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Abstract—Millimeter-wave (mmWave) joint communication-
radar (JCR) simultaneously realizes a high data rate communi-
cation and a high-resolution radar sensing for applications such
as autonomous driving. Prior JCR systems that are based on
the state-of-the-art mmWave communications hardware, how-
ever, suffer from a limited angular field-of-view (FoV) and low
detection rate for radars due to the employed directional beam.
To address this limitation, we propose an adaptive and fast com-
bined waveform-beamforming design for mmWave JCR with a
phased-array architecture. We present a JCR beamformer design
algorithm that permits a trade-off between communication data
rate and radar successful recovery rate in the angular domain.
We show that distinct radar measurements can be obtained with
circulant shifts of the designed JCR beamformer for compressed
radar sensing. Numerical results demonstrate that our JCR
design enables the angle-of-arrival/departure estimation of short-
range radar targets with a high successful recovery rate and a
wide FoV at the expense of a slight loss in the communication
rate.

I. INTRODUCTION

Joint communication-radar (JCR) uses a common transmit
(TX) signal for both communication and radar operations to
enable hardware and spectrum reuse. A solution to realize
JCR for next-generation applications, such as autonomous
driving, is to exploit the large bandwidth at the millimeter-
wave (mmWave) band [1]. In [2], [3], a practical mmWave
WiFi-based JCR was proposed during the data transmission
mode to achieve Gbps data rate simultaneously with a high
range and velocity estimation accuracy for long-range radar
applications. Unfortunately, the angular field of view (FoV)
for short-range radar (SRR) applications was limited due to
the employed directional beam.

Prior approaches to increase the radar FoV for mmWave
JCR can be categorized into three types: (a) JCR during the
communication beam training mode, (b) JCR with an adaptive
beamforming design during the data transmission mode, and
(c) multiple-input-multiple-output JCR with low resolution
analog-to-digital converters. In the first approach [4], the IEEE
802.11ad control physical (PHY) layer frames along with
beam scanning algorithm during the beam training mode was
proposed for radar sensing with a wide FoV. In the second
approach [5], the IEEE 802.11ad single-carrier (SC) PHY
frames along with the adaptive random switching (RS) of TX
antennas during the data transmission mode was proposed.
In the RS-JCR, a coherent beam is formed towards the
communication receiver, while simultaneously perturbing the

grating lobes of the resulting beam pattern for angle-of-arrival
(AoA) estimation in SRR applications. In the last approach [6],
a mmWave multiple-input-multiple-output JCR with 1-bit
analog-to-digital converters per RF chain was proposed to
achieve a high range and AoA estimation accuracy. The RS-
JCR has a higher radar update rate and communication data
rate than the first approach, and is based on a commercially
available mmWave hardware unlike the third approach. The
RS-JCR, however, employs TX antenna subsets instead of
using all antennas, which decreases the net TX power for JCR
operation under a per-antenna power constraint.

In this paper, we develop an adaptive combined waveform-
beamforming design that exploits all the TX and receive (RX)
antennas for mmWave JCR during the data transmission mode.
Our mmWave JCR design enables a highly accurate AoA and
angle-of-departure (AoD) estimation of SRR targets in a wide
FoV without reducing communication rate much. For reduced
hardware complexity, we assume a phased-array architecture
at both the TX and RX. In particular, we present a TX beam-
fomer design algorithm to generate a narrow coherent beam for
communication and constant gain sidelobes in other directions
for radar sensing. The TX beamfomer design accounts for
the trade-off between the sidelobe gain for radar and the
mainlobe gain for communication. The radar receiver acquires
distinct radar channel measurements using circulant shifts of
the designed beamformer. To quantify the JCR trade-off for
an adaptive combined waveform-beamforming design, we use
the data rate metric for communication and a novel successful
recovery rate metric for radar. Numerical results demonstrate
that our JCR design performs significantly better than the RS-
JCR extended for both AoA and AoD estimation, especially
for a large number of antennas.

Notation: The operators (·)∗ stands for conjugate transpose,
(·)T for transpose, and (̄·) for conjugate of a matrix or a vector.
N (µ, σ2) is used for a complex circularly symmetric Gaussian
random variable with mean µ and variance σ2. A?B is defined
as the 2D circular cross-correlation between matrices A and
B [7], whereas 〈A,B〉 =

∑
k,`A(k, `)B̄(k, `) is defined as

the inner product of A and B. A�B is defined as the element-
wise multiplication of A and B.

II. SYSTEM MODEL

We consider the use case where a source vehicle sends
a mmWave JCR waveform to communicate with a recipient
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Figure 1: An illustration of an mmWave JCR system that
simultaneously perform SRR sensing with a wide FoV and
V2V communication with a narrow FoV.

vehicle at a distance dc, while simultaneously using the re-
ceived echoes for automotive radar sensing, as shown in Fig. 1.
We consider closely separated TX antenna array and receive
(RX) antenna array mounted on both source and recipient
vehicles. For simplicity, we assume that the antenna arrays
are uniform linear arrays with N -elements each. We assume
a phased array architecture with q-bit phase shifters at the
TX and the RX, where the phase shift alphabet is defined as
Qq = {ej2kπ/2q

/
√
N : k ∈ {1, 2, 3, · · ·N}}.

We consider a coherent processing interval (CPI) of T
seconds. During a CPI, we consider a SC PHY TX waveform
structure with µ fraction of training sequence symbols and
1 − µ fraction of communication data symbols, similar to
IEEE 802.11ad. The training sequence is assumed to consist
of codes that possess good correlation properties for radar and
channel estimation, such as Golay complementary sequences
implemented in 60 GHz WiFi. The JCR channel model in our
paper is similar to that of [5].

During a CPI, our JCR design uses an adaptive collection of
TX and RX beams to achieve a high-resolution radar sensing
in a wide FoV with a minimal reduction in the communication
data rate. We propose to use δ fraction of TX power along
the communication receiver direction, φ0, and 1 − δ fraction
of TX power along the other directions for SRR sensing.
Within a CPI, the transmitter sends M different combinations
of TX precoder and RX beamformer vectors to acquire distinct
SRR channel measurements. We denote the symbol period
as Ts, define a block of T/MTs symbols as a pulse, and
denote the pth JCR symbol in the mth pulse as s[m, p]. The
source vehicle transmits the symbols with the power constraint
E
[
|s[m, p]|2

]
= Es and uses a unit norm TX beamforming

vector f(m, δ) as well as a unit norm RX beamforming vector
w[m]. The receiver at the recipient vehicle employs a unit
norm beamforming vector wc.

Communication received signal model: To explore the per-
formance trade-off between communication and radar, we
consider an illustrative example of a line-of-sight dominant
narrowband mmWave communication channel between the
source and recipient vehicles [5]. Nonetheless, the approach
developed in this paper can be extended for different scat-
tering scenarios by including non-line-of-sight communication
channels; the extension is omitted because of space limitation.

The communication channel between the source and recipient
vehicle is characterized by its channel gain, hc, which includes
path loss, AoA/AoD pair (φ0, θ0), path delay dc/c with c
being the speed of light. For a linear array with elements
half-wavelength spaced, we define the array steering vector as
a(θ) = [1, ejπsinθ, ej2πsinθ, · · · , ej(N−1)πsinθ]T . Assuming per-
fect synchronization and additive noise ec[m, p] ∼ N (0, σ2

c ),
the received communication signal with the TX steering
vector a(θ0), the RX steering vector a(φ0), and the channel
Hc =

√
hca(φ0)a∗(θ0) is

yc[m, p] = w∗
cHcf(m, δ)s[m, p] + ec[m, p]. (1)

Assuming that the TX and RX beams are perfectly aligned
and directional beamforming with a spatial matched filter is
used at the RX to provide the maximum TX-RX array gain
for the considered line-of-sight channel model, (1) simplifies
as

yc[m, p] =
√
hcδNs[m, p] + ec[m, p]. (2)

We define communication signal-to-noise ratio (SNR) corre-
sponding to the ideal beampattern for communication with
δ = 1 as ζc = EshcN

2/σ2
c . The net received signal SNR

increases linearly with the fraction of TX power for commu-
nication and is given by δζc.

Radar received signal model: We represent the doubly se-
lective (time- and frequency-selective) mmWave radar channel
using virtual representation obtained by uniform sampling in
range and Doppler dimensions [3]. Since the focus of this
paper is target detection/estimation in the angular domain
and not in the range/Doppler domain, we describe radar
signal model for a particular dominant range-Doppler bin with
distance d and velocity v after applying corresponding delay
and Doppler shift compensation as in [5], [8].

The particular range-Doppler bin is assumed to consist of
a few, K � N2, virtual scattering centers that consist of
Kt targets and K − Kt multi-path spread-Doppler clutter
components. The kth virtual scattering center is described
by its AoA/AoD pair (φk, θk) and complex channel gain βk,
which is a product of radar cross-section and path-loss. We
define the radar channel as H =

∑K−1
k=0

√
βkb

c(φk)a∗(θk).
Then, the radar signal obtained after cross correlating the TX
training sequences with the received mth pulse echoes is

y[m] = w∗[m]Hf(m, δ) + e[m], (3)

where the additive noise is denoted by e[m] ∼ N (0, σ2/Esγ).
The complex factor γ is the integration gain due to the
employed cross-correlation, which depends on the training
sequences used within a pulse of T/M duration. In numerical
simulations, we consider the pulse to be a portion of a SC PHY
frame, where the pilots comprising of Golay complementary
sequences are used for correlation-based channel estimation.
A pulse could also have been chosen to consist of several
preambles in a CPI, but it would have degraded the communi-
cation rate due to a large increase in the total training sequence
duration within this interval.



III. BEAMFORMER DESIGN FOR JCR

In this section, we explain our approach to construct a
collection of beamformers that are well suited to the JCR
application. Our method first constructs one sequence for each
of the TX and RX. These sequences are designed according
to the JCR specification. Then, our method constructs the
collection of beamformers by circularly shifting the sequences
constructed at the TX and the RX. As circulant shifts of a
vector preserve the magnitude of its discrete Fourier trans-
form (DFT), the proposed method ensures that the beams
constructed according to our procedure achieve the desired
JCR specifications. The collection of circularly shifted beam-
formers help to acquire distinct radar channel measurements.

Now, we explain the key idea underlying the proposed trans-
mit beamformer design technique. For tractability, we design
the beamformer by considering a DFT grid with N discrete
angles. For ease of exposition, we assume the communication
direction is 0o. The transmit beamformer design problem in
JCR is to design a sequence f0 ∈ QNq whose beampattern
has an energy of δ along 0◦. The remaining energy in the
beamformer must be distributed to enable radar channel re-
construction with fewer channel measurements. Prior work has
shown that beamformers with close to uniform gain along the
desired sensing directions enable fast channel reconstruction
through compressed sensing [7]. To this end, the proposed
construction distributes the energy of 1−δ “uniformly” across
the remaining DFT grid locations.

We show here how the Gerchberg-Saxton (GS) algorithm [9]
can be used to construct the desired TX beamformer. We
define δrad = (1 − δ)/(N − 1). The DFT magnitude vector
associated with the desired beamformer is then bmag =
[
√
δ,
√
δrad,

√
δrad, · · · ,

√
δrad]. The inverse DFT of bmag,

however, may not be an element in QNq . The GS algorithm
is an alternating projection method that finds a sequence in
QNq such that the magnitude of its DFT is close to bmag. We
use phaseq(x) to denote the q- bit phase quantized version of
x. The GS algorithm is summarized in Algorithm 1.

Algorithm 1 GS algorithm to find f0

1: Inputs: δ, N , q, and TGS.
2: Initialize: Set titer = 1 and f0 to a Zadoff-Chu sequence.
3: while titer < TGS do
4: bphase ← phase (DFT(f0))
5: Constraint on the discrete beam pattern:

b← bmag � exp(jbphase)
6: Constraint on the antenna weights:

fphase ← phaseq (IDFT(b))

7: f0 ← exp(jfphase)/
√
N

8: end while
9: return f0.

The proposed GS-based beamformer design procedure can
be generalized for any communication direction θ 6= 0o. The
transmit beamformer in such a case is defined as f0 � a(θ).

For the radar receiver, a good compressed sensing (CS)-
based beamformer is one that has equal energy at all DFT-
grid locations [7]. We propose to use a Zadoff-Chu sequence
in QNq to be the RX combiner vector w0 because the DFT of
a Zadoff-Chu sequence has a constant amplitude.

IV. COMPRESSED SENSING USING THE DESIGNED
BEAMFORMERS

Now, we explain how radar channel measurements are
acquired using the beamformers f0 and w0. The radar channel
H ∈ CN×N encodes the AoA and AoD information of the
targets, and it is sparse at mmWave. The sparse channel H
can be reconstructed from fewer measurements according to
the model in (3). The measurements in the proposed CS
technique are acquired by applying random circulant shifts
of fi = Jif0 and wj = Jjw0 at the TX and the RX, where
Ji is the ith circulant-delay matrix. Such a CS technique is
known as convolutional CS [10], [11]. The base matrix in
convolutional CS is defined as Bi,j = w∗

j fi. Therefore, the
noiseless measurement corresponding to fi and wj is given as

z[i, j] = w∗
jHfi = 〈H,wjf

∗
i 〉 = 〈H,Bi,j〉. (4)

The received measurements when the TX and the RX apply
all combinations of circulant shifts can be represented as Z =
H ? B0,0. We assume that 2D-DFT of H, defined as X, is
k-sparse. Using the properties of the 2D-DFT, the 2D-DFT of
Z can be expressed as S = X�D, where D is the 2D-DFT
of B0,0. As X is k-sparse, it can be shown that S is at most
k-sparse. Such a property can be exploited to recover S from
fewer projections than N2.

In 2D-convolutional CS, the TX and RX apply M � N2

distinct pairs of circulant shifts of f0 and w0. We define Ω as
a set containing the pair of circulant shifts used at the RX and
the TX. For example, M = 3 and Ω = {(0, 0), (1, 2), (2, 1)}.
The operator PΩ(A)→ CM returns the entries of a matrix A
at the locations in Ω. The noisy radar channel measurements
with convolutional CS can be expressed as

y = PΩ(Z) + e, (5)

where the additive noise e[m] is defined in (3).
Next, we describe a CS algorithm and corresponding recov-

ery guarantees to estimate H from the channel measurements
in (5). A reasonable approach for radar channel estimation
is to minimize the `1 norm of S subject to the constraint
corresponding to (5). Such a method encourages channels that
are faithful to the measurements in (5) and whose 2D-DFT
is sparse [10]. Let Ĥ be the solution to the `1 minimization
program and Dmin denote the minimum magnitude of D, i.e.,
the 2D-DFT of B0,0. For the construction in Section III, it can
be shown that Dmin =

√
δrad. We use [7, Theorem 1] to obtain

a guarantee on the radar channel reconstruction performance.

Theorem 1. For a fixed constant ε ∈ (0, 1), the solution Ĥ
obtained with `1 norm minimization over S satisfies∥∥H− Ĥ

∥∥
F
≤ C1

Nσ√
δrad

, (6)



with a probability of at least 1 − ε if M ≥
Ckmax

{
2log3(2k) log(N), log(ε−1)

}
. The constants C

and C1 are independent of all the other parameters.

Proof. The result follows by using the assumption that X is k-
sparse and the fact that Dmin =

√
δrad in [7, Theorem 1].

The bound in (6) indicates that sparse radar channels
can be recovered from sub-linear channel measurements that
are acquired using the proposed beamformers. The result in
Theorem 1 also indicates that the MSE of the channel estimate
scales inversely with δrad, i.e., the fraction of energy used for
sensing in JCR.

In numerical simulations, we show that the sparse matrix
S can be efficiently recovered from a subsampled version of
Z using a low-complexity OMP algorithm that exploits the
partial 2D-DFT nature of our radar CS problem [10].

V. PERFORMANCE METRICS

We consider achievable data rate, Rc(δ), as the performance
metric for the communication system in (2) with δ as the frac-
tion of TX power for communication. For δ = 1, we achieve
maximum effective SNR at the communication receiver, ζc,
and maximum data rate using the ideal beampattern for
communication. Assuming sc[n, p] is distributed as NC(0, 1),
the maximum achievable data rate is given by

Rc(δ) =
1

Ts
log2 (1 + δζc) . (7)

For radar performance evaluation of the proposed JCR
system with a probability of successful recovery, Pr(δ,M),
in a CPI of T seconds, we define a novel normalized radar
successful recovery rate metric as

Rr(δ,M) =
Pr(δ,M)

ηrMTint
, (8)

where ηr is the normalization factor. The metric Rr(δ,M) is
analogous to the detection rate metric [12], which is used to
study the trade-off between integration time and scanning rate.
We choose ηr such that the maximum value of Rr(δ,M) is 1
for better interpretation of the radar detection results.

The trade-off curve for our JCR combined waveform-
beamforming design can be obtained using the data-rate con-
strained problem with a minimum required data rate Υc, which
is given as

maximize
δ

Rr(δ,M)

subject to Rc(δ) ≥ Υc

W ∈ W(δ)

F ∈ F(δ)

M ≥ Cklog3(2k) log(N),

where F is the matrix of M TX precoder vectors and W is the
matrix of M RX precoder vectors at the source vehicle during
a CPI. The TX codebook F(δ) and the receive codebookW(δ)
are based on our JCR beamformer design described in Sections
III and IV.

Figure 2: Comparison between the TX beampattern achieved
by our JCR design with RS-JCR and the ideal communication.
Our JCR achieves higher mainlobe gain than RS-JCR for data
communication under a per-antenna power constraint.

VI. NUMERICAL RESULTS

In this section, the numerical results of the proposed adap-
tive combined waveform-beamforming design for mmWave
JCR are presented. The TX/RX antenna arrays are considered
to be uniform linear arrays with 256 elements. We assume the
grid size of 256 with 180◦ FoV, the recipient vehicle distance
dc = 100 m, and the radar cross-section as 10 dBsm [13]. The
interval for one independent TX-RX beam pair is considered
as Tint = 0.2 ms. We employed the OMP algorithm [7] for
its simplicity to estimate the support of virtual radar channel
in the angular domain, X.

Fig. 2 compares the TX beampattern for ideal communica-
tion, our proposed JCR with δ = 200/256, and the RS-JCR
proposed in [5] with the number of TX antennas switched
on as 200. We see that communication TX power achieved
by our proposed JCR using GS-algorithm improves by 1 dB
as compared to the RS-JCR. The mainlobe for both the JCR
beampatterns, however, has reduced gain compared to the ideal
communication beampattern. Therefore, the best communi-
cation rate would be achieved by the ideal communication,
followed by our JCR, and lastly the RS-JCR. The sidelobe
gains achieved by the ideal communication beampattern, how-
ever, is the lowest and results in the worst radar performance.
We observe random sidelobes with several grating lobes and
nulls for the RS-JCR, whereas we observe constant sidelobe
gain for our proposed JCR. Additionally, over an ensemble
of beamformers constructed according to our JCR design, the
net TX power along SRR directions is smaller for the RS-JCR
than that for our proposed JCR.

Fig. 3 shows the variation of probability of successful
recovery with the number of measurements and antennas
for both the proposed JCR and the extended RS-JCR for
AoA/AoD estimation. The extended RS-JCR is realized by
incorporating phase randomization in the RX combiner vector
in addition to the RS at the TX proposed in [5]. We see that
our proposed JCR needs much lesser number of measurements
than the RS-JCR to achieve a high probability of successful
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Figure 3: Comparison of RS-JCR with our proposed JCR for
varying number of measurements and antennas at d = 12 m
and δ = 200/256. Our JCR performs better than the RS-JCR.
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Figure 4: The trade-off curve achieved by our JCR with N =
256 with ηr = 1/(15 Tint). The radar successful recovery rate
improves with decreasing δ, while lowering Rc(δ).

recovery. The difference between the radar successful recovery
rate achieved by these approaches increases with the number
of antennas. Our proposed JCR achieves the probability of
successful recovery close to one within a CPI of less than
10 ms, which is desirable in automotive radars [13].

Fig. 4 shows the trade-off curve between communication
rate, Rc(δ), and radar successful recovery rate, Rr(δ,M), with
different values of 0.1 ≤ δ ≤ 1 for N = 256. The radar
successful recovery rate improves with decreasing δ due to
increase in the radar SNR, while lowering communication data
rate due to decrease in the communication SNR. From Fig. 4,
we observe that the radar successful recovery rate for a given
communication rate reduces with distance. For a distance of
30 m, although Pr(δ,M) = 0.99 for M = 20 and Pr(δ,M) =
0.82 for M = 15 at δ = 0.1 with Rc(δ) = 4 Gbps, Rr(δ,M)
is higher for M = 15 than M = 20. Additionally, we can see
from Fig. 4 that large M is preferred at low δ, whereas small
M is preferred at high δ for our JCR design.

VII. CONCLUSION

In this paper, we proposed a TX-RX JCR beamformer
design for the mmWave JCR system with a phased-array
architecture to estimate radar AoA/AoD with a wide FoV at

the cost of a small reduction in communication data rate. Our
AoA and AoD estimation technique for SRR targets exploits
mmWave channel sparsity and has a low complexity due
to the partial DFT CS. Our proposed TX precoder and RX
combiner design for mmWave JCR performs better than the
random switching-based one, especially for a large number of
antennas. The results in this paper can be used to develop low-
power, small size, spectrum-efficient, and high-performance
mmWave devices that will enable next-generation automotive
sensing and communication needs. Future work includes an
extension of our work for simultaneous range, velocity, and
direction estimation, as well as experimental demonstration.
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[3] P. Kumari, J. Choi, N. González-Prelcic, and R. W. Heath, “IEEE
802.11ad-based radar: An approach to joint vehicular communication-
radar system,” IEEE Trans. Veh. Technol., vol. 67, no. 4, pp. 3012–3027,
April 2018.

[4] E. Grossi, M. Lops, L. Venturino, and A. Zappone, “Opportunistic radar
in IEEE 802.11ad networks,” IEEE Trans. Signal Process., vol. 66, no. 9,
pp. 2441–2454, May 2018.

[5] P. Kumari, M. E. Eltayeb, and R. W. Heath, “Sparsity-aware adaptive
beamforming design for IEEE 802.11ad-based joint communication-
radar,” in Proc. IEEE Radar Conf., April 2018, pp. 0923–0928.

[6] P. Kumari, K. U. Mazher, A. Mezghani, and R. W. Heath, “Low
resolution sampling for joint millimeter-wave MIMO communication-
radar,” in Proc. IEEE Statistical Signal Processing Workshop (SSP), June
2018, pp. 193–197.

[7] N. J. Myers, A. Mezghani, and R. W. Heath, “FALP: Fast beam
alignment in mmwave systems with low-resolution phase shifters,” IEEE
Transactions on Communications, pp. 1–1, 2019.

[8] M. Rossi, A. M. Haimovich, and Y. C. Eldar, “Spatial compressive
sensing for MIMO radar,” IEEE Transactions on Signal Processing,
vol. 62, no. 2, pp. 419–430, Jan 2014.

[9] R. W. Gerchberg, “A practical algorithm for the determination of phase
from image and diffraction plane pictures,” Optik, vol. 35, pp. 237–246,
1972.

[10] H. Rauhut, “Compressive sensing and structured random matrices,”
Theoretical foundations and numerical methods for sparse recovery,
vol. 9, pp. 1–92, 2010.

[11] K. Li, L. Gan, and C. Ling, “Convolutional compressed sensing using
deterministic sequences,” IEEE Transactions on Signal Processing,
vol. 61, no. 3, pp. 740–752, 2012.

[12] E. Grossi, M. Lops, and L. Venturino, “A new look at the radar detection
problem,” IEEE Transactions on Signal Processing, vol. 64, no. 22, pp.
5835–5847, Nov 2016.

[13] I. Gresham, A. Jenkins, R. Egri, C. Eswarappa, N. Kinayman, N. Jain,
R. Anderson, F. Kolak, R. Wohlert, S. P. Bawell, J. Bennett, and
J. P. Lanteri, “Ultra-wideband radar sensors for short-range vehicular
applications,” IEEE Transactions on Microwave Theory and Techniques,
vol. 52, no. 9, pp. 2105–2122, Sept 2004.


