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Abstract

Millimeter wave (mmWave) MIMO communication is a key feature of next generation wireless

systems. The selection of precoders and combiners for wideband mmWave channels has involved

frequency selective designs based on channel state information. In this letter, we show that under some

assumptions, the dominant subspaces of the frequency domain channel matrices are equivalent. This

means that semi-unitary frequency flat precoding and combining are sufficient to achieve the maximum

spectral efficiency when there is not too much scattering in the channel. It also motivates the use of

techniques such as compressive subspace estimation as an alternative to estimating the full channel.

Index Terms

Millimeter wave communications, hybrid architecture, subspace estimation.

I. INTRODUCTION

The use of large antenna arrays and directional transmission and reception are key enabling

technologies for wireless systems operating at mmWave frequencies [1]. Both analog-only and

hybrid beamforming architectures have been proposed to reduce the cost and power consumption

in mixed signal components of a fully-digital MIMO system operating at mmWave [2], [3]. While

hybrid architectures are desirable for supporting multi-stream communication at mmWave, the

analog processing stage is frequency flat, so it can not perfectly reproduce the optimum frequency

selective precoders.

Some prior work on frequency selective mmWave systems [4]–[6] involved precoding with a

frequency flat analog precoder followed optionally by a frequency selective baseband precoder.

This was found to be optimum in terms of the achievable spectral efficiency for a given analog
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codebook and a flexible baseband precoder. The potential optimality of frequency flat precoders

and combiners was not studied.

In this paper, we show that frequency flat precoding and combining, assuming semi-unitary

precoding, is optimum in frequency selective MIMO channels with few paths, as found in

mmWave systems. This means that frequency selective precoding is not necessarily required in

MIMO systems operating at mmWave frequencies to achieve the maximum spectral efficiency.

Further, this result motivates the design of the precoder based on compressive covariance or

subspace estimation instead of explicit channel estimation exploiting sparsity [7], [8].

Notation: In this paper, we use A to denote a matrix, a to denote a vector and a to denote a

scalar. Conjugate transpose and the conjugate of A are A∗ and Ā, and the (i, j)th entry of A is

[A]i,j . We use ‖ · ‖ to denote the Euclidean norm, ‖ · ‖F to denote Frobenius norm, and trace(·)

to denote the trace. The determinant of a square matrix A is denoted as |A|.

II. SYSTEM MODEL

Consider a wideband mmWave system with Nt transmit antennas and Nr receive antennas. A

geometric channel model [8], [9] consisting of R paths is assumed for representing the frequency

selective channel. The `th path has a complex gain α` ∈ C, delay τ` ∈ R, and angles of arrival and

departure (AoA/AoD) φ` ∈ [0, 2π) and θ` ∈ [0, 2π). Assuming a pulse shaping filter denoted as

p(τ), the discrete-time, frequency selective channel with Nc delay taps can be represented in terms

of the frequency independent antenna array response vectors 1 of the receiver aR(φ`) ∈ CNr×1

and the transmitter aT(θ`) ∈ CNt×1 [3], [5], [9]. Sampling with period Ts, the discrete-time

MIMO channel for d = 0, 1, . . . , Nc − 1 is

Hd =
R∑
`=1

α`p(dTs − τ`)aR(φ`)a
∗
T(θ`). (1)

Next, we define the matrices AR ∈ CNr×R, AT ∈ CNt×R, and a diagonal matrix Pd ∈ CR×R.

The columns of AR and AT are given by {aR(θ`)}R`=1 and {aT(θ`)}R`=1 respectively, and the `th

diagonal entry of Pd is α`p(dTs − τ`). Then,

Hd = ARPdA
∗
T (2)

gives a compact matrix representation of Hd.

1While the spatial angles in the arguments of the steering vectors may include a frequency dependency called beam-squint

[10], this behavior needs further study before including it into millimeter wave MIMO channel models.
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Multicarrier (MC) transmission or a single carrier with frequency division multiplexing (SC-

FDM) is assumed, with K > Nc denoting the number of subcarriers in the frequency domain.

The channel matrix in the frequency domain is

H[k] =
Nc−1∑
d=0

Hde
−j 2πkd

K (3)

for k = 0, 1, . . . , K−1. To express (3) in matrix form, let P[k] =
∑Nc−1

d=0 Pde
−j 2πkd

K . Substituting

(2) into (3), using the fact that the matrices AR and AT are independent of d then

H[k] =
Nc−1∑
d=0

ARPdA
∗
Te
−j 2πkd

K (4)

= ARP [k] A∗T. (5)

The number of paths R is assumed to be smaller than the number of delay taps Nc in the

frequency selective mmWave channel, which is reasonable due to the memory in the pulse

shaping function.

Appropriate signal processing (for MC/SC-FDM) can be used at the transmitter and the

receiver to obtain K parallel narrowband channels in the frequency domain. For Ns stream

transmission, let x[k] ∈ CNs×1 denote the complex symbol transmitted in the kth subcarrier

of the data frame. Assuming frequency-selective precoding with a matrix F[k] ∈ CNt×Ns and

combining with W[k] ∈ CNr×Ns during the transmission-reception of the data frame, the post

combining received symbol in the kth subcarrier can be written as

y [k] = W∗[k]H[k]F[k]x [k] + W[k]∗n [k] , (6)

where n[k] ∼ N (0, σ2I) is the circularly symmetric complex Gaussian distributed additive noise

vector of size Nr. Next we argue that in some cases F[k] and W[k] do not have to vary with

frequency k, and a frequency flat precoder Fff and a frequency flat combiner Wff can be used

without loss of performance.

III. OPTIMALITY OF FREQUENCY-FLAT PRECODING

Under some assumptions, we now show that the K MIMO channel matrices defined in (3) have

the same row and column subspaces. Let C (A) denote the column space of A and R (A) the

row space of A. Using this notation, we define the subspaces Hc = C (AR) and Hr = R (A∗T).
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Proposition 1: Assuming that AR and AT have full column rank and P[k] is full rank, the

frequency domain MIMO channel matrices H[k], k = 0, 1, · · · , K − 1, have the same column

space Hc and the same row space Hr.

Proof: From (5), R(H[k]) ⊆ Hr with equality when ARP[k] has full column rank, which is

true when AR has full column rank and P[k] is full rank. Similarly, C(H[k]) ⊆ Hc with equality

when P[k]A∗T has full row rank, which is true when AT has full column rank and P[k] is full

rank.

Assuming that P[k] is full rank is reasonable since the diagonal elements are the Fourier trans-

form of shifted sampled Nyquist pulse shapes and the path gains are non-zero. The assumption

that AR and AT have full column rank holds for typical array geometries, like the uniform linear

array or uniform patch array, with small enough element spacing and distinct angles of arrival

and departure.

Corollary 2: Frequency flat precoding (and combining) is optimum in frequency selective

mmWave channels under the assumptions of semi-unitary precoding (and combining) and a

small number of paths (R < Nt and R < Nr), if AR and AT have full column rank.

Proof: The conventional semi-unitary frequency-selective precoder design is based on the

singular value decomposition (SVD) of H[k] = U[k]Λ[k]V∗[k], where F[k] = [V[k]]:,1:Ns

with Ns ≤ min(Nt, Nr). If the number of paths is small, and AT has full column rank then

rank(AT) = R and it suffices to take Ns = R. In this case, the columns of F[k] are a basis

for Hr. Based on Proposition 1, though, Hr is the same for all k thus a common basis for Hr

given by Fff can be used for all subcarriers. A similar argument applies to using a single Wff

for combining across all subcarriers.

IV. ACHIEVABLE RATE WITH FREQUENCY-FLAT PRECODERS

We choose the number of streams Ns to be equal to the rank of the MIMO channel matrices

for each subcarrier k, given by min (R,Nr, Nt). Based on the SVD of H[k] in the proof of

Corollary 2, the conventional frequency selective precoder F[k] = [V[k]]:,1:Ns
and combiner

W[k] = [U[k]]:,1:Ns
results in achievable spectral efficiency

Rfs =
1

K

K∑
k=1

log2

∣∣∣∣I +
SNR

Ns

Λ̂2[k]

∣∣∣∣ , (7)

where SNR = P
Kσ2 , P is the average transmitted power, and Λ̂[k] = [Λ[k]]1:Ns,1:Ns

. The maximal

achievable rate can be derived by performing an additional spatial water-filling step.
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Let the frequency flat precoder Fff be a semi-unitary matrix whose columns spanHr. Similarly,

let Wff be a semi-unitary matrix whose columns span Hc. Since all the column spaces of the

matrices are the same, we can write Wff = W[k]QW[k], where QW[k] ∈ CNs×Ns is a unitary

rotation matrix that accounts for the unitary invariance in the representation of a point on the

Grassmann manifold. Similarly, we can write Fff = F[k]QF[k], where QF[k] ∈ CNs×Ns is

another unitary rotation matrix. Further, since the frequency flat combiner is semi-unitary, the

noise covariance of the post combining received signal in (6) is σ2I. Therefore, the achievable

spectral efficiency using Fff and Wff is

Rff =
1

K

K∑
k=1

log2

∣∣∣∣I +
SNR

Ns

W∗
ffH[k]FffF∗ffH

∗[k]Wff

∣∣∣∣ . (8)

Note that the effective channel matrix with the optimal frequency flat precoder and combiner is

Heff [k] = W∗
ffH[k]Fff , which can be written as

Heff [k] = Q∗W[k]W∗[k]U[k]Λ[k]V∗[k]F[k]QF[k] (9)

= Q∗W[k]Λ̂[k]QF[k]. (10)

Then (8) simplifies to

Rff =
1

K

K∑
k=1

log2

∣∣∣∣I +
SNR

Ns

Q∗W[k]Λ̂2[k]QW[k]

∣∣∣∣ (11)

(a)
=

1

K

K∑
k=1

log2

∣∣∣∣I +
SNR

Ns

Λ̂2[k]

∣∣∣∣ = Rfs. (12)

In (12),
(a)
= follows from the matrix identity |I+ABC| = |I+BCA| and since QW[k] is unitary.

It is important to note that the proposed precoder-combiner does not necessarily diagonalize the

MIMO channel per-subcarrier Heff [k], like the usual SVD-based frequency selective precoding

and combining. Therefore, the transmitted symbol may be detected using optimal digital receiver

strategies with the knowledge of the Ns × Ns matrix Heff [k]. This low dimensional effective

channel may be estimated using convention digital MIMO channel estimation techniques and

feedback of this channel is not required, since there is no additional per-subcarrier digital pre-

coding layer. As shown in the simulations, small gains with frequency selective precoding can be

achieved using water-filling across space and/or frequency. We also show in the simulations that

the optimality of the frequency flat beamformers does not depend on the number of subcarriers

K or the number of delay taps Nc.
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V. COMPRESSIVE SUBSPACE ESTIMATION

Given that all the channel matrices have the same row and column spaces, Hc and Hr, the

knowledge of these subspaces is sufficient for designing the optimal frequency flat precoders

and combiners that achieve the maximum spectral efficiency. The purpose of this section is to

illustrate how this insight from Section III can be used to replace the channel estimation stage,

central for a conventional precoder design, by a compressive subspace estimation. Accordingly,

the system design problem boils down to estimating the orthogonal bases of the row and column

spaces of the Nr ×Nt channel matrices.

While iterative approaches to estimate the right and left singular subspaces of mmWave

MIMO channels have been considered previously [11], we use a variation of the nuclear norm

minimization approach in [12] to perform the compressive subspace estimation. Compressive

sensing based approaches are interesting because they only require a small number of random,

linear measurements [12], [13] when estimating the low rank subspace of large dimensional

matrices.

Let F(m) ∈ CNt×Ns denote the precoder used for the mth training frame, and W(m) ∈ CNr×Ns

denote the corresponding combiner. Then, the compressed subspace estimation can be formulated

as a low rank matrix estimation problem by nuclear norm relaxation [12]. Denoting the nuclear

norm of matrix A as ‖A‖∗ , trace
(√

A∗A
)

, and with H denoting the variable of optimization,

we solve

min ‖H‖∗
H∈CNr×Nt

s.t. ‖W∗
(m)

HF(m)x[k]−y[k]‖≤ε for m=1,2,··· ,M.

, (13)

for that subcarrier k which gives the best received SNR. Note that M is the number of compressed

measurements in (13). The Ns orthogonal vectors of the row and column spaces Hc and Hr,

respectively of the estimated channel (i.e., the first Ns left and right singular vectors) are the

columns of the optimal frequency flat combiner Wff and precoder Fff . Most of the prior work on

mmWave frequency selective systems proposes, however, a subcarrier specific baseband precoder-

combiner and a frequency flat analog processing stage [5].

VI. SIMULATION RESULTS

In this section, we present simulation results to illustrate the optimality of the proposed

frequency flat precoder and combiner proposed in Section III. We assume a uniform linear

array with half wavelength antenna element separation at the transceivers for the simulations.
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Fig. 1: Optimality metric Υ, as a function of the number of paths R. The frequency flat precoder-

combiner is optimal when the number of paths R is small in comparison to min (Nr, Nt).

The metric used to evaluate the optimality of the proposed procoders and combiners is the

normalized energy Υ forced into the dominant subspaces when using the optimal frequency flat

precoder and combiner. This energy can be computed as Υ = 1
K

∑K
k=1 γk, with

γk =
‖W∗

ffH[k]Fff‖2
F

‖H[k]‖2
F

. (14)

Fig. 1 shows the optimality metric versus the number of paths R in the frequency selective

channel with parameters Nc = 8 and K = 16, for various values of Nr and Nt. The rank of the

channel matrices is upper bounded by min (R,Nr, Nt). When R is small compared to the number

of transmit and receive antennas, from (5), the rank of each of the MIMO channel matrices is

at most R. In this case, the proposed frequency flat precoder and combiner are optimal. When

R > min (Nr, Nt), the semi-unitary precoding-combining solution is sub-optimum, as seen from

Fig. 1.

In Fig. 2 and Fig. 3, we assume Nc = 16 and K = 64 for the channel. The achievable

rate using the proposed frequency flat precoder and combiner as a function of the number of

paths R for SNR = 0dB, Nt = 64 and Nr = 16 is shown in Fig. 2. The achievable rates with

the conventional frequency selective precoder and combiner, with and without water-filling are

also plotted. The plots in Fig. 2 show that when the MIMO channel rank equals the number of
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Fig. 2: Plot showing the achievable spectral efficiency versus the number of paths R with

frequency selective, and with the proposed frequency flat precoder-combiner. The proposed

frequency flat beamforming is optimal when R ≤ min (Nr, Nt).

paths R ≤ min (Nr, Nt), then the frequency flat precoder-combiner achieves the same rate as

the SVD-based frequency selective precoder-combiner. This implies that the system design and

implementation is simplified in low-rank, large dimensional frequency selective MIMO channels,

which are common in wideband mmWave systems. Also, when the number of paths is small,

the gains due to power allocation via spatial water-filling are small.

In Fig. 3, we compare the achievable spectral efficiency provided by the frequency flat

precoders and combiners designed from compressive subspace estimation outlined in Section V,

as a function of the number of paths R, for various training length M . We assume Nr = Nt = 32

here. When the number of paths is small, subspace recovery tools requiring small number of

compressive measurements can be used to design the frequency flat precoders and combiners. In

this case, the loss in performance relative to the optimal frequency flat precoders and combiners

(assuming perfect channel knowledge) is also small. When the rank of the channel (which

depends on the number of paths) is higher, a larger number of measurements is needed to

obtain a good estimation of the subspaces and design the proposed frequency-flat precoders and

combiners.
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Fig. 3: Plot showing the achievable spectral efficiency for SNR = 10dB with the compressive

subspace estimation algorithm as a function of the number of paths R for various training lengths

M .

The hardware limitations in mmWave systems make the use of fully digital precoders and

combiners impractical [3]. These place constraints on the frequency selective hybrid precoder-

combiner design as well. Nevertheless, efficient designs of frequency selective hybrid precoder-

combiner guarantee achievable rates similar to all-digital systems [5]. The proposed frequency

flat optimal precoder-combiner in this paper, can however, be implemented in the RF part of

the transceiver architecture with additional constraints incorporating the limited resolution of

phase shifters [3]. This not only makes the system design easier, but also makes the hardware

implementation cost effective.

VII. CONCLUSION

In this letter, we established the optimality of the frequency flat precoder-combiner for fre-

quency selective wideband mmWave channels with small number of paths. We proved that all the

frequency domain MIMO channel matrices corresponding to all the subcarriers, share the same

row and column subspaces. The combiners and precoders derived from these subspaces were

shown to form maximum-spectral-efficiency-achieving optimal frequency selective combiners
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and precoders when the MIMO channel dimensions are large in comparison with the rank of

the channel, which is a function of the number of paths.
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