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Abstract—Spatial channel covariance information can replace
full instantaneous channel state information for the analog
precoder design in hybrid analog/digital architectures. Obtaining
spatial channel covariance estimation, however, is challenging in
the hybrid structure due to the use of fewer radio frequency (RF)
chains than the number of antennas. In this paper, we propose
a spatial channel covariance estimation method based on higher-
order tensor decomposition for spatially sparse time-varying
frequency-selective channels. The proposed method leverages the
fact that the channel can be represented as a low-rank higher-
order tensor. We also derive the Cramér-Rao lower bound on the
estimation accuracy of the proposed method. Numerical results
and theoretical analysis show that the proposed tensor-based
approach achieves higher estimation accuracy in comparison
with prior compressive-sensing-based approaches or conventional
angle-of-arrival estimation approaches.

I. INTRODUCTION

Hybrid analog/digital precoding uses a smaller number of
RF chains to reduce the number of power-consuming devices
like analog-to-digital converters (ADCs) or digital-to-analog
converters (DACs). Consequently, the hybrid approach can
reduce power consumption and implementation complexity
in millimeter wave multiple-input-multiple-output (MIMO)
systems [1]–[4] and massive MIMO systems [5]–[7]. The rate
loss incurred by the hybrid architecture is insignificant for
spatially sparse channels such as in millimeter wave systems
or in suburban/rural areas in sub-6 GHz systems [1]–[4], [7].

A main challenge in the hybrid architecture is to config-
ure the analog and digital precoding stages. Many previous
methods accomplish this task based on full CSI [1], [4], [8].
These approaches require frequent estimation of the channel,
obtained for example via sparse recovery techniques. An
alternative is to use only long-term statistical knowledge such
as that contained in spatial channel covariance matrices, for the
analog precoder design [7], [9]–[11]. Once the analog precoder
is determined based on the spatial channel covariance, the
digital precoder, of a much smaller dimension is designed by
using instantaneous full CSI of the low-dimensional effective
channel, i.e., the propagation channel combined with the
analog precoder. While the accurate estimation of the full CSI
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is difficult for time-varying frequency-selective channels, the
long-term statistical CSI can be efficiently estimated. It was
shown in [7], [9]–[11] that the hybrid precoding methods based
on spatial channel covariance achieve spectral efficiency close
to that of the hybrid precoding obtained from full CSI when
the channels are spatially sparse.

Although the use of the spatial channel covariance matrix
helps the hybrid precoding design to be simpler and more
practical, the hybrid architecture makes it difficult to estimate
the covariance matrix. Since there is no digital access to the
outputs of every antenna, and only the signals combined in an
analog way are available at baseband, it is difficult to estimate
the spatial covariance of the high dimension channel. Different
approaches have been suggested to solve the spatial channel
covariance estimation problem under such an environment.
In [6], a least-squares-based covariance estimation method
was proposed by using time-varying analog beamforming
matrices. Since the method does not exploit the sparse channel
property, it is not an efficient method for sparse channels,
which are of our interest in this paper. The sparse ruler
array in [12]–[14] and the coprime sensor array [15] can
omit measurements on some antenna elements by leveraging
the fact that correlations between antenna elements are wide-
sense stationary in spatial domain. Although these so-called
compressive covariance sensing (CCS) methods can reduce
the number of RF chains, the methods have a limitation on
the configuration of the number of RF chains and antennas.

The CCS methods were initially developed by using only
a subset of antennas. It is, however, possible to extend the
work to general hybrid architecture where the analog part
is composed of phase shifters and thus is represented as a
dense matrix [14]. In this dense sensing matrix case, the CCS
methods become closely related to typical compressive sensing
(CS) techniques. For example, in [11], the spatial channel es-
timation method was developed by adopting the time-varying
analog combiners used in [6], which are dense matrices.
Instead of the least-squares method, one of the well-known
conventional vector-type CS techniques, orthogonal matching
pursuit (OMP), was adopted to exploit the sparse channel
property. It is worthwhile to note that conventional vector-type
CS techniques were typically developed for channel estimation
[16]–[18] but can be extended to spatial channel covariance
estimation as well. The vector-type CS techniques for covari-
ance estimation, however, are outperformed by matrix-type
CS techniques developed for so-called multiple measurement
vector (MMV) problems [19]–[21] that enable the joint spare
recovery. An advanced spatial channel covariance estimation
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method based on the MMV approach was proposed in [22]
by applying time-varying sensing matrices and exploiting the
Hermitian property of the covariance matrix. The subspace es-
timation work based on MMV in [23], [24] was also proposed
for the hybrid architecture. It was shown that the proposed
MMV based methods have performance close to approxi-
mate maximum-likelihood (AML). The estimation methods in
[22]–[24], however, assumed narrowband channels, i.e., the
frequency-selective wideband channels were not considered.

Besides the CS-based work, conventional AoA estimation
methods such as the multiple signal classification (MUSIC)
[25] and the estimation of signal parameters via rotational
invariance technique (ESPRIT) [26] can also be applied to
the spatial channel covariance estimation problem via some
modification. In the conventional AoA estimation methods
for fully-digital architectures, the spatial channel covariance
is directly calculated from the received signal vectors, and
the AoA is estimated from the obtained covariance matrix.
A covariance estimation based on AoA estimation for the
hybrid architecture requires the estimation process in the
opposite direction. First, the covariance matrix of the low-
dimensional baseband received signal is calculated. Second,
the AoAs are estimated from the covariance of the baseband
received signal vectors. Finally, the covariance of the actual
channel is reconstructed from the estimated AoAs. This basic
approach has been adopted for different scenarios with some
variations [27], [28]. This approach, however, has a weak
point: the estimation accuracy rapidly decreases as the number
of channel paths increases toward the number of RF chains.
In addition, the methods based on this approach do not work
properly when the number of channel paths exceeds that of
RF chains.

In [29], higher-order tensor decomposition techniques were
applied to channel estimation for millimeter wave MIMO-
OFDM systems. Leveraging the fact that the frequency selec-
tive channel in MIMO-OFDM systems can be represented as
a higher-order tensor, the canonical polyadic decomposition
(CPD), which is called the CANDECOMP/PARAFAC [30],
[31], was adopted to estimate the sparse channel parameters.
The method, however, does not fully exploit multiple RF
chains and requires that the channel must be fixed during
the estimation process that takes many subframes/frames in
the time domain. In [32], [33], another type of higher-order
decomposition called the higher-order SVD (HOSVD), was
applied to the subspace estimation problem. The methods,
however, did not consider hybrid architecture or frequency-
selective wideband channels.

In this paper, we propose a spatial channel covariance
estimation method for the hybrid architecture over uplink
time-varying frequency-selective channels. We consider a time
division duplex (TDD) system where the estimated covariance
over uplink channels can be used for the downlink precoding
design at a base station (BS). We represent the channel and the
received baseband signal as higher-order tensors. Considering
spatially sparse channels, we use the fact that these higher-
order tensors have a low tensor rank and their CPD forms are
unique up to a common permutation and scaling of columns
under some mild conditions [34]–[36]. We also analyze the

theoretical performance by adopting the performance metric
in [22], [23] that is associated with the dominant eigenvalues
and their eigenspaces of the spatial channel covariance matrix.
We will call this performance metric the relative precoding
efficiency (RPE) in this paper. After showing that the RPE
is closely related to the mean squared error (MSE) of the
AoA estimation, we derive Cramér-Rao lower bound (CRLB)
for the AoA estimation and its associated bound for the
performance metric. Using numerical results, we first show
that the performance of the proposed method approaches the
performance bound as SNR increases. We also show that the
lower bound of the tensor-based method is lower than that
of the MUSIC-based method, which provides insight into the
benefits of using tensor-based methods. Simulations show that
the proposed tensor-based method is promising compared to
CS-based methods and MUSIC-based methods.

The rest of the paper is organized as follows. Section II
briefly introduces the basics of high-order tensor algebra.
Section III provides a system and channel model by using
tensor representations. Section IV describes the proposed
spatial channel covariance method. The performance metric is
analyzed in Section V, and the CRLB is derived in Section VI.
In Section VII, the proposed tensor-based work is compared
with prior work based on CS or MUSIC. Simulation results
are presented in Section VIII, and conclusions are drawn in
Section IX. This paper is the journal version of [37] with
theoretical analysis added.

Notation: We use the following notation throughout this
paper: a is a scalar, a is a vector, A is a matrix, and A
is a tensor. AT, AC, A∗, and A† are transpose, conjugate,
conjugate transpose, and Moore-Penrose pseudoinverse. [A]i,:
and [A]:, j are the i-th row and the j-th column of the matrix
A. A⊗B, A}B, and A�B denote the Kronecker product, the
Hadamard product, and the column-wise Khatri-Rao product.
a ◦ b denotes the outer product, which is also known as the
tensor product. Re(A) and Im(A) denote the real part and
the imaginary part of A. diag(A) is a column vector whose
elements are composed of the diagonal elements of A.

II. PRELIMINARIES: OVERVIEW OF TENSOR ALGEBRA AND
CANONICAL POLYADIC DECOMPOSITION

In this section, we review the basics of tensor algebra that
will be used in this paper. Readers who are interested in more
details about tensors can refer to [34]–[36] and the references
therein. A tensor denotes a multi-dimensional (a.k.a. multi-
way or multi-mode) array. The order of a tensor is defined as
the number of dimensions of the tensor. A vector and a matrix
are special cases of a tensor, i.e., a vector is a tensor of order
one, and a matrix is a tensor of order two.

Given an N-th order tensor X ∈ CI1×I2×···×IN , let
its (i1, i2, ..., iN )-th element be denoted by xi1i2 · · ·iN =

X(i1, i2, · · · , iN ). The mode-n fibers of X are defined as vector-
valued sub-tensors obtained by fixing all but one index as-
sociated with mode-n, i.e., X(i1, · · · , in−1, :, in+1, · · · , iN ). The
number of mode-n fibers in X is

∏N
m=1,m,n Im .

The mode-n matricization (a.k.a. unfolding) is a process that
transforms a tensor into a matrix whose columns are composed
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of mode-n fibers of the tensor. The mode-n unfolding matrix of
X ∈ CI1×I2×···×IN is denoted by X(n) ∈ CIn×I1I2 · · ·In−1In+1 · · ·IN .
The tensor X(i1, i2, · · · , iN ) maps to X(n)(in, j) such that j =
1 +

∑N
k=1,k,n

(
(ik − 1)

∏k−1
m=1,m,n Im

)
.

The mode-n product of a tensor X ∈ CI1×I2×···×IN and a
matrix A ∈ CJ×In is denoted by X×nA. Let Y = X×nA. Then,
the elements of the tensor Y ∈ CI1×I2×···In−1×J×In+1×···×IN

are given by yi1i2 · · ·in−1 jin+1 · · ·iN =
∑In

in=1 xi1i2 · · ·in−1in in+1 · · ·iN ajin .
The mode-n product representation Y = X ×n A can also be
expressed by using the mode-n matricization as

Y(n) = AX(n). (1)

Given a tensor X ∈ CI1×I2×···×IN and matrices A(n) ∈ CJn×In
for n = 1, ..., N , their full multilinear product is defined as

nX; A(1), ...,A(N )o = X ×1 A(1) ×2 A(2) · · · ×N A(N ). (2)

For a special case where I1 = · · · = IN = R and X is a diagonal
tensor I ∈ CR×R×···×R that has zero off-diagonal elements and
unit diagonal elements, there exists a simplified notation of the
full multilinear product as

nA(1), ...,A(N )o = I ×1 A(1) ×2 A(2) · · · ×N A(N ). (3)

The norm of a tensor is defined as

‖X‖ =

√√√ I1∑
i1=1

I2∑
i1=2
· · ·

IN∑
iN=1
|xi1i2 · · ·iN |2, (4)

which is analogous to the Frobenius norm in the matrix case.
Let X ∈ CI1×I2×···×IN and Y ∈ CJ1×J2×···×JM . Then, the

outer product (a.k.a. tensor product) of X and Y is denoted
by X ◦ Y. Let Z = X ◦ Y. Then, the elements of the
tensor Z ∈ CI1×···×IN×J1×···×JM are given by zi1 · · ·iN j1 · · · jM =

xi1 · · ·iN yj1 · · · jM , ∀i1, ..., iN, j1, ..., jM .
A tensor X ∈ CI1×I2×···×IN is called a rank-one tensor if it

can be written as the outer product of vectors as

X = x(1) ◦ x(2) ◦ · · · ◦ x(N ), (5)

where x(n) ∈ CIn×1, ∀n.
The canonical polyadic decomposition (CPD), which is also

known as CANDECOMP/PARAFAC decomposition, factor-
izes a tensor into a sum of component rank-one tensors. The
CPD of X ∈ CI1×I2×···×IN has a form

X =

R∑
r=1

x(1)r ◦ x(2)r ◦ · · · ◦ x(N )r , (6)

where x(n)r ∈ CIn×1 for r = 1, ..., R. The minimum possible
value of the number of rank-one tensors that constitute X,
which is R in (6), is called the rank of X.

III. CHANNEL MODEL AND SYSTEM MODEL

Consider a TDD system where a base station with Nant
antennas and MRF(≤ Nant) RF chains communicates with a
mobile station that has a single antenna.

A. Channel model
We consider a spatially sparse channel that has Lch paths

between the BS and mobile user. Let τ` and φ` denote the path

delay and AoA of the `th path. Let gt,` denote the short-term
fading complex path gain of the `th path at frame t. Let pPS(τ)
denote the low pass filter including pulse shaping and analog
filters. We assume a uniform linear array (ULA) with antenna
element spacing da and signal wavelength λ. It is possible to
extend the proposed method to a uniform planar array (UPA).
The array response vector associated with the `th AoA φ` is
expressed as

a(φ`) =
[
1 e

j2πda sin(φ` )
λ · · · e

j2πda(Nant−1) sin(φ` )
λ

]T
. (7)

Let Ts and NCP be the sampling duration and the cyclic prefix
length. We assume that the large-scale fading parameters, τ`’s
and φ`’s, are constant during the estimation process while
the channel path gains of different paths gt,` at every time
t are uncorrelated random variables according to the wide
sense stationary uncorrelated scattering (WSSUS) model [24],
[38]. By using the delay-d channel model [39]–[41], the uplink
channel at frame t can be represented as

ht [d] =
Lch∑̀
=1

gt,`pPS(dTs−τ`)a(φ`) for d = 0, ..., NCP−1. (8)

By letting ck,` =
∑NCP−1

d=0 pPS(dTs − τ`)e
−

j2π(k−1)d
Ksbcr , the channel

frequency response vector can be expressed as

ht,k =

Lch∑̀
=1

gt,`ck,`a(φ`), (9)

at frame t and subcarrier k.

B. System model

Let st,k be an uplink training symbol at frame t and
subcarrier k with |st,k | = 1, and zt,k ∼ CN(0, σ2I) be a
circularly symmetric Gaussian noise. The Nant × 1 received
signal vector at each frame and subcarrier can be represented
as

rt,k = ht,k st,k + zt,k . (10)

Let WRF ∈ C
Nant×MRF and WBB ∈ C

MRF×MRF be an analog
combining matrix and a digital baseband processing matrix.
Similar to a sensing matrix in prior CS-based channel esti-
mation work [42], [43], we assume that the elements of WRF
have random phases with a unit amplitude. Let W denote the
hybrid combining matrix as W =WRFWBB. After combining
with the hybrid combiner and multiplying by s∗

t,k
, the MRF×1

baseband received signal vector becomes

yt,k = s∗t,kW∗rt,k = xt,k + nt,k, (11)

where xt,k =W∗ht,k denotes the signal part of yt,k , and nt,k =

s∗
t,k

W∗zt,k ∼ CN(0, σ2W∗W) denotes the noise part. From
the viewpoint of the estimator at baseband, the effective noise
nt,k becomes colored for an arbitrary hybrid combiner W. It
is possible to whiten the effective noise by using the baseband
combiner WBB =

(
W∗

RFWRF
)− 1

2 . With this choice of WBB, the
hybrid combiner W satisfies W∗W = I for any WRF. We will
use this unitary hybrid combiner W throughout this paper.
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Fig. 1. Tensor representation of a time-varying frequency-selective chan-
nel: the left figure shows the third-order tensor representation H ∈

CNant×Ksbcr×Tfrm , and the right figure shows its mode-1 unfolding matrix
H(1) ∈ CNant×KsbcrTfrm .

C. Tensor representation of channels and received signals

In this subsection, we show that the time-varying frequency-
selective channel in (9) can be represented as a low-rank third-
order tensor. Let a` = a(φ`), c` =

[
c1,` · · · cKsbcr,`

]T, and
g` =

[
g1,` · · · gTfrm,`

]T for ` = 1, ..., Lch. With a` , c` , and
g` , let us define A, C, and G as A =

[
a1 · · · aLch

]
, C =[

c1 · · · cLch

]
, and G =

[
g1 · · · gLch

]
.

The KsbcrTfrm channel frequency response vectors ht,k ∈

CNant×1 for t = 1, ...,Tfrm and k = 1, ...Ksbcr in (9) can be
regarded as TfrmKsbcr mode-1 fibers in a third-order tensorH ∈
CNant×Ksbcr×Tfrm as shown in Fig. 1. In CPD form, the rank-Lch
third-order tensor is

H = nA,C,Go = I ×1 A ×2 C ×3 G =
Lch∑̀
=1

a` ◦ c` ◦ g` . (12)

In this CPD form in (12), the channel tensor H is factorized
into the three matrices, A, C and G, which are called factor
matrices. The mode-1 factor matrix A is associated with
antennas in the space domain, the mode-2 factor matrix C with
subcarriers in the frequency domain, and the mode-3 factor
matrix G with frames in the time domain.

From the channel frequency response tensor model, the
received signal at baseband, yt,k, ∀t, k in (11) can also be
represented as a third-order tensor as

Y = X +N, (13)

where N is the noise tensor whose mode-1 fibers are IID
Gaussian vectors with CN(0, σ2I). The signal tensor X is
given by

X = H ×1 W∗ ∈ CMRF×Ksbcr×Tfrm . (14)

The tensor representation in (14) can also be expressed by
using a mode-1 matricization as X(1) =W∗H(1) where H(1) =
A (G � C)T is the mode-1 matricization of H shown in Fig. 1.
Let B =

[
b1 · · · bLch

]
= W∗A ∈ CMRF×Lch , which can

be regarded as the effective array response matrices from the
viewpoint of the baseband estimator. The CPD of X is given
by

X = nB,C,Go. (15)

Note that both the time-varying frequency-selective channelH
and its associated baseband received signal part X are third-
order tensors with rank Lch.

IV. SPATIAL CHANNEL COVARIANCE ESTIMATION BASED
ON TENSOR DECOMPOSITION

The spatial channel covariance matrix can be estimated from
the sample covariance of KsbcrTfrm mode-1 fibers in H . Since
we assume that the elements in H have zero mean, the sample
covariance of the mode-1 fibers becomes

Rh =
1

KsbcrTfrm
H(1)H∗(1)

=
1

KsbcrTfrm
A (G∗G } C∗C)A∗.

(16)

The goal of the spatial channel covariance estimation for the
hybrid architecture is to calculate Rh of H ∈ CNant×Ksbcr×Tfrm

from the baseband received signal Y ∈ CMRF×Ksbcr×Tfrm , which
has smaller dimensions than H . In this section, we propose
an estimation method that has three steps. In the first step,
the measurement tensor Y is decomposed into three factor
matrices: B̂, Ĉ, and Ĝ in a CPD form. Note that the three
factor matrices obtained in the first step are strongly related
to the actual factor matrices B, C, and G, but are not identical.
The relationship between these matrices is further explained
in Section IV-A. In the second step, the estimate of the actual
factor matrix A of the channel tensor H is obtained from B̂,
which is denoted by Â. The spatial channel covariance matrix
is calculated from Â, Ĉ, and Ĝ in the last step. Each step is
explained in detail in the following subsections.

A. First step: factorization of Y in a CPD form

If the factor matrices B, C, and G are given, we can exactly
calculate the signal part X of the measurement tensor Y.
The reverse process does not hold in general; the perfect
reconstruction of the original B, C, and G from any X are not
guaranteed. There is, however, a special case where the factor
matrices can be reconstructed from X. If the tensor rank of a
higher-order (more than second-order) tensor is low, its CPD
is unique under some mild constraints [35]. The uniqueness of
the CPD means that there exists only one possible combination
of rank-one tensors that sum to the given tensor subject to two
types of indeterminacy: scaling and permutation. The scaling
indeterminacy means that the columns in each factor matrix
can be scaled arbitrarily, i.e., the CPD form in (15) can be
rewritten as

X =

Lch∑̀
=1
(δb,`b`) ◦ (δc,`c`) ◦ (δg,`g`), (17)

as long as δb,`δc,`δg,` = 1 for ` = 1, ..., Lch. The CPD form
in (17) can be expressed in a multilinear product format as
X = nB∆B,C∆C,G∆Go, where ∆B, ∆C, and ∆G are any
diagonal matrices satisfying ∆B∆C∆G = I. The permutation
indeterminacy means that the column vectors in each factor
matrix can be reordered with a permutation matrix that is
common for all the modes, i.e., the CPD form in (15) can also
be represented as X = nBΠ,CΠ,GΠo for any permutation
matrix Π. Considering the indeterminacy, the general form of
the CPD of X becomes

X = nBΠ∆B,CΠ∆C,GΠ∆Go . (18)
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Let kA denote the Kruskal-rank of a matrix A, which is defined
as the maximum value k such that any k columns in A are
linearly independent. Then, the sufficient condition for the
uniqueness of the CPD [34]–[36] is

kB + kC + kG ≥ 2Lch + 2. (19)

Since the Kruskal-rank can be approximated to be the mini-
mum between the number of rows and columns, the sufficient
condition in (19) can be rewritten as

Lch ≤
MRF + Ksbcr + Tfrm

2
+ 1, (20)

if MRF, Ksbcr, and Tfrm are smaller than Lch.

If we set the indeterminacy issue aside, we can exactly
reconstruct its factor matrices by leveraging the uniqueness of
the CPD. In this subsection, we focus on how to find a CPD
solution. We will discuss how to deal with the indeterminacy
in the following subsections.

Given a received signal tensor Y, the problem of finding its
CPD form is formulated as

{B̂, Ĉ, Ĝ} = arg min
B̊,C̊,G̊



Y − �B̊, C̊, G̊
�

 . (21)

There are many known algorithms to solve (21) for CPD.
One algorithm to compute the CPD problem in (21) is the
alternating least squares (ALS) [34]. By rewriting the objective
function in (21) in matrix form as

Y − �B̊, C̊, G̊

�

 = ‖Y(1) − B̊(G̊ � C̊)T‖F
= ‖Y(2) − C̊(G̊ � B̊)T‖F
= ‖Y(3) − G̊(C̊ � B̊)T‖F,

(22)

the ALS algorithm first finds the mode-1 factor matrix B̊
assuming that the mode-2 and mode-3 factor matrices, C̊ and
G̊ are fixed. This subproblem is formulated as

min
B̊
‖Y(1) − B̊(G̊ � C̊)T‖F . (23)

The solution to (23) can be found by using the least squares
algorithm as

B̊ = Y(1)
((

G̊ � C̊
) (

G̊∗G̊ } C̊∗C̊
)†)C

. (24)

Similar to (23), the mode-2 factor matrix C̊ and the mode-
3 factor matrix G̊ can be calculated by fixing other factor
matrices except for its own factor matrix. The ALS algorithm
iterates the three steps until the objective function converges.
The convergence is guaranteed although the converged solu-
tion may not be a global optimum.

The solution after convergence provides an estimate of the
CPD form of X as

X̂ =
�
B̂, Ĉ, Ĝ

�
. (25)

Note that X̂ is an estimate of the actual X in (18). Due to the
scaling and permutation indeterminacy, the estimated factor
matrices B̂, Ĉ, and Ĝ obtained in the first step are related to

the actual factor matrices B, C, and G as

B̂ = BΠ∆B +ΩB,

Ĉ = CΠ∆C +ΩC,

Ĝ = GΠ∆G +ΩG,

(26)

where ∆B, ∆C, and ∆G are complex-valued diagonal matrices
that satisfy ∆B∆C∆G = I, and ΩB, ΩC, and ΩG denote the
estimation errors caused by CPD.

We assumed that the tensor rank, which is the number
of channel paths Lch, is known to the estimator. There are
some known methods to estimate the tensor rank (see [29]
and references therein), which can be used in our application.
In practice, the actual number of channel paths may not be
so small because the channel can be composed of multiple
clusters each with multiple subpaths. Even in this case, the
tensor can be approximated by a low-rank tensor. We showed
in Section VIII-B that the proposed method works well even
when we use the number of RF chains as the tensor rank
instead of the actual number of channel paths.

B. Second step: estimation of A of the channel tensor H

The goal of the second step is to estimate AΠ from B̂ that
is obtained in the first step as described in Section IV-A. Let
Ă = AΠ. We will show in Section IV-C that we do not need to
obtain Π explicitly to estimate the spatial channel covariance.
Let a(φ̂`) denote the `-th column in the estimate of Ă. The
problem of finding φ̂` that minimizes the angle between b̂`
and W∗a(φ̂`) is represented as

φ̂` = arg min
φ

(
1 −

|b̂∗`W
∗a(φ)|2

‖b̂` ‖2‖W∗a(φ)‖2

)
, (27)

and its solution can be found by one-dimensional search meth-
ods with respect to φ, which is a continuous variable. Since
we assume ULA, the solution can be obtained more efficiently
by using a polynomial equation similar to the Root-MUSIC
algorithm [44]. By letting z = e

j2πda sin(φ)
λ , the array response

vector a(φ) can be denoted by a(z) =
[
1 z · · · zNant−1]T .

Then, the optimization problem in (27) is rewritten as

ẑ` = arg min
z

©­­«
a∗(z)W

(
‖b̂` ‖2I − b̂` b̂∗`

)
W∗a(z)

‖b̂` ‖2a∗(z)WW∗a(z)

ª®®¬ . (28)

Let Q` = W
(
‖b̂` ‖2I − b̂` b̂∗`

)
W∗. The numerator in (28) is

represented as a polynomial with respect to z and becomes
zero in the noiseless case, i.e.,

a∗(z)Q`a(z) =
Nant−1∑

m=−Nant+1

( ∑
n1−n2=m

[Q`]n1,n2

)
zm = 0. (29)

Note that if ω is a root of (29), then 1/ω∗ is also its root,
and there are (Nant − 1) roots within the unit circle. Let
ω1, ..., ωNant−1 denote the (Nant − 1) roots normalized by their
amplitudes. Then, the solution to (28) can be obtained by
searching over z ∈ {ω1, ..., ωNant−1} that has discrete (Nant −1)
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elements, i.e., ẑ` = arg maxz∈{ω1,...,ωNant−1 }
|b̂∗`W∗a(z) |2

‖W∗a(z) ‖2 . After
obtaining ẑ` , the diagonal elements in ∆B can be estimated as

δ̂B,` =
a∗(ẑ`)Wb̂`
‖W∗a(ẑ`)‖2

. (30)

Let ∆̂B and Â denote the estimate of ∆B and Ă. Then, ∆̂B
and Â can be represented as ∆̂B = diag

( [
δ̂B,1 · · · δ̂B,Lch

] )
and Â =

[
a(ẑ1) · · · a(ẑLch )

]
. Note that Â is the estimate of

Ă = AΠ, in which the permutation matrix Π is not known.

C. Third step: estimation of the spatial channel covariance
matrix from Ã, Ĉ, and Ĝ

While the estimate of A is given by Â with only permutation
indeterminacy at the second step in Section IV-B, the estimated
factor matrices Ĝ and Ĉ at the first step in Section IV-A still
contain both scaling and permutation indeterminacy. Conse-
quently, it is impossible to simply replace G and C by Ĝ and
Ĉ in (16) without considering ∆C, ∆G, and Π.

Let Ã, C̃ and G̃ denote the estimate of the actual A, C and
G without any indeterminacy, which are defined as Ã = ÂΠ∗,
C̃ = Ĉ∆−1

C Π∗ and G̃ = Ĝ∆−1
G Π∗. Note that Π−1 = Π∗ for any

permutation matrix Π. Then, the estimate of the sample spatial
channel covariance matrix in (16) can be calculated from Ã,
C̃, and G̃ as

R̃h =
1

KsbcrTfrm
Ã

(
G̃∗G̃ } C̃∗C̃

)
Ã∗

(a)
≈

1
KsbcrTfrm

Â∆̂∗B
(
Ĝ∗Ĝ } Ĉ∗Ĉ

)
∆̂BÂ∗,

(31)

where (a) comes from the fact that ∆B∆C∆G = I, and ∆̂B is
the estimate of ∆B.

V. RELATIVE PRECODING EFFICIENCY FOR SPATIAL
CHANNEL COVARIANCE ESTIMATION

The MSE or normalized MSE (NMSE) is typically used as
a performance metric for channel estimation methods. Other
metrics, though, are more relevant for spatial channel covari-
ance estimation. This is because the dominant eigenvalues and
their eigenspaces are more useful for hybrid precoding rather
than each element in the covariance matrix. In this regard, we
adopt the performance metric used in [22], [23], which we
call relative precoding efficiency (RPE). Let Rh ∈ C

Nant×Nant

and R̃h ∈ C
Nant×Nant be the spatial channel covariance and its

estimate. Let U and Ũ denote the matrices composed of the
dominant MRF eigenvectors of Rh and R̃h. The RPE is defined
as

η =
Tr(Ũ∗RhŨ)
Tr(U∗RhU)

. (32)

This metric lies between zero and one, i.e., 0 ≤ η ≤ 1, and
higher η indicates more accurate estimation. The RPE η in (32)
is closely related to the relative spectral efficiency of the hybrid
beamforming based on R̃h compared to that of the hybrid
beamforming based on Rh. Consider a hybrid beamforming
system where the analog part is composed of U or Ũ with MRF
RF chains as in [9], [10]. For analytical tractability, we ignore

the fact that phase shifter are typically used for the analog part.
At low SNR region, the achievable rate ratio approximates to

rate(est.)
hybrid

rate(ideal)
hybrid

=
E

[
log(1 + 1

σ2 h∗ŨŨ∗h)
]

E
[
log(1 + 1

σ2 h∗UU∗h)
]

(a)
≈

E
[

1
σ2 h∗ŨŨ∗h

]
E

[
1
σ2 h∗UU∗h

]
(b)
=

Tr(Ũ∗RhŨ)
Tr(U∗RhU)

,

(33)

where (a) comes from the fact that ln(1 + x) ≈ x for x ≈ 0,
and (b) comes from Tr(AB) = Tr(BA) and Rh = E[hh∗]. This
result shows that the metric η allows us to anticipate how
much relative loss will be caused by the estimation error in
terms of achievable rate at low SNR region.

The RPE η defined in (32) can be analyzed approximately
in large antenna array regimes. Let A ∈ CNant×Lch be a matrix
composed of array response vectors and Rg = E[gg∗] ∈
CLch×Lch be the covariance of channel path gains. The spatial
channel covariance matrix is represented as

Rh = ARgA∗. (34)

As Nant becomes large, A∗A ≈ NantI, i.e., 1√
Nant

A becomes
semi-unitary asymptotically [45]. If we assume that gt,k are
IID complex random variables with zero mean and variance
1/Lch for analytical tractability, then (34) can be regarded as
the approximate eigenvalue decomposition of Rh, i.e., U ≈

1√
Nant

A. Let e` be the AoA estimation error and φ̃` = φ`+e` be
the estimated AoA for the `-th path. Similar to U, we assume
that Ũ approximates to 1√

Nant
Ã as Nant increases. Then, the

RPE η becomes

η ≈
Tr

(
Ũ∗U

(
Nant
Lch

ILch

)
U∗Ũ

)
Tr

(
Nant
Lch

ILch

)
≈

1
N2

antLch
‖A∗Ã‖2F

≈
1

N2
antLch

Lch∑̀
=1
|a∗(φ`)a(φ` + e`)|2,

(35)

where we assume that e` is small and 1
N a∗(φ`1 )a(φ`2 ) ≈ 0 for

`1 , `2.

Let κ` be defined as κ` =
πda
λ (sin (φ` + e`) − sin(φ`)) which

approximates to κ` ≈
πda
λ cos(φ`)e` for small e` . In the ULA

case, η in (35) is given by

η ≈
1

N2
antLch

Lch∑̀
=1

sin2 (Nantκ`)

sin2 (κ`)

(a)
≈

1
Lch

Lch∑̀
=1

(
1 −

N2
antκ

2
`

3

)
≈

1
Lch

Lch∑̀
=1

(
1 −

N2
antπ

2d2
a cos2(φ`)

3λ2 e2
`

)
,

(36)
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where (a) comes from the second-order approximation of
Maclaurin series for small κ` . Consequently, 1−E[η] approx-
imately becomes

1 − E[η] ≈
N2

antπ
2d2

a

3Lchλ2

Lch∑̀
=1

cos2(φ`)E
[
(φ` − φ̃`)

2]
≥

N2
antπ

2d2
a

3Lchλ2

Lch∑̀
=1

cos2(φ`)CRLB(φ`),

(37)

where the CRLB of the φ` estimation CRLB(φ`) will be
derived in the following section.

VI. CRAMÉR-RAO LOWER BOUND FOR THE AOA
ESTIMATION

In this section, we derive the CRLB of the MSE of AoAs.
The basic tool to derive CRLB is based on the method in
[46] and [29]. In [46], all the factor matrices are non-structure
matrices, i.e., a factor matrix F ∈ CNant×M is determined
by NantMRF complex-valued variables and has no specific
structure. In [29], all the factor matrices have a special
structure and are determined by only Lch real-valued variables.
In this paper, we derive CRLB in the case where the tensor
has the combination of two structured factor matrices, A and
C, and one unstructured factor matrix G. We also simplify the
complicated CRLB expression to a more compact form.

Focusing on the fact that the channel tensor is determined
by Lch AoAs, Lch path delays, and LchTfrm time-varying
channel path gains, we define three parameter vectors as φ =[
φ1 · · · φLch

]T, τ =
[
τ1 · · · τLch

]T, and g = vec(G) =[
g1,1 · · · gT,Lch

]T. Let θ denote a column vector that in-
cludes all the parameters such that θ =

[
φT τT gT g∗

]T
.

Note that g is a complex vector while φ and τ are real vectors.
Since the analog combining matrix combined with the

baseband post-processing matrix is unitary, the elements in
the noise tensor N become IID circularly symmetric Gaussian
with CN(0, σ2). Consequently, the log-likelihood function of
θ is given by

f (θ) = −MRFKsbcrTfrm ln(πσ2) −
1
σ2 ‖Y(1) − B(G � C)T‖2F

= −MRFKsbcrTfrm ln(πσ2) −
1
σ2 ‖Y(2) − C(G � B)T‖2F

= −MRFKsbcrTfrm ln(πσ2) −
1
σ2 ‖Y(3) −G(C � B)T‖2F .

(38)

Then, the CRLB with respect to the parameter set θ can be
obtained as

CRLB(θ) = Ω−1(θ), (39)

where Ω(θ) ∈ C2Lch(Tfrm+1)×2Lch(Tfrm+1) is the complex Fisher
information matrix (FIM) defined as

Ω(θ) = E

[
∂ f (θ)
∂θ

(
∂ f (θ)
∂θ

)∗]
. (40)

The FIM Ω(θ) in (40) is divided into submatrices as

Ω(θ) =


Ωφφ Ωφτ Ωφg ΩφgC

Ω∗φτ Ωττ Ωτg ΩτgC

Ω∗φg Ω∗τg Ωgg ΩggC

Ω∗
φgC Ω∗

τgC Ω∗ggC ΩgCgC

 . (41)

Each submatrix in (41) is calculated in the following subsec-
tions.

A. Calculation of Ωφφ ∈ C
Lch×Lch

The partial derivative of f (θ) with respect to φ` is given by

∂ f (θ)
∂φ`

= Tr

((
∂ f (θ)
∂B

)T
∂B
∂φ`
+

(
∂ f (θ)
∂BC

)T
∂BC

∂φ`

)
. (42)

Let B́ =
[
b́1(φ1) · · · b́Lch (φLch )

]
be defined as

B́ =
j2πda
λ

W∗diag
( [

0 1 · · · Nant − 1
] )

·
[
cos(φ1)a(φ1) · · · cos(φLch )a(φLch )

]
,

(43)

and let N(1) = Y(1)−B(G�C)T be the mode-1 unfolding matrix
of N .

By using (42) and (43), the partial derivative of f (θ) with
respect to φ can be represented as

∂ f (θ)
∂φ

= diag

((
∂ f (θ)
∂B

)T

B́ +
(
∂ f (θ)
∂B

)∗
B́C

)
=

2
σ2 Re

(
diag

(
(G � C)TN∗

(1)B́
))
.

(44)

Let VB =
1
σ2 (G�C)TN∗

(1)B́ and dB = diag(VB). Then, dB can
be represented as

dB =
1
σ2

(
B́ � G � C

)T
vec(N∗

(1)). (45)

Since we consider IID zero mean circularly
symmetric complex Gaussian noise, the covariance
matrix and the pseudo-covariance matrix of vec(N∗

(1))

in (45) become E
[
vec(N∗

(1))
(
vec(N∗

(1))
)∗]

= σ2I and

E

[
vec(N∗

(1))
(
vec(N∗

(1))
)T

]
= 0. Then, the covariance matrix

of dB becomes

CdB = E
[
dBd∗B

]
=

1
σ2

(
B́∗B́ }G∗G } C∗C

)T
, (46)

and the pseudo-covariance becomes C̃dB = E
[
dBdT

B
]
= 0.

Then, the submatrix Ωφφ becomes

Ωφφ = E

[
∂ f (θ)
∂φ

(
∂ f (θ)
∂φ

)∗]
=

2
σ2 Re

((
B́∗B́ }G∗G } C∗C

)T
)
.

(47)

B. Calculation of Ωττ ∈ C
Lch×Lch

Let ć`(τ`) ∈ CKsbcr×1 be a vector whose k-th element is
defined as

[ć`(τ`)]k = −
NCP−1∑
d=0

p
′

PS(dTs − τ`)e
−

j2π(k−1)d
Ksbcr , (48)
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where p
′

PS(x) is the first derivative of pPS(x). Then, the partial
derivative of f (θ) with respect to τ can be obtained as

∂ f (θ)
∂τ

=
2
σ2 Re

(
diag

(
(G � B)T

(
Y∗
(2) − (G � B)CC∗

)
Ć
))
,

(49)

where Ć =
[
ć1(τ1) · · · ćLch (τLch )

]
. Let N(2) = Y(2) −C(G �

B)T be the mode-2 unfolding matrix of N , and VC =
1
σ2 (G �

B)TN∗
(2)Ć. Let dC denote

dC = diag(VC) =
1
σ2

(
Ć � G � B

)T
vec(N∗

(2)). (50)

Similarly to Section VI-A, the submatrix Ωττ can be
calculated as

Ωττ =
2
σ2 Re

((
Ć∗Ć }G∗G } B∗B

)T
)
. (51)

C. Calculation of Ωgg ∈ CTfrmLch×TfrmLch , ΩggC ∈

CTfrmLch×TfrmLch , and ΩgCgC ∈ CTfrmLch×TfrmLch

From the fact that E
[
vec(NC

(3))
(
vec(NC

(3))
)∗]
= σ2I, the

submatrix Ωgg becomes

Ωgg = E

[
∂ f (θ)
∂vec(G)

(
∂ f (θ)
∂vec(G)

)∗]
=

1
σ4

(
(C � B)T ⊗ ITfrm

)
· E

[
vec(NC

(3))
(
vec(NC

(3))
)∗] (
(C � B)T ⊗ ITfrm

)∗
=

1
σ2 (C

∗C } B∗B)T ⊗ ITfrm .

(52)

Since E
[
vec(NC

(3))
(
vec(NC

(3))
)T

]
= 0MRFKsbcrTfrm×MRFKsbcrTfrm ,

the submatrix ΩggC is given by

ΩggC = E

[
∂ f (θ)
∂vec(G)

(
∂ f (θ)

∂vec(GC)

)∗]
=

1
σ4

(
(C � B)T ⊗ ITfrm

)
· E

[
vec(NC

(3))
(
vec(NC

(3))
)T

] (
(C � B)T ⊗ ITfrm

)T

= 0TfrmLch×TfrmLch .
(53)

The submatrix ΩgCgC can be obtained from Ωgg such that
ΩgCgC = ΩC

gg.

D. Calculation of Ωφτ ∈ C
Lch×Lch

The submatrix Ωφτ is given by

Ωφτ = E

[
∂ f (θ)
∂φ

(
∂ f (θ)
∂τ

)∗]
= 2Re

(
CdB,dC

)
+ 2Re

(
C̃dB,dC

)
,

(54)

where CdB,dC = E
[
dBd∗C

]
and C̃dB,dC = E

[
dBdT

C
]
.

To calculate CdB,dC , let us first start with calculating the
cross-covariance matrix of vec(N∗

(1)) and vec(N∗
(2)), which are

associated with the mode-1 and mode-2 unfolding matrix of

N . Let ei ∈ CMRFKsbcrTfrm×1 be the i-th unit coordinate vector
and Cn(1),n(2) = E

[
vec(N∗

(1))
(
vec(N∗

(2))
)∗]

. Using the fact that
[N]m,k,t is expressed in different ways as

[N]m,k,t = [vec
(
N(1)

)
]k+(t−1)Ksbcr+(m−1)KsbcrTfrm

= [vec
(
N(2)

)
]m+(t−1)MRF+(k−1)MRFTfrm,

(55)

the cross-covariance matrix Cn(1),n(2) can be represented as

Cn(1),n(2) = E
[
vec(N∗

(1))
(
vec(N∗

(2))
)∗]

= σ2
MRF∑
m=1

Ksbcr∑
k=1

Tfrm∑
t=1

ek+(t−1)Ksbcr+(m−1)KsbcrTfrm

· eT
m+(t−1)MRF+(k−1)MRFTfrm

.

(56)

Consequently, Cn(1),n(2) ∈ C
MRFKsbcrTfrm×MRFKsbcrTfrm is a matrix

that has only MRFKsbcrTfrm nonzero elements whose ampli-
tudes are equal to σ2. From (56), the cross-covariance matrix
of dB and dC can be expressed as

CdB,dC =
1
σ4

(
B́ � G � C

)T
Cn(1),n(2)

(
Ć � G � B

)C

=
1
σ2

(
B∗B́ }G∗G } Ć∗C

)T
.

(57)

Since C̃n(1),n(2) = E

[
vec(N∗

(1))
(
vec(N∗

(2))
)T

]
= 0, the pseudo-

cross-covariance matrix of dB and dC becomes

C̃dB,dC = E
[
dBdT

C

]
= 0. (58)

From (57) and (58), the submatrix Ωφτ in (54) can be
rewritten as

Ωφτ =
2
σ2 Re

((
B∗B́ }G∗G } Ć∗C

)T
)
. (59)

E. Calculation of Ωφg ∈ C
Lch×TfrmLch and ΩφgC ∈ CLch×TfrmLch

The submatrix Ωφg is expressed as

Ωφg = E

[
∂ f (θ)
∂φ

(
∂ f (θ)
∂vec(G)

)∗]
=

1
σ2E

[(
dB + dC

B

) (
vec(NC

(3))
)∗ (
(C � B)T ⊗ ITfrm

)∗]
=

1
σ4

((
B́ � G � C

)T
Cn(1),nC

(3)
+

(
B́ � G � C

)∗
C̃n(1),nC

(3)

)
·

(
(C � B)C ⊗ ITfrm

)
,

(60)

where C̃n(1),nC
(3)
= E

[
vec(N(1))

(
vec(N(3))

)T
]
= 0 and

Cn(1),nC
(3)
= E

[
vec(N∗

(1))
(
vec(N(3))

)T
]

= σ2
MRF∑
m=1

Ksbcr∑
k=1

Tfrm∑
t=1

ek+(t−1)Ksbcr+(m−1)KsbcrTfrm

· eT
t+(m+(k−1)MRF−1)Tfrm

.

(61)
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By using (61), we can further simplify Ωφg in (60) as

Ωφg =
1
σ4

(
B́ � G � C

)T
Cn(1),nC

(3)

(
(C � B)C ⊗ ITfrm

)
=

1
σ2

Tfrm∑
t=1

(((
B∗B́

)
} (C∗C) }

(
1Lch [G]t,:

) )
⊗ et

)T

=
1
σ2

((
B∗B́ } C∗C

)
� G

)T
.

(62)

The submatrix ΩφgC is expressed as ΩφgC = ΩC
φg.

F. Calculation of Ωτg ∈ C
Lch×TfrmLch and ΩτgC ∈ CLch×TfrmLch

Similar to Section VI-E, we can obtain Ωτg and ΩτgC as

Ωτg = E

[
∂ f (θ)
∂τ

(
∂ f (θ)
∂vec(G)

)∗]
=

1
σ2

((
C∗Ć } B∗B

)
� G

)T
,

(63)

and ΩτgC = ΩC
τg.

G. CRLB for the φ estimation

The results of the preceding subsections are summarized as

Ωφφ =
2
σ2 Re

((
B́∗B́ } C∗C }G∗G

)T
)
,

Ωττ =
2
σ2 Re

((
B∗B } Ć∗Ć }G∗G

)T
)
,

Ωφτ =
2
σ2 Re

((
B∗B́ } Ć∗C }G∗G

)T
)
,

Ωgg =
1
σ2 (B

∗B } C∗C)T ⊗ ITfrm,

Ωφg =
1
σ2

((
B∗B́ } C∗C

)
� G

)T
,

Ωτg =
1
σ2

((
B∗B } C∗Ć

)
� G

)T
.

(64)

Letting Ω1 =
[
Ωφτ Ωφg ΩC

φg

]
and

Ω2 =


Ωττ Ωτg ΩC

τg
Ω∗τg Ωgg 0
ΩT

τg 0 ΩC
gg

 , (65)

the CRLB for the φ` estimation can be expressed in a compact
form as

CRLB(φ`) =
[(
Ωφφ −Ω

∗
1Ω
−1
2 Ω1

)−1
]
`,`

, (66)

by using the Schur complement and the matrix inversion
lemma.

VII. COMPARISON WITH CS-BASED OR MUSIC-BASED
METHODS

In this section, we explain two other approaches that esti-
mate spatial channel covariance or subspace for comparison:
1) CS-based methods and 2) MUSIC-based methods.

A. Prior work based on CS

There has been some work on CS-based spatial channel
covariance estimation for narrowband channels [22]–[24]. We
can extend these methods to the wideband channel case via
two different approaches.

The first approach is to exploit the fact that all the TfrmKsbcr
spatial-domain signal parts of the baseband received signal
xt,k ∈ CMRF×1 for t = 1, ...,Tfrm and k = 1, ...,Ksbcr can be
stacked such that the problem becomes an MMV problem with
TfrmKsbcr measurements. The mode-1 fibers of the signal tensor
X in (14) can be represented as

xt,k =W∗A
(
[GT]:,t } [CT]:,k

)
. (67)

Let AD ∈ C
Nant×Ngrid be a dictionary matrix whose Ngrid

columns are composed of the array response vectors associated
with a predefined set of AoAs. In the CS framework, the signal
model in (67) is rewritten as

xt,k ≈W∗AD
(
g̊D,t } c̊D,k

)
, (68)

where g̊D,t ∈ C
Ngrid×1 and c̊D,k ∈ C

Ngrid×1 are sparse column
vectors with Lch nonzero elements of g̊t and c̊k in the space
domain. The positions of the Lch nonzero elements indicate
AoAs, and thus g̊D,t and c̊D,k share the same support for all
t and k, which means that this is still the MMV problem
with an increased number of measurement vectors. Compared
to the narrowband case which is the MMV problem with
Tfrm measurement vectors, the wideband case can also be
represented as an extended MMV problem that has TfrmKsbcr
measurement vectors. It is worthwhile to note that the dictio-
nary matrix size is the same as MRF × Ngrid for both cases.
While simultaneous orthogonal matching pursuit (SOMP) is
an adequate algorithm for the general MMV problems, a more
advanced CS algorithm, so-called WB-DCOMP, was proposed
for the spatial channel covariance estimation problem in [22].
We will compare WB-DCOMP with the proposed method in
Section VIII-B.

The second approach is to use the fact that the channel is
sparse in the delay domain as well as the spatial domain. The
t-th frontal slice of X can be represented in a matrix form as

Xt =W∗Adiag([G]t,:)CT. (69)

Similar to the spatial domain dictionary matrix AD, we can
define a delay-domain dictionary matrix CD ∈ C

Ksbcr×Kgrid such

that the (k, q)-th element in CD is ck,q = e−
j2π(k−1)τgrid,q

KsbcrTs where
{τgrid,1, ..., τgrid,Kgrid } is a predefined grid set of path delays in
[0, NCPTs]. Using the two dictionary matrices, the frontal slice
in (69) can be rewritten in the CS framework as

Xt ≈W∗ADGD,tCT
D, (70)

where GD ∈ C
Ngrid×Kgrid is a sparse matrix with only Lch

nonzero elements. Using vectorization, the frontal slice in (70)
can be rewritten in a vector form as

vec(Xt ) = (C �W∗A) [G]Tt,:
≈ (CD ⊗W∗AD) vec(GD,t ).

(71)
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Since vec(GD,t )’s for t = 1, ...,Tfrm are sparse nonzero vectors
sharing a common support set, this also becomes an MMV
problem with an increased dictionary size.

As we will show in Section VIII-B, the second approach
outperforms the first approach because the former exploits
sparsity in both spatial and temporal domain while the latter
exploits sparsity only in the spatial domain. The first approach,
however, has a considerably high complexity due to the
Kronecker structure of the dictionary matrix; the dictionary
matrix size increases from MRF×Ngrid to MRFKsbcr×NgridKgrid.

B. Prior work based on MUSIC

In conventional fully-digital architectures, the goal of the
MUSIC algorithm is to estimate AoAs from the spatial channel
covariance matrix. In other words, the covariance must be
known prior to applying the MUSIC algorithms. Note that
the spatial channel covariance can be estimated from the
covariance of the received signal vectors in fully-digital archi-
tectures. Although the spatial channel covariance estimation
is not straightforward in the hybrid architectures, the MUSIC
algorithm can be applied to the subspace estimation problem
for hybrid architectures. It is worthwhile to note that only
the subspace can be estimated and the covariance cannot be
estimated by using the MUSIC-based approach. Since the
subspace is enough for the hybrid precoder design in some
cases as in SU-MIMO systems, we will compare our proposed
work with the MUSIC-based method in terms of subspace
estimation. The overall process for the MUSIC-based method
is composed of three steps. First, the sample covariance of the
baseband received signal vectors yt,k in (11) is estimated for
all t and k as

Ry =
1

TfrmKsbcr

Tfrm∑
t=1

Ksbcr∑
k=1

yt,ky∗t,k

=
1

TfrmKsbcr
W∗A (G∗G } C∗C)A∗W + Rn,

(72)

where Rn =
1

TfrmKsbcr

(∑Tfrm
t=1

∑Ksbcr
k=1 nt,kn∗

t,k

)
. Let the SVD of Ry

be

Ry = UxΣxU∗x + UnΣnU∗n, (73)

where Ux ∈ C
MRF×Lch is the signal subspace and Un ∈

CMRF×(MRF−Lch) is the subspace orthogonal to the signal sub-
space. Let bW(φ) = W∗a(φ). Since the RF chains can be
regarded as the effective antennas from the viewpoint of the
estimator at baseband, the vector bW(φ) can be considered as
the effective array response vector with a reduced size. The
second step is to find the Lch highest peaks of the function of
φ defined as

fMUSIC(φ) =
1

b∗W(φ)UnU∗nbW(φ)
. (74)

The final step is to reconstruct the subspace of the channel
by using the φ`s for ` = 1, ..., Lch that are obtained from the
subspace of the baseband received signals. The subspace of
the channel is given by the subspace of

[
a(φ1) · · · a(φLch )

]
.

The CRLB for φ`s in the MUSIC-based method case is
given by [47]

CRLBMUSIC(φ) =

σ

2

(
Tfrm∑
t=1

Ksbcr∑
k=1

Re
(
Z∗t,kB́∗

(
I − B (B∗B)−1 B∗

)
B́Zt,k

))−1

,
(75)

where B́ is defined in (43) and Zt,k is defined as Zt,k =

diag
(
[GT]:,t } [CT]:,k

)
. The bound of the RPE in the MUSIC-

based method case can also be obtained from (37) as in the
tensor-based method case.

VIII. SIMULATION RESULTS

In this section, we numerically evaluate the CRLB anal-
ysis in Section VI. We also present simulation results to
demonstrate the performance of the proposed spatial channel
covariance estimation algorithms based on CPD of higher-
order tensors.

A. Analytical results on CRLB

In Fig. 2, we show the MSE of the estimation of φ.
We also compare the MSE results to the CRLB derived in
Section VI for Nant = 64, MRF = 8, Lch = 6, Tfrm = 20,
and Ksbcr = 128. We assume that the path gains gt,`’s are
generated from CN(0, 1/Lch) and pPS(τ) = sinc(τ/Ts). Since
CRLB depends on the deterministic value of AoA and path
delays, we set the values as φ = [−66, 13, 49,−7, 81, 62] in
degrees and τ/Ts = [0, 4.34, 7.13, 17.05, 21.08, 25.73] for the
purpose of reproduction. We can see that the proposed method
achieves the MSE that is close to its theoretical lower bound
at moderate and high SNR region.

Fig. 2(a) compares the proposed tensor-based method with
the MUSIC-based method in terms of the MSE(φ). In addi-
tion to numerical results, the analytical results indicate the
superiority of the tensor-based method over the MUSIC-based
method. The metric 1 − E[η] is plotted in Fig. 2(b) with the
lower bound of its approximation derived in Section V. As
shown in Section V, the RPE is closely related to MSE(φ)
and its CRLB.

B. Performance evaluation of the spatial channel covariance
estimation methods

In this subsection, we evaluate the performance of the
spatial channel covariance estimation in terms of the RPE
for Nant = 64 and Ksbcr = 128. Unlike Section VIII-A, the
AoA φ`s are uniformly distributed in [−180◦, 180◦], and the
normalized delay τ`/Tss are uniformly distributed in [0, NCP],
where the cyclic prefix length NCP is set to Ksbcr/4. The path
gains gt,`’s are IID complex Gaussian random variables as
gt,` ∼ CN(0, 1/Lch) and pPS(τ) = sinc(τ/Ts).

Fig. 3 shows the comparison among different initialization
strategies for ALS. The first option is to use random matrices.
For comparison, we also include the case where multiple
random initializations are used and the best result is kept.
The second option is to use the direct trilinear decomposi-
tion (DTLD) method [48]. Finally, we also tested the cpd
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Fig. 2. Comparison between the proposed CPD-based method and the
MUSIC-based method in terms of the MSE of φ and 1-E[η] when Tfrm = 20,
Ksbcr = 128, Nant = 64, MRF = 8, and Lch = 6.

function included in Tensorlab MATLAB package [49]. The
function automatically computes an initialization and uses a
more sophisticated algorithm than the ALS. Simulation results
show that all initialization strategies have similar performance
except a single random initialization. Fig. 3(b) shows the
computation time for different methods when simulations
are conducted with MATLAB R2018b in 2.6 GHz Intel
Core i7. Although the actual computation time depends on
code optimization, Fig. 3(b) shows the relative computational
complexity. Fig. 3(a) and Fig. 3(b) show the DTLD-based
initialization can be a reasonable solution considering the
trade-off between performance and complexity, and we used
the DTLD-based initialization for experiments in the paper.

Fig. 4(a) shows a snapshot of the convergence of the ALS
with the DTLD-based initialization. The normalized mean
squared error (NMSE) in dB is defined as 10 log10

(
| |Y−X̂ | |2

| |Y | |2

)
where Y is the input of the ALS and X̂ is the tensor
reconstructed from the estimated factor matrices. It can be seen
that the convergence rate of the DTLD initialization is faster
than that of the random initialization. To speed up simulations,
the ALS algorithm terminates if the difference between the
NMSE of the current iteration and that of the previous iteration
is less than 0.001 dB.

In Fig. 4(b), different options for a sensing matrix W are
compared. As described in Section III-B, we used the hybrid
combiner W = WRFWBB where WRF is an analog combiner
composed of random phase shifters and WBB is a baseband
compensation matrix defined as WBB =

(
W∗

RFWRF
)− 1

2 . The
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(b) Computation time vs. Tfrm

Fig. 3. Comparison among different initialization methods when Nant =
64, MRF = 4, Lch = 3, SNR= 0 dB, and Ksbcr = 128.

figure shows that the use of the baseband compensation matrix
WBB yield some gain compared to using only the analog
combiner WRF. For comparison, we also add the case where
the MRF columns of the sensing matrix are randomly selected
in an Nant × Nant DFT matrix. Since this DFT-based sensing
matrix focuses only on some directions and disregards other
directions, this DFT-based method is not a good option as
shown in the figure.

Fig. 5 compares the proposed method with other methods
explained in Section VII in terms of the RPE when MRF = 8
and SNR 0 dB. In the figure, we compare the methods for
different Lch values: 6 (solid) and 7 (dashed). It is worthwhile
to note that the MUSIC-based method does not work properly
if Lch ≥ MRF because Un in (74) must have at least one
column. Even when Lch < MRF, the figure shows that the
performance degradation of the MUSIC-based method is more
severe than other two methods as Lch approaches MRF. The
figure also shows several different types of CS-based methods.
WB-DCOMP [22] is the extension of MMV by stacking more
measurement vectors, and “FBS + Kron.” is the extension of
the FBS with Nestrov’s update [24] by using Kronecker prod-
uct of two dictionary matrices as described in Section VII-A.
The “(fixed)” or “(varing)” denote that the combining matrix
W are fixed or varying over time. The figures show that the
proposed CPD-based method outperforms various types of the
CS-based methods.

Fig. 6 shows the case of SNR -10 dB where other simulation
parameters are the same as Fig. 5. It can be seen that the
Kronecker-product-based extension of FBS is robust to noise
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Fig. 4. Convergence of ALS and comparison among different sensing matrices
and when Nant = 64, MRF = 8, Lch = 6, and Ksbcr = 128.
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Fig. 5. Comparison with prior work in terms of RPE when Nant = 64, MRF =
8, Ksbcr = 128, Lch = 6 or 7, and SNR 0 dB.

while the MUSIC-based method and WB-DCOMP suffer from
high noise power. It is worthwhile to note that the use of a
time-varying combiner yields considerable gain compared to
the use of a fixed combiner. The figure shows that the extended
CS-based method with a time-varying combiner outperforms
the proposed CPD-based method at this very low SNR region.
A promising point is that the proposed CPD-based method
uses a fixed combining matrix, which implies that there is
still room for improvement. Since the extension of the CPD-
based method to the time-varying combining case is not
straightforward, we leave this issue for future work.

Until now, we assumed that the channel has only Lch
channel paths as in (8). To evaluate performance for more
realistic channels, we consider a clustered channel model [41]
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Fig. 6. Comparison with prior work in terms of RPE when Nant = 64, MRF =
8, Ksbcr = 128, Lch = 6 or 7, and SNR -10 dB.
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Fig. 7. RPE vs. the number of frames Tfrm when Nant = 64, MRF = 8,
Ksbcr = 128, and SNR 0 dB. The channel has Lcluster = 6 or 7 clusters, and
each cluster has Lsubray = 10 subrays with angular spread 2◦.

that has multiple clusters with multiple subrays as ht [d] =∑Lcluster
`c=1

∑Lsubray
`s=1 gt,`c,`s pPS(dTs − τ`c,`s )a(φ`c,`s ). The channel

has Lcluster clusters whose AoAs are uniformly distributed in
[−180◦, 180◦], and each cluster has Lsubray subrays whose AoA
offsets are Laplacian distributed with angular spread 2◦. All
subrays within a cluster are assumed to have the same delay.
Although the rank of the channel tensor LclusterLsubrays becomes
high in general, we can approximate the channel tensor to be
a low-rank tensor for spatially sparse channels. Fig. 7 shows
the RPE results when Nant = 64, MRF = 8, Ksbcr = 128,
Lsubray = 10, SNR= 0 dB, and Lcluster = 6 or 7. Instead of
using the actual number of channel paths Lch = LclusterLsubray,
the methods based on CPD and CS use MRF for its low-rank
(or sparse) approximation while the MUSIC-based method
uses Lcluster due to its inherent limitation of using MRF. The
figure shows that, although the multiple subrays result in
performance loss compared to the single subray case, the
proposed method still works properly even in this case.

IX. CONCLUSIONS

In this paper, we proposed a spatial channel covariance
estimation method for the hybrid analog/digital architecture
over time-varying frequency-selective channels. Leveraging
the fact that a low-rank higher-order tensor can be uniquely
decomposed into factor matrices in each domain, we formu-
lated the estimation problem by using high-order tensors and
proposed a solution that achieves performance close to its
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theoretical bound. We also derived the CRLB of the proposed
method and showed that compared it is lower than the CRLB
of MUSIC-based approach. Numerical results showed that the
proposed method also work properly even though the actual
number of channel paths is not so small and larger than the
number of RF chains. The results also show the possibility of
further improvement by using time-varying combiners, which
we leave for future work.
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