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Abstract—We evaluated Intel® OptaneTM DC Persistent Memory and found that Intel’s persistent memory is highly sensitive to data
locality, size, and access patterns, which becomes clearer by optimizing both virtual memory page size and data layout for locality.
Using the Polybench high-performance computing benchmark suite and controlling for mapped page size, we evaluate persistent
meemory (PMEM) performance relative to DRAM. In particular, the Linux PMEM support maps preferentially maps persistent
memory in large pages while always mapping DRAM to small pages. We observed using large pages for PMEM and small pages for
DRAM can create a 5x difference in performance, dwarfing other effects discussed in the literature. We found PMEM performance
comparable to DRAM performance for the majority of tests when controlled for page size and optimized for data locality.
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1 Introduction

Non-volatile memory research began decades ago [18].
The April 2019 release of Intel OptaneTM DC Persistent

Memory (PMEM) has accelerated that research. Prior to
availability, most work was done via emulation [3], [4], [11],
[17], [18]. We expected PMEM to exhibit lower bandwidth
and higher latency compared to DRAM; work with PMEM
is consistent with these expectations [5], [9]. Yet we also note
the actual performance behavior is more complex [13].

We evaluated PMEM using Polybench, a suite of well-
known microbenchmarks designed to measure the efficiency of
memory locality optimization techniques. Our initial results,
shown in Figure 1, defied the findings of our prior emulation
study [3]. We investigated this behavior to better understand
the performance profile of PMEM. We confirmed that local-
ity is critical and identified multiple ways in which locality
manifests itself in current PMEM systems. We verified our
observations on multiple different systems. We report our
results on the last system that we evaluated.

We observe that the most significant effect of locality is
related to default memory management policy, with secondary
effects from the PMEM memory controller’s use of striping,
read-ahead, and write-behind caching. The Linux default
memory management policy is to use the largest possible
pages for PMEM, while it defaults to 4KB pages for DRAM.
DAX-aware file systems (for application sharing, dynamic
allocation, and security) interact with this policy as well. We
observed that the impact of this is up to 5x and we conclude
that those publishing PMEM evaluations should control for
page size. PMEM striping primarily benefits workloads with
good data locality (within the stripe size) and high bandwidth
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requirements. PMEM without striping often performs simi-
larly when high bandwidth is less critical. PMEM caching in
the memory controller and memory modules benefits CPUs
with smaller caches. Once we controlled for page size and used
a memory locality optimizing tool, we confirmed performance
for PMEM was as good or better than expectations. We
achieved this performance from careful optimization, not by
using default configurations.

Fig. 1. Polybench: Performance of Striped PMEM relative to DRAM,
Linux 5.0 kernel. Surprising results showing better performance on
PMEM are highlighted in bold. Sorted by PMEM performance.

2 Background
PMEM’s AppDirect mode permits two types of direct-access
(DAX) usage: devdax access, which provides raw PMEM
that is memory mapped by an application for exclusive use.
Devdax mode requires pre-selecting memory allocation units
(4KB, 2MB, and 1GB), static partitioning of the overall
memory, using the “ndctl” utility, and is restricted to privi-
leged applications; and fsdax access, which uses a DAX-aware
file system to provide support for sharing between multiple
applications, dynamic memory allocation — including page
alignment and allocation unit size, and multi-user security.
When an application memory maps a file on a DAX-aware
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Fig. 2. Polybench: DRAM vs Interleaved PMEM (both 4K pages).
Results closer to expectations but still better than expected. Caching
masks lower bandwidth of PMEM; memory usage optimization improves
cache benefits which improves performance and decreases benefit of
PMEM interleaving. Sorted by PMEM performance.

file system the operating system configures the process page
tables to directly reference the physical addresses of the
underlying PMEM. Preferred practice is to use a DAX-aware
file system [16]. We used DAX-aware file systems for our
investigation.

The Persistent Memory Development Kit (PMDK) in-
cludes libraries for transparently converting standard memory
allocation calls (e.g., malloc) to a memory allocator using
arenas backed directly by files on a DAX filesystem device.
This is similar to the approach used by hugetlbfs, a Linux
file system that exposes DRAM to applications for allocation
against large pages — the standard malloc calls in that case
are implemented using arenas backed directly by files on
hugetlbfs. We use both of these mechanisms in our evaluation
of the Polybench tests.

Our PMEM hardware uses two dedicated memory con-
trollers per CPU; each memory controller has three channels;
each channel can manage two PMEM modules, which are
equivalent to DRAM DIMM packages. The memory con-
trollers include a small cache memory and provide the ability
to transparently stripe across the PMEM modules although
non-interleaved access is also supported. Each PMEM mod-
ule also contains memory for converting 64 byte cache line
sized load/store operations into 256 byte PMEM block size
load/store operations.

The Linux operating system includes native support for
PMEM. However, the policies for PMEM differ from those for
DRAM. The Linux kernel transparently uses large memory
page mappings for PMEM whenever possible, as dictated by
the alignment and length of the page mappings, falling back to
smaller sizes as necessary. Linux version 5.3 uses 1GB, 2MB,
or 4KB page sizes for PMEM. Earlier Linux versions only
used 2MB or 4KB pages for PMEM. The default for DRAM
remains 4KB. We note that large page performance impact
is well-described in the literature [1], [12]. This difference ac-
counted for PMEM performing up to 5x better than DRAM.

We evaluated three different DAX-aware file systems: ext
and xfs, which are standard Linux file systems incorporating
experimental DAX support, and NOVA. The NOVA file sys-
tem was the first purpose-built file system for PMEM [19].
However, we found NOVA unsuitable for use as a DAX file
system, because its storage allocation policy does not pre-
serve the 2MB page alignment Linux requires for large page
support; this is not reported in even recent literature [9], [20].
We did not expect our DAX-aware file system choice to be

relevant, as once memory mapped, applications directly access
the PMEM. We used ext4 for our evaluation, as it allowed us
to control PMEM alignment.

The Polybench test suite is a set of 30 computational
kernels drawn from varied domains. It is commonly used for
evaluating the impact of memory performance with respect
to those tasks. We previously used Polybench [3]. Polybench
continues to be actively used for evaluating memory optimizer
performance.

3 Evaluation
Our evaluation system is a dual socket NUMA architecture
system, using two Intel® second generation Xeon® Scalable
processors (codename Cascade Lake) running between 1.0GHz
and 3.9GHz (variable) with 32KB L1 instruction and data
caches, 1MB L2 caches, and a 55MB L3 cache, 20 cores per
processor, and 12 memory slots per processor, with six 32GB
DRAM modules and six 256GB PMEM modules, all run-
ning at 2666 Memory Transactions per second (MT/s). Each
processor has two persistent memory controllers, with three
channels per controller. Each channel manages two PMEM
modules; Intel refers to this as the 2-2-2 configuration [8]. We
found similar results on the same base system with different
model Intel CPUs: 1-3.7GHz (variable), 32KB L1, 1MB L2,
32MB L3 caches.

We used Fedora 31 with Linux kernel 5.0.0, which includes
native PMEM support. We configured the PMEM as six-
way interleaved memory for one processor (iPMEM), and
six single non-interleaved memories for the other processor
(PMEM). We used the SNIA standard programming model,
which is a DAX-aware file system providing dynamic PMEM
management and security; while it is possible to use devdax
mode, which provides raw PMEM access, it requires static
allocation and privileged (“root”) access. We also used the
PMDK libraries for transparently converting standard malloc
calls into corresponding mmap calls for direct access PMEM,
which only works with a DAX-aware file system [15].

We used Polybench/C Version 3.2 [14], [21], [22] compiled
with clang version 10.0.0, choosing compile time constants
to report execution time and the Linux real-time scheduler,
and using maximum (-O3) optimization. We tested both with
(--llvm -polly) and without polyhedral optimization. We
chose our dataset sizes to match our prior work [3]. We ran
the single-threaded Polybench 3.2 tests serially, bound to a
single core, and all memory, including PMEM, was allocated

Fig. 3. Polybench: Cases where PMEM (non-interleaved PMEM) faster
than iPMEM (interleaved PMEM) — interleaving does not provide
substantial benefit in these cases; surprising because we expect the 2MB
page size to dominate.
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TABLE 1
Polybench Test Results: data size, by memory type (DRAM, PMEM, iPMEM), page size (4K, 2M), and optimization (-O3 versus -poly).
Execution time in seconds; sorted by 4K DRAM time improvement (optimized versus poly). Only shows test where polyhedral optimization

benefitted at least one memory configuration (before rounding); other results omitted. Memory locality impact differs across memory types and
configurations. CPU and memory allocation bound to one NUMA node. Ratio > 1 (pre-rounding) shows polyhedral optimization benefits.

Test Data DRAM PMEM iPMEM
Size 4K 2M 4K 2M 4K 2M
MB Opt Poly Ratio Opt Poly Ratio Opt Poly Ratio Opt Poly Ratio Opt Poly Ratio Opt Poly Ratio

gemm 91.6 29.3 1.5 19.1 14.1 1.5 9.3 39.0 1.7 22.6 32.0 1.7 18.7 37.8 1.7 22.9 27.5 1.7 16.6
3mm 120.2 17.1 1.5 11.8 12.1 1.4 8.4 16.6 1.8 9.5 11.9 1.7 6.8 17.1 1.7 10.3 11.7 1.6 7.2
2mm 85.8 5.4 0.5 11.3 3.8 0.5 7.7 5.2 0.6 8.6 4.1 0.6 6.9 5.4 0.6 9.7 3.9 0.6 6.9

correlation 137.4 105.1 22.4 4.7 23.2 20.5 1.1 123.8 23.9 5.2 45.5 23.3 2.0 118.8 23.6 5.0 39.9 22.9 1.7
covariance 49.5 19.7 4.7 4.2 3.3 4.4 0.8 20.3 5.0 4.1 4.4 4.9 0.9 20.0 4.9 4.1 4.1 4.8 0.9

mvt 1717.1 3.4 1.0 3.5 1.1 1.0 1.0 4.7 2.0 2.3 2.3 2.0 1.1 4.5 1.9 2.4 2.1 1.9 1.1
gemver 1717.4 3.7 1.5 2.4 1.2 1.7 0.8 7.9 4.9 1.6 5.3 4.9 1.1 5.2 3.2 1.6 2.7 3.2 0.9

jacobi-1d 152.6 27.6 12.0 2.3 26.0 11.0 2.4 261.8 70.0 3.7 260.0 70.1 3.7 89.0 70.0 1.3 88.6 69.9 1.3
doitgen 512.5 13.0 6.2 2.1 8.6 6.1 1.4 13.3 10.2 1.3 12.4 9.8 1.3 13.5 7.2 1.4 12.5 7.1 1.8

gramschmidt 91.6 67.0 38.8 1.7 11.3 9.75 1.2 73.1 50.6 1.4 24.5 28.7 0.9 70.5 44.8 1.6 16.6 19.1 0.9
fdtd-2d 1464.8 33.0 19.3 1.7 34.8 17.0 2.0 275.5 57.4 4.8 273.6 56.9 4.8 104.29 52.2 2.0 103.8 52.5 2.0

syrk 61.0 9.1 5.4 1.6 9.0 5.4 2.0 15.1 6.0 2.5 15.0 5.9 2.5 14.6 6.1 2.4 15.1 6.1 2.5
jacobi-2d 976.6 18.7 12.1 1.5 18.1 9.0 2.0 179.6 62.3 2.8 179.6 62.1 2.9 59.6 60.1 1.0 61.0 60.0 1.0

syr2k 91.6 17.9 12.0 1.5 18.0 11.8 1.5 31.0 14.6 2.1 30.0 14.6 2.1 26.0 14.3 2.8 25.9 14.2 2.8
symm 91.6 49.6 34.2 1.4 9.8 11.5 0.9 65.1 44.5 1.5 41.4 38.9 1.1 64.4 44.0 1.5 37.8 23.5 1.6

dynprog 245.4 11.3 11.3 1.0 11.5 11.5 1.0 71.4 73.0 1.0 74.7 75.3 1.0 31.4 31.5 1.0 32.0 31.8 1.0
durbin 1526.2 1.7 1.7 1.0 0.5 0.5 1.0 4.0 4.0 1.0 2.8 2.8 1.0 2.6 2.6 1.0 1.3 1.3 1.0

seidel-2d 190.7 25.1 25.1 1.0 24.5 24.5 1.0 31.3 31.2 1.0 31.0 31.1 1.0 25.1 25.1 1.0 25.1 25.1 1.0
trisolv 1716.8 0.2 0.2 1.0 0.2 0.2 1.0 0.3 0.3 1.0 0.3 0.3 1.0 0.3 0.3 1.0 0.3 0.3 1.0

cholesky 122.1 12.0 13.0 0.9 11.9 10.8 1.1 18.8 20.5 0.9 18.5 19.4 1.0 17.7 20.4 0.9 17.2 18.5 0.9
lu 122.1 17.0 25.2 0.7 16.0 28.4 0.6 209.8 192.2 1.1 219.2 192.8 1.1 55.1 78.2 0.7 54.4 80.5 0.7

reg_detect 381.6 30.1 52.2 0.6 28.7 51.0 0.6 331.2 119.0 2.8 327.7 118.9 2.8 93.3 118.6 0.8 92.6 118.4 0.8

from memory local to the NUMA node of that core. We used
the PMDK allocator to redirect standard memory allocation
calls to use memory mapped PMEM, via the DAX aware file
system. The PMDK uses a jemalloc-based memory allocator.

Figure 1 reproduces our initial results, using the ext4
file system properly configured to use aligned 2MB pages.
These initial results surprised us because they showed better
performance than we expected. We determined that while the
default behavior for Linux is to use 4KB TLB mappings for
DRAM, it used 2MB TLB mappings for PMEM when possi-
ble. Indeed, this behavior of Linux has changed; as of Linux
5.3 it now uses the largest possible TLB mapping for PMEM
between 1GB, 2MB, and 4KB, based upon the alignment and
length of the memory region being accessed. This behavior
has not previously been reported in the literature,
despite its substantial impact on performance. We
counted the number of TLB and last level cache misses when
forcing different page sizes; it accounts for all of the perfor-
mance difference. Recent work has alluded to the 2MB page
impact, but does not explain why this occurs [10], while other
recent work does not address it, despite the up to 5x impact we
have observed on performance [2], [13]. We note that NOVA,
which was designed for PMEM and is the de facto standard for
PMEM-optimized file systems interacts poorly with the page-
size needs of applications converted to use PMEM, because it
mixes 4KB and 2MB page allocations internally. Over time
this leads to fragmentation, which causes the performance
degradation we observed. Thus, we subsequently switched to
using ext4, configured to ensure 2MB aligned allocation. This
did not exhibit the performance degradation.

We used perf, a standard Linux performance utility, for
measuring processor performance. From perf, we identified
dramatically different data TLB miss rates, which in turn led
us to finding both the default behavior of Linux and the sensi-
tivity of page locality to the DAX file system allocation policy.
OS developers make fundamental decisions we must
understand to achieve good performance. Further, these
choices do change over time.

We used AEPWatch, an open source Intel utility [7], for
measuring the performance behavior of the persistent memory

controllers. Once we controlled for page size, this provided us
with greater insight into the impact of read caching, write
combining, and striping in the persistent memory controllers.
We found that no single configuration produced consis-
tently best performance.

We hypothesized that software memory locality techniques
would also yield improved performance. To test this, we used
the LLVM compiler tools, which include a polyhedral memory
optimizer. The memory optimizer optimizes memory layout
and code generation to improve data locality; Polybench was
constructed to evaluate the effectiveness of polyhedral opti-
mization. In Table 1 we show our results across DRAM, (non-
interleaved) PMEM, and (interleaved) iPMEM, for both 4KB
and 2MB page sizes. Most PMEM configurations benefitted
from polyhedral optimization, which reflects the sensitivity
of the system to locality. We found that non-interleaved
PMEM benefitted most from polyhedral optimization, often
exhibiting comparable performance to interleaved PMEM. In
only two cases did PMEM exhibit better performance than
DRAM, likely due to the additional caching in the PMEM
system itself. We omit results for eight tests where no memory
configuration benefitted from polyhedral optimization.

Figure 2 shows a page size controlled comparison of
memory performance. We evaluated the impact of polyhe-
dral memory optimization to corroborate our theory on the
importance of data locality. Figure 3 showed that locality
was a more important factor than memory striping. Figure
4 demonstrated that in many cases polyhedral memory opti-
mization improved data locality by as much as 80%. Table 1
provides the specific timings for the 22 tests where polyhedral
optimization improved performance for at least one memory
type. However, we did not identify any single factor that
clearly explained these results: we considered both data and
instruction TLB miss rates, last level cache misses, data set
sizes, and instruction counts. We suspect this is due to the
generic nature of the polyhedral optimizer, which has no
specific knowledge of the processor or memory characteristics
on our test system. It is also possible there are secondary
features within the PMEM itself that, while not exposed,
impact this.
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Fig. 4. Polyhedral Memory optimizations for interleaved PMEM (iPMEM), 4K and 2M pages. Varying cache layers impact performance differently.
Results sorted by execution time without polyhedral optimization. Boldface indicates improvement with poly optimization.

4 Conclusion
We found PMEM is more sensitive to memory locality than
DRAM; this is due to differences in the hardware implement-
ing these memory technologies. The Linux policy to use large
pages by default with PMEM provides better TLB and page
table locality, which translates to better performance. Given
that large dataset usage is an important use for PMEM, it
makes sense to optimize for efficient TLB and last level cache
usage rather than demand paging. Interleaved PMEM (iP-
MEM) yields higher bandwith than non-interleaved PMEM,
but non-interleaved PMEM benefits more than iPMEM from
the polyehedral optimizers data locality improvements.

We found it was critical for proper evaluation to ensure
properly controlling for Linux page size handling to ensure
our comparisons between DRAM and PMEM were valid. We
observed that locality optimization, both for virtual address
translation and memory access, were critical to achieving opti-
mal results with PMEM. We also observed that the benefits of
various optimizations differed substantially across workloads
when using PMEM. We found substantial performance penal-
ties for not optimizing with PMEM.

While our evaluation was done with the first generation of
commercially available PMEM, we expect these insights will
generalize to future implementations of PMEM, particularly
those related to the impact of data locality, OS behavior,
PMEM caching, and PMEM interleaving.
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