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PREMISE: Large-scale efforts to digitize herbaria have resulted in more than 18 million publicly
available Plantae images on sites such as iDigBio. The automation of image post-processing
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will lead to time savings in the digitization of biological specimens, as well as improvements
in data quality. Here, new and modified neural network methodologies were developed to
automatically detect color reference charts (CRC), enabling the future automation of various
post-processing tasks.

METHODS AND RESULTS: We used 1000 herbarium specimen images from 52 herbaria to test
our novel neural network model, ColorNet, which was developed to identify CRCs smaller
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than 4 cm?, resulting in a 30% increase in accuracy over the performance of other state-
of-the-art models such as Faster R-CNN. For larger CRCs, we propose modifications to Faster
R-CNN to increase inference speed.

CONCLUSIONS: Our proposed neural networks detect a range of CRCs, which may enable
the automation of post-processing tasks found in herbarium digitization workflows, such as
image orientation or white balance correction.

KEY WORDS automation; digitization; herbarium; machine learning; natural history collec-
tions; specimen images.

Efforts to digitize biological collections have produced millions
of herbarium specimen records and associated images, which are
shared through websites such as iDigBio (https://www.idigbio.org)
and the Southeast Regional Network of Expertise and Collections
portal (SERNEC, http://sernecportal.org/portal/). Despite the large
volume of specimen images and the prior use of artificial intelli-
gence in herbaria for tasks such as phenological scoring (Lorieul
etal., 2019), very few applications have been developed to automate
the tasks involved in image post-processing (i.e., preparing archival
images for public access and use). Recommendations for tools, as
well as step-by-step guidelines on how to use them for image cap-
ture and manual batch image post-processing tasks, are available
on iDigBio’s website (Nelson et al., 2012; Tulig et al., 2012). Among
the equipment recommended for imaging is a standardized color
reference chart (CRC), which may be used later for color normal-
ization during post-processing (Nelson et al,, 2015). Currently,
post-processing tasks using CRCs require manual intervention by
trained technicians, proprietary software, as well as time for the im-
port and export processes, requiring considerable amounts of time
for technician training and their processing of images. As such, it

has become increasingly relevant to automate these tasks, which
will decrease the time and effort necessary for preparing specimens
for upload, both by allowing for image post-processing in real time
as the images are captured and by removing the assumption/re-
quirement that all images within a batch were taken with the same
lighting conditions. Automation may therefore expedite the upload
and availability of digitized specimens to the myriad of user groups,
including researchers, educators, students, conservationists, enthu-
siasts, and the general public. Here, we present the use of machine
learning to identify the CRC within a specimen image, along with
supplemental proof-of-concept white balance and image rotation
post-processing code, as a first step to automating these post-
processing tasks.

In recent years, many advancements in computational power,
computer vision (computer processing of image data), and machine
learning have allowed for the accurate detection of objects within an
image. This advancement is commonly attributed to the creation of
modern convolutional neural networks (CNN) and region proposal
algorithms/networks (LeCun et al., 2015). When a region proposal
network (responsible for determining where objects of interest are
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located within a larger image) and a CNN classifier (responsible
for identifying what the object is) are combined, they are typically
called a regional convolutional neural network (R-CNN). R-CNNs
are currently the most common and performant category of neu-
ral network for general image-based object detection tasks (LeCun
etal., 2015). However, even the most sophisticated R-CNNs exhibit
problems detecting objects when they are small relative to the im-
age size or resolution, as is the case with the small CRCs commonly
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found in digitized herbarium specimens hosted on SERNEC
(Fig. 1A). These small, hard-to-detect CRCs are defined in this pa-
per as those smaller than 4 cm? (e.g., the Image Science Associates
ColorGauge Nano Target [Image Science Associates, Williamson,
New York, USA]). In contrast, large CRCs found in digitized spec-
imens hosted on SERNEC, which have sizes ranging from 10-fold
(CameraTrax 24ColorCard-2x3 [https://www.cameratrax.com/])
to more than 19-fold (Kodak Q-13 [Kodak, Rochester, New York,
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FIGURE 1. Example herbarium sheet image containing a small color reference chart (CRC) and its evaluation using Faster R-CNN. (A) A herbarium
sheet image with a small CRC showing the difference in scale between the CRC and the total image size. (B) The same image as in A, but with moderate
cropping. Faster R-CNN was not able to find the CRC even with this cropping due to its small relative size. (C) The same image as in A, but with more
cropping than in B. Faster R-CNN was able to find the CRC with 88% confidence, but the predicted region (blue box) lacks precision and would fail our

standards for a correct CRC identification.
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USA]) larger than the small CRCs, pose no detection problems
for current R-CNN architectures. Much of the detection problems
when using small CRCs are a result of the high-resolution images
required for archival specimen image data, which quadratically
increases the amount of computation time and memory needed
(Pavel and David, 2013). The resolution of these images is usu-
ally 3000 x 4000 pixels (px) or higher, in contrast to the current
convention for image resolution of roughly 600 px on the shortest
side of the image for R-CNNs such as Microsofts Faster R-CNN
(Ren et al,, 2015). Processing herbarium specimens at the original
resolution is therefore impossible, but downscaling the image res-
olution may cause much of the small CRC information to be lost
during processing and may cause difficulty in detection (Fig. 1B, C).
In addition, neural network prediction speed is commonly assessed
using a graphics processing unit (GPU), with GPUs being 99x faster
than a central processing unit (CPU) in neural network processing
tasks (Lawrence et al., 2017). However, most herbarium digitization
workstations do not possess a GPU properly supported by neural
network libraries and may therefore be at an extreme speed deficit.

Thus, it was essential to create a new neural network architec-
ture and modifications to current network architectures specifically
designed to detect CRCs in herbarium sheets. To address this chal-
lenge, we established three design tenets: (1) the models must be able
to accurately detect both small and large CRCs; (2) the models must
be quick, allowing for real-time detection while imaging herbarium
sheets, so that real-time verification by the operator may be per-
formed and to prevent neural network inference from slowing the
image capture process; and (3) the models must be able to run on
equipment that is affordable and likely to be used across a wide va-
riety of herbaria, and as such on computers without GPUs. Because
of these criteria, we developed methodologies that were employed
in our R-CNN-like network, ColorNet, as well as our modified
Faster R-CNN model. We compare these novel networks with the
Selective Search region proposal algorithm (Uijlings et al., 2013)—a
starting-point region proposal algorithm for R-CNNs such as the
University of California, Berkeley’s (UC Berkeley) R-CNN model
(Girshick et al,, 2014), as well as an original, unmodified version
of Microsoft’s Faster R-CNN—a representative of state-of-the-art
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R-CNN s that possesses one of the most robust region proposal net-
works (Ren et al., 2015).

METHODS AND RESULTS

Design methodology

Following the design goals mentioned above, the neural networks
were specifically designed to be quick and accurate at detecting CRCs
of various sizes, dimensions, and positions within herbarium sheet
images. Current modern R-CNN networks, for example, PASCAL
VOC, COCO, and ImageNet (Deng et al., 2009; Everingham et al.,
2010; Lin et al., 2014), are typically trained on general use-case
data sets containing several different types of objects (e.g., cars,
animals, people); therefore, most, if not all, of the current state-
of-the-art R-CNN networks were designed to be robust against the
variety of different objects that need to be classified in these data
sets (Girshick et al., 2014; Sandler et al., 2018; Howard et al., 2019).
However, because our models only need to detect a CRC, we can
forgo many of the complex techniques currently found in common
state-of-the-art neural networks and design domain-specific neural
networks that perform well on herbarium imaging stations.

Processing and detection of small CRCs

Region proposal—For the architecture (Fig. 2, Appendix S1) and
design of ColorNet, the neural network created for the detection
of small CRCs, two different methods were used to identify regions
of interest: ColorNet-Normal and ColorNet-Quick. ColorNet-
Normal uses a sliding window technique that scans through the
entire image, enabling the computation of relatively smaller areas
of interest within the image. ColorNet-Quick, on the other hand,
uses OpenCV’s (https://github.com/opencv/opencv) find squares
method to detect squares that are appropriately sized for a small
CRC. If appropriately sized squares are found, they are then used
as partition proposals for the neural network. If no appropriate
squares containing the CRC are found, ColorNet then falls back
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FIGURE 2. General ColorNet architecture. Specific details of each layer and their configuration may be found in Appendix S1. HSV: hue, saturation,

value; MLP: multilayer perceptron; RGB: red, green, blue.
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to using ColorNet-Normal methods. Calculating only square-like
objects allows ColorNet-Quick to be more than twice as fast as
ColorNet-Normal, but with a small loss in accuracy.

Unlike other neural networks, however, we do not compute the full
RGB (red, green, blue) pixel information, which is three dimensional
(width, height, RGB channels) for the inference of a particular region.
Instead, we use color histograms, a one-dimensional vector that con-
tains the number of pixels representing a specific color. The use of color
histograms and the associated reduction in dimensionality signifi-
cantly decreases the number of calculations needed to be performed.
In a 125 x 125 px image partition obtained from the sliding window,
for example, 46,875 (125 x 125 x 3; 3 for red, green, and blue) variables
would have to be processed. The number of variables in a color histo-
gram does not vary with the size of the image; regardless of the image
size, the vector size of a color histogram will always be 768 elements
long for the RGB and HSV (hue, saturation, value) color space. Thus,
in the 125 x 125 px image partition above, the use of color histograms
would only amount to 768 variables to be inferred per color space, or,
as in our case where both RGB and HSV color spaces were used, only
768 x 2 = 1536 variables had to be processed. Another advantage of
having one-dimensional data comes in the feasibility of using multi-
layer perceptron (MLP) networks (LeCun et al,, 2015). Unlike CNNG,
MLP networks do not attempt to infer spatial correlations, which are
not present in one-dimensional data, so MLP networks are less com-
putationally expensive for processing these data. The dimensionality
reduction through the use of color histograms and the speed increase
from the use of MLP networks enables the processing of images at
a much higher resolution (1250 x 1875 px) than the conventional
R-CNN processing resolutions (e.g., an equivalent resolution of 600 x
900 px for Faster R-CNN). Processing the images at 1250 x 1875 px,
while still smaller than the original digitized specimen resolution, was
chosen for speed and better CPU computational feasibility without los-
ing too much information for prediction accuracy. We chose 125 x 125
px as the size of the sliding window, which was large enough to capture
small CRCs, and 25 px as the stride length (i.e., the number of pixels the
sliding window moves horizontally and vertically).

Classification—We found that the processing of color histograms
alone may be insuflicient to identify a CRC in some cases, such as
when the CRC is partially obstructed. The obfuscation of color in-
formation may lead other regions of the image to be more likely to
be a CRC, especially in areas containing a high number of colors
(e.g., flowers or colorful logos). Therefore, in order to circumvent
problems that may arise when relying solely on color histograms, in
the same vein as other R-CNNs, a CNN classifier for determining
the type of object (background or CRC) was used after the regions
of interest were determined. In order to maintain the design princi-
ple of speed, we used our MLP proposal network to rank the parti-
tions from the most probable to be a CRC to the least probable. This
would allow our relatively computationally expensive CNN classi-
fier (which processes three-dimensional data) to process partitions
starting from the most probable partition, reducing the amount of
partitions processed down to ~5 partitions instead of computing the
full ~3160. The average number of partitions processed is also much
lower than the amount processed using Faster R-CNN, in which 300
to 2000 proposals are typically processed by its CNN classifier.
Lastly, an optional high-precision cropper is included to auto-
matically perform the post-processing of the predicted CRC region.
The neural network pair is only able to identify the partition within
the image that contains the CRC; thus, further cropping of the CRC
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using this high-precision cropper would allow for more accurate
color representation when being used to automate the white bal-
ance or color correction. The results of the high-precision cropping
may be seen in Fig. 3B.

Processing and detection of large CRCs

The large CRCs are big enough to retain sufficient information for
detection after the herbarium images are downsized to 600 x 900
px, meaning they may be adequately identified using R-CNNs such
as Faster R-CNN. We opted to modify Faster R-CNN to significantly
reduce the neural network hyperparameters for the nodes and filters
within various parts of the model (the specific changes may be found
in Appendix 1). These changes resulted in a reduction of total neural
network parameters from the normal 136,688,504 down to 8,558,600.
We made these reductions to increase the inference speed of the neu-
ral network and decrease the computational power required, as the
originally high number of network parameters (nodes/filters) were
employed to properly assess morphic shapes (e.g., people, animals),
which was unnecessary due to the non-morphic shape of CRCs. The
modified model still maintained very high region proposal precision
and accuracy during the prediction of large CRCs.

Training and testing data set

We trained the models on a training data set consisting of
3344 images from 164 collections found on the SERNEC Data
Portal (collections may be found in the Literature Cited and
Appendix S2), which was augmented to account for different
lighting and camera conditions during the image capture of a
specimen. The augmentations included laying CRCs on top of
other parts of the image, darkening, desaturation, white balance
shifting, and the rotation of images, leading to ~3.5 million 125
x 125 px JPG region/partition training samples for ColorNet
and ~700,000 600 x 900 px equivalent JPG training samples for
all Faster R-CNN models (Selective Search is an algorithm and
does not need training). To overcome the small CRC accuracy
challenges encountered when using Faster R-CNN, additional
training data sets were explored using multiple image pre-
processing techniques to improve accuracy while still maintain-
ing speed. For example, we tried partition sizes of 1250 x 150 px
or 1875 x 150 px for training and testing, as well as laying these
partitions onto a square crop filled with black (0 values) to cir-
cumvent the arbitrary resizing of Faster R-CNN. Unfortunately,
neither method improved prediction accuracy.

The testing data set comprised a total of 988 randomly pulled
images not found within our training data set. These images were
sourced from every herbarium collection within the SERNEC con-
sortium that had a Darwin Core archive readily available, resulting
in specimens from 58 different herbaria (Appendix S2). Six of these
collections were omitted because they contained fewer than 19 sam-
ples in their Darwin Core archive. Nineteen images were randomly
pulled from the Darwin Core archive of each collection for a total
of 988 images; 565 were images with a small CRC, 395 were images
with a large CRC, and 28 were omitted due to having no CRC or
a CRC without a pure white and pure black color reference patch.
The testing data set included a black padding at the border of the
images, as it improved the prediction accuracy of both the small
and large CRCs when using Faster R-CNN. This improvement may
arise from cross-boundary anchor predictions (predictions outside

© 2020 Ledesma et al.
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FIGURE 3. Example CRC detection results (not to scale) using ColorNet (small CRCs) (A, B) and modified Faster R-CNN (large CRCs) (C), and post-
processing high-precision crop results using the CRC information (B). Examples of small CRC detection: (A) The output of the most probable partition
to contain the CRC. From left to right are regular, skewed, and partially obstructed small CRCs found within our test data set. (B) Outputs similar to A,
but with high-precision cropping of RAW images that have not been white balanced or color corrected.

the image bounds) being ignored during the training of the neural
network, as cited in the original Faster R-CNN paper (Ren et al.,
2015). Within our testing data set, the CRCs fell into five types:
Image Science Associates ColorGauge Nano, Kodak Q-13, X-Rite
Colorchecker Passport (X-Rite, Grand Rapids, Michigan, USA),
X-Rite Colorchecker Classic,and the CameraTrax 24ColorCard-2x3.

Results

The ColorNet and modified Faster R-CNN models both resulted in
an accuracy increase of up to 30.97%, along with a 2-8x reduction
in computation time when tested against the Selective Search algo-
rithm and the original Faster R-CNN model, as seen in Table 1. The
Selective Search algorithm was chosen for comparison as it is a region
proposal algorithm that serves as a basis for R-CNN models such
as UC Berkeley’s R-CNN (Girshick et al., 2014). Specifically, we use
OpenCV’s Python implementation of the Selective Search algorithm,
using the “fast” preset with multithreading and built-in optimization.
In addition, we also compared our work with a Keras implementa-
tion of Microsoft’s Faster R-CNN (Ren et al., 2015), which we believe
contains one of the most robust region proposal networks currently
available. The accuracy of all models is human-verified, with correct
detection denoted as cropping at least 80% of the CRC itself with the
whitest and blackest part of the CRC visible.

All performance results were derived using CPUs: an Intel Core
i3-4150 CPU (Intel, Santa Clara, California, USA), which we believe
resembles a “typical” baseline CPU for a herbarium imaging com-
puter, and a Raspberry Pi 4 (Raspberry Pi Foundation, Cambridge,
United Kingdom), which could be a good low-cost alternative for
running the neural networks and automating the processing of

http://www.wileyonlinelibrary.com/journal/AppsPlantSci

herbarium sheet images. In terms of performance, our solutions
provide the most benefit for Raspberry Pi 4 users, achieving more
than an eight-fold increase in inference time compared with Faster
R-CNN when run on the same device. During our experimentation,
Selective Search required a significant amount of time to make the
proper region proposals. The original Faster R-CNN model, on the
other hand, had difficulties properly assessing small CRCs when
processing images with its arbitrary resizing down to 600 x 900 px.
In addition, even with the reduced dimensionality, original Faster
R-CNN is still roughly three-fold slower than our proposed neural
network during prediction when using a desktop/laptop CPU.

CONCLUSIONS

ColorNet and Modified Faster R-CNN are over 98% effective at find-
ing CRCs on herbarium specimen images, which may set the stage for
the automation of image-processing tasks and subsequent metadata
enhancement, such as improving the white balance or proper image
orientation. As a proof of concept, we show in Appendix S3 the au-
tomatic correction of highly white balance-shifted, darkened, and
wrongly rotated images using a max white algorithm processed on
our identified CRC and rotated using the quadrant of the location
where the CRC is found. This proof-of-concept code, model source
codes, and the trained model files of both ColorNet and modified
Faster R-CNN are available on GitHub at https://github.com/bgq52
7/ColorNet under the MIT license, allowing for full modification
and reuse with no copyleft restriction. Furthermore, these mod-
els can serve as a first step in the development of other digitization
post-processing-related tools, such as HerbASAP, a larger digitization

© 2020 Ledesma et al.
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TABLE 1. Region proposal results from each algorithm and model based on the randomly pulled 565 small CRC and 395 large CRC images from SERNEC.

Algorithm/model Image resolution (pixels)

Accuracy (%)

Intel Core-i3 inference time
per image (seconds)®

Raspberry Pi 4 inference time
per image (seconds)

Selective Search (Fast) 1250 x 1875
Original Faster R-CNN (small CRC) 600 x 900°
Original Faster R-CNN (large CRC) 600 x 900°
ColorNet-Quick (small CRC) 1250 x 1875
ColorNet-Normal (small CRC) 1250 x 1875
Modified Faster R-CNN (large CRC) 600 x 900°

100¢ 39.90¢ Not tested
67.080 4.02 6142
99.748 3.71 59.15
95.221 0.59 2.88
98.053 1.11 4.68
99.241 145 7.08

°From the start of the inference time to the end of inference time, not including load times of the images or processing of the image.
SWith the neural network resizing to proper dimensions (600 px on the shortest side) resulting in the processing of 600 x 900 px images.
‘Region proposal only. No classifier was used due to very poor speed. The poor speed would be compounded with a classifier assessing each individual region for a CRC.

support program currently in development that will allow the easy
integration of these tools for herbarium image post-processing (avail-
able at https://github.com/CapPow/HerbASAP). In the future, ad-
vancements and modifications within ColorNet may allow it to detect
other small objects, such as very small phenological details, that may
pose the same detection problems found within current R-CNNs.
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APPENDIX 1. Changes from original to modified Faster R-CNN.
The code for this modified Faster R-CNN is also provided on GitHub (https://github.com/bgq527/ColorNet).

Changes to Faster R-CNN hyperparameters are as follows:
o VGG Base Network
o Block 1: Conv2D Filters 64 — 16
° Block 2: Conv2D Filters 128 — 32
° Block 3: Conv2D Filters 256 — 64
° Block 4: Conv2D Filters 512 — 128
° Block 5: Conv2D Filters 512 — 128
+ Region Proposal Network
o 1st Conv2D: Filters 512 — 128
o Classifier
° Input_shape: (# of Rols, 7, 7, 512) — (# of Rols, 7, 7, 128)
Time Distributed Dense: Nodes 4096 — 1024
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