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ABSTRACT

Channel estimation for massive MIMO using coarse quantiz-
ers is nontrivial due to severe nonlinear distortions caused by
quantization and the large dimensional MIMO channel. The
best solutions to this problem nowadays are based on the gen-
eralized approximate message passing (GAMP) and its vari-
ations. However, there are practical issues such as nonideal
quantizers that may violate the assumptions in which GAMP
algorithms rely. This motivates research on methods based
on deep learning (DL), which provides a framework for de-
signing new communication systems that embrace practical
impairments. We explore DL applied to channel estimation
of MIMO systems with low resolution analog-to-digital con-
verters (ADCs). Assuming millimeter wave MIMO, the chan-
nel estimation results indicate that a single neural network
trained in a range of practical conditions is more robust to
ADC impairments than a GAMP variant. For example, for
a fixed wireless scenario with channels obtained from ray-
tracing, DL achieved a normalized mean-square error lower
than GAMP’s by more than 5 dB.

1. INTRODUCTION

Deep learning can be used to solve problems in communi-
cations systems design whenever a standard approach is dif-
ficult [1–3]. In this paper, we apply deep learning to chan-
nel estimation of MIMO systems with 1-bit analog-to-digital
converters (ADCs). Due to the number of antennas in massive
MIMO, the use of low power ADCs is a sensible alternative
to reduce the power consumption. This comes at the cost of a
reduced resolution, which imposes challenges to receiver al-
gorithms due to the non-linearity of the quantization operation
and the massive number of antennas.
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State-of-art algorithms for MIMO with low resolution
ADCs are based on message passing (MP) [4], especially
the generalized approximate message passing (GAMP) [5]
and variations. The bilinear variants [6, 7] are successfully
used on joint channel and detection (JCD) estimation. More-
over, [8, 9] provide an analysis of GAMP performance when
used on JCD estimation with low resolution ADCs. The re-
sults in [8–10] show that, when GAMP assumptions hold,
it performs close to the optimum at reasonable complex-
ity. The contributions of this papers are two-fold. First we
investigate DL architectures for 1-bit MIMO channel esti-
mation, using distinct datasets. Having channels obtained
from both statistical models and ray-tracing simulations al-
low us to perceive the impact of the datasets on performance.
This is sensible given that machine learning algorithms can
lead to biased conclusions simply by the use of an evalua-
tion methodology based on restricted datasets. The second
contribution is a direct comparison between DL methods and
EM-BG-GAMP [11], a state-of-art variant of GAMP that out-
performs previous algorithms (such as, e. g. [12]). We adopt
millimeter wave (mmWave) MIMO systems and investigate
the hypothesis that, in cases that GAMP assumptions do not
hold, DL-based approaches using neural networks (NN) can
outperform GAMP.

Channel estimation for low-resolution mmWave MIMO
has been tackled with techniques that do not use DL, such as
in [13, 14], which adopt orthogonal matching pursuit (OMP)
and variational Bayesian line spectral estimation (VALSE)
to leverage sparsity, respectively. Some recent papers em-
phasize advantages of DL for channel estimation (not neces-
sarily with low-resolution ADCs) [15–18]. DL is used for
channel estimation in [16], which proposes a pre-processing
(“tentative estimation”) to alleviate the task of the subsequent
convolutional deep neural network (DNN). The authors in
[16] use DL to explore the time and frequency correlations
in mmWave wideband channels. In [18], the DNN is used to
denoise the data, which is then processed by a conventional
estimator. This requires adjusting the DNN weights for each
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coherence block, but avoids the conventional offline training
stage. Another online channel estimation method is proposed
in [19], which avoids the cost of offline DNN training by us-
ing the extreme learning machine (ELM) architecture. Differ-
ent from these papers, we investigate channel estimation with
DL applied to systems with 1-bit ADCs and contrast it with
GAMP.

2. SYSTEM MODEL

The system is modeled as depicted in Fig. 1. The num-
ber of transmit and receive antennas are Nt and Nr, respec-
tively. The single-user MIMO matrix H ∈ CNr×Nt represents
a block fading channel, such that the channel remains con-
stant over a period of T symbols. Assuming ideal synchro-
nism, one can write

Y = HX+W, (1)

where XNt×T contains the transmit symbols, YNr×T has the
received symbols and WNr×T is element-wise additive white
Gaussian noise. The received samples are further quantized
upon reception, as

Ỹ = Q(Y) (2)

where Q(x) is a function representing the quantization oper-
ation on each real and imaginary components. For an ideal
1-bit quantizer, the operation corresponds to Q(x) = sgn(x),
where sgn(·) is the signum function.

Fig. 1. System model.

We are interested in mmWave MIMO systems with
uniformly-spaced antenna arrays. Therefore, we conveniently
use the two-dimensional fast Fourier transform (FFT) of H,
the so-called virtual (or angular) channel representation [20]

Hv = FFT2D{H}, (3)

proposed in [21]. The virtual channel Hv has a sparse struc-
ture that favors channel estimation algorithms [20].

We assume channel estimation based on known pilot sym-
bols, which are transmitted at the beginning of each block of
length T . A transmission block is divided in two parts: train-
ing (or pilot) symbols and data symbols, represented by

X =
[
Xpilot Xdata

]
, (4)

Ỹ =
[
Ỹpilot Ỹdata

]
. (5)

At the receiver, Ỹpilot and Ỹdata are observed at each block
interval, while Xpilot is known a priori.

In this paper we model a non-ideal 1-bit quantizer as a
hysteresis based on two thresholds tdown and tup, both dis-
tributed according to a zero-mean Gaussian N (0, σ2) with
variance σ2. We enforce that tdown ≤ tup and, if we draw
values for which this is not true, these values are swapped.
Fig. 2 illustrates the hysteresis model used. Imperfections
are inevitable on ADCs implementations [22], and, for 1-bit
quantizers, a prominent one is the threshold hysteresis.
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Fig. 2. Non-ideal ADC hysteresis.

3. CHANNEL ESTIMATION

An extra difficulty in this channel estimation problem comes
from the non-linearity resulting from the 1-bit ADC quantiza-
tion. GAMP-based algorithms model the non-linearity result-
ing from the 1-bit ADC quantization. Therefore, it performs
extremely well when the model assumptions are met. Also,
GAMP-based approaches can leverage even information from
Ỹdata. On the other hand, NNs are universal function approx-
imators that can effectively handle non-linearities.

Before delving into the GAMP and DL-based methods,
it should be noticed that for 1-bit MIMO there are M =
22NrTpilot distinct received pilots Ỹpilot, where Tpilot is the num-
ber of pilot symbols. Therefore, channel estimation could be
eventually implemented as a look-up table. The input would
be the index corresponding to Ỹpilot, and Ĥ the complex-
valued output with dimensionNtNr. There are methods based
on look-up tables [23], but the tables may not be feasible
when large dimensions are involved. We use GAMP or NNs
to implement this mapping with reasonable complexity.

3.1. Channel estimation using deep learning

In our ML-based approach, the channel estimation problem is
posed as a multivariate regression problem [24]. In this paper,
the output is the estimated channel Ĥ such that a single NN
performs multivariate regression. There are several alterna-
tives to the NN input and overall architecture. The quantized



pilot samples Ỹpilot are the most prominent source of infor-
mation regarding the channel and, consequently, are part of
the NN input. The NN input may include Xpilot or not. Be-
cause Xpilot does not change over time in our simulations, it is
not part of the input. For optimizing the model weights (i. e.,
for training the NN), we adopt the mean squared error (MSE)
as loss function.

The input Ỹpilot is organized as a matrix of dimension
2Nr × T , where the 2 factor accounts for the real and imagi-
nary parts. The output is the virtual channel matrix Hv, with
the same dimension Nr × Nt of H. The output size is then
2Nr×Nt to account for the complex numbers. The next para-
graphs describe the three adopted NN architectures. As a pre-
liminar study, a thorough hyperparameter optimization was
avoided so that these values were selected manually.

A simple dense network architecture with 8 layers is used.
The activations for all layers but the last are rectified linear
units (ReLU). Each layer, except the last, has 128 outputs
which are fed to the next layers. The last layer uses a lin-
ear activation. Neither dropout nor batch normalization was
used.

The convolutional network model used in this paper has 3
convolutional layers and 1 dense layer as the output. The con-
volutional layers configuration is described in Table 1. Each
convolutional layer uses ReLU activation and is followed by
a batch normalization layer and a dropout layer with dropout
rate rdrop = 0.3. No padding is used on the convolution. The
output layer uses a linear activation as the other models.

Table 1. Topology of the convolutional network.
Conv. layer Outputs Window size Stride

1 192 5 1
2 384 5 1
3 192 3 2

In this paper we use a residual network architecture with
four layers, where each layer output is connected to the next
two layers. Each layer, except the last, has 40 outputs and
uses ReLU activation. No dropout or batch normalization is
used as in the dense architecture. The skip connections are
concatenated to the input of the layer they are arriving.

4. EVALUATION METHODOLOGY

We now briefly discuss the importance of the training and
test sets when contrasting channel estimation using DL and
GAMP. State-of-art GAMP-based algorithms consider the re-
ceiver knows the distribution p(H) of channels but not its
realizations. Knowing distributions for GAMP (even if not
their parameters) and having large datasets for DL, are sim-
ilar in the sense that both are manifestations of access to a
potentially infinite amount of data. One distinction is that
GAMP variants leverage the analytical expression of p(H) as

a highly compact representation of knowledge about the chan-
nels. In contrast, the NN is expected to find its own way of
representing all relevant information contained in p(H). To
accomplish that, the ML-based method would ideally rely on
access to a reasonable number of realizations (composing a
rich training set from e. g. measurement data) or a software
routine to draw samples from this distribution on-the-fly. If
this is not the case, and the available data is restricted, it is im-
portant to clarify the scope in which the simulations are valid,
specially when using ML-based approaches. For example, if
the assessment methodology uses only matched conditions,
in which the test and training sets are derived under the same
circumstances (e. g., a statistical model or ray-tracing simula-
tions from the same 3D scenario as in [25]), this restriction
must be highlighted.

In this paper we train an NN under different noise condi-
tions (multi-condition training) and different σ values, aiming
that the NN will be capable of generalizing. Both noise multi-
condition training and the time-variant channel are challeng-
ing for the stochastic gradient descent (SGD) used in DL.
The network training with SGD may not converge even with
advanced Keras’ optimizers such as Adam. Most SGD rou-
tines obtain the gradient estimate by averaging the individual
gradients of a set of B examples called mini batch. Having
B > 1 often helps convergence by averaging the noise out
and may be essential when the SNR imposed during train-
ing is low. But in the case of time-varying channels (exam-
ples corresponding to eventually distinct channels Hv) and
noisy measurements, SGD may perform better by not chang-
ing the channel within a mini batch, but keeping it constant
over B × T consecutive symbols.

The simulation results are measured in normalized mean
squared error (NMSE), defined as

NMSE =

E
[∥∥∥H− Ĥ

∥∥∥2]
E
[
‖H‖2

] , (6)

where H is the channel and Ĥ is its estimation. The software
used for DL simulations is written in the Python programming
language using the Keras API with a Tensorflow backend.

Training is done by minimizing the MSE loss function
using the Adam optimizer. We use a maximum number of
epochs Ne = 100 with an early stopping mechanism for the
case when the validation error starts to increase in order to
avoid overfitting. Often, the training stops before reaching
maximum epochs. This indicates a local minimum for the
validation loss, and further training would potentially cause
overfitting.

4.1. Random sparse MIMO channels

We used the stochastic channel model adopted in [12], which
allows controlling the sparsity level and is useful in simula-



tions of mmWave massive MIMO. The L multipath compo-
nents (MPCs) in the virtual domain Hv are assumed to coin-
cide with DFT bins (there is no leakage). Then, as indicated
by Eq. (3), an inverse 2D DFT generates the corresponding
H [21]. We control the sparsity of Hv by controlling the
range of values of L. In this case, the signals (e. g. X) and
channels (Hv and H) are generated on-the-fly by implement-
ing the Keras Sequence interface, eliminating the need for
storage of large datasets.

4.2. MIMO Channels from ray-tracing simulations

We used the methodology proposed in [26] to generate MIMO
channels with Remcom’s Wireless InSite ray-tracing simula-
tor. The 3D scenario represented a 337×202 m2 area of Ross-
lyn, Virginia, which is part of Wireless InSite’s examples. The
open source Simulation of Urban MObility (SUMO) [27] was
repeatedly used to generate at each time instant t, the posi-
tions of all moving objects (cars and trucks) along the streets
with a sampling interval Ts.

For each scene, Wireless InSite ray-tracing simulator is
executed and information about the L = 100 strongest rays
(gain, phase, angles, etc.) to each receiver is stored in a
database. The process is repeated until the target number of
simulations is reached. We simulated a fixed wireless sce-
nario, in which the receivers are not mobile but located in
houses and business offices. The adopted carrier frequency
was 60 GHz, Ts = 1 sec, the transmitter antenna height was
5 m and diffuse scattering was enabled.

In order to implement the Keras Sequence interface, we
load a dataset containing the simulated ray-tracing channels
and generate Xpilot and Ỹpilot, so we also eliminate the need
to store them.

5. SIMULATION RESULTS

Given H, from the ray-tracing or random datasets, we obtain
Ỹpilot from Xpilot. The implemented Keras Sequence interface
generates a sample with Ỹpilot as the input and H as the out-
put. An epoch uses 1000 mini-batches, where each batch con-
tains 5 samples. The validation set contains 200 mini-batches
previously extracted from the Sequence interface. For the test,
a set of size 500 is used. Ne = 100 epochs were used to train
each model. Typical training times on a 8-core machine with
a GPU were less than an hour.

In order to assess the performance of EM-BG-GAMP
under conditions where its assumptions do not hold, we sim-
ulated the case where the quantizer follows our non-ideal
model varying the σ of the Gaussian distribution of tdown
and tup from σ = 0 (ideal quantizer) to σ = 0.5. Fig. 3
shows that for σ = 0 is the ideal case with no hysteresis,
where the EM-BG-GAMP performs at its best. Using the
non-ideal quantizer model, EM-BG-GAMP suffers perfor-
mance losses due to the assumptions not being true anymore.

As σ increases, the performance decreases as there is a model
mismatch for the quantization probability distribution. The
NMSE increase on high SNRs is a well-known phenomenon
on GAMP context called “stochastic resonance”, which is
described in detail in [28].
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Fig. 3. Impact of ADC hysteresis on EM-BG-GAMP MSE.

5.1. Random sparse dataset results

Using the residual network model proposed in [29], we
achieved the results in Fig. 4. A single network was trained
on a multicondition style, with respect to both SNR and σ. We
used a batch size B = 5, an SNR range uniformly distributed
between [−1, 1], and a σ uniformly distributed in the range
[0, 0.5]. We can note that the increase in σ greatly impairs
EM-BG-GAMP performance, while the residual network is
nearly unaffected. In fact, for σ = 0.5, the residual network
performed better than for σ = 0.
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Fig. 5 shows the NMSE of the proposed models when
trained with a ray-tracing dataset for σ = 0 to σ = 0.5. The
dense network performed better in a wider SNR range. On the
other hand, the convolutional network achieved lower NMSE
on the high SNR range. Although the residual network could
not outperform the others, it has half of the layers of the dense
network and also less neurons per layers and requires fewer
training epochs to converge.

The better performance of the NNs when compared to
GAMP is due to less variability in the dataset channels. We
want to avoid situations in which the NNs simply “memo-
rize” the training data. In order to enforce that, we use dif-
ferent episodes for training and test, avoiding that the mobile
objects in the 3D scenarios are located in similar positions.
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Fig. 6 compares the EM-BG-GAMP results with the
dense network. For the ray-tracing case, the dense network
outperforms EM-BG-GAMP by more than 5 dB at high
SNRs. EM-BG-GAMP underperformed on the ray-tracing
channels when compared to the random sparse channels.

6. CONCLUSIONS

In this paper, we compared the performance of state-of-art
GAMP based algorithm with an NN approach in the pres-
ence of a hysteresis quantizer that does not meet GAMP as-
sumptions. In contrast, the DL-based methods can create an
internal model for this impairment during training. For the
random channels, the results show that when the impairment
level increases, in our case σ = 0.25 and σ = 0.5, EM-BG-
GAMP suffers performance reduction and is outperformed by
the residual network. For the ray-tracing datasets, the NNs
benefited from less channel variability and achieved better
performance than for the random sparse dataset. On the other
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Fig. 6. Comparing EM-BG-GAMP with dense network for
ray-tracing channels.

hand, EM-BG-GAMP had poor performance for the used ray-
tracing channels, even with the ideal 1-bit ADC case. This
performance reduction is under further investigation.
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