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Abstract—In a massive MIMO system with large arrays, the
channel becomes spatially non-stationary. We study the impact of
spatial non-stationarity characterized by visibility regions (VRs)
where the channel energy is significant on a portion of the array.
Relying on a channel model based on VRs, we provide expressions
of the signal-to-interference-plus-noise ratio (SINR) of conjugate
beamforming (CB) and zero-forcing (ZF) precoders. We also
provide an approximate deterministic equivalent of the SINR
of ZF precoders. We identify favorable and unfavorable multi-
user configurations of the VRs and compare the performance
of both stationary and non-stationary channels through analysis
and numerical simulations.

Index Terms—Non-stationary channel analysis, linear pre-
coders, Massive MIMO.

I. INTRODUCTION

A massive MIMO system [1] is characterized by the use
of many antennas and support for multiple users. At the
extreme, the arrays may be physically very large [2]-[4] and
integrated into large structures like stadiums, or shopping
malls. Unfortunately, when the dimension of the antenna array
becomes large, different kinds of non-stationarities appear
across the array. Further, different parts of the array may
observe the same channel paths with different power, or even
entirely different channel paths [2]. This effect may even be
observed for compact arrays [2]. We show that non-stationarity
in massive arrays has a significant impact on performance
assessment and transceiver design.

We propose a simple non-stationary channel model and
analyze the performance of CB and ZF in the downlink
of a multi-user massive MIMO system. The channel model
is based on VRs that capture the received power variation
across the array. We also propose a closed-form approximation
of the SINR of the ZF receiver. The expression shows the
dependence of the SINR on channel parameters and allows
a comparison between spatially stationary and non-stationary
channels. The analysis and simulation results show that the
impact of spatial non-stationarity on the performance of linear
receivers is scenario dependent.

Few theoretical studies exist on spatially non-stationary
channels in massive MIMO systems. In [5] a spherical wave-
front based LOS channel model was proposed and the channel
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capacity is studied with the proposed model. In [6] an upper
bound on the ergodic capacity of a non-stationary channel was
provided. No prior work, however, has studied the performance
of linear precoders with non-stationary channels.

Notation: X is a matrix, x is a vector, X is a set, x and
X are scalars. Superscript T (and x), represent transpose (and
conjugate transpose). E[-] is the expectation, and CN (x, X)
is a complex Normal with mean x and covariance X. The
identity matrix is I and ||x||, is the p-norm. The cardinality
of a set X is |X|. X = diag(x) is a diagonal matrix with x
on its main diagonal, and tr(X) is the trace of matrix X. The
operator >3 denotes almost sure convergence.

II. SYSTEM AND CHANNEL MODEL

We consider a narrowband broadcast system where the base
station (BS) equipped with M antennas is serving K single-
antenna users (M > K). The BS serves all the users using
the same time-frequency resource. The signal for user k, s
is precoded by gr € CM and scaled by the signal power
pr. > 0 before transmission. The transmit vector x is the linear
combination of the precoded and scaled signals of all the users,
ie.,

K
X =) \/DK&kSk: )
k=1

Let G = [g1,82, - ,8x] € CM*K be the combined
precoding matrix, P = diag([p1, p2,--- ,pr]") € REXK be
the diagonal matrix of signal powers, and P > 0 be the total
power. The combined precoding matrix G is normalized to
satisfy the power constraint

E[|x|] = t:(PG*G) = P. @)

Let h, € CM denotes the random channel from the BS to
user k. Then the received signal at the user k is

yk:hzx+nkvk:172a"'vKa (3)

where np ~ CN(0,0?) is the additive noise. Assuming
independent Gaussian signaling, i.e., s ~ CA(0,1) and
E[sisj] = 0, i # j, the SINR 7, of user k can be written
as

pr|hjgrl?
- .
> pjlhjg;|*+0?
j=1,j#k

Let H= [h; hy --- hg] € CM*K denote the channel
matrix between the BS and K users. Then, the CB precoder

4)

Te =
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is

Gcs = BcsH, &)

and the ZF precoder is

Gzr = BzpHH*H) ! 6)

where the scaling factors fcg = +/ P/tr(PH*H) and fzr =
V/P/tr(P(H*H)~!) ensure that the power constraint (2) is
met.

By defining p = P/o? as the signal-to-noise ratio (SNR)
and using (5) in (4), the SINR of the kth user for CB is

C hjhy|?
B _ _ p|hjhy| 0
p > pjlhh;? + tr(PH*H)
j=1,j#k
Similarly, using (6) in (4), the SINR of the kth user for ZF is
(zF)

Yk = Pk ®)

p
tr(P(H*H)— 1)

Let Rj, € CM*M be the spatial correlation matrix of user
k corresponding to the case of a stationary channel. Further,
let Dy, be a diagonal matrix such that if the signal transmitted
from only D}, antennas is received by the user &k, Dy has Dy
non-zero diagonal entries. This diagonal matrix D, models the
VR of user k. For the proposed channel model, we introduce
a matrix ©, of the form

©, =D R,D;. )

If z, ~ CN(0,-I), then by the proposed model, the
channel of user k, hy, is

hk =V M@%Zk

For stationary channel Dy = I, and ®; = Ry. Therefore,
the channel model (10) subsumes the well known correlated
channel studied in [7], [8].

(10)

III. LARGE SYSTEM ANALYSIS IN STATIONARY CHANNELS

Correlated stationary channels (i.e., ®@; = Ry) were studied
in [7], [8], under the following assumptions.

Al M, K — 00. (BS equipped with a large number of
antennas serving a large number of users.)

A2 The covariance matrices have a uniformly bounded
spectral norm i.e., limsup bup IR:|| = O(1) [9].

M,K—o0c0l<
(User channels are not highly correlated)

A3 The power ppax = max(p1, pe,- - ,pk) is of the order
O(1/K), ie., = O(1/K). (Transmission power for
all the users is on the same order.)

With A1-A3, the deterministic equivalent of fy,gCB)

written as [7, eq. 24]

can be

R 2
— Can

p Y. pitr(ReRy) + X pitr(Ry)
j=1,j£k =1

— ﬁ(CB) ﬁ) 0. Using A1-A3 and some addi-

(ZF)

_(C
5P

where W(CB)

tional assumptions, the determlmstlc equivalent of -,

obtained in [8, eq. 34]. That expression, though, is not closed
form and as such is not suitable for comparing stationary and
non-stationary channels. With this motivation, we provide a
closed form approximate expression in the following theorem.

Theorem 1. Under the assumptions Al-A3, an approximate

deterministic equivalent of V,EZF) in (8) is
_(z
3 = pr - )
>opi(tr(Ry) — Y, UEE)T
i=1 J=15#i ’
which is guaranteed to be non-negative as % — 00.
Proof. See Appendix A. O

Remark: The expression (12) is obtained with the help of
a diagonal approximation (see Appendix A). In the following
proposition, we provide the order of absolute error in this
approximation.

Proposition 1. The error in approximating the O(K) term
hyH;(H;H;) 'H:h; by hyH,V-'Hh; (where V is de-
fined in (21)), is

e = |hH;(H/H;) 'Hih; — hyH,V 'H/h;|, (13)
and is of O ( )
Proof. See Appendix B. O

IV. STATIONARY VERSUS NON-STATIONARITY CHANNELS

For non-stationary channels, we introduce two additional
assumptions.
A4 Dy — oo, Vk. (Large VR for each user).
A5 limsup sup ||®g| < oco. (Non-stationary user chan-
M,K—00l<k<K
nels are not highly correlated.)
With this, the same analysis that led to (11) and (12) can be
used for non-stationary channels. In fact, only R needs to be
replaced with ® in theoretical expressions (11), and (12) to
get the results for the non-stationary case.

For comparison between stationary and non-stationary chan-
nels, we make a few simplistic choices of system and chan-
nel parameters. Specifically, we start by considering pr =
% Vk and Ry = I Vk. For non-stationary channels, we
consider two types of channel normalization.

Normalization 1, tr(®;) = tr(Ry) = M, Vk: This
ensures that the stationary and non-stationary channels have
the same norm. The physical implication of normalization 1
is shown in Fig. 1 (a). User terminal 1 (i.e., farther) receives
signal from all antennas but with lower power, whereas user
terminal 2 (i.e., closer) receives signal from fewer antennas
but with higher power. This is achieved by choosing D; =
diag([0, \/ $-1p,,0]7).

Normalization 2, tr(®) = D) Vk: The physical implica-
tion of normalization 2 is shown in Fig. 1 (b). User terminal
1 and 2 are equidistant from the BS, however, user terminal
2 receives signal from only a few antennas. This is achieved
by choosing Dj, = diag([0,1p,,0]7).

To further simplify the comparison, we assume that D), =
D Vk.
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(a) Physical implication of nor- (b) Physical implication of nor-
malization 1 i.e., tr(®@) = M.  malization 2 ie., tr(®) = D.

Fig. 1: Physical implication of normalization 1 (i.e., tr(®) =
M) and normalization 2 (i.e., tr(®) = D).

We outline the SINR for CB in stationary and non-stationary
channels with normalization 1 in detail below. The derivations
for normalization 2 and ZF precoding are similar and the
results are summarized in Table I.

The SINR of CB (11) for stationary channels simplifies to

pM
p(K-1)+ K’

For the non-stationary channel under consideration, a user
receives the signal transmitted from D antennas. The indices
of these antennas for user k£ are collected in a set Dj. The
SINR of user k£ depends on |D; N D;| Vj # k (i.e., inter-
user interference). For example, if K = 2, D = M/2 and
Dy =Dy ={1,---,M/2}, then |D; N Ds| = D and there is
high inter-user interference. If, however, D; = {1,--- , M/2}
and Dy = {M/2+1,--- , M}, then |D; NDy| = 0 and there
is no inter-user interference. Thus for non-stationary channels,
we consider the best-case (and worst-case) index sets Dy that
result in maximum (and minimum) possible SINR for the
considered setup.

In the worst-case, there is high inter-user interference. This
happens, when all the K users receive the signal from the same
D antenna elements. In this case, assuming tr(®) = M, it can
be shown that

(CB)

Ve —st= (14)

pM
pH (K —1)+K

There is an additional factor M /D in the first term in
denominator of (15) compared to (14). Therefore, for worst-
case, the smaller the VR of the user (i.e., in this case, the
number of active antennas D), the more SINR loss for non-
stationary channels.

In the best-case, there is low inter-user interference for all
the K users. The best-case antenna indices can be found using
counting arguments. Asymptotically, with a user k receiving
signal from D antennas, and a total of M antennas, we can
arrange only M /D users without any inter-user interference.
If we continue this arrangement for all users, there will be
% — 1 interfering users for any user k. With this observation,
the best-case SINR can be written as

(CB)

v, —non st. (worst) = (15)

pM

(cB)
—non st. (best) = ————.
T (best) = e ML K

(16)

If KD < M, there will be no inter-user interference with
the arrangement described above and (16) can be further
simplified. Note that the first term in the denominator of (14)

and (16) differs. Specifically, for best-case, if % is large
(i.e., smaller VR), then the SINR of CB precoders for non-
stationary channels can be better than the stationary channels.

V. NUMERICAL RESULTS

We verify the analysis of the non-stationary channels. We
consider M = 60, K = M/2, and p = 10dB. We plot the
SINR results against the active number of antennas per user
D. We consider both the best-case and worst-case antenna
configurations discussed in Section IV. We plot the results
for normalization 1 ie., tr(®) = M in Fig. 2a, and for
normalization 2 i.e., tr(®) = D in Fig. 2b. From Fig. 2a,
notice that when D is small, the SINR of the non-stationary
channels in the best-case (worst-case) is higher (lower) than
the stationary channels. The worst-case performance loss for
CB (ZF) is as high as 15dB (12.5dB). As D increases,
however, the SINR in the non-stationary channels converge to
the SINR of the stationary channels. This observation holds for
both CB and ZF precoding. The ZF curve in the worst-case
starts from D = 30. For smaller values of D, the channel
matrix H is rank deficient and ZF precoding fails. From
Fig. 2b, we notice that with normalization 2, the SINR of
the non-stationary channels is lower than the SINR of the
stationary channels (for p = 10dB). With normalization 2,
the performance loss for both CB and ZF can be as high as
15dB.

15 15
ZE,

Y (dB)

15 B
0 10 20 30 40 50 60 0 10 20 30 40 50 60
D D

(a) Normalization 1: tr(®) = M. (b) Normalization 2: tr(®) = D.

Fig. 2: The SINR vs the active number of antennas D (M =
60, K = 30, and p = 10dB).

VI. CONCLUSION

The VR of the channel impacts the performance of CB
and ZF precoders significantly. For small VRs, the post
processing SINR loss compared with the stationary channels
can be as high as 15dB for both CB and ZF. In the best-case,
i.e., when the VRs of the users reduce inter-user interference,
the post-processing SINR for both CB and ZF can be higher
compared to a stationary channel. Finally, small VRs can
make the channel rank deficient and render the ZF precoding
infeasible.

APPENDIX A: PROOF OF THEOREM 1
The SINR for ZF (8) can be re-written as

7ZF 14
Ve =Pk s

Z pl(H*H);zl
i=1

A7)
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TABLE I: SINR expressions for CB and ZF precoders for stationary and non-stationary channels.

Non-stationary

Stationary

Worst Best
. . . pM pM

CB % Normalization 1: tr(®) = M K-k p(K-20%K
. . . pD pD

Normalization 2: tr(®) = D FK-DTK (5D 1K

. _ Mg M-K+2M4

7F p(M}KH) Normalization 1: tr(®) = M o ﬁi{( Do E_ o)

Normalization 2: tr(®y) = D p(D}{KH) p(D_KTH)

where (H*H) is the ¢th diagonal entry of the inverse matrix
(H*H) ! Th1s entry can be re-written as

(H*H);! = (h;h; — h;H;(H;H;)"'H/h;) "',
where H; = [hy, ---, h;_y, h;;y, ---, hg]. The first

term on the RHS of (18) can be evaluated using (10) and [8,
Lemma 4], i.e

(18)

* 1 a.s.
z,; R;z; — Mtr(R,) Mjoc 0. (19)
For the second term, we approximate (HH;)~! by retaining
only its diagonal entries. For large M, approximating the off-
diagonal terms to 0 is reasonable as due to [8, Lemma 5]

z, R R2z] 25 0.

M — o0

(20)
We retain the diagonal entries in a matrix V; defined as

(H;H,)i ;i
0 otherwise.

when i = j,
Vij =

2y
With the diagonal approximation, the second term on the
RHS can be evaluated as

hH, VUi h; 2 tr(H V- HIR,),

(:zK:h*RhéEK:

4~ h’h ,
j=lj#i J #i
(22)

=

where (a) is due to [8, Lemma 4], (b) is by simple algebraic
manipulation, and (c) is due to the use of [8, Lemma 4] in both
the numerator and denominator. We obtain (12) by using (19)
and (22) in (17).
To guarantee the non-negativity of (12), it is sufficient to
show that
K

Z

=1,j J

) >0, Vi (23)

If Amax(R;) represents the largest eigenvalue of R, then by
using tr(R;) = M, Vi and re-arranging terms in (23), we get

K
M? > " tr(RiR;

(0 &
) = > Amax(Ri)tr(Ry)
j=1 =
J#i e
= M(K — 1)Amax(Ry), (24)
where (a) is from the property tr(AB) <

Amax(A)tr(B) [10]. Amax(Ri) is O(1) by A2, the
above inequality is guaranteed to hold as M/K — oo.

APPENDIX B: PROOF OF PROPOSITION 1

We can write HYH = V +E, where V is a diagonal matrix
with terms of O(M), and the matrix E has terms of O(v/ M).

The first order Taylor series expansion of (H;H)™! gives
(HH) '~V 'ix-VIEV L (25)
This result can be used in (13) to write the error as
e=|hiH,(V'EV HH;h,|. (26)

The terms in the vector Hh; are O(v/M). The terms in
the matrix V-IEV~! are order O(ﬁ) Thus the terms

in the product vector V-IEV~1H?h; are O( %) Extend-
ing the same argument, the term h!H;(V-'EV~1)H’h;
is O( W) By using similar arguments, we can show that
hiH;(H;H;) 'H!h; is O(K).
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