = [y(d),y(Ne +d),- - ,y((L = 1)Ne + d)]".

4Evidently, the energy detector is somewhat heuristic. Recall that the energy
detector actually plays the role of a binary classifier, a promising direction
is to seek the power of deep neural networks. Specifically, given the channel
model, a bunch of synthesized data can be generated to train the network
for classification (tap detection) in a supervised manner. The offline trained
network could then be used for online prediction.

(26)
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Denoting n; =
vec(ABC) =

IN.+d (VI € [0 7L)) and using matrix equality
(C" ® A)vec(B), y(n;) can be rewritten as

y(ny) = <(p5(1))’ > <vec (Ha(m) )+£(nl).

1/’(1) Ed(nl)

27)

Neglecting the noises temporarily for brevity, y4 can be further
expressed as

$(0) 0 0 ha(no)
0 (1) - 0 a(ny
Ya = . : : (28)
0o O PY(L—1) hq(np—1)
v s

In the special case of time-invariant channels, all hy(n;)’s
are exactly the same [17], thus giving rise to

$(0)
(1)
. (29)

Yd = hq(no).

$(L —1)

Determining the angle support of H 4 is equivalent to locating
non-zero entries from the G;G,.-dimensional vector hy. Since
P <« GGy, the “localization” can be effectively solved via
OMP, through which O(PlogG:G,.) instead of O(G.G,)
samples suffice to guarantee a high accuracy.

However, Eq. (29) is no longer valid in the presence of
Doppler shifts, motivating us to restudy the more general
Eq. (28). Because hy remains sparse for LP < LG,G,,
a natural option would be OMP as well. Reminisce that
the variations of AoAs/AoDs are negligible during the chan-
nel estimation, thus a common angle support is shared by
all hg(n;)’s. However, OMP cannot exploit such a unique
structure because it treats hg(n;) as a generic sparse vector.
Fortunately, by utilizing the unique property of hy(n;), a more
general block-sparse representation can be derived. Specif-
ically, constructing such a permutation matrix P satisfying
P[:, (Z — 1)GtGT —|—]} = IGtGT [:, (j — 1)GtGr + Z] [29], ya
can be decomposed as

ya = (¥P) - (P'hy). (30)

The “new” sparse signal and sensing matrix then become

hy= Phy— [7171,71727 . v~i1,G,,Gr]/ (31a)
U=UP= [0, ¥, -, ¥gq] (31b)
where INLd,i = [Ed,i(no)vﬁd,i(nl)v T ﬁd,i(nL—l)r and

U, = diag[ts(0),%:(1), - ,oi(L — 1)], Vi € [1,G,G,],
with hg;(n;) and ;(I) being the i-th entry of h4(n;) and
(1), respectively. Unlike the original hg, the rearranged
h, exhibits block sparsity [30]. More importantly, the block
sparsity of hg equals to the sparsity of hg(n;).

Towards the issue of block or structured compressed sens-
ing, quite a few methods are available in the existing literature.
To be more specific, these methods can be categorized into
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the Bayesian type and non-Bayesian type. For the former,
representative solutions include block-sparse Bayesian learn-
ing [31], [32], message passing based compresses sensing
[33], [34], etc; while for the latter, representative solutions
include structured Lasso [35], block OMP [17], etc. In this
paper, we choose the OMP-based method similar to many
related works [15]-[20]. It should be mentioned that this
choice has no optimality guarantee, and other methods could
be attempted in the future.

Although block OMP seems to be a powerful tool to
estimate hy in Eq. (28), accurate identification of the non-
zero support still encounters two major difficulties:

P.1 How to properly set the number of iterations when
applying CS algorithms.

P.2 How to avoid the potential degradation resulting from the
strong Doppler effects.

To address these problems, we propose an algorithm termed
as adaptive-block OMP (A-BOMP) that will be detailed next.

B. A-BOMP

When recovering the sparse signal via CS, a proper number
of iterations is equal to (or a slightly higher than) the signal
sparsity. Unfortunately, the actual sparsity of h, is unknown.
To reduce the risks of estimation loss, most works adopt large
iterations. However, once the iterations severely mismatch the
signal sparsity, it may result in increased computational com-
plexity and potential over-fitting errors. Albeit not knowing the
sparsity either, we will show that, it is possible to set iterations
properly after tap identification.

Since D out of N, taps are regarded effective, the number
of beams should be no greater than D, thus the signal sparsity
is upper bounded by D. Surprisingly, the upper bound could
be set even smaller for implementation. To verify this, we first
provide the following result

Lemma 1: For the wideband channel with N, taps, the prob-
ability that k out of K (k < K) beams reside within one tap
is approximated as

k K—k
P(K,k)=Ck <Ni) <N§V_ 1) :

A brief illustration is made under N, = 128 and K = 10.
In this case, P(10,4) < 10~°, implying that it is virtually
impossible for one tap containing over 3 beams, so k is
expected to be smaller than 4, regardless to say 10 for
P(10,10) < 10718, Combing above discussions, a proposition
is made below to provide guidance on iterations setting:

Proposition 2 [Number of iterations]: Let Pr be a small
threshold (e.g, 1072) and D be the number of effective taps
after tap identification. A proper iterations can be set as k—1,
where k is the smallest integer satisfying P(D, k) < Pr.

To address P.2, DPC-BEM model was used in [17] to cap-
ture the variations before implementing BOMP. This approach
can dramatically lower the deterioration, but has two draw-
backs. First, the estimation performance is heavily dependent
on the basis order. Secondly, to construct orthogonal DPC
basis, a large-scale eigenvalue decomposition (EVD) has to be
involved [36] with complexity O(L?). To lower complexity

(32)
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Algorithm 1 Proposed A-BOMP Algorithm

Input: Received signal yq and sensing matrix \ild, maximum
block-sparsity IC, group size S, group number G = % and
error threshold e. _
Output: The AoA support set Ay and the corresponding
AoD support set Dy.
1: Initialization: The residue Tq = yq, iteration index C=0,
Ad/Ad and Dd/Dd are set to be empty, 3 = oo, ® = &
and x = xg = 0.

2: while C' < I and 8 > € do

3: C=C+1,

4 g = arg max E
i=1

55 np= |—gq,/Gt—| and ny = g; —

[I§% Tl ((i—1)S+1:0S) |
[aglle
(TZR — 1)Gt

6. if 34, mod (| np/nr — D(i)/A@) |,Gi/Gr) <1
then

7: goto 2

8: end if

9. A—{Ang).D={D,nr}
100 Ar = [fn, 5 + ) e 2agy

11: z‘iR:[fN(nZ—rl+QC§§)]]Re[__1ﬂ—1]

12 Plng] = (Pl @ whlng) (A5 ® AR)izi~r,

13 Wy, = diag[ﬁz[ JG@), - Pnea, ()], LGy G
152 q"’d]((z 1)S+1:mS) |1

14 g; = argmax E

Jnax 2 %0l

150 ngr=1[9:/G¢] and np = g; — (ng — 1)G,.

16: @ = [®, M(ff, (Slrztir) g
Fov, (Selin )i )

17 for j=1:G do

18: j=0G-1DS+1:mS

19: x=z+[®,) y()l2

20: ra(d) = ya(j) — (7, )@, ) y(4)

21: end for

2: f=|r—x|/x

2. xyg=x, =0
24: Ad: {Ad, 227G, nR 1)+nR}

25: '5(1 = {'5(17 —%Gt(nég DAKCES
26: end while

while remaining robustness against Doppler, A-BOMP is
proposed with its pseudo-code presented in Algorithm 1.
In A-BOMP, each outer iteration consists of three parts:

S:1 (Lines.4-9) partial basis matching: select the angle pair
having the largest sum of grouping correlations, and make
sure that there is no overlapping with the selected ones.

So (Lines.10-16) resolution refinement: re-construct sensing
matrix associated with the selected angle pair, and imple-
ment estimation procedure like S; to refine resolution.

Ss (Lines.17-21) partial residue update: estimate the coef-
ficients by the least-squared (LS) estimator, then update
the residue r; by subtracting the projection of each

group.
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In A-BOMP, another key parameter is the group size S
(equivalent to the group number (). In the presence of
Doppler, the size of the non-zero support always exceeds the
number of measurements. In this case, accurately localizing
the non-zero support is already challenging, not to mention to
the recovery of the entire vector. The only exception is in the
absence of Doppler, where the uncertainty could vanish when
sufficient training frames are available. The great shortage
of measurements forces us to “shrink” the non-zero support.
To this end, we divide hg4; defined in Eq. (31a) into S
groups, and those entries belonging to one group are highly
correlated thus being treated equally. Therefore, the group
division essentially performs the signal compression, and S
is nothing but the coherent interval.

Proposition 3 [Determination of the group size]: Let T
denote a high-correlation coefficient (e.g, 0.707). A proper
group size can be set as the largest S satisfying
€O8(Wmaz NeS) < 7 and wimae NS < /2.

Proposition 3 indicates that a smaller w;,,, results in a
larger S. For wpq, = 0, ie., a time-invariant channel,
A-BOMP degenerates to BOMP as G~: L/S = 1. Besides,
one can readily verify that estimating h; via BOMP and esti-
mating hg(n;) via OMP are equivalent. Compared to BOMP,
A-BOMP only introduces a few small-scale matrix inversions,
and simulations show that such minimal computational cost
will bring in a significantly improved accuracy.

Based on the output of A-BOMP, the steering matrices for
tap-d channel are estimated as

AVT,d = [fNr (Avd(l)/zﬂ-)a Ty fN'r (Avd(cd)/zﬂ-)}

Ava = [fn.(Da(1)/27),- -+, fn,(Dalca)/27)]

with ¢q = cal(de). The approximate beamspace representa-
tion for tap-d channel bear a form as

(33a)
(33b)

Hy(n) = A, 4diag(ga(n)) A 4. (34)

where gq(n) consists of unknown path gains. Despite that
both the amplitudesand angle support can be simultaneously
obtained via OMP in time-invariant channels, for the more
general time-varying channels, an additional stage is still
necessary to estimate the amplitudes and Doppler.

So far, we have completed the second part of the random-
probing stage. Summarizing, the main steps are listed as

o Stack the receive samples for each identified tap.

o Transform the samples into a generic block-sparse form.
o Determine the iterations and group size for A-BOMP.

o Apply A-BOMP to estimate the angle support.

V. JOINT ESTIMATION OF PATH GAIN & DOPPLER

At the random-probing stage, the effective taps are iden-
tified with their angle support obtained as well. In this
section, we proceed to estimate the remaining unknown path
gain/Doppler at the so-termed steering-probing stage.

A. Steering Probing Design

To accurately estimate path gains and Doppler shifts,
steering-probing will be implemented based on the estimated
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beam direction. Specifically, for tap-d channel, construct set
T4 whose i-th element is (A4(¢), Da(?)). Because of the off-
grid issues in beamspace and delay domain, different Z;’s may
share the same element, thus we get their union as

7 =14 UIdQU"'UIdD-

Further, all AoAs and AoDs are individually extracted from Z
and captured by Z4 and Zp, respectively. To facilitate beam-
forming, only the discrete AoD indices need to be fed back.
Without causing ambiguity, we reset the time instant at the
steering-probing stage, and making the following definition.
Steering-probing vector: At the steering-probing stage,
denote p; (n) and py (n) to be the RF vectors at time instant
n. To improve receive SNR, pit(n) (the p-th element of p; (n))
and p§.(n) (the q-th element of pZ (n)) are designed as [17]

(35)

Pﬁ,t(n) = \/LN_tejQ((pfl)ID(ﬁ))vp € [1,Ny] (36a)
p(i?"(n) = \/LN—TCjQ((qil)IA(ﬁ)),q €1, N,] (36b)

with i = mod (|n/N.|,cal(Z)). As can be seen from
Eq. (36), the probing vectors repeat every cal(Z) subframes,
so that that each beam will be steered once during each polling.

B. Path Gain/Doppler Estimation
At the ¢-th polling, stacking all tap-d related samples yields

Yd,i = [y(d+ni,0)v"' 7y(d+ni,\1\—1)}/ (37)
where n; ; = N.j + cal(Z)N.i, Vj € [0, cal(Z)). Using the
compact beamspace representation obtained in Eq. (34), each
sample in yq ; is approximately equivalent to

y(ni; +d) = (p] (n))" Ay adiag(ga(ni; + d))
X A} 4p7 (nij) + &£(nij + d)
= vec'(diag(ga(ni,; + d)))ma(ni,;)
+&(ni; +d) (38)
where ma(ni ;) = ((p7 (i) A7 ) @ ((pF (1)) Ara)-
By capturing the amplitudes with the one sampling in the
middle of current polling, yq; can be approximately repre-

sented as
mg(ni,o
mag\nii

mgq (ni,cal(I)fl)

Mg, ;

Yd,i ~

vec (diag(gd(m))> +&d,i

(39)

with ; = (ni,O + ni7cal(1)_1)/2 + d and 5% = [¢(nio +
d),&(nig +d), - &My carz)—1 + d)]. Let My; = [Mgl:
12], My 4[5, 2%] - -+, Mg ;[:, C3]], then Eq. (39) equals to

Yai ~ My,ga(@;) + €ai (40)
Since cal(Z) > ¢4, gq(T;) can be recovered by LS estimator:

Ga() = M} ya; = ga(7i;) + M'€q,;. (41)
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Once getting a new gy, we pick its j-th element, which is the
estimated amplitudesof the j-th beam in current polling. The
polling lasts for R = |L/cal(Z)| times,’ so a pseudo time
series is finally obtained as

9d,j = [9a,j(M0), Gaj(M1), - - - ﬁd,j(ﬁRq)]/- (42)

Lemma 2: Through repetitive polling, the pseudo time series
ga,;j has an equal sampling interval thus can be modeled as
finite noisy samples of a single-tone sinusoid.

Many techniques have been proposed over the years for
the frequency estimation of a complex sinusoid in complex
additive white Gaussian noise. Here we adopt the WNALP
estimator known for its computational efficiency and near-
optimal performance [37]. The detailed procedures for path
gain/Doppler estimation are described as below

o Set My = |R/2|.

e Calculate the autocorrelation of gq.; as

1 2M

R(m) = 7= > Gai(M)Gs,;Mim)  (43)

i=m-+1

o Calculate the smoothing coefficient w,, as
~ 3((My —m)(2My —m +1) — Mg) 4
"o Mo(4M2 —1)
o Estimate the Doppler shift as
Mo
Wa,j = N cal Z wmangle(R(m)R*(m — 1))

(45)

o Estimate the amplitudes as
Ncrnl(l')

nga
1 o
=5 ng,j(ni)e
=1

The rest beams can be estimated similarly thus being
omitted.
Summarizing, the steering-probing stage is carried out as:

e —Jj@ad,;

/g\dj(d)_ Je —j@d,; Necal(T)(i—1)

—j@a,jNecal(T)(i=1/2) (46)

1) Perform beamforming polling based on the union of the
angle supports.

2) Estimate the path gains/Doppler for each tap via WNALP
estimator.

VI. DISCUSSIONS AND SIMULATIONS
A. Implementing Discussions
Implementing procedures: The implementation of the pro-
posed DSDS channel estimator entails four key components:

1: Send multiple delta-like training pilots to separate channel
taps with random probing applied.

SSimilar to the random-probing stage, we introduce the steering-probing
state based on one frame consisting of L subframes. In practice or numerical
comparisons, one can simply replace L with the actual number of subframes,
i.e., cal(I)R.

5711

2: Identify significant channel taps via energy detector to
exploit the delay-domain sparsity regardless of Doppler.

3: Identify the direction of significant beams via A-BOMP
with effective mechanism applied to combat time-variation.

4: Apply steering-probing to estimate the amplitudes and

Doppler using high-quality received samples.

The proposed channel estimator is tailored for a general
doubly-selective channels. In practice, the investigated channel
may not exhibit double selectivity, so one can use part of the
above steps to accommodate these special cases.

Storage demand: The major storage demand in channel
estimation comes from the sensing matrix. Suppose p; frames
(p1L subframes actually) are allocated at the random-probing
stage, then the size of sensing matrix in [19] is C; = p1 IV X
UN.G.G,, with U being the up-sampling ratio. Although our
estimation is conducted at each tap independently, the sensing
matrix is shared by all taps with size Co = p1 L x G4G,.. For
N, =128 and N = 512, C; is more than 13000 times larger
than Cs.

Computational complexity: The major computational com-
plexity comes from the OMP-based algorithm, which com-
prises three parts: basis matching, orthogonal projection, and
residue update. For a )-dimensional sparse vector recovered
via V' measurements, the involved flops for these parts at
iteration-k are (2V — 1)Q, 4kV, and 2kV flops, respectively
[38]. The total flops of [19] and ours are p1 NV (2UN.G;G, +
3p1N) and p1 LVG(2G.G, + 3p1L), both in the order of
O(p?). Thanks to our extremely small-scale sensing matrix,
even for p; < 300, the former is still more than ten times
larger than the upper-bound of the latter.

Sensing matrix construction: To ensure a reliable recovery
via OMP, the sensing matrix should best satisfy the restricted
isometry property (RIP). According to [39], the optimal sens-
ing matrix in terms of the RIP is the independent and identi-
cally distributed (IID) Gaussian matrix. Unfortunately, due to
the constant-modulus limitation of APS, the optimal sensing
matrix remains a open topic. In this work, we follow [17], [18]
and randomly adjust APS obeying a uniform distribution.

From a single RF chain to multiple RF chains: Although the
DS-DS channel estimator is introduced based on a single RF
chain, it can be readily generalized to multiple RF chains,
because the proposed estimator is relevant to RF precoder
only without a dedicated digital precoding design similar
to [25]. Besides a slight change in the number of effective
measurements each time, the algorithm can be carried out for
arbitrary number of RF chains without any modification.

B. Simulation Verifications

In this subsection, extensive numerical results are presented
to verify the advantages of the proposed approach over existing
works. In simulations, the system carrier frequency f. is
60 GHz. The number of antennas is N; = N, = 32, The
dictionary sizes are Gy = G, = 64. h(-) is the raised-cosine
filter with the roll-off factor 3 = 1. Each channel realization
is generated according to Eq. (3) with P ranging from 1 to 4.
One-stage refinement is applied for all cases when applying
OMP-based methods. If not specified, the resolution of APS is
2-bit. Other simulation parameters include N, = 16, N = 64,
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Fig. 3. The averaged selected taps after tap identification.

T, = 50ns, A = 8, Pr = 1073, ¢ = 0.01 and p = 0.03.
The SNR (averaged TSNR) is defined as NLUQ The estimation
performance is weighted by the normalized MSE (NMSE)
given by

Yoo | Ha— Ha |3

o I Ha |3
Each curve is on the average of 1000 channel realizations.

1) Verification of the Functionality of Tap Identification:
To verify the effectiveness of tap identification, we plot the
averaged selected taps together with their power ratio in Fig. 3.
P = 3 and 40 frames are allocated at the random-probing
stage. Three different v,,’s: 0, 12km/h, and 120km/h are
considered. We see that the tap identification is regardless
of Doppler effects. Fewer taps are selected with the increase
of SNR, and reduction is 75% at 0dB. As this work uses
the raised-cosine pulse-shaper, the delay-domain also suffers
from off-grid issues due to side-lobe leakage, so the number of
identified taps is slightly larger that of actual paths. Note that,
the large reduction in taps to be processed is not at the cost of
power loss. As can be seen from Fig. 3, the averaged power
ratio soon exceeds 97% at medium SNR. The effectiveness of
tap identification is attributed to the delay-domain sparsity of
mmWave channels.

2) NMSE Comparisons in Static & Wideband Channels:
We then compare the double-sparse approach (DSA) with
state-of-the-art beamspace-sparse approach (BSA) [19] at the
same averaged SNR in Fig. 4. The channel is generated
with 3 paths and w,, = 0. For DSA, 40 training frames
are allocated at the random-probing stage with repeating
beamforming polling for R = 4 times at the steering-probing
stage. 60 training frames are allocated for BSA and the
regularized LS-estimator. For BSA, its sensing matrix size is
16384 x 131072, requiring a memory space over 18GB, in
contrast to ours with size 200 x 4096 occupying 9Mb memory
space. Due to the great shortage of training frames, the LS
estimator without utilizing any sparsity performs the worst.

(47)
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Fig. 4. The NMSE comparisons among different schemes in static wideband
channels.
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Fig. 5. The total training frames consumed by different schemes in static
wideband channels.

BSA performs much better than LS but still much worse than
DSA. In addition, the shortage of probings makes the NMSE
curve of BSA soon becomes flat. Even under the same peak
SNR, we see that DSA still outperforms BSA at medium-
to-high SNR region, implying that the benefits brought by
DSA outweight the power inefficiency of the proposed training
pattern.

In Fig. 5, we further plot the averaged consumed training
frames of different approaches. From two figures, it is clear
that improper iterations (X = 8) will result in additional
training overhead without making any substantial performance
improvement. Following proposition 2, iterations can be prop-
erly set for A-BOMP (A-BOMP is equivalent to OMP here),
and the resultant NMSE performance is very close to the ideal
benchmark (I = 4). With pre-determined iterations, DSA
requires the least training overhead, with a reduction of 20%
compared to BSBA at high SNR.
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Fig. 6. The NMSE comparisons in “frequency-flat”& time-varying channels
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Fig. 7. The NMSE versus the number of paths.

3) NMSE Comparisons in “Frequency-Flat” & Time-
Varying Channels: In Fig. 6, the channel is generated with
P = 3 with v,, = 48km/h and v,,, = 120km/h, respectively.
We compare the NMSEs with the angle support recovered via
A-BOMP and DPC-BOMP [17], respectively. Since each tap
channel is “frequency-flat” & time-varying (FTV), the results
are essentially the comparison with state-of-the-art FTV chan-
nel estimator [17]. p; = 60 frames are allocated at the random-
probing stage with repeating beamforming polling R = 4
times at the steering-probing stage. The DPC-basic order is
2 as in [17]. In modest mobility (v,, = 48km/h), A-BOMP
and DPC-BOMP achieve similar performances, both outper-
forming BOMP remarkably. In high mobility (v,,, = 120km/h),
the advantage of A-BOMP over DPC-BOMP becomes notable.
As described before, A-BOMP avoids the large-scale EVD
required in DPC-BOMP, demonstrating that it is more efficient
and superior.

4) NMSE  Performance in Doubly-Selective Channels:
To thoroughly evaluate the functionality of DSA, we fix
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Fig. 8. The NMSE versus the resolution of APS.
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Fig. 9. The NMSE versus the number of RF chains.

SNR = —1dB and v,,, = 55km/h, and simulate NMSE versus
frame duration under various conditions.

In Fig. 7, we compare the NMSEs by varying the number
of paths. Other parameters are set as p; = 60, R = 4, and
b = 2. The results show that, without Doppler compensation,
the NMSE is soon to exceed —10dB, resulting in a great
discrepancy with the actual channels. By compensating for
the Doppler using the estimate, superb tracking ability can
be guaranteed over up to 20 frames. Furthermore, there is
a minimal performance degradation when increasing P from
2 to 4. In contrast, [19] suffers from a nearly 2dB degradation
in a similar setup, implying that the proposed estimator is more
robust against frequency selectivity.

In Fig. 8, we compare the NMSEs by varying the resolution
(referring to b) of APS. Other parameters are set as p; = 60,
b=2, R=4, and P = 3. A remarkable performance gap is
noticed with the ultra-coarse 1-bit APS. However, increasing
b by 1 bit will lead to a huge improvement. The performance
gap compared to a finer APS (3~5-bit) in terms of the NMSE
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is very small (only 0.5dB), implying that the proposed channel
estimator is insensitive to the resolution of APS.

In Fig. 9, we compare the NMSEs by varying the number of
RF chains. Other parameters are set as P =3, b =2, R =6,
and p; = 30. As can be seen, multiple RF chains can lower
the estimation error compared to the single RF chain. This is
because multiple RF chains can generate more random beam
probing patterns, which in turn benefits the recovery of the
angle support using CS. We need to mention that throughout
the estimation, all non-zero symbols are set as one. Actually,
if the peak to average power ratio (PAPR) is not a significant
concern, one can potentially set these symbols as the Gaussian
distributed variables like [18] to strengthen the randomness.

VII. CONCLUSION

In this paper, we investigated the doubly-selective chan-
nel estimation for hybrid mmWave mMIMO systems. With
the help of judiciously designed training pattern and analog
probing, the beamspace sparsity and the delay-domain sparsity
can be jointly exploited to facilitate estimation. The proposed
channel estimator demonstrates strong robustness against dou-
ble selectivity, without imposing any additional constraints
on the hybrid structure itself. Compared with existing works,
our proposed doubly-sparse approach is demonstrated to be
a more general and superior solution to channel estimation
under hybrid mmWave mMIMO.
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