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Abstract—Two arrays form a periodic complementary pair if
the sum of their periodic autocorrelations is a delta function.
Finding such pairs, however, is challenging for large arrays whose
entries are constrained to a small alphabet. One such alphabet
is the quaternary set which contains the complex fourth roots
of unity. In this paper, we propose a technique to construct
periodic complementary pairs defined over the quaternary set
using perfect quaternion arrays. We show how new pairs of
quaternary sequences, matrices, and four-dimensional arrays that
satisfy a periodic complementary property can be constructed
with our method.

I. INTRODUCTION

A periodic complementary pair (PCP) is a collection of
two arrays whose periodic autocorrelation sums up to a delta
function. An array can refer to a sequence, matrix, or a tensor.
For example, a sequence or vector of length M is a one-
dimensional array of size M, while an M x N matrix is
a two-dimensional array of size M x N. PCPs are arrays
with special periodic autocorrelation properties that find ap-
plications in coded aperture imaging [1], communications [2],
and radar [3]. PCPs are different than other complementary
sequence constructions like Golay pairs [4], where the notion
of complementary applies to aperiodic correlations.

Prior work has considered the design of PCPs over a
binary alphabet [5]-[7]. The constructions in [5]-[7] are for
sequences, i.e., 1D arrays, over {1,—1} or {1,€!’} where
i v/—1 is the standard unit imaginary number. A class
of two-dimensional arrays in {—1,1} which are PCPs was
derived in [8]. PCPs over binary alphabets, however, do not
exist for every array size. For example, it was shown in [9] that
binary PCP sequences of length 18 do not exist. Relaxing the
binary constraint on the alphabet to a quaternary one provides
additional flexibility to design new PCPs.

Sequences over C = {1,i,—1,—i}, called the quaternary
alphabet, which form PCPs were proposed in [10]-[12]. The
quaternary PCPs in [10]-[12] were generated using the Gray
method, inverse Gray method with interleaving, or the product
method. An extensive survey on the length of sequences
for which a quaternary PCP exists can be found in [10].
The literature on quaternary PCPs, however, is limited to
sequences. The existence and construction of two-dimensional
or multi-dimensional quaternary PCPs has not been studied to
the best of our knowledge. One application of 2D quaternary

N. J. Myers (nitinjmyers@utexas.edu) and R. W. Heath Jr
(rheath@utexas.edu) are with the Wireless Networking and Communications
Group, The University of Texas at Austin, Austin, TX 78712 USA. This
material is based upon work supported by the National Science Foundation
under Grant numbers NSF-CNS-1731658 and NSF ECCS-1711702.

PCPs is in dual polarized planar antenna arrays [13] equipped
with two-bit phase shifters. Quaternary PCPs when applied to
such systems result in quasi-omnidirectional beams which are
useful for initial access in millimeter wave systems.

In this paper, we construct new one-, two-, and four-
dimensional quaternary PCPs by leveraging perfect quaternion
arrays [14]. It is important to note that the entries of the PCPs
constructed in this paper contain elements in C which are
complex numbers. The construction, however, is derived using
quaternion algebra which is different from standard algebra
over complex numbers [15]. In Section III, we show how a
perfect quaternion array can be decomposed into a PCP. We
use this decomposition in Section IV to show that perfect
arrays over the basic unit quaternions [14], [16]-[18] can
be mapped to quaternary PCPs of the same size. A Matlab
implementation of the quaternary PCPs derived in this paper
is available on our GitHub page [19].

Notation: A is a matrix, a is a column vector and a, A
denote scalars. A* and a* denote the complex conjugate of A
and a. We use 1 to denote an all-ones matrix. A (k,¢) denotes
the entry of A in the k*" row and the ¢*" column. The indices
k and ¢ start from 0. |A||r is the Frobenius norm of A.
R, C, and Q denote the set of real, complex, and quaternion
numbers. (-)y denotes the modulo N operation.

II. PRELIMINARIES

Quaternions are a generalization of complex numbers which
have one real component and three imaginary components
[15]. We define i, j, and k as the fundamental quaternion units.
These units satisfy

i2 =1, P2 =1, k? = —1,
ij =k, jk =1, ki =],
ji=—k, kj = —i, ik =—j. (1)

Any quaternion ¢ € QQ can be expressed as [15]

q = q1 + q2i + q3j + quk, )

where q1, q2, q3, g4 € R. Complex numbers are a special
instance of quaternions, i.e., C = {q € Q: g3 = 0,q4 = 0}.
We use the properties in (1) and the distributive law, to express
the quaternion ¢ in terms of two complex numbers as

q = (q1 + q2i) + (g3 + q4i) . 3)
—_—— N———
dh qv

The quaternion ¢ can be written as ¢ = gy, + ¢vJ-



We now discuss basic operations over quaternions. The
product of two quaternions p and q is [15]

pqg = (Pléh — P2q2 — P3G3 — P4q4)
+ (P2 + P12 — q3pa + P3qa)i
+ (q1p3 + P1G3 + q2p4 — P2qa)]
+ (q1pa + P1qs — @203 + P2g3)k. “4)

Multiplication over quaternions is non-commutative. For ex-
ample, it can be observed from (1) that ij # ji. It is important
to note, however, that ag = ga for @« € R and ¢ € Q. The
complex conjugate of ¢ is [15]

¢ =@ — @i — q3) — Qk. 5)

The conjugates corresponding to the product and sum of two
quaternions can be expressed as

(pq)* = q"p* and (6)
(p+q)* =p" +q" (7)

The properties in (4)—(7) naturally extend to matrices.

Now, we define matrices over quaternions and the periodic
autocorrelation of a quaternion matrix. Consider a quaternion
matrix A € QM*¥, Similar to the representation in (3), we
use Ay, € CM*N and A, € CM*N to denote the complex
components of A such that

A=A,+A,] ®)

The non-commutative nature of quaternion multiplication
leads to a different left and right periodic correlation [16].
In this paper, we focus on the right periodic correlation. For
two matrices X,Y € QM*¥  we define the conjugate-free
periodic cross correlation as the matrix X Y € QM*N_ The
(m,n)™ entry of X xY is
M—-1N-1
Xt Y)mn = > > X(k,OY ((k+m)nr, (C+n)n). (9)
k=0 ¢=0
We use R to denote the 2D-periodic autocorrelation of A.
The (m,n)™ entry of Ra € QM*V is [16]
M—-1N-1
Ra(m,n) =Y > A(k,0)A*((k+m)u, ((+n)y). (10)
k=0 ¢=0
It can be observed that Ro = A x A*. For the special case
when A is a complex matrix, i.e., when A does not have |
and k components, the right periodic autocorrelation R is
the common 2D-periodic autocorrelation of A.

We now define periodic complementary matrix pairs over
the complex numbers. We use d to denote a unit delta matrix
of size M x N, i.e., §(0,0) =1 and §(m,n) =0V (m,n) #
(0,0). Two matrices X € CM*Y and Y € CM*¥ form a
PCP if [8]

Rx(m,n)+ Ry(m,n) =0 ¥(m,n) # (0,0). (11)

Equivalently, Rx + Ry = 2M N4 for a PCP with || X||r =
VMN and |Y|lp = VMN. A trivial PCP is X = vVMN§
and Y = v MN§. Finding PCPs with entries in {1, —1} or
C, however, is challenging when the size of the matrices is
large. In this paper, we propose a technique to construct new
PCPs whose entries are in C.

III. CONNECTION BETWEEN PERFECT QUATERNION
ARRAYS AND COMPLEX PERIODIC COMPLEMENTARY PAIRS
In this section, we show that every perfect quaternion array
(PQA) can be decomposed into a PCP with complex entries
in C. A matrix A € QM*V is a PQA if its right periodic
autocorrelation i1s a delta function, i.e.,

Ra(m,n) =0V(m,n) # (0,0). (12)
This property can be expressed as Ra = MN§ when
|Allr = VMN. An example of a 2 x 2 PQA is [18]
1 i
D= (j k) . (13)

Quaternion matrices that are PQAs were investigated in [14],
[16]-[18]. To the best of our knowledge, prior work has not
studied the connection between PQAs and PCPs.

We first express the autocorrelation R as a function of
the complex matrices Ay and A, in Lemma 1. The result in
Lemma 1 is then used in Theorem 2 to derive PCPs.

Lemma 1. For any quaternion matrix A,

Ra =Ra, +Ra, +[Ayx A — Ap x Aj. (14)

Proof. We use the complex decomposition in (8) to write
Ra = (Ap + Ay)) x (Ap + Ay))*. Using the distributive
law and (6), the autocorrelation can be simplified to

Ra=Ap %A} +Aj*J"AL + Apxj"AL + Ajx AL (15)

The first summand in (15) is Ra,. The second summand in
(15) is simplified using (9) and the property that jj* = 1.
The simplification results in Ayj % j*A¥ = Ra_. Therefore,
Ra =Ra, +Ra, + Ap+j"AL + A jx Af.

We now show that the sum of the third and the fourth
summands in (15) is [A, * Ay, — Ay, * A,]j. We define oy,
as the (m,n)'" element of Ay, xj*A* 4+ A jx Ay,. Then,

M—-1M-1
G = 3 3 [k 05 AL (K +m)ar, (€ + 1))
k=0 k=0
+Av(k>€)j‘4ﬁ(<k+m>1\fa<€+n>N)]'
(16)

To simplify v, », we use the property that zjy = zy*j and
zj*y = —xy*j for x € C and y € C [Proof in the Appendix].
As the entries of A}, and A, are elements in C, this property
can be used in (16) to show that o, ,, is the (m,n)*™™ entry
of [Ay x Ay — A x ALlj. O

Theorem 2. The complex components Ay, and A, of a perfect
quaternion array A form a PCP.

Proof. When A is a perfect quaternion array, i.e., Ra =
M NS, the result in Lemma 1 leads to

Ra, + Ra, +[Avx A — Ay xA)j= MNS.  (17)

We interpret the quaternion matrix on the left hand side of (17)
as a sum of Ra, + Ra, and [Ay x Ay — Ay x AJ]j. As Ay,
and A, are matrices in CM*N | the first term Ra, +Ra, €
CM*N and does not have any j and k components. The second
term, i.e., [A, x A, — Ay x A,]j, is a multiplication of a



matrix in CM*¥ with j. Such a matrix has zero real and zero

i components. The matrix on the right hand side, however,
is purely real. Putting these observations together, it can be
concluded that the equality in (17) holds only when

Ra, +Ra, = MN§, and (18)
A, xAp,=AL xA,. (19)
The result in Theorem 2 follows from (18). O]

An important observation from Theorem 2 is that the
complex components of a PQA, ie., A, and A,, satisfy
(19) in addition to the PCP property in (18). Equivalently,
our method results in PCPs which are commutative with
conjugate-free periodic cross-correlation. We now explain an
example to generate a PCP in C2*?2 from the PQA in (13).
The matrix D in (13) can be expressed as Dy, + D, j, where

1 i 0 0
b= (1 1) a1 ).

It can be verified that Dy and Dy, satisfy the definition of
a PCP in (11), equivalently (18). These matrices, however,
contain entries which are not in the quaternary alphabet C.
In Section IV, we show how Theorem 2 can still be used to
construct quaternary PCPs from PQAs.

(20)

IV. CONSTRUCTION OF QUATERNARY PCPS FROM PQAS

We define the basic unit quaternion alphabet as H =
{1,-1,i,—i,], —j, k, —k}. PQAs with entries in H were con-
structed in [14], [16]-[18]. In this section, we show how to
construct PCPs with entries in C from such PQAs.

To generate quaternary PCPs, we first construct a matrix
A = A(1 +j) where A is a PQA in HM*N_ The periodic
autocorrelation of A, i.e., R, is then A(1+])* (A(1+])))*.
The autocorrelation can be further simplified to R; = A(1+
J) * (L +j)*A* using (6). As (1 +j)(1+]j)* = 2, it can be
shown that R; = 2Ra. Now, it follows from (12) that A is
a PQA whenever A is a PQA.

We observe that the complex components of A, ie., Ah
and A, form a PCP using Theorem 1. These components can
be expressed in terms of Ay and A, as

Ah = Ah — AV and

A, = A, +A,. (1)

When A is a PQA in HM*Y | the entries of Ay and AV
are elements in C U {0}. In addition, Vk, ¢, Ap(k, () =
whenever A, (k, /) # 0 and vice versa. Putting these obser—
vations together, the entries of Ah and A, are elements in
{1,i, —1, —i}. Therefore, Ay, and A, form a quaternary PCP
in CMXN whenever A is a PQA over HM* ¥,

We now discuss an example of a 2 x 2 quaternary PCP, and
provide a list of quaternary PCPs that can be derived from
PQAs using the proposed procedure. For the PQA in (13), the
matrices Dh =Dy + D, and D =Dy — D, are

D, G .) and D, = (11 ii>.

(22)

The pair in (22) forms a PCP over C. Our procedure
can also be used to transform one-dimensional or multi-
dimensional PQAs into PCPs of the same size. For
instance, one-dimensional quaternary PCPs with lengths
4,6,8,10,14, 16, 18, 26, 30, 38, 42, 50, 54, 62, 74,82,90  and
98 can be derived using the perfect quaterion sequences in
[16]. Similarly, quaternary PCP matrices of size 2™ x 27,
and quaternary PCP tensors of size 2" x 2" x 2" x 2"
can be constructed for 2 < n < 6 from the PQAs in
[16]. The PQA constructions in [16] are based on recursive
algorithms or exhaustive search over a class of functions
to generate such arrays. It is important to note that the
periodic autocorrelation for the tensor case is multi-
dimensional. For instance, the periodic autocorrelation of
a 4D-array A € QMXNXSXT js defined as R4 where
Ra(m,n,s,t) = Zk,é,u,v Ak, € u, v) A" ((k + m)ar, (€ +
n)N, (u+ s)s, (v + t)r). Our procedure can also be used to
decompose the PQAs in [14], [17], and [18] into PCPs.

Now, we focus on quaternary PCP matrices and study
their complementary property using the 2D-discrete Fourier
transform (2D-DFT). For X € CM*¥ | we define Fop(X) as
the 2D-DFT of X. For example, F3p(d) = 1. An interesting
property of the 2D-DFT is that Fop(Rx) = |Fap(X )|2 [20].
For a PCP Ay, A, € CM*N applying 2D-DFT on both sides
of Rz A, T RAV = 2MN6 results in [5]

| Fon (An) |2 + | Fon(Ay)[2 = 2M N1. (23)
From a beamforming perspective, |Fap (Ah) |2 is the power of

the discrete beam pattern generated when Ay, is applied to a
planar antenna array [21]. When A}, and A, are applied along
the orthogonal polarizations of a dual polarized beamforming
(DPBF) system, it can be observed from (23) that the sum of
the beam powers taken across both polarizations is constant
at all the discrete beam pattern locations. As a result, PCPs
result in quasi-omnidirectional beams when applied to DPBF
systems. The quaternary nature of the PCPs derived in this
paper allows their application to DPBF systems with just two-
bit phase shifters.
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Fig. 1: The squared 2D-DFT magnitudes of the quaternary

PCPs constructed from a 64 x 64 PQA in [16]. The sum of
these matrices is 2 x 642 at all the locations as per (23).

For 4 x 4, 8 x 8, 16 x 16, and 32 x 32 PQPs derived from
the PQAs in [16], we observed that |Fop(Ay)|? = MN1.
Equivalently, Rz = MNS$. In such a case, the PCP is



a collection of two perfect quaternary arrays [22] as A,
and A, have a perfect periodic autocorrelation. These arrays
are different from the perfect quaternary arrays used in [18]
to construct PQAs. The construction in [18] is based on
an inflation technique which transforms a M x N perfect
quaternary array into an Md x Nd PQA, where d = M N — 1
is prime. Our method generates PCPs which have the same
size of the underlying PQA and is not the same as the reverse
construction in [18].

The proposed construction does not always result in PCPs
which contain two perfect quaternary arrays. For example, it
can be observed that | Fop (Dy,)|2/4 # 1 and |Fop (Dy)|?/4 #
1 for the PCP in (22). In this case, Dy, and D, are not perfect
quaternary arrays although they form a PCP. Another example
of a non-trivial PCP is one that is generated from a 64 x 64
PQA. The squared 2D-DFT magnitudes of the 64 x 64 matrices
in this PCP are shown in Fig. 1. As the 2D-DFT magnitudes
in Fig. 1 vary across the entries, the matrices in this PCP are
not perfect quaternary arrays.

We would like to mention that the main focus of this paper is
on constructing PCPs from PQAs. An interesting question that
arises is if PQAs can be derived from PCPs using the reverse
of the proposed construction. To answer this question, we
consider a PCP By, B, € CM*¥ such that |By|lp = VMN
and |By||[r = VM N. By definition, Rg, + Rp, = 2M NJ4.
From Lemma 1, it can be concluded that the quaternion matrix
B = B; + B,j is perfect when B, x B, = B, x By.
Therefore, PCPs which are commutative with conjugate-free
cross correlation can be used to construct PQAs.

Now, we identify sufficient conditions to construct PQAs
in HM*N from quaternary PCPs. For a quaternary PCP
By, B, € CM*N, we define A, = (B, + B,)/2 and
A, = (B, —B,)/2. Now, it can be shown that A = A+ A,j
is a PQA when B,,xB, = B, xBy,. Furthermore, all the entries
of A are elements in H only when Ay (k,¢)A,(k,¢) = 0 for
every k, £. This condition translates to By(k,{¢) = =B, (k,?)
for every k,¢. In conclusion, the reverse of our construction
allows mapping a quaternary PCP By,, B, to a PQA in HM >V
if the PCP satisfies the following properties:

(a) RBh + RBV = 2MN(5,
(b) By By = B, % By, and
(¢) Bu(k, £) = +By(k, £) Vi, L.

To the best of our knowledge, the conditions (a)— (¢) have not
been presented in prior work. We believe that these conditions
can provide new insights into constructing PQAs over H.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we established a connection between perfect
arrays over quaternions and periodic complementary arrays
over complex numbers. We also demonstrated how perfect
quaternion arrays can be transformed to quaternary periodic
complementary pairs. Finally, we identified sufficient condi-
tions to construct perfect quaternion arrays over the basic unit
quaternions from quaternary periodic complementary pairs. In
future work, we will study the use of perfect quaternion arrays
for beamforming in low resolution phased arrays.

APPENDIX

We first prove that zjy = zy*j when x,y € C. Using the
representation in (3), xjy can be written as

o1 + 22i0)j(y1 + y2i)

zjy = (
(z1 + 220) (Y1) — y2k)
(
[

T1y1 + x2y2)j + (Toy1 — T1y2)k
(z1y1 + T2y2) + (T2y1 — T1Y2)il].

(24)

It can be observed that the right hand side of (24) is xy*].
Using j* = —j and the result in (24), it can be shown that
xj*y = —xy*j for any x,y € C.
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