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Abstract—Binarized Neural Networks (BNN), which significantly reduce computational complexity and memory demand, have shown
potential in cost- and power-restricted domains, such as loT and smart edge-devices, where reaching certain accuracy bars is sufficient and
real-time is highly desired. In this article, we demonstrate that the highly-condensed BNN model can be shrunk significantly by dynamically
pruning irregular redundant edges. Based on two new observations on BNN-specific properties, an out-of-order (OoO) architecture,
O3BNN-R, which can curtail edge evaluation in cases where the binary output of a neuron can be determined early at runtime during
inference, is proposed. Similar to instruction level parallelism (ILP), fine-grained, irregular, and runtime pruning opportunities are traditionally
presumed to be difficult to exploit. To further enhance the pruning opportunities, we conduct an algorithm/architecture co-design approach
where we augment the loss function during the training stage with specialized regularization terms favoring edge pruning. We evaluate our
design on an embedded FPGA using networks that include VGG-16, AlexNet for ImageNet, and a VG G-like network for Cifar-10. Results
show that O3BNN-R without regularization can prune, on average, 30 percent of the operations, without any accuracy loss, bringing 2.2x
inference-speedup, and on average 34 x energy-efficiency improvement over state-of-the-art BNN implementations on FPGA/GPU/CPU.
With regularization at training, the performance is further improved, on average, by 15 percent.

Index Terms—Machine learning, BNN, high-performance computing, neural network pruning, out-of-order architecture

1 INTRODUCTION

EEP-INEURAL-NETWORKS (DNNs) are in widespread use

due to their ability to learn well enough to achieve high
accuracy [7], [8], [9], [19], [20], [34]. However, for many high-
volume, but cost- or power-restricted applications, accuracy
is not an absolute requirement [18], [31]. Rather, reaching a
certain well-defined level of accuracy is often sufficient, but
with low cost and low-latency-or even real-time response—
being highly desired. This is especially true for IoT and
smart-edge devices [17], [25], [35], [38].

Because they satisfy these requirements, Binarized Neural
Networks (BNNs) [28] have recently received much atten-
tion. BNNss use single bits to encode each neuron and param-
eter, thus significantly reducing computation complexity
(from floating point or integer to Boolean) and memory
demand (from bytes per datum to bits). This can potentially
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reduce the inference delay by orders-of-magnitude at the
cost of a small loss in accuracy. A recent study by Bethge
et al. [2] shows that well-designed BNN structures can
achieve comparable and even superior accuracy (70 percent
Top-1 accuracy for ImageNet) compared with state-of-the-
art condensed full-precision networks such as MobileNet.

Having only two values per neuron, a BNN’s network
structure is significantly different from a conventional
DNN’s. These differences expose various new optimization
opportunities. For example, Umuroglu, et al., [33] show that
the Batch-Normalization (BN) functions in most BNNs can
be simplified to a threshold-based compare and thus avoid
the floating point (FP) calculation. Fuijii, et al., [6] use neuron
pruning, which eliminates neurons in the case where the sum
of weights is lower than a pruning-threshold, and retrains
the network for this adjustment. By doing so the number of
neurons, and so the associated computation, is reduced. The
accuracy, however, is compromised.

The work here is motivated by these previous studies
together with the following two observations. First, in a BNN,
a neuron’s output is a Boolean whose value is determined by
comparing the accumulation of all dot-products of the edges
linked to this neuron with a fixed threshold that has been
determined during the training phase. The idea is that we can
immediately cease further computation of the dot-product
and return (a) 1 as soon as the current accumulation becomes
larger than the activation threshold (Fig. 1 A); or (b) 0! as soon
as it is found that the current accumulation has no chance of

1. —1is encoded as 0 in XNOR Net [28].
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Fig. 1. Three types of pruning: (A) & (B) Threshold-based edge pruning;
by accumulating the inputs (i,) and comparing the accumulation result
to a threshold, the value of a neuron (Out) is calculated (binary 1/0).
(C) Pooling-based edge pruning. Out from pooling is binary (1/0).

reaching the threshold (Fig. 1 B). This cessation is analogous to
breaking out of a loop as soon as the result is determined. We
call this approach threshold-based edge pruning and refer to the
two cases as Conditions 1 and 2.

A second observation is about pooling, in particular max-
pooling, which for BNNs is the most widely. In the case
where any one of the nxn inputs (typically 2x2) is 1, the
pooling result must also be 1; thus we can avoid evaluating
the remaining entries. For example, in Fig. 1 C the second
entry is a 1 so we can prune the computation for the last two
neurons. We refer to this approach as pooling-based edge prun-
ing. Analogous methods work for min- and mean-pooling.

Although both observations are straightforward, the effi-
cient harvesting of these pruning opportunities is challeng-
ing. This is because both are irregular, occasional, data-
dependent, run-time, and strongly dependent on specific
evaluation order. For threshold-based edge pruning;, it is dif-
ficult to decide when the partial accumulation will surpass
the threshold, or when we can assert that it will never reach
the threshold. Pooling-based edge pruning is similarly diffi-
cult: it may eventually turn out that all entries are 0.

Exploiting these opportunities requires that the design be
extremely flexible and dynamic. On the one hand, the con-
trol unit must frequently assess the current accumulation
and be capable of immediately terminating the remaining
execution of the neuron. This appears to require that the
computation be sequential for the sake of pruning; yet, we
still need parallelism to guarantee high performance. On
the other hand, in case the evaluation of a neuron is termi-
nated early, the execution gap needs to be filled instantly to
avoid losing performance through pipeline bubbles. This
combined challenge has been considered to be very difficult
[6]. In this paper, we address these difficulties with an out-
of-order edge pruning architecture: O3BNN-R.

To further enhance the potential gain, we propose an archi-
tecture/algorithm co-design approach during network train-
ing. We add two regularization terms to the loss function, for
threshold-based and pooling-based pruning approaches,
respectively. These two terms create more pruning opportuni-
ties without sacrificing accuracy by allowing the respective
decisions to be made earlier: for threshold-based pruning, the
regularization term moves the thresholds closer to either 0 or
the maximum value; for pooling-based pruning, the term
moves the 1 elements towards the upper-left corner of the
pooling windows.

The main contributions of this paper are as follows:

e Two run-time approaches to edge pruning for BNN
inference: threshold-based and pooling-based;

e A 2D-rotative out-of-order (OoO) design for dynamic
workload scheduling and balancing;

e An architecture called O3BNN-R that implements

efficient run-time BNN inference pruning; and

e Regularized training that enhances the pruning rate.

We evaluate the design on an FPGA platform using VGG-
16 [30], AlexNet [22] for ImageNet, and a VGG-like network
[4] for Cifar-10. Evaluations demonstrate that the out-of-order
approach, without regularization in training, can prune 27,
19, and 42 percent of the operations for the three networks,
respectively, without any accuracy loss. This brings at least
2.1x,1.5%, and 1.7x speedups, respectively, and on average
47x, 23x, and 32x energy-efficiency improvements, respec-
tively, over state-of-the-art FPGA/GPU/CPU BNN imple-
mentations. With training regularization, the performance of
OBBNN-R is further improved, on average, by 15 percent and
with only 0.5 percent accuracy loss.

The organization of this paper is as follows. In Section 2,
we give BNN background and the motivate edge pruning.
In Section 3, the edge pruning opportunities are introduced.
In Section 4, an Out-of-Order BNN pruning design is pro-
posed. In Section 5, the regularization augmentation is
described. In Section 6, experimental results are presented
and analyzed. In Section 7, related work is discussed.
Section 8 provides a conclusion.

2 BNNs AND MOTIVATION FOR PRUNING

2.1 Basic BNN Structure

BNNSs evolved from conventional CNNs through Binarized
Weight Networks (BWN) [4] with the observation that if the
weights were binarized to 1 and —1, expensive FP multipli-
cations could be replaced with additions and subtractions.
It was next observed that if both weights and inputs were
binarized, then even the 32-bit additions and subtractions
could be demoted to logical bit operations; XNOR-Net was
proposed and has become one of the most researched
BNNSs. In XNOR-Net, both the weights and the inputs of the
convolutional and fully connected layers (except the first
layer) are approximated with binary values, allowing effi-
cient implementation of convolutional operations via exclu-
sive-NOR (XNOR) and bit-counting [5], [28]. In this paper
we use the terminology from XNOR-Net [28].

In their basic structure BNNs have four essential functions
in each CONV/FC layer: XNOR, population count (POP-
COUNT), Batch Normalization, and Binarization (BIN) (see
Fig. 2 A). The weights, inputs, and outputs are binary so mul-
tiply-accumulate in traditional DNNs becomes XNOR and
POPCOUNT in BNNSs. The output of POPCOUNT is normal-
ized in BN as this is compulsory for obtaining high accuracy
with BNNs. BN incorporates full-precision FP operations, i.e.,
two FP MUL/DIVs and three FP ADD/SUBs

o (my Bl ) g 1
Yij = ( VCLT[I*/] T 6) y] + ﬂ]' ( )

The normalized outputs from BN (y; ;), which are FP, are
binarized in BIN by comparing with 0

. 1 ifz>0
b_ _ >

o = sign(z) = { -1 otherwise @
Here, BIN acts as the nonlinear activation function. Max
pooling can be required. Traditionally, pooling is between
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Fig. 2. A typical 3-CONV-1-FC BNN Network structure. It is similar to
DNN, except that Activation acts as BIN, Multiplication acts as XNOR,
Accumulation acts as POPCOUNT.

BN and BIN. It can be shown, however, that this is equiva-
lent to placing pooling after BIN; thus the FP operations in
pooling become bit-OR operations.

2.2 Motivation for Pruning

Researchers have observed various opportunities to further
optimize the basic BNN structure. In FINN [3], [33] BN and
BIN are merged. As shown in Fig. 2, the original FP-based
BN function in Equation (1) and the BIN function in Equa-
tion (2) are integrated as a threshold

E.jk + Ljr B/ Varle. ;i) +e€
2 2- )/j,k,

Threshold; j . = ,
3)
where L is the length of the vector K xKxIC, K is the filter
size, and IC is the number of input channels. Note that Vik
and B, are learned in training and fixed in inference. In
this way, the FP operations in BN now become a simple
threshold. With a fixed threshold, our new observation is
that we can prune certain computations in CONV/FC when
a partial accumulation is already sufficient to obtain a result.
Another motivating study relates to neuron pruning [6]. In
the FC layers, when the sum of weights for a neuron’s linking
edges are smaller than a threshold, this neuron is noted as
inactive and is pruned. Fine-tuning is required and accuracy
degrades. The authors also mention edge pruning, expecting
that it can be more beneficial than neuron pruning, but do not
pursue it due to the irregularity of the structures and the diffi-
culty of the hardware implementation. Here we demonstrate
that edge pruning is feasible and propose a dynamic out-of-
order architecture that implements it with little hardware
overhead, and with no (or managed) accuracy loss.

3 PRUNING OPPORTUNITIES

In this section, we first introduce the basic design of BNNs
and then discuss the pruning possibilities. BCONV denotes
bit convolution. The bit-fully-connected layers are treated
as 1 x 1 BCONVs.

3.1 Basic BCONV Design

Fig. 3 shows pseudocode for a BNN with BCONV layers
where K is the convolution filter size, Ny is the number of
input channels, No¢ is the number of output channels,
WIDTH and HEIGHT are the width and height of the fea-
ture maps, and LAYER is the number of layers.

. 1 Curve = K*K Edges
for Lin LAYER do [[Layer ,

1:

2: forHinHEIGHT do [fimage Height

3 for Win WIDTHdo [/lmage Width

4: for 0C in Ngc do [/Output Channel
5 forICin Ng¢do [fInput Channel

6 ~forjinKdo JfFilter Height
7: foriinKdo [[Filter Width
+ {0ut[OC,HW] + xnor (WOC,IC,j.1, InfiCH W) s

Fig. 3. Pseudo code of a traditional BCONV/BFC without pruning and the
symbols of edge and curve.

There are 7 loops. Each iteration of Loop 7 processes an
edge, i.e., XNOR + POPCOUNT, in the network graph (in red
in Fig. 3). Each iteration of Loop 5 is called a curve; it processes
K x K edges per input and output channel, i.e., a convolution
window (in green in Fig. 3). The resulting value of a curve is
the aggregation of its K x K edges. We annotate IC & OC
along the curve to indicate the index of the curve in Loop 5
and Loop 4. We also annotate H & W at the front of the curve
to indicate its index in Loop 2 and Loop 3. Therefore, a curve
indexed by [IC, OC, W, H] represents the workload of evaluat-
ing a convolution window of K x K neurons for input chan-
nel IC and output channel OC at location [V, H] of the input
feature map. The complete calculation of each output channel
requires the accumulation of Np¢ curves (Loop 4); the entire
BCONV layer requires Ny x Noc x HEIGHT x WIDTH
curves. In this design a curve is the basic granularity for edge
pruning. Existing work [6], [27], [37] generally exploits paral-
lelism in the loop-nest through:

e Loops 6-7: Parallel execution for K x K edges in a
curve.

e Loop 5: Parallel evaluation of different input channels
IC for the same output channel OC.

e Loop 4: Parallel processing different output channels
ocC.

e Loops 2-3: Usually not parallelized to ensure data
reuse across neighboring [H, W] (i.e., neighboring
CONV windows overlap).

e Loop 1: Usually not parallelized since a hardware
implementation to exploit model parallelism may suf-
fer from layer-wise workload imbalance and excessive
storage demand for intermediate results.

3.2 Threshold-Based Edge Pruning

Fig. 4 A illustrates threshold-based BN for each output
channel (OC' in Loop 4): (1) calculate and accumulate Ny
curves for this output channel, i.e., Loop 5; and (2) binarize
via threshold comparison. Since the threshold is fixed in
inference and the output is a binary value, we do not neces-
sarily need to evaluate and accumulate all the curves before
making a comparison. In other words, if the partial results
are already sufficient to imply the output bit, we can avoid
the evaluation and accumulation of the remaining curves.
In the following, we use ACC_Cur to denote the accumu-
lated partial curves, ACC for the accumulation results for
ACC_Cur curves, and T for the threshold.

Condition 1. ACC > T implies that the remaining (Njc —
ACC_Cur) curves can be pruned. As both input features and
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Fig. 4. (A): illustration of the evaluation process of an output neuron
using threshold-based BN function; (B)&(C): Conditions of threshold-
based edge pruning.

weights in BNNs are binary (1/0), the curve’s value is
always non-negative and accumulation never decreases
ACC. Consequently, whenever ACC' exceeds T, the binar-
ization result is 1 and will never flip to 0 during the remain-
ing accumulation. Therefore (N — ACC_Cur) curves can
be pruned, as shown in Fig. 4 B.

Condition 2. ACC < T — K? x (N;gc — ACC_Cur) implies
that (N — ACC_Cur) curves can be pruned. Conversely, as
the maximum value of each curve is K? (all XNOR results
are 1), with ACC_Cur input channels already accumulated
in ACC, for the rest evaluation of (N, — ACC_Cur)
curves, the maximum possible contribution is K? x
(Nie — ACC_Cur). Therefore, if ACC+ K x K x (Njc —
ACC_Cur) is less than 7', then ACC will never reach T'; we
can safely prune the remaining (N — ACC_Cur) curves
and output 0, as shown in Fig. 4 C.

Implementation Challenges. (1) To prune within Loop 5, it
must execute sequentially; this may inhibit parallelism that
can otherwise be exploited. (2) Due to pruning, the latency for
each iteration in Loop 4 can differ substantially, which may
lead to workload imbalance. (3) Dynamic, asynchronous, and
data-dependent slacks must be filled immediately; otherwise
pruning will not result in any performance benefit. (4) The
hardware overhead for verifying pruning conditions, ceasing
the present execution, and stealing new jobs for workload bal-
ancing must be limited.

3.3 Pooling-Based Edge Pruning

Given a threshold-based BN design, we now consider the
pooling function (Fig. 5 A). Fig. 5 B shows how the four entries
of a 2x2 pooling window are sub-sampled after a convolu-
tion. As the entries are binary, the max operation is equivalent
to a bitwise-OR among the four entries. Therefore, once an
entry is identified as 1 (e.g., the first entry in Fig. 5 B), the pool-
ing result must be 1 and we can safely prune the evaluation of
the remaining entries. For example, the convolution of three
entries in Fig. 5 B is pruned.

Implementation Challenges. (1) To prune the pooling entries,
the computation of these entries must be processed sequen-
tially, limiting parallelism. (2) Pruning may lead to workload
imbalance. (3) The dynamic and data-dependent slacks due
to pruning must be leveraged effectively. (4) Extra delay and
hardware overhead must be limited.

4 OuTt-oF-ORDER BNN PRUNING DESIGN

A critical question to be addressed is the conflict between the
need for sequential execution to facilitate pruning and parallel

——Processed Sequentially——
/ fz f

|XN]R|

v
cowv | [[poecout

i 4
‘ Threshald

nnl ln1_;\
G\ [o

BN
MAX POOLING

Fi

(A)

Fig. 5. (A): BNN structure used in this work: threshold-based BN fol-
lowed by POOLING; (B): The condition of pooling-based edge pruning.

execution to obtain performance. In this section we first pres-
ent a trade-off strategy and a method to compensate for com-
promised parallelism. We then show how to achieve
workload balance via rotative workload scheduling. Finally,
we discuss the O3BNN-R hardware implementation.

4.1 Parallelization Strategy

To achieve threshold and pooling edge pruning, Loop 5 must
be executed sequentially and Loop 4 partially sequentially. To
compensate for this reduced parallelism, we exploit the inter-
layer parallelism (i.e., model parallelism) from Loop 1. Note
that data reuse in Loops 2 and 3 is still critical for perfor-
mance. We resolve layer-wise workload imbalance by allocat-
ing computation resources proportional to the per-layer
workload. For large storage demand, we adopt a layer-fusion
technique, as referred to in [1]. Overall, parallelism from K
(Loops 6-7), OC (Loop 4), and L (Loop 1) are exploited for par-
allel execution. The pooling pruning at different output chan-
nels is applied in parallel. In the case that more parallelism is
needed, Loops 2 and 3 can be unrolled and processed partially
in parallel. By doing so, pooling pruning at the same output
channel can also be conducted in parallel.

4.2 Rotative Workload Scheduling

For clarity and without loss of generality, let us first assume
that 4 processing elements (PEs) process a BNN layer with 8
input and 8 output channels IC=8, OC=8). We present three
approaches to show the evolution of the design: in-order, 1D
Rotative OoO, and 2D Rotative OoO.

In-Order Scheduling. All PEs work in lock-step. Whenever
ACC (accumulation of curves) at one PE triggers one of the
threshold pruning conditions, this PE aborts and remains
idle (Fig. 6 A). The simple in-order design has two advan-
tages. The first is low storage demand. Since the No¢ output
channels can be statically partitioned among PEs (e.g., PE2
in Fig. 6 A always processes OC-2 and OC-6), the weights
for convolution can be distributively conserved, saving
memory space. The second advantage is simple data feed-
ing logic under fixed curve mapping. The drawback is that
it does not benefit significantly from pruning (except when
all PEs are pruning, which is rare), while wasting computa-
tion resources and creating pipeline bubbles.

1D Rotative Oo0O. In the basic OoO design, a new curve
immediately fetches and fills the gap from pruning. For
example, in PE2, curves with OC=6 (in dark blue) issue after
curves with OC=2 (in green) are pruned in cycle-3. To effi-
ciently address the target curve location (using IC and OC)
in the input feature map, which is stored sequentially in
(possibly very large) memory, we propose a vertical rotative
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Fig. 6. Three methods of workload scheduling as described in the text.

design. We use a 1-8 counter for IC while dynamically con-
trolling the value of OC for OoO. As shown in Fig. 6 B, PEs
execute curves consecutively with IC rotating through 1 to
8. When pruning occurs, OC is updated following numeri-
cal order, i.e., new curves that have the next unprocessed
OC ID are assigned. We refer to the group of curves with
the same OC, but different IC, as a curve-group.

This design executes OoO to exploit pruning opportuni-
ties without introducing any pipeline bubbles. A major
shortcoming, however, is storage cost: since it is not known
in advance which OC will be fetched for a particular PE
(pruning is data dependent), every PE can potentially pro-
cess any OC with any IC. Therefore, every PE must retain a
local copy of the entire set of weights. If the weights were
shared globally, a very clever data-feeding circuit would
have to be designed to issue the required weights to corre-
sponding PEs on the correct cycle. This would introduce
delay as well as area and power overhead. Also, neither
approach is scalable to a large number of PEs.

2D Rotative O00O. To resolve the memory issue, we pro-
pose 2D rotative OoO. The idea is to distribute the weights
among PEs using a time-sharing approach. Specifically,
rather than partitioning curves among PEs along OCs (as
with the in-order design), we partition along ICs. In other
words, each PE statically handles a portion of ICs. For exam-
ple, in Fig. 6 C PE3 only processes IC-5 and IC-6. Conse-
quently, weights can also be statically partitioned along IC
and distributively reside in the PE’s local memory. For the
horizontal rotation, PEs are connected to their right neigh-
bors forming a unidirectional loop among PEs (horizontally
in Fig. 6 C). When a PE finishes its portion of ICs, it forwards
the unfinished curve-group to the side buffer of its right
neighbor. To fetch a curve each cycle for execution, a PE
first checks its left-side buffer and continues the unfinished

curve-group in case presented; otherwise, it fetches a new
curve-group (the current curve-group is either pruned or
completed) and starts execution.

To summarize: by simultaneously rotating the curve
groups along the vertical dimension, we dynamically dis-
patch them with desired pruning capability and with low
memory addressing cost. This is done while distributively
sharing weights among PEs in a time-sharing manner by
rotating along the horizontal dimension. Given these advan-
tages, the 2D rotative design is used for the O3BNN-R hard-
ware implementation.

4.3 O3BNN-R Architecture

The O3BNN-R architecture is shown in Fig. 7. To achieve
workload balancing, the PEs and other hardware resources
are allocated roughly proportionally to workload per layer
(shown in Fig. 7 A). In this way, layers linked in a daisy chain
can cooperate effectively in a deeply pipelined manner,
exploiting inter-layer parallelism from Loop 1. Each PE con-
tains three major modules: PE array for workload execution,
Scoreboard for tracking curve execution status and ensuring
in-order commitment, and data feeding system (DFS) for buff-
ering and feeding input data to the PE array.

4.3.1  Processing Element Array

Figs. 7 C&7 D show the detailed architecture of the PE array.
To implement horizontal rotation, PEs are linked via a unidi-
rectional circular communication network with two chan-
nels: one for forwarding the unfinished curve-groups (red-
line) and one for conveying the current ACC values. Inside a
PE are three buffers. (1) The buffer at the bottom-left is used
to store and reuse input feature at a particular [H, W] (i.e.,
reuse input feature data across OCs) with each curve per
time slot. The 2-to-1 multiplexer linked to this buffer is used
to select between reused input features for the next OC (i.e.,
curve-group) and buffering a new input feature from the
next image pixel [H, W]. The FIFO loop-back implements the
vertical rotation by repeatedly reusing the buffered data for
different OCs. (2) The middle buffer is for distributively stor-
ing weights with each PE holding N;c/PEs « Noc curve
entries. The input feature and weights for a curve are
XNORed and accumulated in parallel (into ACC). (3) The
upper-right buffer is for pending data for inter-PE communi-
cation. The 3-to-1 multiplexer selects from: (a) O-input for a
new curve-group; (b) self input for accumulation within its
curve-group portion; (c) neighbor input to start its portion of
a curve-group following its left neighbor. The 2-to-1 multi-
plexer chooses between processing its curve-group portion
and conveying the curve-group to its right neighbor PE.

4.3.2 Scoreboard

Analogous to reservation stations in Tomasulo’s algorithm
[15], [32] for exploiting instruction level parallelism (ILP) in
an OoO CPU, the Scoreboard here tracks curve-group execu-
tion status and enforces commitment of curve-groups in the
correct order. As shown in Fig. 7 E, each entry tracks a curve-
group and has three basic fields: OC for curve-group ID, sta-
tus for control, and the 1-bit output for this OC. Each column
with No¢ entries in the same color tracks Noc curve-groups
for the pixels with the same [W,HI] at all (Npc) output
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(E) Scoreboard of which the OoO capability is 3.

channels. In our design, the 1-bit outputs of entries in the
same column are committed to the succeeding layer simulta-
neously. Thus the number of entries in the Scoreboard is an
integral multiple of Noc.

We define the OoO capability of an O3BNN-R design as
the number of column entries in its Scoreboard. The coordi-
nate field is for tracking curve-groups with multiple [W,H]s
and used when a multi-column Scoreboard is needed for
stronger O0O capability (discussed later). The pooling field
is used when pooling is required after the convolution,
where curve-groups belonging to the same pooling window
share the same Scoreboard entry. When performing convo-
lution for the elements covered by the same pooling win-
dow, in case an element returns 1, the status field is marked
as skip and the output field is set to 1. With skip status, the
remaining elements sharing the same Scoreboard entry will
not be issued to the PE array, i.e., they will be pruned.

4.3.3 Data Feeding System

The DFS is designed to store the input feature tensor that
can be processed in the coming execution cycles and for-
ward K x K x Npc features to a PE array in each cycle. For
efficiency, a simple segmented line-buffer design is pro-
posed (Fig. 7 B). The entire input feature map flows along
each segment of the line-buffer with the K vertical segments
extracting the required rows covered by the K x K convo-
lution window and, when a new curve-group is requested,
feeding them into the PE array.

4.4 Design Extensions

In this section, we sketch extensions to O3BNN-R. First, we
describe adding a relaxing factor to the threshold and how
this affects accuracy and performance. We then analyze how
applying different OoO capabilities affects performance.

4.4.1  Relaxing the Threshold

None of the pruning designs described so far lose accuracy.
But if accuracy can be compromised slightly, then more

benefits can be gained. The idea here is to augment the
threshold with a relaxing factor § € [0, 1].

For Condition 1, we relax T to a lower threshold, § x T,
so that it is triggered earlier and the calculation of a neuron
stops before the accumulation result surpasses T. By doing
so more operations are pruned, but accuracy may decrease:
we now assume all curve-groups which surpass § x 7" even-
tually surpass T, which may not happen. For Condition 2,
we relax 7' to a higher threshold, (1 + (1 —§)) x 7. Similar
to Condition 1, pruning rates are increased while accuracy
may decrease. This trade-off between accuracy and pruning
is discussed in Section 6.1

4.4.2 00O Capability

Because of in-order commitment, when the Scoreboard has
only one column of entries it can only track Noc curve-
groups at the same time for the pixels with the same [W,H].
New curve-groups with new coordinates cannot be issued
before the present curve-groups are completely evaluated,
which may limit OoO capability. If more hardware resour-
ces are available for the Scoreboard, we can track multiple
Noc curve-groups at the same time (each per-column as
shown in Fig. 7 E), by assigning different coordinates to dif-
ferent columns of entries. This is a trade-off between hard-
ware consumption and OoO capability: a larger Scoreboard
provides higher OoO capability.

Fig. 8 shows how different OoO capabilities affect the exe-
cution of BNN inference. Each block refers to the execution of a
curve whose OC and IC IDs are indicated by the head of its
row and column. To illustrate, we use a BNN layer with 8 ICs
and 8 OCs. Each cluster of blocks (8 x 8 blocks in this figure)
represents all curves that need to be evaluated to completely
calculate features with the same [W,H]. The number on each
block shows the iteration during which the curve is calculated.
Different block colors represent execution at different PEs.

In Fig. 8 A, the Scoreboard only has one column of entries,
i.e., 000 capability = 1. After 8 iterations, there are no pend-
ing curve-groups with [0,1] in the Scoreboard waiting to be
forwarded to PEs. PE1 becomes ideal: it can start to work on
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Fig. 8. Workload execution of O3BNN-R with different OoO capabilities.
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the curves of [0,2] at the 9th iteration. However, as the Score-
board with OoO capability = 1 can only track Noc curve-
groups with the same [W,H] at the same time, the next No¢
curve-groups cannot be forwarded to PEs until the current
ones are completely done and flushed from the Scoreboard.
Therefore, synchronization is required between each cluster
of blocks. In this example, synchronization takes 4 iterations
out of 12 iterations of execution. At iteration 13, the calcula-
tion of curve-groups with [0,2] starts.

Fig. 8 B illustrates the execution of curve groups of [0,1]
and [0,2] with a scoreboard having OoO capability = 2. After
iteration 8, the second column of entries in the scoreboard
starts to track the status of curve-group [0,2] immediately
and without synchronization. As shown in Fig. 8 B, at itera-
tion 9, idle PEs start to calculate the curve-groups of [0,2], 4
iterations earlier than (A). For O3BNN-R with OoO capabil-
ity = 2, synchronization is required in the following sce-
nario: when all curve-groups of [0,2] are already distributed
to PEs by the Scoreboard and there are still curve-groups of
[0,1] being processed in PE array. To avoid this synchroniza-
tion, a Scoreboard with OoO capability = 3 is needed. The
third column can then be used to track the curve-groups of
[0,3]. Overall, the higher OoO capability the lower the prob-
ability that synchronization is needed. Based on our experi-
ments, a 2-column scoreboard provides an optimal trade-off
of performance and hardware consumption. This is dis-
cussed further in Section 6.2.

5 REGULARIZED TRAINING

So far we have focused on BNN inference, in particular, we
have assumed that the weights for BNN inference are fixed.
In this section we propose a training/inference co-design
approach that enhances the utility of both threshold-based
and pooling-based edge pruning.

5.1 Regularization for Threshold-Based Pruning

Threshold-based edge pruning is triggered under two con-
ditions: (1) the accumulation has already surpassed the
threshold; (2) the accumulation cannot reach the threshold
even if all remaining partial results are 1 s. It follows that
there is a higher chance of pruning when the accumulation

K x KxNIC K x Kx NIC

Te®, e,

- Regulariz
T oody em—

° TS e
0 ]
(A) Threshold Regularization

(B) Pooling Regularization

Fig. 9. Regularization during training.

stays away from the threshold, either larger (approaching
max bound K x K x Njc) or smaller (approaching min
bound 0), as shown in Fig. 9 A. This can be achieved by add-
ing a regularization term to the loss function during training.
This term increases the loss value when the absolute differ-
ence between output and threshold diminishes, and
decreases the loss value when the difference expands. As the
SGD-based optimizer iteratively minimizes the loss function
during training, we can obtain a BNN network model having
a higher chance of early threshold-based pruning while suf-
fering little accuracy loss. This is possible because of the
redundancy in network parameters and input images, and
because of the robustness of SGD optimization.
The threshold regularization term is defined as

LxHxWxNoe

)

i=0

Rhreshold = —¢ (y; — Threshold;)?, 4)

where « is a scalar weighting factor which can be adjusted
to find the optimal point in the trade-off between pruning
benefit and accuracy loss.

5.2 Regularization for Pooling-Based Pruning
As discussed in Section 4.1, the features covered by the
same pooling window are evaluated sequentially. There-
fore, in the case that one of these features is determined to
be 1, all operations for evaluating the remaining features are
pruned and the pooling output is set as 1. The evaluation of
features covered by a pooling window follows a particular
order, i.e., from top-left to bottom-right. For example, the
order for a 2 x 2 pooling window is top-left—top-right—bot-
tom-left—bottom-right. If during training we encourage the
first features in the evaluation chain to be 1, the pooling-
based pruning will be triggered earlier and pruning oppor-
tunities will increase (as shown in Fig. 9 B). This is achieved
by adding another regularization term to the loss function.

We can encourage the 1 values to move forward in the
evaluation chain by giving differently weighted rewards to
different features covered by a pooling window. For exam-
ple, for a 2 x 2 pooling window, the reward is (1) 1.0 for the
top-left feature; (2) 0.6 for the top-right one; (3) 0.3 for the bot-
tom-left; (4) and O for the bottom-right. That is, the reward is
1.0 if the top-left entry is 1, regardless the values of other
entries; the reward is 0.6 if fop-left is 0 and fop-right is 1,
regardless the values of the remaining two features; the
reward is 0.3 when the first 2 features are both 0 and bottom-
left one is 1; finally, no reward if all features are 0.

The pooling regularization term is thus defined as

LxHxWxC

>

=0

Rpooling = ﬂln( reward(xi)>, (5)
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TABLE 1
Structures of the Networks Used to Evaluate O3BNN-R

Network Network Structure Dataset Input Size Categories

VGG-like (2x128C3)-MP2-(2x256C3)-MP2-(2x512C3)-MP2-(2x1024FC) Cifar-10 32 x32x3 10

AlexNet (64C1 1/4)—MP3—(19205)—l(\/;l)’(ib(ggég)S)—(25603)—(25603)—MPS— ImageNet 294 % 224 X 3 1000

(2x64C3)-MP2-(2x128C3)-MP2-(3x256C3)-MP2-(3x512C3)-MP2-

VGGNet (3x512C3)-MP2-(2x4096FC) ImageNet 224 x 224 x 3 1000

VGG-like-FINN [33] (2x64C3)-MP2-(2x128C3)-MP2-(2x256C3)-MP2-(2x512FC) Cifar-10 32 x 32 %3 10

512FC refers to a fully-connected layer with 512 neurons. 2x128C3 refers to 2 convolution layer with 128 output channels and 3x3 filter. MP2 refers to a 2x2

max-pooling layer.

VGG-Like for Cifar-10
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AlexNet for ImageNet

VGG-16 for ImageNet
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Fig. 10. Pruning rate versus Accuracy trade-off with different relaxing factors. When the relaxing factor is 1, pruning is lossless. Green lines and bars
are for original models; pink, orange and blue lines and bars are for models trained with different combinations of regularization techniques.

where L is the number of pooling layers, H x W is the size of
output feature maps for the pooling layer, C'is the number of
channels, reward(z;) is the reward value reward determined
during the evaluation of a pooling window, and $is a scaling
factor which can be adjusted to find the best point of the
trade-off between pruning benefit and accuracy loss. Since
the weights of BNN models are discrete, we adopt the In
function to make the regularization function more smooth.
Overall, in the O3BNN-R training/inference co-design,
we add two regularization terms to the original loss func-
tion during training to introduce more opportunities for
threshold-based pruning and pooling-based pruning

loss = 1ossnetw0rk + RThreshold + RPooling«

6 EVALUATION AND EXPERIMENTAL RESULTS

In this section, we evaluate the efficiency of O3BNN-R by
showing two trade-offs and comparing O3BNN-R with
state-of-the-art FPGA, GPU, and CPU implementations.
First, we discuss the trade-off of pruning rates versus net-
work accuracy by adjusting the relaxing factor of thresh-
olds, § (Section 4.4.1). Second, we give the trade-off of
hardware resource demand versus performance by adjust-
ing the O0O capability of O3BNN-R (Section 4.4.2). Finally,
using the most efficient OoO and, in the case where lossy
pruning is used, the optimal relaxing factors obtained from
trade-off analysis, the efficiency of O3BNN-R is compared
with the state-of-the-art BNN implementations of FPGAs,
GPUs, and CPUs.

We use PyTorch to build and train our BNN model. Each
network is trained under 4 different configurations: without
any regularization, only with pooling regularization, only
with threshold regularization, and with both.

The trained models are evaluated for profiling the
ideal pruning rates and measuring model accuracy, i.e., the

inference accuracy on the testing set. Performance, hardware
demand, and energy efficiency of O3BNN-Rs are evaluated
on an embedded-scale FPGA development kit, Xilinx ZC706,
which is one of the most widely used platforms in embedded
systems, robotic control, autonomous cars, and research pro-
totyping [3], [33]. In order to show the scalability of the pro-
posed design, all O3BNN-Rs used for evaluation are
equipped with 512 PEs. The FPGA results are compared with
two Intel CPUs (Xeon-E5 2640 [24] and Xeon-Phi 7210 acceler-
ator [16]), two NVIDIA GPUs (Tesla-V100 and GTX-1080
[16]), and three FPGA designs: FINN [33], ReBNet [13], and
FP-BNN [24]. As for network models and datasets, we use the
well-known AlexNet and VGG-16 for ImageNet and a widely
used VGG-like model ([3], [16], [24], [33]) for Cifar-10. The net-
work structures are listed in Table 1. Since FINN adjusts the
structure of the VGG-like network, to make a fair comparison
we use the same network as FINN (i.e., VGG-Like-FINN) as
listed in the last row of Table 1.

6.1 Ideal Pruning Rate Versus Network Accuracy
Recall there are three types of edge pruning in this work:
Conditions 1 and 2 of threshold-based edge pruning and
Pooling Pruning. Fig. 10 shows the overall pruning rates of
networks with and without regularization in training with a
breakdown of the three types of pruning and network accu-
racy using different relaxing factors. For each network 5 k
pictures selected at random are used to profile the average
pruning rates.

For lossless pruning with the non-regularized models
(Green bars and lines), i.e.,, § =1, for VGG-Like the top-1
accuracy is 88.5 percent and the pruning rate is 27 percent.
For AlexNet and VGG-16 the top-5 accuracies are 72.7 and
75.5 percent, respectively, while the pruning rates are 19
and 42 percent. When the relaxing factor is decreased, (1)
the pruning rates increase almost linearly, especially for
VGG-16 and VGG-Like; (2) For all networks observed so far
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the accuracy remains nearly unchanged as the relaxing fac-
tor is decreased up until a threshold, which differs by net-
work, where it suddenly decreases substantially (by many
times the change before the threshold). We refer to this
threshold as the inflection point.

The reasons of this observation are as follows. (1) When
the relaxing factor is larger than the inflection point, then the
relaxed threshold causes more curves to get pruned (for each
neuron - compared with lossless pruning), but the threshold
is not relaxed enough to change the value of neurons. Hence
the network accuracy is not affected significantly. The outlier
is AlexNet with large relaxing factors (§ > 0.9). When the
relaxing factor used in AlexNet decreases from 1 to 0.9, neu-
rons start to flip from 0 to 1, leading to increased occurrence
of Condition 1 and pooling pruning, but without hurting the
accuracy; this does not happen in the other two networks.
This difference comes from the old-fashioned 3 x 3 max-
pooling filter and 11 x 11 CONV filter used in AlexNet. (2)
When the relaxing factor is smaller than the inflection point,
then the neurons’ values start to flip and so incurring errors.

The relaxing factors at the inflection points of VGG-Like,
AlexNet, and VGG-16 are 0.7, 0.85, and 0.9, respectively. The
pruning rates of these three networks at their corresponding
inflection points increase to 49, 46, and 48 percent, with only
3.3,0.9, and 2.9 percent loss of accuracy, respectively. The net-
works of ImageNet are more sensitive to lowering the relaxing
factors. The reason is that ImageNet has 1,000 classification
categories, while Cifar-10 only has 10. The complexity of the
classification task affects the vulnerability of networks, i.e.,
the networks’ sensitivity to threshold relaxing. VGG-16 is
more sensitive than AlexNet. A possible reason is that the
pruning rate of VGG-16 without threshold relaxing is already
close to that at the inflection point of AlexNet. We also mea-
sure the variance in pruning rates among all test images. Error
bars are shown at the tops of the pruning rate bars. It is
observed that for different images the pruning rates are stable.

The red, yellow, and blue bars and lines in the figure show
the pruning rates and accuracy for the BNN models trained
with only the threshold regularization term, only the pooling
regularization term, and both. For lossless pruning, the three
regularization approaches improve the pruning rates to 32,
30, and 50 percent, respectively, with accuracy loss of only
0.3, 0.6, and 0.6 percent, respectively. The two regularization
terms are mostly independent; this is because they operate
on different components of the BNN network.

With the relaxing factor further increased, the pruning
rate increases linearly, but more slowly than the original
model without regularization. We therefore observe that
better pruning rates can be achieved by regularization for a
relatively larger relaxing factor than a smaller one. By com-
bining regularization and the relaxing methods, we observe
an inflection point. When the relaxing factor is larger (.e.,
less relaxed) than the inflection point, regularization only
incurs a very small accuracy loss. However, when the relax-
ing factor is smaller than the inflection point (more relaxed),
regularization leads to considerable accuracy loss. The
inflection points of VGG-like, AlexNet and VGG-16 are 0.7,
0.85, and 0.9, respectively, the corresponding pruning rates
at these inflection points are 52, 49, and 53 percent.

To show the effect of different relaxing factors, all layers
share the same relaxing factor. In practice, each layer can

use a different relaxing factor. For the first two CONV layers
and the last three FC layers, the relaxing factor can be rela-
tively large because errors in these layers affect the final
classification result more seriously; the CONV layers in the
middle can use small relaxing factors. By doing so, O3BNN-
R can obtain higher pruning rates with less accuracy loss.

Fig. 11 is similar to Fig. 10 but shows the pruning rates of
the three types of edge pruning at each layer with the mod-
els trained without regularizations. It is observed that, for
all networks, pooling pruning is the most significant prun-
ing type. Condition 2 is triggered much more frequently
than Condition 1 at most of the layers, especially when the
relaxing factor is close to 1. It is also observed that the prun-
ing rates of the FC layers are very low when the relaxing
factor is close to 1; however, those rates increase much more
rapidly than the ones at the CONV layers when the relaxing
factor decreases.

6.2 Hardware Demand Versus Performance

By pruning the BNN network dynamically, O3BNN-R is
expected to provide better performance than a traditional
accelerator with no pruning. To evaluate the efficiency of
O3BNN-R, we take the classic BNN inference implementa-
tion (described in Section 3.1) as the baseline and compare it
with three O3BNN-R designs with different OoO capabili-
ties. In the baseline design, Loops 1, 2, and 3 (in Fig. 3) are
processed sequentially, while Loops 4, 5, 6, and 7 are proc-
essed in parallel. The architecture of our baseline design is
traditional and similar to the ones used in [24], [27]. At each
clock cycle, each PE calculates the value of one curve.
Assuming there are Noc x Nj¢ PEs, at each cycle Noc neu-
rons with the same coordinate are completely evaluated.
After Width x Height cycles, a layer is processed completely
and processing begins on the next layer.

This baseline design is standard and widely used in the
DNN literature. For a fair comparison of hardware consump-
tion and performance, the baseline design is equipped with
the same number of PEs as O3BNN-R. Compared with the
O3BNN-R architecture, the baseline design has similar DSF
and simpler PEs: they do not have logic to support pruning
and OoO processing, e.g., the circular communication net-
work and pending buffer for horizontal rotation, compara-
tors for redundancy check, and control logic for OoO
scheduling and edge pruning. Also, there is no Scoreboard
in the baseline design, which uses static in-order scheduling.

The O3BNN-Rs are also compared with respect to ideal
performance, i.e., the performance of an ideal system that is
able to exploit all pruning opportunities profiled in Sec-
tion 6.1, and without any bubbles in the pipeline incurred by
dynamic scheduling. The performance differences between
the ideal performance and the O3BNN-Rs indicate the OoO
processing efficiency of the proposed architecture. For each
O3BNN-R design, two performance values are given: one for
lossless pruning and the other one for lossy pruning using
the relaxing factor at the inflection point in Fig. 12.

In Fig. 12, the blue and orange lines indicate the latencies
using lossless and lossy pruning, respectively. We use non-
regularized models as examples to evaluate the pruning
efficiency of the O3BNN-R architectures. As for the regular-
ized models, their hardware resource demands are the
same as the ones for original models and their performances
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disabled and pruning is lossless. conv-1-p refers to the ith CONV layer followed by max-pooling. fc-I refers to the ith fully connection layer.
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Fig. 12. Performance and hardware consumption of O3BNN-Rs with different OoO capabilities and with lossless (without threshold relaxing) or lossy
(with threshold relaxing) pruning for the non-regularized models. 512-PE O3BNN-Rs are compared to 512-PE baseline without pruning and ideal
design with theoretically perfect pruning. The relaxing factors for lossy pruning used in VGG-Like, AlexNet and VGG-16 are 0.7, 0.85, and 0.9.

are listed in Tables 3, 4, 5, and 6. Without any pruning, the
inference latencies of VGG-Like, AlexNet, and VGG-16 are
809, 899, and 9,251 pus, respectively. The hardware consump-
tion is 21930, 23005, and 23056 configurable logic block
(CLBs). Using a O3BNN-R design whose OoO capability is 1,
i.e., the Scoreboard can track the status of 1 x Np¢ curve-
group at a time, the inference latencies of these three net-
works are decreased to 619, 793, and 5779 us when using
lossless pruning (8 = 1), and 430, 565, and 5186 wus when
relaxing factors at the inflection points are used. The hard-
ware overheads are only 1.5, 1.5, and 1.8 percent compared
with the baseline design. The performance of lossless and

lossy O3BNN-Rs whose OoO capability is 1 are, on average,
only 4.4 percent, and 6.5 percent lower than the ideal ones.
The difference between ideal performance and the perfor-
mance of lossy O3BNN-R is larger than the one between
ideal and lossless O3BNN-R. The reason is that the pruning
rates using lossy pruning are much larger than the ones
using lossless pruning, requiring more OoO capability.
When the O0O capability of O3BNN-R increases from 1
to 2, for lossless pruning, the latencies are reduced by 1.5,
2.5, and 2.6 percent, respectively for the three networks, and
reach 609, 774, and 5626 ws. The hardware demand is
slightly increased, i.e., by 1.5, 1.5, and 1.7 percent. For lossy
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TABLE 2
Latency, Hardware Demand, and Accuracy of Baseline and O3BNN-Rs With Different OoO
Capabilities (1, 2, 3) and With Lossless or Lossy Pruning for Non-Regularized Models
VGG-Like AlexNet VGG-16
000 capability 1 2 3 1 2 3 1 2 3

Latency/(ys) 619 609 608 793 774 772 5779 5626 5603

Without Threshold Relaxing | Hardware Demand (CLB) | 22264 | 22607 | 22954 | 23357 | 23736 | 24102 | 23466 | 23876 | 24285
Accuracy 88.5% 72.7% 74.3%

With Relaxing Latency(y.s) 430 419 418 565 545 541 5186 5080 5059

Factor at Hardware Demand (CLB) | 22264 | 22607 | 22954 | 23357 | 23736 | 24102 | 23466 | 23876 | 24285
inflection points Accuracy 85.2% 71.8% 71.4%
Latency/(y.s) 809 899 9251
Baseline Hardware Demand (CLB) 21930 23005 23056
Accuracy 88.5% 72.7% 74.3%

Both the baseline design and O3BNN-R implementations are equipped with 512 PEs. For lossy pruning the relaxing factors used in VGG-Like, AlexNet, and
VGG-16 are 0.7,0.85, and 0.9, respectively.

TABLE 3
Cross-Platform Evaluation of Latency, Energy Efficiency, and Accuracy: VGG-Like-FINN [3] for Cifar-10

Existing work [ O3BNN-R (without Regularization) | O3BNN-R(with both Regularizations)

Network VGG-Like-FINN

Platform FPGA ZC706 [3] | FPGA ZC706
Frequency (MHz) 200

Latency (ps) 283 167 (lossless) 116 (lossy) 153 (lossless) 107 (lossy)

Energy (Img/K]) 3.9E5 6.65E5 9.58E5 7.16E5 10.38E5

Accuracy 80.1% 82.6% 79.3% 82.1% 78.5%

TABLE 4

Cross-Platform Evaluation of Latency, Energy Efficiency, and Accuracy: VGG-Like [4] for Cifar-10

Existing works [24] or self-implemented reference [23] | O3BNN-R (without Regularization) [ O3BNN-R (with both Regularizations)
Network VGG-Like
Platform Xeon E5-2640 [24] GPU V100 [23] FPGA ZC706
Frequency (MHz) 2.5K 1.37K 200
Latency (ps) 1.36E6 994 609 (lossless) 419 (lossy) 563 (lossless) 388 (lossy)
Energy (Img/K]) 7.79 5543 1.82E5 2.65E5 1.99E5 2.83E5
Accuracy 86.31% 89.9% 88.5% 85.2% 88.2% 83.9%

pruning with the relaxing factors at the inflection points, the
latencies are reduced by 2.6, 3.7, and 2.1 percent and reach
419, 545, and 5080 ws. The performance of O3BNN-R with
000 capability of 2 is, on average, only 5 percent lower than
the ideal. When the OoO capability is increased from 2 to 3,
there is almost no further performance improvement, but the
hardware demand increases on average by 1.6 percent.

The latency, hardware demand, and accuracy of baseline
and O3BNN-R-based BNN implementations are summa-
rized in Table 2. As stated in Section 4.4, a larger Scoreboard
can track the processing status of more curve-groups. The
more unbalanced the pruning timing of different curve-
groups, the larger the Scoreboard that is needed to avoid
pipeline bubbles caused by a fully occupied Scoreboard.
According to the experimental results, the support of OoO
processing of 2 x Noc curve groups is already sufficient to
unbalance the edge pruning timing.

In addition to the pipeline bubbles incurred by dynamic
scheduling, another potential reason for the performance
gap between the theoretical shortest latency (i.e., ideal
latency) and the actual measured latency of O3BNN-R is the
difference of the pruning granularity. The pruning granu-
larity in the profiling of Section 6.1 is per-edge, which is
finer than the pruning granularity of the O3BNN-R imple-
mentation, which is by curve or K x K edges. Thus, for
each neuron, the real implementation may compute at most
K x K — 1 extra edges than the profile, leading to at most

1/Njc extra overhead. Considering that Njcs are usually
larger than 100, this overhead is very small. We take this
granularity overhead into consideration when evaluating
O3BNN-Rs, but because of their small size they are not spe-
cifically marked in Fig. 12.

6.3 Cross-Platform Evaluation

In Tables 3, 4, 5, and 6, O3BNN-R’s performance, energy
efficiency, and accuracy (with lossless and lossy pruning)
are compared with existing and self-implemented systems
using various CPUs, GPUs, and FPGAs to accelerate BNN
inference of VGG-like, VGG-like-FINN, AlexNet, and VGG-
16. The performance is evaluated by using the latency of sin-
gle-image inference. The energy efficiency is evaluated with
respect to image inferences per Kilo-J (Image/k]). Based on
the trade-off analysis of Sections 6.1 and 6.2, the OoO capa-
bility of O3BNN-Rs is set to 2. For lossy pruning where
threshold relaxing is enabled, the relaxing factors, §, applied
in the inference of VGG-Like, VGG-Like-FINN, AlexNet
and VGG-16 are 0.7, 0.7, 0.85, 0.9, respectively; i.e., the § at
inflection points of accuracy lines in Fig. 10. For lossless
pruning, threshold relaxing is not enabled (§ = 1).

We compare O3BNN-Rs with some recently published
well-known FPGA-based BNNs. Compared with FINN [3],
[33], using the same network model (i.e., VGG-Like-FINN
as shown in the last row of Table 1), training strategy (SGD
without the proposed regularizations), and FPGA board
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TABLE 5
Cross-Platform Evaluation of Latency, Energy Efficiency, and Accuracy: AlexNet [22] for ImageNet
Existing works [13], [24] or self-implemented reference [23] \ O3BNN-R (without Regularization) \ O3BNN-R(with both Regularizations)
Network AlexNet
Platform GPU V100 [23] FPGA VCU108 [13] FPGA Stratix-V [24] ZC706 (Stratix-V and VCU108 have 4x and 2.5x more hardware resources)
Freq (MHz) 1.37K 200 150 200
Latency (y4s) 2226 1920 1160 774 (lossless) 545 (lossy) 661 (lossless) 510 (lossy)
Energy (Img/k]) 2475 2.7E4 3.3E4 1.44E5 2.04E5 1.67E5 2.13E5
Accuracy 71.2% N/A 66.8% 72.7% 71.8% 72.1% 70.6%
TABLE 6
Cross-Platform Evaluation of Latency, Energy Efficiency, and Accuracy: VGGNet-16 [30] for ImageNet
Existing works [ O3BNN-R (without Regularization) [ OB3BNN-R(with both Regularizations)
Network VGG-16
Platform CPU Xeon Phi 7210 [16] | GPU GeForce GTX1080 [16] FPGA ZC706
Frequency (MHz) 1.3K 1.61K 200
Latency (s) 1.18E4 1.29E4 5626 (lossless) 5080 (lossy) 4877 (lossless) 4603 (lossy)
Energy (Img/k]) 395 433 1.97E4 2.19E4 2.23E4 2.37E4
Accuracy 76.8% 76.8% 74.3% 71.4% 73.7% 70.1%

(i.e., ZC706), lossless and lossy O3BNN demonstrate 167 s
and 116 s single-image inference latency, corresponding to
speedups of 1.69x and 2.44x. For accuracy, the lossless
approach is 2.5 percent better than FINN, while the lossy
approach is only 0.8 percent lower than FINN.

AlexNet results of O3BNN-R are compared to FP-BNN
[24] and ReBNet [13]. The latencies of AlexNet inference
accelerated by O3BNN-R with lossless and lossy pruning are
774 and 545pus. Compared to FP-BNN, lossless and lossy
O3BNN-Rs are 1.50x and 2.13 x faster. Compared to ReBNet,
lossless and lossy O3BNN-Rs are 2.48x and 3.52x faster.
Note that the FPGA boards used in FP-BNN (Stratix-V) and
ReBNet (VCU108) are high-performance FPGA and have
hardware resources around 4x and 2.5x as much as the one
(ZC706, an embedded-FPGA) used in our evaluation. With
regard to energy efficiency, lossless and lossy O3BNN-Rs are
4.4x and 6.2x better than FP-BNN and 5.3x and 7.6 x better
than ReBNet. The accuracy of our lossless and lossy AlexNet
implementations are both higher than the one reported in
FP-BNN. The accuracy of AlexNet is not reported in ReBNet.

We also measure the inference latency of VGG-16 for
ImageNet, which is 5.6ms and 5.1ms for a single image using
lossless and lossy O3BNN-Rs, respectively. The accuracy is
74.3 and 71.4 percent. Compared with CPUs and GPUs, the
latencies for lossless and lossy O3BNN-R are 47.7 and 43.1
percent of the latency for Xeon Phi 7210 [16], and 43.6 and
39.4 percent of the latency for GTX1080 [16], with similar
accuracy. As the FPGA board in this work is for embedded
applications, the energy advantage is even more prominent.
The energy efficiency of O3BNN-Rs is 50x and 55x better
than that of the Xeon-Phi 7210 and 45x and 51 x better than
the GTX-1080 for lossless and lossy pruning designs. The
comparisons of other networks and with other CPUs and
GPUs are listed in Tables 4 and 5.

By applying the proposed regularization techniques, the
pruning efficiency of O3BNN-R is further improved with
almost negligible loss in accuracy. Compared with existing
work, regularized lossless and lossy O3BNN-R achieve
1.85x and 2.64 x speedups over FINN, 1.75x and 2.27x over
FP-BNN [24], and 2.90x and 3.76x over ReBNet [13]. Com-
pared with the models without regularization, the improve-
ments are, on average, 15 percent for lossless pruning and
8 percent for lossy pruning.

7 RELATED WORK

BNNs have been implemented variously [10], [11], [13], [16],
[23], [24], [27], [33], [37]. Because of the flexibility and direct
bit-manipulation capability of FPGAs [9], [12], [29], most
BNN implementations are FPGA-based [13], [24], [27], [33],
[37]. We have already discussed FINN [33] in Section 2. In
[37], Zhao, et al., proposed the first high-level-synthesis-
based BNN implementation on FPGAs. In [24], Liang, et al.,
proposed an FPGA-based BNN accelerator that drastically
cuts down the hardware consumption by using resource-
aware model analysis. Recently a CPU-based BNN design
was proposed [16] that relies on bit-packing and AVX/SSE
vector instructions to achieve good bit-processing perfor-
mance. All of these are static designs and none takes advan-
tage of the pruning opportunities of BNNs.

With regard to the pruning of BNNs, multiple studies have
described BNN edge and neuron pruning. We have already
discussed the neuron pruning work [6] in Section 2. In [21], Li,
et al., proposed a new training method for BNNs in which bit-
level accuracy sensitivity analysis is conducted after initial
training. The channels with low accuracy sensitivity are then
pruned. These pruning methods are all performed offline and
before inference. During inference, the designs are entirely
static. Also, the network accuracy is often compromised due
to the pruning of neurons or edges. Our method-in contrast
to the static and offline pruning approaches—is dynamic with
on-line pruning of inference at run-time. Without a relaxing
factor, this method can prune a large number of edges with-
out affecting the accuracy of the networks.

Compared with the studies published on CNN pruning
[14], [26], [36], the design here has three distinguishing
aspects: (1) Run-time dynamic pruning for post-training
network models; (2) Without compromising accuracy, no
fine-tuning at training process and no need to retrain mod-
els; (3) 2D-rotative OoO-architecture to handle irregular
parallelism from run-time dynamic pruning.

8 DiscussION

Generality of O3BNN-R. O3BNN-R is generally useful for
any Quantized Neural Networks (QNNs) but is especially
efficient when the QNN’s feature data-width is < 4-bit. For
a QNN layer with ¢-bit features, each output channel has at
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least 27 — 1 thresholds. To check the triggering condition of
threshold-based pruning, partial accumulation results need
to be compared to ¢ thresholds. Compared with BNNs with
1-bit features, each PE of O3BNN-R needs to perform g — 1
extra comparisons per cycle, leading to increased usage of
computation logic. Furthermore, more thresholds need to
be stored, leading to higher on-chip memory demand.
Based on our experiments, this hardware cost overhead is
negligible for QNNs with < 4-bit features so O3BNN-Rs can
provide significant speedups. For QNNs with wider data-
widths, O3BNN-R needs to be optimized to reduce the
hardware resource overhead; this is future work.

Could This Approach Work for GPUs? First, most GPUs still
follow the SIMT warp- or wavefront-based execution model
and thus cannot dynamically switch-in/out tasks at per-lane
granularity. Second, the out-of-order capability enabled in
the O3BNN-R design relies on the high flexibility of the
architecture, while the execution of GPU threads is in-order.
It may therefore be difficult for existing GPUs to effectively
leverage dynamic pruning with its randomly occurrences.

9 CONCLUSION

We propose O3BNN-R, an OoO high-performance BNN
inference architecture with fine-grained and dynamic prun-
ing. The contributions of O3BNN-R are two-fold. For algo-
rithm, O3BNN-R demonstrates the highly-condensed BNN
model can be further shrunk significantly without loss on
accuracy by dynamically pruning irregular redundant edges
at all CONV, FC, and POOLING layers. For architecture,
O3BNN-R is an out-of-order architecture which (1) checks the
redundancy of operations at run-time and in a fine-grained-
manner; (2) avoids these redundant operations and ceases the
evaluation of a neuron in case its binary output can be deter-
mined early; and (3) schedules the evaluation workload of
neurons to hardware in a 2D-rotative OoO scheduling meth-
odology with almost perfect utilization. Furthermore, to fur-
ther enhance the pruning rate, we proposed 2 regularization
techniques to direct the models training towards the direction
leading to more pruning opportunities in our O3BNN-R
architecture. We have evaluated our design on an FPGA plat-
form using VGG-16, AlexNet for ImageNet, and a VGG-Like
network for Cifar-10. Results show that our out-of-order
approach can prune 27, 19, and 42 percent of the operations
for the three networks respectively, without any accuracy
loss, leading to, at least, 1.7x, 1.5x%, 2.1x inference-speedup
over state-of-the-art FPGA/GPU/CPU BNN implementa-
tions. With only 3.3, 0.9 and 2.9 percent accuracy loss, the
pruning rate increases to 49, 43, 48 percent, respectively, with,
atleast, 2.4x,2.1x,and 2.3x speedup. The proposed regulari-
zation techniques can further improve the performance of
OB3BNN-R, on average, by 15 percent with only 0.5 percent
accuracy loss. Our approach is inference runtime pruning, so
no retrain or fine-tuning in training is needed. Although
FPGA is used as a showcase in this paper, the proposed archi-
tecture can be adopted on any smart devices as well.
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