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Grand Accélérateur National d’Ions Lourds (GANIL), CEA/DSM-CNRS/IN2P3,
B.P. 55027, F-14076 Caen Cedex 5, France

Toshio Suzuki

Department of Physics and Graduate School of Integrated Basic Sciences,
College of Humanities and Sciences, Nihon University,
Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan
and National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588, Japan

Yutaka Utsuno

Advanced Science Research Center, Japan Atomic Energy Agency,
Tokai, Ibaraki 319-1195, Japan
and Center for Nuclear Study, University of Tokyo,
Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

(published 27 March 2020)

The atomic nucleus is a quantum many-body system whose constituent nucleons (protons and
neutrons) are subject to complex nucleon-nucleon interactions that include spin- and isospin-
dependent components. For stable nuclei, several decades ago, emerging seemingly regular patterns
in some observables could already be described successfully within a shell-model picture that results
in particularly stable nuclei at certain magic fillings of the shells with protons and/or neutrons: N,
Z ¼ 8, 20, 28, 50, 82, 126. However, in short-lived, so-called exotic nuclei or rare isotopes,
characterized by a large N=Z asymmetry and located far from the valley of β stability on the nuclear
chart, these magic numbers, viewed through observables, were shown to change. These changes in the
regime of exotic nuclei offer an unprecedented view at the roles of the various components of the
nuclear force when theoretical descriptions are confronted with experimental data on exotic nuclei
where certain effects are enhanced. This article reviews the driving forces behind shell evolution from
a theoretical point of view and connects this to experimental signatures.
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I. INTRODUCTION

The atomic nucleus is composed of protons and neutrons
(collectively called nucleons) bound into one entity by nuclear
forces. Its properties have been studied extensively for more
than a century since its discovery by Rutherford (1911),

providing a rather comprehensive picture of stable nuclei, i.e.,
nuclei with infinite or almost infinite lifetimes that are
characterized by a balanced ratio of the number of neutrons
(N) and protons (Z), e.g.,N=Z ∼ 1–1.5. Matter found on Earth
is essentially made up of stable nuclei, including long-lived
primordial isotopes like 235U. Almost all matter in the visible
Universe is composed of atomic nuclei.
While the overall picture had thus been conceived for stable

nuclei, the landscape of atomic nuclei has been significantly
expanded in recent years. This is associated with a major shift
in the frontiers of nuclear physics from stable to exotic (or
unstable) nuclei. Here exotic nuclei imply atomic nuclei with
an unbalanced N=Z ratio as compared to stable ones, thus
losing binding energy due to a large difference in Z and N
(von Weizsäcker, 1935; Bethe and Bacher, 1936). Relatively
small binding energies mean that β-decay channels open up,
proceeding toward more N=Z balanced systems and resulting
in finite (often short, subsecond) lifetimes.
Such extremeN=Z ratios impact not only lifetimes of exotic

nuclei but also their quantum many-body structure relative to
that of stable nuclei. This is the main subject of this review,
with a particular emphasis on the variations of the nuclear
shell structure.
Figure 1 shows a nuclear chart (or Segrè chart), where an

individual nucleus is specified by two coordinates: Z andN. In
Fig. 1, stable nuclei (dark-blue squares) stretch along a “line,”
called the β-stability line. Exotic nuclei are widely distributed
as indicated by light-blue or light-green squares. Their
existence limit on the neutron-rich (proton-rich) side is called
the neutron (proton) dripline. Although a certain number of
exotic nuclei have been familiar to nuclear physics since the

FIG. 1. The nuclear chart as a function of neutron and proton
number N and Z. Each nucleus is represented by a box specified
by Z and N. Dark-blue squares indicate stable nuclei. Exotic
nuclei experimentally observed as of 2012 are shown by light-
blue squares, while light-green squares denote those predicted by
a theoretical model (Koura, 2005). The 11Li nucleus is highlighted
in purple. A possible path of the r process is indicated
schematically by the green arrows. (Inset) Number of bound
neutron-rich exotic nuclei as a function of Z based on Koura
(2005). The light- and dark-green parts count nuclei with two-
neutron separation energy S2n > and < 2 MeV, respectively.
Adapted from Otsuka and Schwenk, 2012, and Otsuka, 2013.
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field’s early days, systematic studies of them began in the
1980s. An example is the measurement of the matter radius of
11Li (Tanihata et al., 1985), marking a visible milestone in the
development of experiments with radioactive ion (or rare-
isotope) beams with the discovery of the neutron halo. Many
other experiments have been conducted in recent decades,
redrawing the nuclear landscape.
The nucleus 11Li is known for its extraordinarily large matter

radius due to the formation of a neutron halo, inherent to the last
two loosely bound neutrons (Hansen and Jonson, 1987). The
neutron halo is a characteristic phenomenon at or near the
dripline that led us to change the canonical assumption that
the nucleon density is almost constant inside the nucleus and
that the nuclear radius is proportional to A1=3, where A ¼
Z þ N is the mass number. While 11Li is located only four units
away from the β-stability line on the nuclear chart, the distance
between the β-stability line and the neutron dripline increases
with Z (see Fig. 1). The nuclei shown in Fig. 1 are all bound.
The inset of Fig. 1 counts the number of bound neutron-rich
exotic nuclei. It starts with just a few for Z ∼ 1, but it grows
rapidly up to more than 50 for Z ¼ 82. Weakly bound nuclei
near the dripline are shown in dark green, where a neutron halo
or phenomena connected to the continuum can be expected.
One notices, however, that the majority of isotopes are still well
bound. Partly because such well-bound exotic nuclei are so
plentiful, but also because they span a remarkable range of
N=Z, we can ask ourselves whether the structure of those many
nuclei is just like that of the stable ones. If not, an intriguing
question arises: what changes can be expected in extremely
N=Z asymmetric nuclei and why?
We also note that the r process, which creates heavy

elements in explosive scenarios such as neutron star mergers
or supernovae in a series of neutron capture reactions and
decays, actually proceeds through extremely neutron-rich

exotic nuclei (as shown schematically in Fig. 1). Thus, for
understanding how the elements in the Universe are formed,
the study of the properties of exotic nuclei is essential.
The advent of radioactive ion beam facilities worldwide,

together with constantly improved experimental techniques,
has enabled a more thorough verification or discovery of the
structure changes in exotic nuclei and ultimately allowed the
nuclear driplines for some isotopes to be reached.
Atomic nuclei show shell structure expressed in terms of the

single-particle orbits of protons and neutrons, similar to
electrons in an atom. Such a shell structure was proposed
originally by Haxel, Jensen, and Suess (1949) and Mayer
(1949), and it has provided a firm footing for various studies
on the structure of stable nuclei. It has been found in recent
years that the shell structure changes as a function of Z and N
in exotic nuclei, and this change is often referred to as shell
evolution. While there has been enormous progress in the
physics of exotic nuclei, we concentrate in this article rather
on the shell evolution, partly because this subject alone is
exhaustive and also because shell evolution is linked to a large
variety of observables, phenomena, and features of current
interest in the field. A primer on nuclear shell structure is
presented in Sec. II.
In Sec. III, we review the definition of the monopole

component of the NN interaction in a pedagogical way.
Although the monopole interaction has been discussed since
Bansal and French (1964), open questions remain. The
effective single-particle energies (ESPEs) are then derived
from the monopole interaction and are shown to be consistent
with earlier derivations [see, e.g., Baranger (1970)]. The
variation of the ESPEs as a function of N or Z is shown to
be a robust mechanism behind shell evolution.
In Sec. IV, we discuss the major sources of the monopole

interaction. In addition to the central force, the tensor force is
considered, and the unique features of its monopole inter-
action are reviewed. The treatment of the tensor force in other
theories is summarized. The monopole effects of the two-body
spin-orbit force are discussed in Sec. IV.F.
Several features of nuclear forces related to the shell evolution

are presented in Sec. V, starting with the renormalization
property of the tensor force and followed by some properties
obtained by a spin-tensor decomposition. The monopole effect
of the three-nucleon force is discussed. Finally, in Sec. V, we
also present a brief overview of ab initio approaches.
Examples of structural changes are discussed in Sec. VI

before a summary is given in Sec. VII.
Some specific topics and discussions are included in the

Supplemental Material (364).

II. NUCLEAR SHELL STRUCTURE: A PRIMER

Here we briefly describe the nuclear shell structure, starting
with the nucleon distributions in nuclei. Extensive precision
electron scattering experiments carried out on stable targets
starting in the 1960s combined with other experiments showed
that the nucleon density ρðrÞ is essentially constant well inside
the nucleus, with smooth but rapid damping at the surface, as
shown in Fig. 2(a): the paradigm of density saturation. The
mean potential for a nucleon inside the nucleus represents the
mean effects of the nucleon-nucleon (NN) interaction, or the

FIG. 2. (a) Nucleon density distribution ρðrÞ and (b) mean
potential UðrÞ are shown as a function of the distance from the
center of the nucleus r. (c) Single-particle energies for a harmonic
oscillator (HO) potential well, with an added l2 term and a spin-
orbit (SO) interaction l⃗ · s⃗. Shell-gap categories are shown by
HO and SO. The N label refers here to the oscillator shell
N ¼ 2ðn − 1Þ þ l, with n − 1 the number of nodes of the radial
wave function and l the orbital angular momentum. Adapted
from Ragnarsson and Nilsson, 1995.
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nuclear force, as generated by the other nucleons. The NN
interaction between free nucleons is strongly repulsive at short
distances (below 0.7 fm), becomes attractive at medium
range (≈1.0 fm), and practically vanishes at large distances
(beyond 2 fm). In the nuclear interior, the nuclear density is
∼0.17 nucleons=fm3. For the description of nucleons con-
fined in the nucleus, an effective NN interaction that incor-
porates various renormalization effects, such as in-medium
effects, short-range correlation effects, etc., is used. Those
nucleons interact mainly with their immediate neighbors,
which leads to a saturation of the binding energy. Com-
bining those properties of the density and the nuclear force, a
nucleon well inside the nucleus is subject to the same mean
effect independent of its location. In other words, the mean
potential has a flat bottom. The potential becomes gradually
shallower toward the surface, as shown in Fig. 2(b). Such a
mean potential can be further modeled by a harmonic oscillator
(HO) potential that is also shown in Fig. 2(b). For that, the
nucleons move on the orbits that are the eigenstates of this HO
potential, and the energies are given in terms of the oscillator
quanta N , as shown in the column “H.O.” In order to resolve
systematic discrepancies with experiment, Mayer and Jensen

included the spin-orbit (SO) coupling l⃗ · s⃗, where l⃗ and s⃗
denote, respectively, the orbital angular momentum and the spin
of nucleon (Haxel, Jensen, and Suess, 1949; Mayer, 1949). This

l⃗ · s⃗ term with the proper strength produces the spin-orbit
splitting, where the orbit with the total angular momentum
j> ¼ lþ 1=2 becomes lower than the one with j< ¼ l − 1=2.
The resultant single-particle levels are shown in the right
column in Fig. 2(c).
Without the SO coupling, the single-particle states are

classified by the N and l quantum numbers, as shown in the
center column of Fig. 2(c). The single-particle states are
grouped according to N , forming shells. Shells are separated
by shell gaps. The number of protons or neutrons below a
certain gap defines a magic number. The magic number is
related to the stability of the nucleus: for instance, up to 20
protons can be put into the shells formed by the 2s, 1d, 1p,
and 1s orbits, whereas the 21st protons must occupy either the
1f or 2p orbit at higher energy (i.e., leading to a smaller
binding energy). Beyond the magic number 20, the SO
coupling splits the 1f orbit into 1f7=2 and 1f5=2 sufficiently
strong and creates a magic number at 28, as shown in Fig. 2(c).
The 1f7=2 orbit is bordered in this figure by two magic
numbers, 20 and 28: the former has a HO origin, whereas the
latter has a SO origin. Other shells and magic numbers are
shown in the same figure. While N ¼ 40 is a subshell gap, all
magic nuclei above N ¼ 40 are of the SO origin. The major
magic numbers, which correspond to large shell gaps, are 2, 8,
20, 28, 50, 82, and 126. This shell structure and the
corresponding magic numbers turn out to be extremely
successful in the description of the nuclei.
Note that the previous argument is based only on a few

robust properties: density saturation, the short range of the
nuclear force, and the existence of spin-orbit splitting. This
independent-particle model, where nucleons are confined
by a potential without interacting with each other, can
formally be refined through the Hartree-Fock (HF) method,
based on effective NN interactions. Figure 3(a) shows this

schematically: a HF calculation for Z and N being magic
numbers is supposed to produce the corresponding HF ground
state, which is a closed shell. For this ground state, single-
particle energies for particle (and hole) states are obtained
within the HF framework, yielding Mayer-Jensen’s shell
structure; see Fig. 2(c). We now add nucleons to orbits above
the closed shell called valence orbits. Figure 3(b) shows, still
schematically, that the single-particle energies are shifted due
to those added nucleons, mediated by the monopole inter-
action (indicated by the green wavy line in the figure), which
is a component of the nuclear force. The monopole interaction
shifts single-particle energies effectively without mixing
different orbits, and its effect depends only on the occupation
numbers of individual orbits; see Sec. III for details. Such
energy shifts represent shell evolution and manifest them-
selves systematically in a variety of observables measured for
exotic nuclei. They also represent one of the main subjects of
this review.
Figure 3(b) shows a small energy gap between two proton

orbits (yellow circle). Such energy gaps can appear as Z and/
or N changes. If such gaps become large enough, they may
result in new magic numbers. Alternatively, some of the
conventional magic numbers may disappear. We shall see how
the shell structure changes or evolves over the Segrè chart.
We stress that the single-particle orbits shown in Fig. 3 are

obtained for a spherical closed shell, i.e., a spherical HF
ground state. This is the picture for most of the discussions in
this article. For the majority of nuclei, however, their shape is
nonspherical (deformed). Nuclear deformation has been
studied extensively since Rainwater (1950), Bohr (1952),
and Bohr and Mottelson (1953) as one of the major subjects of
nuclear physics (Bohr and Mottelson, 1975). The deformation
can be described in terms of various correlations of nucleons
in the single-particle orbits. Besides, the HF solution itself can
be deformed in some cases, where the mean field is not
isotropic and the HF ground state is not spherical. With the
onset of deformation, deformed shell gaps can develop and
lead to deformed magic numbers. This is related to nuclear
shape coexistence, i.e., the appearance of states with different
shapes at similar energies; see reviews by Heyde et al. (1985),

FIG. 3. Schematic illustrations of (a) closed-shell and single-
particle states in a Hartree-Fock picture and (b) single-particle
states with additional neutrons in a valence orbit (small blue
circles). The large yellow circle indicates a subshell gap. The
green wavy line denotes the monopole interaction.
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Wood et al. (1992), Heyde and Wood (2011), and Wood
and Heyde (2016). Such a situation can be found in many
nuclei (Heyde et al., 1985; Wood et al., 1992; Heyde and
Wood, 2011).
Coming back to spherical magic numbers, experimental hints

of their appearance or disappearance are visible, for example, in
the excitation energy of the first 2þ state. In the ground state of
a magic nucleus, protons and neutrons fill single-particle orbits
up to a magic number and the corresponding large energy gap,
and hence nucleons must be excited across those gaps to form
excited states. Thus, the excitation energy becomes large, as
with the relevant energy gaps. Because the first 2þ state is the
lowest excited state in many nuclei with even numbers of Z
and N, high values of the lowest 2þ level may indicate the
occurrence of magic numbers. Figure 4(a) shows the 2þ1
energies obtained for stable and long-lived (half-life > 30

days) nuclei as a function ofN for many isotopic chains. Higher
2þ1 levels point remarkably well to Mayer-Jensen’s magic
numbers. Figure 4(b) plots the 2þ1 levels for all nuclei, including
exotic ones, as of 2016. As compared to the picture based on
Mayer-Jensen’s scheme, additional elevated 2þ1 energies stand
out at N ¼ 16 (24O), 32 (52Ca), and 34 (54Ca) as well as at
N ¼ 40 ð68NiÞ. We note that 2þ1 energies are impacted by a
variety of correlations, such as pairing, for example, but for the
extreme values they can be attributed to magic numbers. It
should be remarked, however, that, while they provide useful
first indicators for magic numbers, they are not a decisive
fingerprint.
Figure 5 indicates schematically how shell closures at N ¼

32 and 34 may be seen in the neutron single-particle levels for
the Ca and Ni isotopes. The figure shows the relevant single-
particle level scheme of the Ni isotopes, which is consistent

with Fig. 2(c), representing the situation in stable nuclei. This
is confronted in the single-particle levels of the Ca isotopes,
where additional subshell closures at neutron numbers 32 and
34 are shown, resulting in an ordering of the neutron orbitals
in 52;54Ca that is different from Fig. 2(c). We discuss
throughout this review why and how such shell evolution
occurs.
Thus, the magic numbers and shell structure are not

immutable and undergo change. As we look back several
decades, the concept of rigid magic numbers was already being
questioned in the 1970s upon the observation of anomalies in
experimental masses, nuclear radii, and spectroscopy of nuclei
far from stability, around N ¼ 20, since Thibault et al. (1975),
along with Huber et al. (1978), Détraz et al. (1979), and
Guillemaud-Mueller et al. (1984). A much weakened effect of
the N ¼ 20 gap, combined with the emergence of deformed
intruder states, was seen in various observables and interpreted
to signal a change in the shell structure. We note that another
earlier observation questioning conventional understanding
was marked by the discovery of the abnormal ground state
of 11Be by Wilkinson and Alburger (1959), followed by a
theoretical analysis by Talmi and Unna (1960).
Over the years, the local disappearance of many of the

previously well-established shell gaps has been pointed out far
from stability, leading to a revised picture of the magic
numbers and shell structure in general. One of the goals of
this review is to summarize the presently available under-
standing, to extract basic underlying mechanisms of the shell
evolution, and to provide an overview of various nuclear
phenomena related to them. Such outcomes allow us to
anticipate new physics in hitherto unexplored regions of
the Segrè chart.
In this review, the theoretical description of the structure of

those nuclei is given mainly within the shell-model frame-
work, which is known as configuration interaction method in
other disciplines. Protons (neutrons) in valence orbits are
called valence protons (neutrons). The shell-model description
of atomic nuclei is made in terms of such valence orbits on top
of the inert core (i.e., closed shell). Effects of states outside
this scheme are expected to be included in effective NN
interaction and effective operators, obtained in phenomeno-
logical, microscopic, or hybrid manners.
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FIG. 4. Systematics of the first 2þ levels, for (a) stable and long-
lived nuclei, and (b) all nuclei included measured up to 2016
(Pritychenko et al., 2016).

FIG. 5. Schematic illustration of shell evolution from Ni to Ca
for neutron orbits. Light-blue circles represent protons. The wavy
line implies the interaction between the proton 1f7=2 and the
neutron 1f5=2 orbit. The numbers in circles indicate (semi)magic
numbers. From Otsuka and Tsunoda, 2016.
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The valence nucleons interact with each other through the
effective NN interaction, and various configurations of valence
nucleons are mixed in a shell-model eigenstate. Many-body
correlations are important for the resulting eigenstates and can
often be related to certain parts of the effective NN interaction.
We decompose the effective NN interaction into three parts:
(a) monopole as discussed previously, (b) pairing, and (c) all
other terms. The pairing part corresponds to proton-proton and
neutron-neutron interactions coupled to the angular momen-
tum Jπ ¼ 0þ (J, total angular momentum; π, parity), which is
an extended version of the usual BCS-type pairing. All other
terms account for the remaining parts.
Although the remaining parts include various types of

interactions, dominant effects on the energy and structure
of the ground and the low-lying states, which are of current
interest, are due to the quadrupole interaction. Such quadru-
pole interactions can be modeled, to a good extent, by the
coupling between quadrupole-moment operators. The quadru-
pole interaction has been studied extensively over decades, for
instance, by Nilsson (1955), Elliott (1958), Bes and Sorensen
(1969), Dufour and Zuker (1996), and Kaneko et al. (2011),
while the SU(3) picture of the quadrupole moment (Elliott,
1958) was generalized, for instance, by Zuker et al. (2015).
Figure 6 shows the ground-state expectation values of these

parts for the Mg isotopes with even N ¼ 8–20, calculated with
a shell model in the sd shell for 20–30Mg, and in the sd-pf shell
for 32Mg, where pf-shell configurations become important, as
mentioned previously. The USD Hamiltonian interaction

(Brown and Richter, 2006) is used for 20–30Mg. The SDPF-
M interaction introduced in Utsuno et al. (1999) is taken for
32Mg, while the calculation without the excitation from the sd
to the pf shells is also shown for comparison. The expectation
value of the single-particle-energy contribution increases in
magnitude up to N ¼ 18 since more neutrons occupy well-
bound orbits (negative energies). The magnitude of the
“monopole” contribution increases up to N ¼ 20. The “pair-
ing” contribution and that of the “other terms” are also shown
separately in the bottom part of the figure. This part indicates
clearly that the contribution of the pairing interaction does not
change much. In contrast, the contribution of the other terms,
dominated by the quadrupole interaction as previously men-
tioned, varies sharply with its maximum (in magnitude) at
N ¼ 12 (24Mg). This is consistent with a large quadrupole
moment of 24Mg. The contribution of the other terms
decreases up to N ¼ 18, as the quadrupole deformation
weakens. These trends resemble the ones shown in Fig. 4
of Heyde and Wood (2011) across a shell for heavy nuclei. At
N ¼ 20, an intruder state composed of many particle-hole
excitations is energetically favored over normal configurations
(i.e., no particle-hole excitations across the N ¼ 20 magic
gap) and becomes the ground state. To this state, the con-
tribution of the other terms becomes large, only a little smaller
than for 24Mg, pointing to a strongly deformed ground state.
The monopole and pairing contributions increase as well from
N ¼ 18 to 20, but the “SPE” contribution is reduced due to
particle-hole excitations across the N ¼ 20 gap. For compari-
son, results of a calculation are shown without cross-shell
excitations, resulting in almost no quadrupole correlations
and a higher energy. Thus, the Mg isotopes show varying
deformation and the phenomenon of shape coexistence atN ¼
20 (Heyde andWood, 2011). The features shown here apply to
many isotopic chains across the nuclear chart. The three parts,
monopole, pairing, and other terms, exhibit sizable contribu-
tions with notable variations. In this article, we highlight the
important role of the monopole interaction in describing
structural changes mainly from the shell-model viewpoint.
The Hartree-Fock calculation discussed in Fig. 3 corre-

sponds to a spherical ground state. Considering the strong
quadrupole and higher multipole interactions, deformed
ground states may occur and can be described through
deformed HF configurations. A nonspherical mean potential
is obtained, and the HF ground state becomes the intrinsic
state of a rotational band (Ring and Schuck, 1980). There
exists an extensive literature on the deformed HF description
of shape coexistence; see, e.g., Wood et al. (1992), Reinhard
et al. (1999), and Heyde and Wood (2011).
We now comment on the comparisons of the shell structure

of atomic nuclei to the shell structure of other many-body
systems. First, as the nuclear potential is generated by its
constituents, shell structure changes from nucleus to nucleus,
leading to shell evolution. We mention here that shell structure
appears in other mesoscopic systems such as metallic clusters,
as described, for instance, by Sugano (1991), Knight et al.
(1984), and Clemenger (1985), where the correspondence to
the classical motion and geometrical symmetries is important.
It has been argued that the damping of the nucleon density

in the radial direction may be more gradual in neutron-rich

FIG. 6. Contributions of the monopole, pairing, and all other
terms of the NN interaction to the ground-state energy of Mg
isotopes with even N. The contribution from the single-particle
energy (SPE) is included also. The other terms are dominated by a
quadrupole interaction. The upper panel shows the cumulative
contributions, while the lower one shows the variations of pairing
and the other terms. For N ¼ 20, the full calculation, including
the excitations to the pf shell, is shown in comparison to the
calculation without such excitations. For the latter, the small
arrow indicates the ground-state energy because the “all other
terms” calculation gives a repulsive contribution (a positive
value). See the text for details.
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exotic nuclei than in stable nuclei, causing reduced spin-orbit
splittings and single-particle levels that are distributed more
evenly (Dobaczewski et al., 1994), sometimes referred to as
“shell quenching.” This hypothetical phenomenon is predicted
to be found at or near the dripline, confined to weakly bound
systems, and remains a challenge for future experiments. This
review addresses the shell evolution driven by the combina-
tion of characteristic features of nuclear forces and extreme
neutron:proton ratios of the nucleus.

III. MONOPOLE INTERACTION AND EMPIRICAL
ANALYSIS BASED ON IT

The shell structure can be specified by a set of single-
particle energies of valence (or active) orbits on top of a closed
shell (or inert core). As more neutrons or protons are added to
a nucleus, the single-particle energies of those valence orbits
may change due to the interaction between valence nucleons.
This implies some changes of shell structure, called shell
evolution, as introduced in Sec. I. The shell evolution is
generated by the monopole part of the nucleon-nucleon (NN)
interaction, which will be referred to hereafter as the monop-
ole interaction. The NN interaction here represents an
effective one for nucleons in nuclei. Although there can be
a variety of such interactions, from fitted to microscopically
derived ones including hybrid versions, we discuss their
general properties. Here we first introduce the definition of
the monopole interaction, and we discuss how it acts. The
monopole interaction was discussed in the past, for instance,
by Bansal and French (1964) and Poves and Zuker (1981). We
introduce the monopole interaction in a different way, as an
average of correlation energies of two nucleons in an open-
shell nucleus, without referring to closed-shell energies. The
final outcome of this formulation turns out to be basically
consistent with those earlier works.
The effective single-particle energy will then be defined for

open-shell nuclei in a close connection to the monopole
interaction there, in a possibly more transparent and straight-
forward way than the simple interpolation between the
beginning and end of a given shell.
We then move forward to the evolution of the shell structure

by defining effective single-particle energies with this monop-
ole interaction. We also present applications of the monopole
interaction to some examples taken from actual nuclei. At this
point, we stress that the monopole interaction is a part of the
NN interaction, and that the rest of the interaction produces
various dynamical correlations and must be taken into account
for an actual description of the nuclear structure. Nevertheless,
as the monopole interaction generates unique and crucial
effects, it deserves special effort and attention.

A. Monopole interaction

We start with single-particle orbits. For each orbit, the total

angular momentum is specified by j⃗ ¼ l⃗þ s⃗, with its orbital

angular momentum l⃗ and spin s⃗. The single-particle orbits are
labeled by the magnitudes of their j⃗’s, referred to as j; j0;…
hereafter. They are combined with the corresponding
magnetic quantum numbers, m;m0;… as ðj; mÞ; ðj0; m0Þ;….

The symbols j; j0;… are put in a fixed order and may carry
implicitly such a sequential ordering, as well as other quantum
numbers like the node of the radial wave function n. Having
these single-particle orbits on top of the inert core (i.e., closed
shell), we denote the SPEs of those orbits as ϵ0j ; ϵ

0
j0 ;…. As

usual, this SPE ϵ0j stands for the sum of the kinetic energy of a
nucleon on this orbit j and the total effects of nuclear forces on
this nucleon from all nucleons in the inert core.
We begin with the simpler case by assuming that there is

only one kind of nucleons, e.g., neutrons. The Hamiltonian is
expressed then as

Ĥn ¼
X
j

ϵ0j n̂j þ v̂nn; ð1Þ

where n̂j denotes the number operator for the orbit j and v̂nn
stands for the neutron-neutron effective interaction.
The product state with the first and second neutron in the

states j, m and j0, m0, respectively, is written as

jj; m ⊗ j0; m0Þ: ð2Þ

Their antisymmetrized state is indicated by

jj;m; j0; m0i ¼ fjj; m ⊗ j0; m0Þ − jj0; m0 ⊗ j; mÞg=
ffiffiffi
2

p
: ð3Þ

A two-body interaction between two neutrons can be
written as

v̂nn ¼
X

ðj1;m1;j01;m
0
1
Þ;ðj2;m2;j02;m

0
2
Þ
hj1; m1; j01; m

0
1jv̂nnjj2; m2; j02; m

0
2i

× a†j1;m1
a†j0

1
;m0

1
aj0

2
;m0

2
aj2;m2

; ð4Þ

where ðj; m; j0; m0Þ in the summation is an ordered pair of two
states j, m and j0, m0, h� � � jv̂j � � �i denotes an antisymmetrized
two-body matrix element, and a†j;m (aj;m) implies the creation
(annihilation) operator of the state j,m. Regarding the ordered
pair ðj1; m1; j01; m

0
1Þ, we can assume without loss of generality

that m1 < m0
1 if j1 ¼ j01 or j1 < j01 in their prefixed ordering,

as mentioned previously.
The monopole interaction is defined as a component

extracted from a given interaction, v̂nn, so that it represents
the effect averaged over all possible orientations of two
neutrons in the orbits j and j0. Here orientations refer to
various combinations of m and m0 within the orbits j and j0.
Figure 7 provides a general visualization of the monopole
matrix element, exhibiting different orientations by differently
tilted orbiting planes. In order to formulate this, the monopole
matrix element for the orbits j and j0 is defined as

Vm
nnðj; j0Þ ¼

P
ðm;m0Þhj;m; j0; m0jv̂nnjj; m; j0; m0iP

ðm;m0Þ1
; ð5Þ

where the summation over m, m0 is taken for all ordered pairs
allowed by the Pauli principle.
As the denominator counts the number of allowed states,

this is exactly the average mentioned previously. The monop-
ole interaction as an operator is then expressed as
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v̂nn;mono ¼
X
j≤j0

v̂mnnðj; j0Þ; ð6Þ

with

v̂mnnðj; j0Þ ¼ Vm
nnðj; j0ÞΣm;m0a†j;ma

†
j0;m0aj0;m0aj;m: ð7Þ

After simple algebra, this turns out to be

v̂mnnðj; j0Þ ¼
(
Vm
nnðj; jÞ12n̂jðn̂j − 1Þ; for j ¼ j0;

Vm
nnðj; j0Þn̂jn̂j0 ; for j ≠ j0;

ð8Þ

where n̂j stands for the number operator for the orbit j. The
form in Eq. (8) appears to be in accordance with what can be
expected intuitively, from the standpoint of average, for
identical fermions. The two neutrons in the orbits j and j0

can be coupled to the total angular momentum J, where

J⃗ ¼ j⃗þ j⃗0, and the wave function with a good J value is given
by a particular superposition of the states in Eq. (3) over all
possible values ofm andm0. It is obvious that the effects of the
monopole interaction in Eq. (8) is independent of the total
angular momentum J. We emphasize again that the monopole
interaction is simply an average of a given general interaction
over all possible orientations, and its effect can be expressed
by the orbital number operator as in Eq. (8) for the neutron-
neutron interaction.
We next discuss systems composed of protons and neu-

trons. The total Hamiltonian is then written as

Ĥ ¼ Ĥn þ Ĥp þ v̂pn; ð9Þ

where Ĥp stands for the proton Hamiltonian defined as in
Eq. (1) and v̂pn represents the proton-neutron effective
interaction.
The proton and neutron number operators in the orbit j are

denoted as n̂pj and n̂nj , respectively. We introduce the isospin
operators in the orbit j: τ̂þj , τ̂−j , and τ̂zj. We adopt the
convention that protons are in the state of isospin z component
τz ¼ þ1=2, whereas neutrons are in τz ¼ −1=2. Here τ̂þj (τ̂−j )
denotes the operator changing a neutron (proton) to a proton
(neutron) in the same (j, m) state, and τ̂zj equals ðn̂pj − n̂nj Þ=2.
In other words, τ̂þj and τ̂−j are the isospin raising and lowering
operators restricted to the orbit j, while τ̂0j is its z component.

The magnitude of the usual isospin, i.e., not specific to an
orbit, is denoted by T, including that of two nucleons
interacting through the NN interaction.
We now discuss the proton-neutron monopole interaction.

Although the basic idea remains the same as the previous case
for two neutrons, certain differences arise. To be precise, a
proton and a neutron are coupled in a symmetric way for the
T ¼ 0 case, and in an antisymmetric way for the T ¼ 1 case.
Details of the discussions are presented in Sec. S1 of the
Supplemental Material (364), and we show here only major
points, referring to the corresponding parts there.
The monopole interaction due to the T ¼ 0 part of v̂pn is

expressed as [see the discussions in Sec. S1 up to Eq. (S16) in
the Supplemental Material (364)]

v̂pn;mono;T¼0 ¼
X
j;j0

Vm
T¼0ðj; j0Þ

1

2
n̂pj n̂

n
j0

−
X
j<j0

Vm
T¼0ðj; j0Þ

1

2
fτ̂þj τ̂−j0 þ τ̂−j τ̂

þ
j0 g

−
X
j

Vm
T¼0ðj; jÞ

1

2
∶τ̂þj τ̂−j ∶; ð10Þ

where the symbol ∶ � � � ∶ denotes a normal product, and the
T ¼ 0 monopole matrix element is defined as an average over
states with all possible orientations with the symmetric
coupling of proton and neutron, as indicated by S [see the
discussions in Sec S1 of the Supplemental Material (364)
linked to Eqs. (S5) and (S15)]:

Vm
T¼0ðj; j0Þ ¼

P
ðm;m0Þðm;m0∶Sjv̂pnjm;m0∶SÞP

m;m01
: ð11Þ

If the interaction v̂ is isospin invariant as usual, the
monopole matrix element in Eq. (5) is the T ¼ 1 monopole
matrix element,

Vm
T¼1ðj; j0Þ ¼ Vm

nnðj; j0Þ: ð12Þ

Coming back to antisymmetric couplings of a proton and a
neutron, we apply the procedures similar to those for T ¼ 0

states, and we obtain [see the discussions in Sec. S1 of the
Supplemental Material (364) linked to Eq. (S22)]

FIG. 7. A schematic visualization of monopole matrix elements for the two-body interaction v.
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v̂pn;mono;T¼1 ¼
X
j;j0

Vm
T¼1ðj; j0Þ

1

2
n̂pj n̂

n
j0

þ
X
j<j0

Vm
T¼1ðj; j0Þ

1

2
fτ̂þj τ̂−j0 þ τ̂−j τ̂

þ
j0 g

þ
X
j

Vm
T¼1ðj; jÞ

1

2
∶τ̂þj τ̂−j ∶: ð13Þ

By combining Eqs. (10) and (13), the whole expression of the
proton-neutron monopole interaction becomes

v̂pn;mono ¼
X
j;j0

1

2
fVm

T¼0ðj; j0Þ þ Vm
T¼1ðj; j0Þgn̂pj n̂nj0

−
X
j<j0

1

2
fVm

T¼0ðj; j0Þ − Vm
T¼1ðj; j0Þgfτ̂þj τ̂−j0 þ τ̂−j τ̂

þ
j0 g

−
X
j

1

2
fVm

T¼0ðj; jÞ − Vm
T¼1ðj; jÞg∶τ̂þj τ̂−j ∶: ð14Þ

Although the meaning of the first term on the right-hand side
of Eq. (14) is straightforward, it needs some explanation to
understand the other two terms in depth. Figure 8 may help,
by showing how they work. In the case of j ≠ j0, Figs. 8(a)
and 8(b) indicate the same process in the isospin and proton-
neutron schemes, respectively. Figure 8(a) indicates that the
fτ̂þj τ̂−j0 þ τ̂−j τ̂

þ
j0 g term produces a monopole interaction with a

charge exchange process, whereas the same process may look
different in Fig. 8(b). Figures 8(c) and 8(d) are for the case of
one orbit j with similar implications. One thus see, from
Fig. 8, how the charge exchange processes can be incorpo-
rated into the monopole interaction. We come back to this
figure later. We note that the T ¼ 0 and T ¼ 1 monopole

matrix elements contribute with opposite sign relations com-
pared to the first term.
The neutron-neutron and proton-proton monopole inter-

actions can be rewritten in a similar way as

v̂nn;mono ¼
X
j

Vm
T¼1ðj; jÞ

1

2
n̂nj ðn̂nj − 1Þ þ

X
j<j0

Vm
T¼1ðj; j0Þn̂nj n̂nj0

ð15Þ
and

v̂pp;mono ¼
X
j

Vm
T¼1ðj; jÞ

1

2
n̂pj ðn̂pj − 1Þ þ

X
j<j0

Vm
T¼1ðj; j0Þn̂pj n̂pj0 :

ð16Þ
We thus gain the complete expression for the total monopole
interaction,

v̂mono ¼ v̂pp;mono þ v̂nn;mono þ v̂pn;mono: ð17Þ

B. Multipole interaction

We have discussed the monopole interaction that is a part of
the NN interaction. The remaining part of the NN interaction
is called the multipole interaction. The multipole interaction is
often expressed as v̂M, and it includes, in particular, the
quadrupole interaction. In this review, we denote the multipole
interaction as v̂multi, which is defined by

v̂multi ¼ v̂ − v̂mono; ð18Þ

where v̂ stands for the full interaction and v̂mono is defined in
Eq. (17). The multipole interaction may have the subscript pp,
nn, or pn if necessary.
We note that, although the notion of the multipole inter-

action has appeared, for instance, in Brown and Kuo (1967),
including the importance of the quadrupole and hexadecupole
forces, the multipole interaction in the present sense was
introduced, as “nonmonopole,” by Poves and Zuker (1981). A
model of the multipole interaction was introduced and
developed in a global description of collective states by
Dufour and Zuker (1996).

C. Monopole matrix element in the j-j coupling scheme

The monopole matrix element is defined, in some cases, by
an alternative but equivalent expression,

Vm
T ðj; j0Þ ¼

P
Jð2J þ 1Þhj; j0; J; Tjv̂jj; j0; J; TiP

Jð2J þ 1Þ
for T ¼ 0 and 1; ð19Þ

where J takes only even (odd) integers for j ¼ j0 with T ¼ 1
(T ¼ 0). Section S2 of the Supplemental Material (364) shows
that this expression is indeed equivalent to the one pre-
sented here.
The closed-shell properties are derived from the expres-

sions shown thus far. The actual derivations and results are
given in Sec. S3 of the Supplemental Material (364).

(a)

(b) (d)

(c)

FIG. 8. Implication of τ̂þj τ̂
−
j0 terms. (a) and (c) are for the

fτ̂þj τ̂−j0 þ τ̂−j τ̂
þ
j0 g and ∶τ̂þj τ̂−j ∶ cases in the isospin scheme, re-

spectively. (b) and (d) are similar to (a) and (c), respectively, in
the proton-neutron scheme. The magnetic substates are indicated
by m and m0.
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D. Effective single-particle energy

We discuss here effective single-particle energy and its
derivation from the monopole interaction.
As one moves on the Segrè chart, the proton number Z and

the neutron number N change, and the single-particle energy
(SPE) ϵ0j mentioned in Sec. III.A changes also. This change
has the following two aspects. One is due to the kinetic
energy: as A increases, the radius of the nucleus becomes
larger, and consequently the radial wave function of each orbit
becomes wider. This lowers the kinetic energy. The other
aspect is the variation in the effects from nucleons in the inert
core. As A increases, the radial wave functions of the orbits in
the inert core also become stretched out radially. This can
reduce the magnitude of their effects. While these two changes
can be of relevance, for instance, over a long chain of isotopes,
they are considered to be rather minor within each region of
current interest on the Segrè chart (Bohr and Mottelson,
1969), and we do not take them into account in this article.
The SPE has another origin: the contribution from other

nucleons outside the inert core, i.e., valence nucleons. This
valence contribution to the orbit j is referred to as ϵ̂j hereafter.
The total single-particle energy, usually called effective single-
particle energy (ESPE), is denoted as

ϵj ¼ ϵ0j þ ϵ̂j: ð20Þ

We discuss here the valence contribution ϵ̂j in some detail.
Note that ϵ0j is a constant as stated, whereas ϵ̂j is an operator
by nature because of its dependence on the states of other
valence nucleons.
The magnetic substates of the orbits j and j0 are denoted by

m (m¼j;j−1;…;−jþ1;−j) and m0 (m0¼j0;j0−1;…;−j0þ1;
−j0), respectively. The matrix element hm;m0jv̂jm;m0i varies
for different combinations of m and m0. On the other hand, as
ϵ̂j is a part of the single-particle energy of the orbit j, it should
be independent of m. We therefore extract the m-independent
component from these matrix elements in order to evaluate
their contribution to ϵ̂j. Because of them andm0 dependences,
this can be done by taking the average over all possible
combinations of m and m0, which is the monopole interaction
discussed in Sec. III.A.
In the case of two neutrons in the same orbit j, the

monopole interaction is included in Eq. (15). The difference
due to the addition of one neutron, n̂nj → n̂nj þ 1, gives the
contribution to ϵ̂j as

Δðj;nnÞϵj ¼ Vm
T¼1ðj; jÞ12fðn̂nj þ 1Þn̂nj − n̂nj ðn̂nj − 1Þg

¼ Vm
T¼1ðj; jÞn̂nj : ð21Þ

The difference due to the increase, n̂nj → n̂nj þ 1, for j ≠ j0 is
written as

Δðj0;nnÞϵj ¼ Vm
T¼1ðj; j0Þfn̂nj0 ðn̂nj þ 1Þ − n̂nj0 n̂

n
jg

¼ Vm
T¼1ðj; j0Þn̂nj0 : ð22Þ

Thus, the contribution from the neutron-neutron interaction
results in

ϵ̂n→n
j ¼

X
j0
Vm
T¼1ðj; j0Þn̂nj0 : ð23Þ

The contribution from the proton-proton interaction can be
shown similarly,

ϵ̂p→p
j ¼

X
j0
Vm
T¼1ðj; j0Þn̂pj0 : ð24Þ

In the case of the proton-neutron interaction, the monopole
interaction is shown in Eq. (14). We first discuss the effect
from the first term on the right-hand side. The difference due
to the increase, n̂nj → n̂nj þ 1, gives the contribution to ϵ̂j (of
the neutrons) as

ϵ̂p→n;0
j ¼

X
j0

1
2
fVm

T¼0ðj0; jÞ þ Vm
T¼1ðj0; jÞg

× fn̂pj0 ðn̂nj þ 1Þ − n̂pj0 n̂
n
jg

¼
X
j0

1

2
fVm

T¼0ðj0; jÞ þ Vm
T¼1ðj0; jÞgn̂pj0 : ð25Þ

Likewise, the difference due to the increase, n̂pj → n̂pj þ 1,
gives the contribution to ϵ̂j (of the protons) as

ϵ̂n→p;0
j ¼

X
j0

1

2
fVm

T¼0ðj; j0Þ þ Vm
T¼1ðj; j0Þgn̂nj0 : ð26Þ

We next discuss the effect from the second and third terms
on the right-hand side of Eq. (14). Because the operator
τ̂þj τ̂

−
j0 þ τ̂−j τ̂

þ
j0 working between j ≠ j0 shifts a proton j0 → j

and a neutron j → j0, and vice versa [see Figs. 8(a) and 8(b)],
the second term does not contribute to the ESPE. Note that
effects of this term are fully included when the Hamiltonian is
diagonalized.
The situation is different for the last term on the right-hand

side of Eq. (14), ∶τ̂þj τ̂−j ∶. Note that the protons and neutrons
occupy the same orbit j now. Since the term −∶τ̂þj τ̂−j ∶
exchanges a proton and a neutron, a subset of its effect is
relevant now if this term both annihilates a proton and a
neutron both in the same magnetic substate m and creates
them in exactly the same substate. Formally speaking, this
process cannot be written like the first term on the right-hand
side of Eq. (14). We, however, can introduce a practical
approximation. If there are nnj neutrons in the orbit j, they can
be assumed, in the first approximation, to be equally distrib-
uted over all possible m states. In this equal distribution
approximation, a proton in the magnetic substatem can feel an
interaction with a neutron in the substate m with a probability
n̂nj =ð2jþ 1Þ. This approximation can be expressed as

−∶τ̂þj τ̂−j ∶ ∼
n̂pj n̂

n
j

2jþ 1
: ð27Þ

This approximation can be understood also by considering
the case of m ¼ m0 in Fig. 8(d). By combining Eq. (27) with
the first term on the right-hand side of Eq. (14), we define the
effective proton-neutron monopole interaction as
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v̂pn;mono−eff

¼
X
j≠j0

1

2
fVm

T¼0ðj;j0ÞþVm
T¼1ðj;j0Þgn̂pj n̂nj0

þ
X
j

1

2

�
Vm
T¼0ðj;jÞ

2jþ2

2jþ1
þVm

T¼1ðj;jÞ
2j

2jþ1

�
n̂pj n̂

n
j : ð28Þ

The ESPE is evaluated with this effective monopole inter-
action hereafter.
The proton-neutron interaction thus contributes to the ESPE

of the neutron orbit j as

ϵ̂p→n
j ¼

X
j0

1

2
fṼm

T¼0ðj0; jÞ þ Ṽm
T¼1ðj0; jÞgn̂pj0 ; ð29Þ

and to the ESPE of the proton orbit j as

ϵ̂n→p
j ¼

X
j0

1

2
fṼm

T¼0ðj; j0Þ þ Ṽm
T¼1ðj; j0Þgn̂nj0 ; ð30Þ

where Ṽ’s are modified monopole matrix elements defined by

Ṽm
T¼0;1ðj; j0Þ ¼ Vm

T¼0;1ðj; j0Þ; for j ≠ j0; ð31Þ

Ṽm
T¼0ðj; jÞ ¼ Vm

T¼0ðj; jÞ
2jþ 2

2jþ 1
; ð32Þ

and

Ṽm
T¼1ðj; jÞ ¼ Vm

T¼1ðj; jÞ
2j

2jþ 1
: ð33Þ

We note that this substitution of Vm
T¼1ðj; jÞ with Ṽm

T¼1ðj; jÞ is
only for the proton-neutron interaction, keeping Eqs. (23)
and (24) unchanged. It is worth mentioning that the effective
monopole interaction in Eq. (28) produces the exact energy for
a closed shell, hn̂pj i ¼ 2jþ 1 or hn̂nj i ¼ 2jþ 1, because the
equal distribution approximation turns out to be exact.
We express the valence contribution to the ESPE from

Eqs. (23), (24), (26), and (29) by introducing

Ṽm
pnðj; j0Þ ¼ 1

2
fṼm

T¼0ðj; j0Þ þ Ṽm
T¼1ðj; j0Þg: ð34Þ

It is then, for the proton orbit j,

ϵ̂pj ¼
X
j0
Vm
T¼1ðj; j0Þn̂pj0 þ

X
j0
Ṽm
pnðj; j0Þn̂nj0 ; ð35Þ

and for the neutron orbit j,

ϵ̂nj ¼
X
j0
Vm
T¼1ðj; j0Þn̂nj0 þ

X
j0
Ṽm
pnðj0; jÞn̂pj0 : ð36Þ

Note that one can use Vm
x ðj; j0Þ ¼ Vm

x ðj0; jÞ for any subscript x
if that is more convenient.
We point out that, for the closed-shell-plus-one-nucleon

systems, the results shown in Eqs. (35) and (36) produce the
exact energy for a single proton state j,

ϵpj ¼
X
occ j0p

Vm
T¼1ðj; j0pÞð2j0p þ 1Þ þ

X
occ j0n

Ṽm
pnðj; j0nÞð2j0n þ 1Þ;

ð37Þ

where the summation of j0p or j0n is taken for all fully occupied
orbits in the valence space and the ESPEs are treated as c
numbers. This is because the approximation in Eq. (27)
becomes an equality relation due to the apparent equal
distribution in the closed shell. Single-hole states can be
treated in the same way. A similar expression is obtained for
neutrons.

E. Short summary and relation to earlier work

We first summarize some properties relevant to subsequent
discussions. The variation of ESPE is more relevant than the
ESPE itself in many applications. The difference can be taken
between different nuclei or between different states of the
same nucleus. It can be expressed conveniently, based on
Eqs. (35) and (36), as

Δϵ̂pj ¼
X
j0
Vm
T¼1ðj; j0ÞΔn̂pj0 þ

X
j0
Ṽm
pnðj; j0ÞΔn̂nj0 ð38Þ

and

Δϵ̂nj ¼
X
j0
Vm
T¼1ðj; j0ÞΔn̂nj0 þ

X
j0
Ṽm
pnðj0; jÞΔn̂pj0 : ð39Þ

Here Δ refers to the difference like hΨjϵ̂pj jΨi − hΨ0jϵ̂pj jΨ0i
between two states Ψ and Ψ0.
While the occupation numbers n̂pj and n̂nj in Eqs. (35)

and (36) are operators, their expectation values are relevant in
many cases. Thus, although the ESPE (of an orbit) is an
operator, its expectation value (with respect to some state, e.g.,
the ground state) is sometimes called ESPE also. The same is
true for their differences in Eqs. (38) and (39). Likewise, in the
filling scheme where nucleons are put into the possible lowest
orbit one by one, these operators are c numbers for a given
nucleus, and the ESPEs become c numbers also. We omit the
hat symbols in those cases.
The coefficients in these equations are given by the

monopole matrix elements and their slight modifications
Ṽm
pnðj; j0Þ; see Eqs. (31), (32), (33), and (34). In practical

studies, the expression in Eq. (19) is more convenient than the
definition with m-scheme states because the values can be
taken directly from shell-model interactions.
We next comment on relations of the present approach to

earlier ones. Based on some initial shell-model works, for
instance, de-Shalit and Talmi (1963), Bansal and French
(1964), and French (1966, 1969), introduced “the average
two-body interaction energy [taken with a ð2J þ 1Þð2T þ 1Þ
weighting],” and also “another average, taken without the
ð2T þ 1Þ weighting.” Thus, Bansal and French regarded these
approaches as two different schemes. The former is basically
suitable for a closed shell where both proton and neutron
shells are completely occupied. The averaging of all two-body
matrix elements is carried out for all neutron-neutron, proton-
proton, and proton-neutron pairs, and the weighting factor
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ð2J þ 1Þð2T þ 1Þ arises. As the T ¼ 0 and T ¼ 1 two-body
matrix elements are very different in size, another parameter
was introduced to account for it (Bansal and French, 1964;
Zamick, 1965). The formulation of this work is also based on
an averaging. But this is the averaging over all possible
orientations of a given two-nucleon configuration j ⊗ j0, and
the idea is visualized in Fig. 7 with the definition in Eq. (5) and
in other related equations. The derived monopole interaction is
shown in Sec. III.Awith Eqs. (14), (15), (16), and (17). These
equations include the terms proportional to n̂pj n̂

n
j0 , which may

be related to Bansal-French’s previously mentioned second
scheme. This second scheme was further described by Bansal
and French (1964) as follows: “This is the average which one
encounters in an n-p formalism (one in which neutrons and
protons are separately numbered) in those cases where the
neutron is necessarily in one orbit, the proton in the other.”
Equations (14), (15), (16), and (17) include terms dependent
on isospin operators, as illustrated in Fig. 8, which enables us
to remove such a restriction of the orbits and allow protons
and neutrons to be in the same orbit.
Poves and Zuker (1981) developed the scheme of Bansal

and French, stating “Hm and HmT can be thought of as
generalization of the French-Bansal formulae.” The weighting
factors ð2J þ 1Þð2T þ 1Þ are included in HmT [see also
Caurier et al. (2005)], while the isospin is not considered
in Hm; see also Zuker (1994). The monopole interaction HmT
presented by Poves and Zuker (1981) produces the same
energy for closed-shell states as the present approach. Thus,
the result of Poves and Zuker (1981) and the relevant result of
the present approach are obtained, most likely, by different
procedures with consistent outcomes. This consistency may
be supported by the fact that the monopole interaction can be
composed of the number and isospin operators of individual
orbits, and closed shells can give sufficient constraints on the
values of their parameters. The use of the monopole
Hamiltonian of Poves and Zuker (1981) has been developed
and applied to properties of closed-shell nuclei and their
neighbors with � one particle, producing precisely the global
systematics of nuclear masses (Zuker, 1994, 2005; Duflo and
Zuker, 1995, 1999; Caurier et al., 2005). A review of them
was given by Caurier et al. (2005).
One thus sees that the two approaches mentioned by Bansal

and French are basically two facets of one common monopole
interaction derived from the orientation averaging in the
present scheme, keeping isospin properties. In this way, we
can settle a long-standing question on the definition and
uniqueness of the monopole interaction, finding that basically
all of those arguments are along the same lines. The additional
ττ term of Eq. (14) is of interest.
Additional interest lies in the variational approach with

monopole interaction in open-shell nuclei discussed by
Yazaki (1977).

F. Equivalence to ESPE as defined by Baranger

We discuss the definition of the ESPE by Baranger (1970).
The ESPE of the orbit j on top of the eigenstate j0i is
considered by referring to the nth (Nth) eigenstate, jni (jNi),
of the nucleus with one more (less) particle of interest. The
ESPE is then expressed as

ϵj ¼
X
n

ðEn − E0ÞSþn þ
X
N

ðE0 − ENÞS−N; ð40Þ

where E0 is the energy of the state j0i, and En (EN) denotes
the energy of the state jni (jNi). Here Sþn (S−N) stands for
spectroscopic factors jhnja†qj0ij2 (jhNjaqj0ij2), with q being a
magnetic substate of the orbit j. Equation (40) implies that the
ESPE is composed not only of energy gains in going from j0i
to jni weighted by the spectroscopic factors but also of minus
times energy losses from j0i to jNi weighted similarly. Note
that the latter contributes if the orbit j is occupied in j0i. We
discuss now the relation between this definition and the one
discussed previously. Note that the state j0iwas assumed to be
the ground state of a double-closed-shell nucleus by Baranger
(1970), but we can generalize it to a 0þ state. However, if its
spin parity is not 0þ, Eq. (40) does not represent the ESPE.
Equation (40) can be rewritten as

ϵj ¼ h0jaqðH − E0Þa†qj0i þ h0ja†qðH − E0Þaqj0i; ð41Þ

where H is the Hamiltonian. This is identical to Eq. (6) of
Baranger (1970) even though they look different. After
algebraic processing, we come to

ϵj ¼ ϵ0j þ
X
β;δ

vqβqδh0ja†βaδj0i; ð42Þ

where ϵ0j is defined in Eq. (1) and vqβqδ denotes an anti-
symmetrized matrix element of the two-body interaction.
Because j0i is a 0þ state, the following relations hold in

Eq. (42) for the magnetic quantum number mβ ¼ mδ, and for
the angular momentum jβ ¼ jδ denoted by j0. We assume that
the states β and δ are the same for simplicity, while a
more general treatment is possible. We note that this
assumption is valid with two HO major shells or in other
similar cases. The matrix element h0ja†βaδj0i can be replaced
with h0jn̂j0 j0i=ð2j0 þ 1Þ, which is independent ofmβ. Here n̂j0
is the number operator of the orbit j0. Although ϵj in Eq. (40) is
independent of q, we sum vqβqβ over q, and the sum can be
expressed as the monopole matrix element Vmðj; j0Þ multi-
plied by the number of relevant antisymmetrized states of j and
j0. Note that the difference in this number between j ¼ j0 and
j ≠ j0 cases is incorporated. We finally obtain the following
unified expression:

ϵj ¼ ϵ0j þ
X
j0
Vm
j;j0 h0jn̂j0 j0i: ð43Þ

This is the ESPE discussed so far with the substitution of n̂pj0
and n̂nj0 in Eqs. (35) and (36) by their expectation values with
respect to the eigenstate j0i. Namely, the ESPE formulation by
Baranger (1970) is included in the present monopole formu-
lation as a specific case, with j0i being a 0þ state, while the
present one is applicable to the other states aswell.Wemention
that the present approach has a modification due to the isospin
[see Eqs. (32) and (33)], and how to include this in the previous
discussion is of interest.
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We can thus present a unified formulation on the monopole
properties, starting from the natural construction of the
monopole interaction. Duguet et al. (2015) stated in footnote 1,
“In the traditional shell model, ESPE usually refers to single-
particle energies obtained by averaging over the monopole
part of the Hamiltonian on the basis of a naive filling…. The
latter denotes an approximate version of the full Baranger-
French definition….” This remark may be applicable to some
earlier works using the filling scheme for defining the ESPE,
but it is not relevant to the present formulation.
The ESPE, as the expectation value of the 0þ ground state

[see the texts following Eq. (39)], can be extracted from
experiment if all relevant spectroscopic factors in Eq. (40) are
obtained at great precision. Because one-nucleon addition and
removal experiments are required, this is a difficult task in
general, except for cases where the spectroscopic factors are
negligible in either direction, e.g., at a closed shell. Despite
this experimental challenge, the ESPE is useful for under-
standing and explaining phenomena and mechanisms.

G. Illustration by an example

We present an example of the change of ESPEs of the
N ¼ 9 isotones, as shown in Fig. 9. This figure is taken from
Fig. 2 of Talmi and Unna (1960), one of the earliest related
papers. We discuss here how the changes shown in Fig. 9 can
be described within the framework presented in Sec. III.D.
The discussions are somewhat detailed because this is the first
actual example.
We assume the 14C core with Z ¼ 6 and N ¼ 8. Figure 10

illustrates the shell structure on top of this 14C core. The levels
shown in Fig. 10 are taken from experimental data (ENSDF,
2017), by assuming that the observed lowest levels are of a
single-particle nature, and are almost the same as the corre-
sponding ones in Fig. 9. Figure 10(a) indicates somewhat
schematically neutron 2s1=2 and 1d5=2 orbits on top of the 14C
core. Note that in Fig. 10(a) the 2s1=2 orbit is 0.74 MeV
below 1d5=2.
We then add protons into the 1p1=2 orbit, as shown in

Fig. 10(b). The proton 1p1=2 orbit is fully occupied or closed
now. The ESPEs of neutron 2s1=2 and 1d5=2 orbits are both
lowered, but their order is reversed due to protons in the 1p1=2

orbit, following Eq. (36), with j0 ¼ 1p1=2 and j ¼ 2s1=2 or
1d5=2. The ESPEs are treated here as c numbers because

the wave function of the other nucleons is fixed, as mentioned
in Sec. III.D. The difference between the ESPEs can be
written as

ϵn2s1=2ð17OÞ − ϵn1d5=2ð17OÞ
¼ ϵn2s1=2ð15CÞ − ϵn1d5=2ð15CÞ
þ fVm

pnð1p1=2; 2s1=2Þ − Vm
pnð1p1=2; 1d5=2Þg × 2: ð44Þ

The proton sector of the Hamiltonian produces the common
effect between the Jπ ¼ 1=2þ and Jπ ¼ 5=2þ states. Thus,
this difference between ESPEs corresponds to the difference
of experimental levels under the assumption that these states
are of a single-particle nature (which is reexamined in
Sec. IV.F especially in Fig. 34), and the monopole matrix
elements satisfying

Vm
pnð1p1=2; 2s1=2Þ − Vm

pnð1p1=2; 1d5=2Þ
¼ ð0.87þ 0.74Þ=2 ¼ 0.805 MeV ð45Þ

explain the change in Fig. 10. This result indicates that
Vm
pnð1p1=2; 1d5=2Þ is more attractive by ∼0.8 MeV than

Vm
pnð1p1=2; 2s1=2Þ. Thus, what actually occurs is a more rapid

lowering of the neutron 1d5=2 orbit than of the neutron 2s1=2
orbit, as protons fill the 1p1=2 orbit. This can be explained as a
consequence of important and general features of the monop-
ole interactions of nuclear forces, as discussed extensively
in Sec. IV.
If the energy is measured relative to the neutron 1d5=2 orbit,

the monopole-matrix-element difference in Eq. (45) pushes up
the neutron 2s1=2 orbit from 15C to 17O. We describe the
approach by Talmi and Unna (1960) with this convention such
that the energy is measured from the neutron 1d5=2 ESPE with
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FIG. 10. (a) Schematic picture of shell structure on top of the 14C
core. (b) Two more protons (red solid circles) are added into the
1p1=2 orbit. Experimental levels are identified as single-particle
states: green level for 1d5=2 and pink level for 2s1=2. Numbers
near the levels are energies relative to 1d5=2. The wavy lines
imply proton-neutron interactions. Solid arrows indicate the
changes of SPEs. The dash-dotted line denotes the neutron
threshold, and downward dashed arrows indicate one-neutron
separation energy (Sn).
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the filling scheme. The energy levels in Fig. 10 can be viewed
in this convention, including 16N (Z ¼ 7 and N ¼ 9) with one
proton in the 1p1=2 orbit. This proton is coupled with a
neutron in either 2s1=2 or 1d5=2. The former coupling yields
Jπ ¼ 0− and 1− states, while the latter yields Jπ ¼ 2− and 3−

states. In this simple configuration, the proton-neutron inter-
action v̂pn shifts the energies of these states by

1

2

X
T¼0;1

hj; j0; J; Tjv̂pnjj; j0; J; Ti: ð46Þ

The (2J þ 1)-weighted average of the quantities in Eq. (46) is
the corresponding monopole matrix element because of
Eqs. (19) and (31), as well as Eq. (S2) of the Supplemental
Material (364). Thus, those averages can be discussed as the
ESPEs driven by the monopole interaction, and the afore-
mentioned convention can be adopted. As the change from 15C
to 17O is then twice the monopole-matrix-element difference
due to two additional protons, the middle point of the line
connecting the states of the same spin parity of 15C, and 17O
represents the corresponding monopole quantity. Thus, if the
present scheme works ideally, the 1=2þ levels and the relevant
average quantity of 16N should be on a straight line. Talmi and
Unna (1960) did this analysis in a slightly different way: they
took the observed energy levels of 17O and the weighted
averages for the observed levels of 16N and extrapolated to 15C.
The extrapolated value appeared rather close to the observed
one, implying the validity of this picture, which is revisited in
Sec. IV.F.
Talmi and Unna discussed another case with 11Be-12B-13C

(N ¼ 7 isotones with Z ¼ 4, 5, and 6) (Talmi and Unna,
1960). Although the 1=2þ levels change almost linearly as a
function of N, the mechanism is different from the previously
discussed N ¼ 9 isotone case. Since protons occupy the 1p3=2

orbit now, one has to take into account the coupling of two
protons. It was taken to be J ¼ 0 [see Eq. (1) in Talmi and
Unna (1960)], which enables us to connect the change of the
structure to the monopole interaction because multipole
interactions are completely suppressed. Note that the termi-
nology monopole interaction was not used then, but the same
quantity was used. This restriction to the J ¼ 0 coupling,
however, may not be appropriate because the deformation of
the shape is crucial and, simultaneously, configuration mix-
ings occur even between the 1p3=2 and 1p1=2 proton orbits.
The single-particle nature is broken also on the neutron side
due to configuration mixing between the 2s1=2 and 1d5=2
orbits. Thus, the N ¼ 7 isotones may not be a good example
of the change of single-particle energies. In fact, the magni-
tude of the change is twice that of the N ¼ 9 isotone case,
which may be indicative of dominant additional effects.
An example of the ESPE change due to the T ¼ 1 interaction

is given in Sec. S4 of the Supplemental Material (364).

IV. SHELL EVOLUTION, MONOPOLE INTERACTION,
AND NUCLEAR FORCES

The ESPE is shown to be varied according to the relations
in Eqs. (38) and (39). Since it depends linearly on the proton
or neutron number operators of a particular orbit j, denoted as

n̂pj and n̂nj , respectively, the ESPE can be changed to a large
extent if the occupation number of a given orbit becomes
large. Further, this can result in a substantial change of the
shell structure, called shell evolution. Thus, the shell evolution
can occur, for instance, as a function of N along an isotopic
chain. We discuss here some basic points of the shell evolution
in close relation to nuclear forces.
Note that the multipole interaction defined in Sec. III.B

produces a variety of correlations, for instance, quadrupole
deformation, and that the final structure is determined
jointly by the monopole and multipole interactions, as is
done automatically when the Hamiltonian is diagonalized.
Although there is no a priori separation of effects of the
monopole interaction from those of the multipole interaction,
the monopole effects, particularly the shell evolution, can be
made visible in many cases. We focus here on such effects
of the monopole interactions due to various constituents of
the NN interaction, such as central, tensor, and two-body
spin-orbit.

A. Contributions from the central force

The central-force component of the nuclear force is the
main driving force of the formation of the nuclear structure.
Let us start with an extreme case. If the effective nucleon-

nucleon (NN) interaction v̂ is a central force with infinite
range and no dependence on spin, the values of the monopole
matrix elements Vm

T¼1ðj; j0Þ and Vm
pnðj; j0Þ, being constants,

become independent of j and j0. If this v̂ is attractive,
Vm
T¼1ðj; j0Þ and Vm

pnðj; j0Þ take separate constant negative
values. This implies, for instance, that if more neutrons
occupy the orbit j0, all proton orbits j become more bound
to the same extent. In other words, the proton shell structure is
conserved but becomes more deeply bound.
On the other hand, if v̂ is given by a δ function with a certain

attractive strength parameter, the values of Vm
T¼1ðj; j0Þ and

Vm
pnðj; j0Þ become sensitive to the overlap between the wave

function of the orbit j and that of the orbit j0. This implies that
if more neutrons occupy the orbit j0, proton ESPE for the orbit
j in Eq. (38) will become more bound, but the amount of the
change is not uniform. In other words, the pattern of the
proton single-particle orbits may change while they all
become more bound as a whole.
The actual situation is certainly somewhere in between. We

show here how monopole matrix elements look for a central
Gaussian interaction given by

vc ¼
X
S;T

fS;TPS;T exp½−ðr=μÞ2�; ð47Þ

where SðTÞ indicates spin (isospin), P denotes the projection
operator onto the channels ðS; TÞ with strength f, and r and μ
are the internucleon distance and Gaussian parameter, respec-
tively. We fix here all f parameters to a common value of
þ166 MeV in order to see the effects of the four terms on the
right-hand side. The μ ¼ 1 fm value is used, as we also
discuss in Sec. IV.C. Note that we use this vc value extensively
hereafter with realistic values of parameters such as f1;0 ¼
f0;0 ¼ −166 MeV (i.e., the same magnitude with the opposite
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sign as the previous value), and f0;1 ¼ 0.6f1;0 and
f1;1 ¼ −0.8f1;0. Such a vc gives basic features of an effective
NN interaction of the shell-model calculation called VMU
(Otsuka, Suzuki, Honma et al., 2010).
Figure 11 shows monopole matrix elements thus obtained.

The harmonic oscillator wave functions are used as single-
particle wave functions hereafter. We take A ¼ 100 in Fig. 11.
Figure 11 indicates that the (S ¼ 1, T ¼ 0) channel

produces major contributions apart from the actual fS;T
values. Furthermore, as previously mentioned, the actual
value of fS¼1;T¼0 appears to be the largest among the four
ðS; TÞ channels [e.g., in the VMU (Otsuka, Suzuki, Honma
et al., 2010)], and the dominance of the ðS ¼ 1; T ¼ 0Þ
channel becomes enhanced after considering the actual fS;T
values.
Within the (S ¼ 1, T ¼ 0) channel, Fig. 11 demonstrates

that the couplings between orbits with n ¼ 1 (i.e., no node in
the radial wave function), like 1g9=2-1g9=2;7=2 or 1g9=2-1h11=2,
are stronger than the others. This can be understood in terms
of the larger overlap between their radial wave functions than
those in the other categories in Fig. 11.
We show similar histograms for the δ-function interaction

in Fig. 12. One finds rather good overall similarity to Fig. 11.
As the monopole matrix elements vanish for the (S ¼ 1,
T ¼ 1) or (S ¼ 0, T ¼ 0) channel, they are not shown in
Fig. 12. This is a consequence of the Pauli principle that
forbids two nucleons at the same place for S ¼ 0, T ¼ 0 or
S ¼ 1, T ¼ 1.

It is now of interest to survey the overall dependence of the
monopole matrix element on the nodal structure of the radial
wave function. Figure 13 shows monopole matrix elements in
the (S ¼ 1, T ¼ 0) channel for the Gaussian and δ-function
interactions. In Fig. 13, various pairs of orbits are taken for the
valence shells around (a) A ¼ 100 and (b) A ¼ 70, with their
labels abbreviated as, for example, g7 for 1g7=2. The strength
of the δ-function interaction is adjusted so that the monopole
matrix element becomes equal to that given by the Gaussian
interaction for (a) the g9-g7 pair and (b) the f7-f5 pair.
The orbital pairs are classified into categories according to

the difference of the number of the nodes in their radial wave
functions, as denoted by Δn in Fig. 13. The monopole matrix
elements are generally large when the radial wave functions
have the same number of the nodes (i.e., Δn ¼ 0). The
monopole matrix elements become smaller as Δn increases,
while the difference between the two categories Δn ¼ 1 and
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Δn ¼ 2 is much smaller. On the other hand, the monopole
matrix element varies within the Δn ¼ 0 category. The large
value of the s1-s1 in Fig. 13(a) is exceptional. Among the
others with Δn ¼ 0 in Fig. 13(a), stronger coupling can be
found between the following orbits:

j> ¼ lþ 1=2 and j< ¼ l − 1=2; ð48Þ

where l stands for the orbital angular momentum and 1=2
represents the spin. In other words, j> and j< are spin-orbit
partners having the same radial wave functions in the
harmonic oscillator scheme, and therefore the central force,
both the Gaussian and the δ-function interactions, produces
stronger monopole interactions between them. This feature is
seen in the cases of (i) g9 and g7, (ii) d5 and d3, (iii) f7 and f5,
and (iv) p3 and p1 in Fig. 13. This type of enhanced coupling
becomes weaker with the Gaussian interaction than with the
δ-function interaction.
We emphasize that the monopole matrix elements of the

central force, as modeled by the Gaussian interaction in
Eq. (47), vary considerably, and they can produce a sizable
shell evolution depending on the occupation pattern over
relevant single-particle orbits. Concrete examples are shown
in Secs. IV.C and IV.D.
Regarding the dependence on the mass number A, the

monopole matrix elements of A ¼ 100 in Fig. 13(a) is, as a
whole, about 2=3 of those of A ¼ 70 in Fig. 13(b). This
feature can be expressed by a 1=A dependence in a rough
approximation if wished. This approximate scaling law
appears to be reasonable because the probability of finding
the partner of a pair of interacting nucleons inside the
interaction range is inversely proportional to the nuclear
volume, as long as the density saturation holds. Note that
this overall trend is seen in experimentally extracted data,
while other A dependences can be found locally in certain
groups; see Fig. 8 in Sorlin and Porquet (2008).
Stronger couplings between particular orbits are a natural

idea and were, in fact, discussed in earlier works, for instance,
by Federman and Pittel, (1977, 1979), Federman, Pittel, and
Campos (1979), Federman, Pittel, and Etchegoyen (1984),
and Pittel et al. (1993). It has been argued by Federman and
Pittel (1977) that the proton-neutron central force in the 3S1
channel, where S stands for the s wave (L ¼ 0) with the
spin triplet and the relative orbital (total) angular momentum
L ¼ 0 (J ¼ 1), gives rise to a strong attraction between two
orbitals ðnP; lP; jPÞ and ðnN; lN; jNÞ when the relations
nP ¼ nN and lP ≈ lN are satisfied because of a large spatial
overlap (de-Shalit and Goldhaber, 1953). It certainly contrib-
utes to the present (S ¼ 1, T ¼ 0) channel. Figure 13(a)
suggests that the monopole matrix element Vm

T¼0ð1g7=2; 1g9=2Þ
is about 0.3 MeV more attractive than Vm

T¼0ð2d5=2; 1g9=2Þwith
the previously mentioned realistic sign of the parameter.
Equation (39) combined with Eqs. (31) and (34) indicates
that the present Gaussian central force lowers the ESPE
of the neutron 1g7=2 orbit relative to the 2d5=2 orbit by
∼1=2 × 0.3 × 10 ¼ 1.5 MeV, in going from Z ¼ 40 to
Z ¼ 50. Here we assume that the Z ¼ 40 and N ¼ 50 closed
shells are kept, that the neutron 1g7=2 and 2d5=2 orbits are on
top of this closed shell, and that an additional ten protons

occupy the 1g9=2 orbit. This lowering is quite sizable but will
be shown to be about half of what has been known exper-
imentally, which hints that the central force is responsible for
only part of the story. Smirnova et al. (2004) compared δ-
function and G-matrix interactions. The former is a central
force, but the latter contains other components. The reported
difference is therefore consistent with the present observation
on the deficiency of the central force. Relevant further studies
were reported by Umeya and Muto (2004, 2006).
We come back here to the limit of the long-range interaction

but include dependences on the spin and isospin (Otsuka
et al., 2001). If there is no spin dependence, an infinite-range
interaction gives a constant shift, as previously discussed.
Now take a spin-isospin interaction such as

vττσσ ¼ τ⃗ · τ⃗ σ⃗ ·σ⃗fðrÞ; ð49Þ

where fðrÞ represents the dependence on the relative distance
r, the dots imply scalar products, and σ⃗ (τ⃗) refers to spin
(isospin) operators.
The matrix element of the term τ⃗ · τ⃗ is trivial, being −3=4

and 1=4 for T ¼ 0 and 1, respectively. The monopole
matrix elements of this interaction with fðrÞ≡ 1 show an
interesting analytic property, and we discuss it now. We
consider antisymmetric states in Eq. (3) [or Eq. (S17) of
the Supplemental Material (364)], and we consider symmetric
states in Eq. (S3) or (S4) of the Supplemental Material (364).
The monopole matrix element consists of direct and exchange
contributions. The direct contribution from the σ⃗ · σ⃗ term is

X
m;m0

ðj; mjσzjj; mÞðj0; m0jσzjj0; m0Þ ¼ 0; ð50Þ

where σz stands for the z component of σ⃗ andP
mðj; mjσzjj; mÞ ¼ 0 is used. On the other hand, the

exchange contribution is expressed as

∓ X
m;m0

fð1=2Þfðj; mjσþjj0; m0Þðj0; m0jσ−jj;mÞ

þ ðj; mjσ−jj0; m0Þðj0; m0jσþjj; mÞg
þ ðj; mjσzjj0; m0Þðj0; m0jσzjj; mÞg; ð51Þ

where σþ and σ− stand for the raising or lowering operator of
σ⃗, and the overall sign ∓ corresponds to the antisymmetric
and symmetric states, respectively. Thus, direct terms do not
contribute, and only exchange contributions remain. We point
out that for interactions without the σ⃗ · σ⃗ term, the situation is
very different as the direct term is the major source of the
monopole interaction. In order to have finite values in
Eq. (51), j and j0 must have the same l, implying that j
and j0 are either j> or j< for the same l. After some algebra of
angular momentum, the final results are tabulated in Table I.
The j>-j< coupling appears to be about 2 times stronger than
the j>-j> or j<-j< couplings. This is precisely due to larger
matrix elements of spin-flip transitions, like ðj>jσ⃗jj<Þ or
ðj<jσ⃗jj>Þ, than spin-nonflip transitions like ðj>jσ⃗jj>Þ or
ðj<jσ⃗jj<Þ (Otsuka et al., 2001). The same mathematical
feature applies to the isospin matrix elements, enhancing
charge exchange processes like the one shown in Fig. 14(d).

Otsuka et al.: Evolution of shell structure in exotic nuclei

Rev. Mod. Phys., Vol. 92, No. 1, January–March 2020 015002-16



The most important outcome of these features is the strong
proton-neutron coupling between j> or j< with the same l, or
between lþ 1=2 and l − 1=2; see Fig. 14(c).
A concrete example is shown in Figs. 14(a) and 14(b). We

assume here the simple filling configuration that the last six
protons in 30Si are in the 1d5=2 (shown as 0d5=2) orbit in
Fig. 14(a). On the other hand, 24O has no proton in the 1d5=2
orbit and shows a large gap between neutron 1d3=2 and 2s1=2
orbits, consistent with experiment (Hoffman et al., 2008;
Kanungo et al., 2009).
The monopole matrix element of the ττσσ interaction with

fðrÞ≡ 1 vanishes for any pair involving an s1=2 orbit. Thus,
these last six protons in 30Si lower the ESPE of the neutron
1d3=2 orbit relative to the 2s1=2 orbit through the monopole
matrix element

Vm
pnð1d5=2; 1d3=2Þ ¼ −1=f4ð2 × 2þ 1Þg; ð52Þ

obtained from Table I, following Eq. (34). Although not shown
in Fig. 14, the ESPE of the neutron 1d5=2 orbit is lowered by
about half of the change of the neutron 1d3=2 ESPE, as can be
seen in Table I with l ≫ 1. Thus, while the ττσσ interaction
can change the spin-orbit splitting, both spin-orbit partners are
shifted in the same direction but in different amounts.
This argument on a more attractive monopole matrix

element between lþ 1=2 and l − 1=2 orbits can be extended,
with certain modifications, to finite-range and zero-range
central interactions, as we have seen numerically in
Fig. 13. We note that in the case of the zero-range δ-function

central interaction, the total spin of two interacting nucleons is
restricted to S ¼ 0 for T ¼ 1 and S ¼ 1 for T ¼ 0, and this
induces some spin-spin effects even for a simple δ-function
interaction without explicit spin dependence. We also point
out that, within a HO major shell, the coupling between
orbits with l and l0 with l ≠ l0 is not enhanced by central
forces, as can be understood from Fig. 14(d) and as can be
confirmed numerically from Fig. 13. We will return to these
features after discussing the tensor-force effect.

B. Shell evolution due to the tensor force

1. Tensor force

We now study the shell evolution due to another major
component of the nuclear force, the tensor force. Yukawa
proposed the meson-exchange process as the origin of the
nuclear forces (Yukawa, 1935). Although this was on the
exchange of a scalar meson and is not directly related to
the tensor force, the meson-exchange theory was developed
further, and Bethe demonstrated that the tensor force is
formulated with the coupling due to another kind of meson
[i.e., referred to as the π meson (or pion) presently], with
explicit reference to the tensor force and its effect on the
deuteron property (Bethe, 1940a, 1940b). We can thus identify
the tensor force with its unique features as one of the most
important and visible manifestations of the meson-exchange
process initiated by Yukawa.
We start our discussion with the one-π exchange potential

between the ith and jth nucleons,

Vπ ¼ fðτ⃗i · τ⃗jÞðσ⃗i · ∇Þðσ⃗j ·∇Þ e
−mπr

r
; ð53Þ

where τ⃗i and σ⃗i indicate, respectively, the isospin and spin
operators of the ith nucleon, r⃗ denotes the relative displace-
ment between these two nucleons with r ¼ jr⃗j, and ∇ stands
for the derivative by r⃗. Here f and mπ are the coupling
constant and the π-meson mass, respectively. Equation (53) is
rewritten as

Vπ ¼
fm2

π

3
ðτ⃗i · τ⃗jÞ

�
ðσ⃗i · σ⃗jÞþSij

�
1þ 3

mπr
þ 3

ðmπrÞ2
��

e−mπr

r
;

ð54Þ

with

Sij ¼ 3ðσ⃗i · r⃗Þðσ⃗j · r⃗Þ=r2 − ðσ⃗i · σ⃗jÞ: ð55Þ

Here an additional δ-function term is omitted in Eq. (54) as
usual (because there are other processes at short distances).
The first term within the outer curly brackets on the right-hand
side of Eq. (54) produces a central force and is not considered
hereafter. The second term within this set of brackets gen-
erates the tensor force from the one-π exchange process.
As an example of the radial dependence of actual tensor

potentials, Fig. 15 shows the triplet-even (TE) potential due to
the tensor potentials in some approaches; see (Otsuka et al.
(2005) for details. Except for the π-meson-exchange case (no
ρ meson), the TE potentials exhibit rather similar behavior

0

4

8

j>= l +1/2

j<= l −1/2

1s1/2

0d3/2

1s1/2

0d3/2
24O168

30Si1614

(a) (b)

(c) (d)

proton neutron
p n

pn

τσ
τσ

)
Ve

M( 
E

P
S

E

pf shell
pf shell

N=20
N=16

} }

FIG. 14. Neutron ESPEs for (a) 30Si and (b) 24O, relative to the
2s1=2 (shown as 1s1=2) orbit. The dotted line connecting (a) and
(b) is drawn to indicate the change of the 1d3=2 (shown as 0d3=2)
level. (c) The major interaction producing the basic change
between (a) and (b). (d) The process relevant to the interaction
in (c). From Otsuka et al., 2001.

TABLE I. Monopole matrix elements of the ττσσ interaction with
fðrÞ≡ 1. Adapted from Table 1 of Otsuka, 2002.

j1 j2 T ¼ 0 T ¼ 1

lþ 1
2

lþ 1
2

−3=16ð2lþ 1Þ −ð2lþ 3Þ=16ð2lþ 1Þ2
lþ 1

2
l − 1

2
−3=8ð2lþ 1Þ −1=8ð2lþ 1Þ

l − 1
2

l − 1
2

−3ð2l − 1Þ=16ð2lþ 1Þ2 −1=16ð2lþ 1Þ
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outside ∼0.6 fm. While differences arise inside, the relative-
motion wave functions of two interacting nucleons are sup-
pressed there because of forbidden coupling between S-wave
bra and ket states.
The tensor force has been known for a long time in

connection to the one-π exchange potential stated here, and
its effects were studied extensively from many angles. Early
studies in connection to the nuclear structure include an
extraction of the tensor-force component in the empirical
NN interaction by Schiffer and True (1976), a derivation of
microscopic effective NN interaction (i.e., so-called G-matrix
interaction) including second-order effects of the tensor force
by Kuo and Brown (1966), a calculation of magnetic moments
that also includes second-order tensor-force contributions by
Shimizu, Ichimura, and Arima (1974) and Towner (1987), a
review on its effects on light nuclei (Fayache, Zamick, and
Castel, 1997).
Besides such effects, the tensor force produces another

effect on the shell structure in its lowest order or by the one-π
exchange process. This effect must be contained in the
numerical results, but its simple, robust, and general features
had not been mentioned or discussed until the work done by
Otsuka et al. (2005), where the change of the shell structure,
i.e., the shell evolution, due to the tensor force was presented
for the first time.
We present the monopole interaction of the tensor force

first, in order to clarify such tensor-force-driven shell evolu-
tion. Because the S operator in Eq. (55) between nucleons 1
and 2 can be rewritten as

S12 ¼
ffiffiffiffiffiffiffiffi
24π

p
½½σ⃗1 × σ⃗2�ð2Þ × Yð2Þðθ;ϕÞ�ð0Þ; ð56Þ

where ½×�ðKÞ indicates the coupling of two operators in the
brackets to an angular momentum (or rank) K, and where Y
denotes the spherical harmonics of the given rank for the Euler
angles θ and ϕ of the relative coordinate. The tensor force can
then be rewritten in general as

V ten ¼ ðτ⃗1 · τ⃗2Þ(½σ⃗1 × σ⃗2�ð2Þ · Yð2Þðθ;ϕÞ)ftenðrÞ; ð57Þ

where ftenðrÞ is an appropriate function of the relative distance
r. Note that the scalar product is taken instead of ½×�ðKÞ.
Equation (57) is equivalent to the usual expression containing

the S12 function. Because the spins σ⃗1 and σ⃗2 are dipole
operators and are coupled to rank 2, the total spin S

(magnitude of S⃗ ¼ s⃗1 þ s⃗2) of two interacting nucleons must
be S ¼ 1. If both of the bra and ket states of V ten have L ¼ 0,
with L being the relative orbital angular momentum, their
matrix element vanishes because of the Yð2Þ coupling. The
crucial roles of these properties are shown in the following.
Besides the π-meson exchange, the ρ meson contributes to

the tensor force. In the following, we use the π þ ρ meson-
exchange potential with the coupling constants taken from
Osterfeld (1992). The function ftenðrÞ therefore corresponds
to the sum of these exchange processes. The magnitude of the
tensor-force effects to be discussed becomes about 3/4 of the
results by the one-π exchange only. The basic physics will not
be changed. We will compare the π þ ρ meson results with
those by modern theories of nuclear forces.

2. Tensor force and two-nucleon system

Having these setups, we first recall the basic properties of
the tensor force by taking a two-nucleon system. From
Sec. IV.B.1, we know S ¼ 1 for two nucleons interacting
through the tensor force. We therefore assign sz ¼ 1=2 for
each nucleon, taking the z axis in the direction of the spin.
Figure 16 displays this system schematically in two differ-

ent situations. The spins are shown by arrows pointing upward
and are placed where two nucleons are placed at rest. In other
words, two nucleons are displaced (a) in the direction of the
spin or (b) in the perpendicular direction. This is certainly a
modeling of the actual situation, of which the wave function of
the relative motion is shown schematically by the yellow
shaded areas in Fig. 16.
We now consider the effect of the tensor force in these two

cases by denoting the value of the operator in Eq. (55) by Sij.
In the case of Fig. 16(a), we obtain

ðσ⃗i · r⃗Þ=r × ðσ⃗j · r⃗Þ=r ¼ 1
2
× 1

2
; ð58Þ

while this quantity vanishes for Fig. 16(b) because of the
orthogonality between σ⃗ and r⃗. Because of S ¼ 1,

ðσ⃗i · σ⃗jÞ ¼ 1
4

ð59Þ

holds. Combining these, we obtain

(a) (b)( ) ( )

FIG. 16. Intuitive picture of the tensor force acting on two
nucleons.
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FIG. 15. Triplet-even potential due to the tensor force for
various interaction models. Adapted from Otsuka et al., 2005.

Otsuka et al.: Evolution of shell structure in exotic nuclei

Rev. Mod. Phys., Vol. 92, No. 1, January–March 2020 015002-18



Sij ¼

8>><
>>:

3

4
−
1

4
¼ 1

2
; for ðaÞ;

0 −
1

4
¼ −

1

4
; for ðbÞ:

ð60Þ

The tensor force works for the two cases in Figs. 16(a) and
16(b) with opposite signs. The actual sign of f in Eq. (54) is
positive, while the τ⃗i · τ⃗j term becomes−3=4 for T ¼ 0, where
T stands for the coupled isospin of the nucleons. The case in
Fig. 16(a) gains the binding energy from the tensor force and
indeed corresponds to the deuteron. The other case is actually
unbound. In the case of T ¼ 1, the attractive effect from the
tensor force is 3 times weaker than in the T ¼ 0 case in a naive
approximation.

3. Tensor-force effect and orbital motion: Intuitive picture

We next consider tensor-force effects on the ESPEs in
nuclei: the reduction of the spin-orbit splitting. As shown in
this and subsequent sections, the monopole interaction of the
tensor force is always attractive between j> and j0< orbits,
whereas it is always repulsive between j> and j0> as well as
between j< and j0<. Figure 17 shows a typical case in which
the occupation of the neutron j0> orbit changes the splitting
between the proton j> and j< orbits, as expected by applying
these monopole matrix elements to Eq. (38). Such changes
lead us to the significant variation of the shell structure, i.e.,
shell evolution, in association with sizable occupations of a
particular orbit. This basic feature was presented by Otsuka
et al. (2005), followed by further developments. We discuss
here the mechanism and consequence of such tensor-force-
driven shell evolution in some detail, including those
developments.
Figure 18 shows, in an intuitive way, the phenomena we are

looking into. Spins are shown by arrows, and they are both set

to be up because of S ¼ 1 for the tensor force. We compare
two cases: (a) the tensor-force coupling between j> and j0<
orbits, and (b) the one between j> and j0> (and also j< and j0<)
orbits.
Before evaluating these couplings quantitatively, we present

a simplified picture. This is based on the argument first shown
briefly by Otsuka et al. (2005), followed by an elaborate
description by Otsuka (2013), and by a further extended
version with a figure by Otsuka (2014). As the last one is the
most extensive but is in Japanese, we provide a slightly
revised text and figure here.
We begin with the case shown in Fig. 18(a), where a

nucleon in j< is interacting with another in j0> through the
tensor force. Since the spin of each nucleon is fixed to be up,
two nucleons must rotate on their orbits in opposite ways. We
shall look into the relative motion of the two interacting
nucleons, as the interaction between them is relevant only to
their relative motion and not to their center-of-mass motion.
We model the relative motion by a linear motion on the x axis.
When two nucleons are close to each other within the
interaction range, which is shorter than the scale of the orbital
motion, the motion of two nucleons can be approximated by a
linear motion, and the interaction works only within this
region. It is also assumed that the two nucleons continue to
move on the x axis, which is fulfilled in the present case. As
the tensor-force potential becomes quite damped at the
distance ≳2 fm, this is a reasonable modeling for nuclei with
larger radii.
In this linear-motion model, the wave functions of the two

nucleons are approximated by plane waves. The case shown in
Fig. 18(a) corresponds to the “head-on collision” in the linear-
motion model. The case shown in Fig. 18(b) corresponds, on
the other hand, to the parallel linear motion of the two
nucleons. We assign indices 1 and 2 to the two nucleons.
Their wave numbers on the x axis are denoted by k1 and k2,
while their coordinates are denoted by x1 and x2. The wave
function Ψ consists of products of two plane waves. We now
take a system of a proton and a neutron in the total isospin
T ¼ 0, which is antisymmetric with respect to the exchange of
the nucleons 1 and 2. The spin part is S ¼ 1, which is
symmetric. As the total wave function must be antisymmetric,
the coordinate wave function has to be symmetric, taking a
form such as

Ψ ∝ eik1x1eik2x2 þ eik2x1eik1x2 ¼ eiKXfeikx þ e−ikxg
¼ 2eiKX cosðkxÞ; ð61Þ

where center-of-mass and relative momenta are defined as

K ¼ k1 þ k2; k ¼ k1 − k2; ð62Þ

respectively, and center-of-mass and relative coordinates are
defined likewise as

X ¼ ðx1 þ x2Þ=2; x ¼ ðx1 − x2Þ=2: ð63Þ

With these definitions, the relative motion is expressed by the
wave function

(a) (b)

FIG. 18. Intuitive picture of the tensor force acting on two
nucleons on orbits j and j0. From Otsuka et al., 2005.
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FIG. 17. (a) Schematic picture of the monopole interaction
produced by the tensor force between a proton in j>;< ¼ l� 1=2
and a neutron in j0>;< ¼ l0 � 1=2. (b) Exchange processes
contributing to the monopole interaction of the tensor force.
From Otsuka et al., 2005.
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ϕðxÞ ∝ cosðkxÞ; ð64Þ
and the center-of-mass motion has a wave number K for eiKX.
In the present case [i.e., Fig. 18(a)], k1 ∼ −k2 can be

assumed. The relative motion then has a large momentum,
k ∼ 2k1. Its wave function ϕðxÞ is shown in Fig. 19(a), with
the trend of increasing k. We note that K ∼ 0 with k1 ∼ −k2,
implying the center of mass being almost at rest or a nearly
uniform wave function of the center-of-mass motion.
Based on Fermi momentum in nuclei, k is considered to be

of the order of magnitude 1 fm−1, not to exceed ∼1.5 fm−1.
From the range of the force, the area inside x ∼ 1 fm is
relevant, as the tensor-force potential becomes weak beyond
2 fm. Thus, the relevant range of kx in Eq. (64) is jkxj≲ π=2.
Because of this, Fig. 19(a) displays up to the first zeros in both
directions. The wave function ϕðxÞ in Eq. (64) is damped
more quickly for k larger within this range; see Fig. 19(a).
Figure 16 shows that two nucleons attract each other if they
are displaced in the direction of spin, but they repel each other
if they are displaced in the direction perpendicular to the spin,
i.e., the x axis now. We point out that if two nucleons are at a
very short distance without high momenta, the tensor force
does not work because its angular dependence comes from the
spherical harmonics Yð2Þ, prohibiting a finite probability at
zero distance. The two nucleons should be at a certain distance
in order to experience some effects, attractive or repulsive,
from the tensor force. If the distance is too large, the effect is
diminished. Thus, schematically, the region shown by bidi-
rectional arrows in Fig. 19 is relevant to the tensor force,
which is repulsive presently. With larger relative momentum
k, Fig. 19(a) suggests that the wave function is damped faster
or the region of sizable probability amplitude is more com-
pressed along the x axis. This occurs in the region where the
tensor force works repulsively. Thus, the reduction of the
repulsion takes place more strongly with larger k. This means
that as k becomes larger, the repulsion becomes weaker. On
the other hand, the attraction due to the z (spin)-axis wave
function remains basically unchanged. This is merely the net
effect becoming more attractive.
We now come back from one-dimensional modeling to the

three-dimensional orbital motion. The relative-motion wave

function is discussed in a similar manner. The yellow shaded
area in Fig. 18(a) indicates, schematically, the region with a
sizable probability amplitude of the relative-motion wave
function, as previously discussed. Its vertically stretched
shape implies the attractive net effect, which is consistent
with the deuteron case.
We now move on to the case of Fig. 18(b). The corre-

sponding case in the linear-motion model is shown in
Fig. 19(b). The parallel motion of the two nucleons occurs,
and k1 ∼ k2 can be assumed. The relative motion then has a
small momentum, k ∼ 0, implying a stretched wave function
of the relative motion along the x axis, as shown in Fig. 19(b).
The probability amplitude then turns out to be large in the
region of the repulsive effect of the tensor force, yielding a net
repulsive effect assuming that the net effect vanishes before
this repulsive enhancement. This case corresponds to Fig. 18
(b), where the two nucleons are apart from each other in the
direction perpendicular to the total spin. The region of larger
probability amplitude of the relative wave function (indicated
by the yellow area) is stretched horizontally, which is
consistent with the case other than the bound deuteron shown
in Fig. 16(b).
In the previous linear-motion model, the wave functions in

the y and z directions are not discussed. The probability
amplitude in the z direction contributes to the attraction,
whereas those in the y direction contribute to the repulsion.
Those amplitudes are not constant, unlike the ideal plane-
wave modeling. But they are not affected by the mechanism
based on the relative momentum discussed so far, and hence
they do not differ between the two cases represented by
Figs. 16(a) and 16(b). In short, by having k high enough for
the Fig. 16(a) case, the linear-motion wave function is pushed
into the region with no sensitivity to the tensor force, but only
the attractive effect remains. On the contrary, k becomes ∼0
for the Fig. 16(b) case, and the full repulsion works out.
Thus, we obtain a robust picture that j< and j0> (or vice

versa) orbits attract each other, whereas j> and j0> (or j< and
j0<) orbits repel each other. As the monopole interaction
represents average effects, it is natural that they follow the
same trend. We soon discuss analytically and numerically how
the monopole matrix elements behave. Note that the essence
of the previous one-dimensional explanation can also be
considered Heisenberg’s uncertainty principle.
We now make some remarks on the findings made so far.

The coordinate wave function is symmetric in the previous
cases, corresponding to the coupling between the S and D
waves of the relative motion. If the total isospin is T ¼ 1, the
antisymmetric coordinate wave function is taken, correspond-
ing to P waves. In this case, the wave function in Eq. (64) is
replaced by sinðkxÞ. This wave function produces a horizon-
tally stretched wave function, reversing the previous argument
for the case in Fig. 18(a). However, because of the isospin
dependence [see ðτ⃗1 · τ⃗2Þ in Eq. (57)], there is another sign
change, producing an attractive effect in total. Thus, j>-j0< and
j<-j0> couplings always give us an attractive effect, whereas
j>-j0> and j<-j0< couplings are repulsive.
The radial wave functions of the two orbits must be similar

in order to have sizable monopole matrix elements. In
addition, a narrow distribution in the radial direction is favored
in order to have a “deuteronlike” shape for the relative-motion

relative-motion
wave function 

region relevant to the repulsive effect by the tensor force

relative-motion
wave function 

relative 
distance, x

k larger

parallel motion

j j’

head-on collison 

j j’ (b) and(a) and

relative 
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FIG. 19. Intuitive picture of the tensor force acting between two
nucleons in a one-dimensional model. The relative-motion wave
function is shown for (a) head-on collision and (b) parallel motion
cases. In (a) [(b)], the change is shown as the relative momentum
k becomes larger (smaller). See the text for explanation. Adapted
from Otsuka, 2014.
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wave function. This is fulfilled if the two orbits are both near
the Fermi energy because their radial wave functions have
rather sharp peaks around the surface. If the radial distribu-
tions of the two orbits differ, not only does their overlap
becomes smaller, but the relative spatial wave function is
stretched in the radial direction, which weakens the deuteron-
like shape, making the effect less pronounced. Note that for
the same radial condition larger l and l0 enhance the tensor
monopole effect in general, as their relative momentum
increases; see Fig. 18.

4. Tensor-force effect and orbital motion: Analytic relations

We now move on to the analytic expression on the
monopole matrix element. An identity on the monopole
matrix element of the tensor force was derived by Otsuka
et al. (2005), showing properties consistent with the previous
discussions. For the orbits j and j0, the following identity was
derived for the tensor force by Otsuka et al. (2005),

ð2j> þ 1ÞV ten;m
T ðj>; j0Þ þ ð2j< þ 1ÞV ten;m

T ðj<; j0Þ ¼ 0; ð65Þ

where j0 is either j0> or j0<. The identity in Eq. (65) can be
proved, for instance, with angular-momentum algebra by
summing all spin and orbital magnetic substates for the given
l, where j>;< ¼ l� 1=2. The quickest but a somewhat more
mathematical proof is described here: the left-hand side of
Eq. (65) is equivalent to the total effect of the T ¼ 0 or 1
tensor force from the fully occupied j> and j< orbits coupled
with a nucleon in the orbit j0. In the state composed of fully
occupied j> and j< orbits, all magnetic substates of l and
those of spin 1=2 are fully occupied. This means that the total
spin should be zero. The sole nucleon in the j0 orbit has a spin
1=2, which then constitutes the total spin 0þ 1=2 ¼ 1=2. The
spin sector of the tensor force in Eq. (57) is ½σ⃗1 σ⃗2�ð2Þ, which
has a rank 2 angular momentum carried by the operator. If this
operator is sandwiched by the states of spin 1=2, the angular
momentum cannot be matched, and the outcome is zero. Thus,
one can prove the identity. The proof can also be made
through the recoupling of angular momenta in the monopole
matrix elements and the explicit form of the tensor force. In all
of these proofs, it is assumed that the radial wave function is
the same for j> and j< orbits, which is exactly fulfilled in the
harmonic oscillator, and practically so in other models if the
orbits are well bound.
We make some remarks on this identity.
• By moving the second term to the right-hand side of
Eq. (65), one sees that the j>-j0 and j<-j0 couplings
always have opposite signs, which is perfectly consistent
with the intuitive explanation in Sec. IV.B.3. There are
no exceptions. On the other hand, the identity in Eq. (65)
does not suggest which sign is positive, or vice versa.
The intuition explained in Sec. IV.B.3 plays a crucial role
for the general argument.

• Although this identity is not applicable to the cases with
j> or j< ¼ j0 in Eq. (65) with a good isospin (T ¼ 0 or
1), quite similar behavior is found numerically. We note
that, despite this feature, this identity holds exactly for
the proton-neutron interaction in the proton-neutron
formalism. Thus, the opposite sign is a really universal

feature of the monopole matrix elements of the tensor
force, and it can be used in all cases.

• One can prove that V ten;m
T ðj>; j0Þ ¼ 0 for j or j0 ¼ s1=2.

This is reasonable, as one cannot define j> or j< for an
s orbit.

• As already mentioned, Eq. (65) suggests that, if both j>
and j< orbits are fully occupied, there is no monopole
effect from the tensor force on any orbit. Consequently,
LS closed shells produce no monopole effect from the
tensor force.

• The previous derivation also indicates that only those
exchange processes shown in Fig. 17(b) contribute to the
monopole matrix elements of the tensor force, while the
contribution of direct processes vanishes. The same
property holds for the spin-isospin central interaction
discussed in Sec. IV.A. This can be understood from the
point of view that the vertex ðσ⃗ ·∇Þ in Eq. (53) does not
allow a monopole direct process. If only exchange terms
remain, the spin-coordinate contributions of T ¼ 0 and
1 are just the opposite. Combining this property with
ðτ⃗1 · τ⃗2Þ in Eq. (57), one obtains

Vten;m
T¼0 ðj; j0Þ ¼ 3V ten;m

T¼1 ðj; j0Þ; for j ≠ j0: ð66Þ

Thus, the proton-neutron tensor monopole interaction is
twice as strong as the T ¼ 1 monopole interaction. This
implies also that the monopole effect from the tensor
force has the same sign between T ¼ 0 and 1, provided
that ðτ⃗1 · τ⃗2Þ is included in the potential.

Figures 20 and 21 display some examples of the monopole
matrix elements of the π-mesonþ ρ-meson exchange tensor
force with the parameters of Osterfeld (1992). The same set of

A=100  tensor force

Δn
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0
Δn

=
1

Δ n
=

2

Monopole matrix element (MeV)
2.02.0- 0.0

FIG. 20. Monopole matrix elements of the tensor force in the
T ¼ 0 channel. The orbit labeling is abbreviated as g9 for 1g9=2,
etc. The orbits are from the valence shell for A ¼ 100.
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single-particle orbits are taken as in Fig. 13. The identity in
Eq. (65) is exactly fulfilled. The magnitude of the monopole
matrix elements is generally larger for the central force, while
the variations, for instance, within the spin-orbit partners, are
of the same order of magnitude between the central and tensor
forces. Their competition produces intriguing phenomena in
many cases.

C. Combination of the central and tensor forces

The previous two sections, Secs. IV.A and IV.B, presented
the monopole interactions from the central and tensor forces.
We combine them here.
The central and tensor forces are major components in the

effective NN interaction used for nuclear-structure studies.
As typical examples of such effective NN interactions, we
take the interactions SDPF-M, GXPF1A, and G matrix,
described by Utsuno et al. (1999), Honma et al. (2005),
and Hjorth-Jensen, Kuo, and Osnes (1995), respectively. The
first two were obtained by fitting some two-body matrix
elements to experimental energy levels using microscopically
derived interactions as the initial input. In addition, the
sd-shell part of SDPF-M was obtained by modifying the
USD interaction (Brown andWildenthal, 1988). TheG-matrix
interaction refers to G-matrix plus in-medium corrections by
the Q-box formalism (Hjorth-Jensen, Kuo, and Osnes, 1995)
and is referred to in this way hereafter for brevity.
The monopole matrix elements of these interactions are

shown in Fig. 22, where Figs. 22(a)–22(d) are for the pf shell,
while Figs. 22(e)–22(h) are for the sd shell. The T ¼ 0 matrix
elements are shown in Figs. 22(a), 22(b), 22(e), and 22(f),
while the T ¼ 1 matrix elements are shown in Figs. 22(c),
22(d), 22(g), and 22(h).
In Fig. 22(a), the monopole matrix elements from the

GXPF1A andG-matrix interactions are shown as well as those
obtained from the π-mesonþ ρ-meson exchange tensor force
with the parameters of Osterfeld (1992).
Otsuka, Suzuki, Honma et al. (2010) pointed out that the

kink pattern is quite similar among the GXPF1A, G-matrix,
and tensor-force monopole matrix elements. This similarity is
indeed remarkable and is indicative of the tensor-force origin
of the kinks of the other two. We can subtract this tensor-force

contribution from the GXPF1A orG-matrix results, as shown in
Fig. 22(b). It was also noted by Otsuka, Suzuki, Honma
et al. (2010) that the remaining monopole matrix elements
are flat. In order to reproduce such monopole matrix elements, a
Gaussian central force was introduced by Otsuka, Suzuki,
Honma et al. (2010). The monopole-based universal interac-
tion, called VMU, was then introduced, being composed of this
central force and the π-meson + ρ-meson exchange tensor
force. The parameters of the central force [see Eq. (47)] were
selected by Otsuka, Suzuki, Honma et al. (2010) as f1;0 ¼
f0;0 ¼ −166 MeV, f0;1 ¼ 0.6f1;0 and f1;1 ¼ −0.8f1;0, and
μ ¼ 1 fm. The VMU interaction was described by Otsuka,
Suzuki, Honma et al. (2010): “[W]e can describe the monopole
component by two simple terms: the tensor force generates
‘local’ variations, while the Gaussian central force produces a
flat ‘global’ contribution.” This is illustrated graphically in
Fig. 23. Here “local” refers to the strong dependences on the
single-particle orbits up to the sign changes, whereas “global”
refers to the weak dependences with large magnitudes.

Δ n
=

0
Δn

=
1 A=70  tensor force 

Monopole matrix element (MeV)

FIG. 21. Monopole matrix elements of the tensor force in the
T ¼ 0 channel. The orbit labeling is abbreviated as f7 for 1f7=2,
etc. The orbits are from the valence shell for A ¼ 70.

FIG. 22. Monopole matrix elements of various forces for (a)–(d)
pf and (e)–(h) sd shells. In (b), (d), (f), and (h), the tensor-force
effect is subtracted from the others, and results from a Gaussian
central force are shown. Adapted from Otsuka, Suzuki, Honma
et al., 2010.

(a) (b)

FIG. 23. Diagrams for the VMU interaction. From Otsuka,
Suzuki, Honma et al., 2010.
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The T ¼ 1 monopole matrix elements are shown in
Fig. 22(c). One notices that they are much weaker than the
T ¼ 0 monopole matrix elements, by a factor of about 1=10.
This large difference reflects a general trend. Within such
small monopole matrix elements, the pattern is not so simple.
Figure 22(d) shows that some of the T ¼ 1 monopole matrix
elements of the central Gaussian potential are repulsive.
Moving from the pf shell to the sd shell, quite similar

properties can be found in Figs. 22(e)–22(h). Note that the
parameters of the VMU potential are independent of the orbits
and the shells. The good description is remarkable in this
respect. The reason for this with respect to the tensor force is
presented in Sec. V.A.

D. Shell evolution driven by the central and tensor forces in
actual nuclei

Here we demonstrate how the shell evolution actually
occurs due to the central and tensor forces. The tensor force
is taken from the π-mesonþ ρ-meson exchange potential in
all cases (as in the VMU interaction) in order to clarify the
underlying mechanism. Likewise, the central force is taken
also from the VMU interaction for all cases, exhibiting different
roles of these interactions in a consistent manner.

1. Inversion of proton 1f 5=2 and 2p3=2 in Cu isotopes

One of the most visible examples of the shell evolution
driven by the tensor force is the change of the proton
1f7=2-1f5=2 splitting due to neutron occupations of the
1g9=2 orbit from the theoretical viewpoint. We describe this
case in some detail, as it is one of the early examples regarding
the tensor force. The underlying mechanism can be under-
stood by reviewing Fig. 18 in a straightforward way. Namely,
in this case, the neutron j0> orbit is 1g9=2, and it is occupied by
more neutrons as we move on the Segrè chart from 69Cu to
heavier Cu isotopes. The changes of the ESPEs of the proton
j> ¼ 1f7=2 and j< ¼ 1f5=2 orbits are given by following
Eq. (38) as

Δϵpf5=2 ¼ Vm
pnðf5=2; g9=2ÞΔnng9=2 ð67Þ

and

Δϵpf7=2 ¼ Vm
pnðf7=2; g9=2ÞΔnng9=2 ; ð68Þ

where the hat symbol is omitted because the occupation
number of the neutron 1g9=2 orbit is treated as a c number
here. Note that just such a simple treatment was mentioned as
a possible option in Sec. III.D. From the VMU interaction, the
monopole matrix elements have two sources: one from the
central force and the other from the tensor force. Table II
shows their corresponding values. One sees that, between the
two couplings 1f5=2-1g9=2 and 1f7=2-1g9=2, the central force
gives a somewhat stronger attraction to the latter, as can be
expected from Fig. 13(b). On the other hand, the tensor force
pushes the 1f5=2 orbit down with more neutrons in the 1g9=2
orbit while pulling the 1f7=2 orbit up at the same time.

The ESPEs provided by Eqs. (67) and (68) are shown in the
left panel of Fig. 24, where the number of neutrons in the 1g9=2
orbit is given by N − 40 as the filling scheme is taken. The
ESPEs at N ¼ 40 are obtained from empirical values (Grawe
et al., 2005; Otsuka, Suzuki, Honma et al., 2010). The full
VMU interaction is taken for the ESPEs displayed with solid
lines in the left panel of Fig. 24, while the dashed lines depict
results only with the central force. One confirms the same
trends as discussed previously: the central force (with neu-
trons in the 1g9=2 orbit) slightly repels the 1f5=2 and 1f7=2
orbits from each other, while the tensor force brings them
distinctly closer. The 1f5=2-1f7=2 splitting is ∼8 MeV at
N ¼ 40, but it is decreased to ∼6 MeV at N ¼ 50. The Z ¼
28 gap is between the 2p3=2 and 1f7=2 orbits at N ¼ 40 with a
gap of ∼6 MeV, whereas it is between the 1f5=2 and 1f7=2
orbits at N ¼ 50 with a gap of ∼6 MeV.
The lowering of the proton 1f5=2 orbit produces another

significant consequence. The left panel of Fig. 24 shows that
the proton 2p3=2 orbit comes down, as a function of N, more
slowly than the 1f5=2 orbit, and their order is inverted around
N ¼ 45. In fact, Table II suggests that the central-force
contribution to the lowering of the proton 2p3=2 orbit is
∼2=3 of the one for 1f7=2 or 1f5=2, and the tensor-force
contribution is almost negligible. These properties are quite
natural due to differences in the radial wave functions. Table II
shows also how the 1f5=2-2p3=2 gap is changed by the central
and tensor forces. The two forces contribute to the inversion
almost equally, and the total effect is large enough.
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FIG. 24. (Left panel) Proton ESPEs of Cu isotopes predicted
by the VMU interaction (solid lines). Dashed lines are obtained
only with the central-force part. The neutron number in the
1g9=2 orbit is equal to N − 40, as the filling scheme is assumed.
From Otsuka, Suzuki, Honma et al., 2010. (Right panel) Same
quantities by the A3DA-m Hamiltonian used by Sahin et al.
(2017). From Sahin et al., 2017.

TABLE II. Monopole matrix elements from the central and tensor
forces. The unit is the MeV. The mass number A ¼ 70 is taken for the
harmonic oscillator wave function of the single-particle orbit.

Proton orbit Neutron orbit Central Tensor

1f5=2 1g9=2 −0.63 −0.15
1f7=2 1g9=2 −0.70 þ0.11
Difference between 1f5=2 and 1f7=2 þ0.07 −0.26
2p3=2 1g9=2 −0.46 þ0.02
Difference between 1f5=2 and 2p3=2 −0.17 −0.17
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The change of the ESPE of the proton 1f5=2 orbit has been
investigated experimentally. Earlier investigations (Franchoo
et al., 1998, 2001) were made for 69;71;73Cu prior to the
previously presented theoretical studies. The experimental
findings were compared to shell-model calculations (Ji and
Wildenthal, 1989; Sinatkas et al., 1992). The main message
may be found in the quoted statements “unexpected and sharp
lowering of the πf5=2 orbital” and “the energy shift originates
from the residual proton-neutron interaction, while its mag-
nitude is proportional to the overlap of the proton and neutron
wave function” (Franchoo et al., 2001). There was no mention
of the tensor force, and the lowering of the proton 1f5=2 orbit
seems to have been attributed to the central force. We can see
from Table II that the central force accounts for half of the
effect. Note that spectroscopic factors have been deduced for
69;71Cu (Morfouace et al., 2015). We point out that the
interplay of collective and single-particle behavior was dis-
cussed for 67–73Cu by Stefanescu et al. (2008).
The experimental studies were further extended by

Flanagan et al. (2009) up to 75Cu, as shown in Fig. 25.
The inversion between the lowest 5=2− and 3=2− levels was
observed for the first time in the Cu isotopic chain. The role of
the tensor force was known then, and the work was recognized
as “a crucial step in the study of the shell evolution” (Flanagan
et al., 2009). The observed levels were compared to shell-
model calculations by Brown and Lisetskiy (2009) with a
reasonable agreement. It is very likely that a proper amount of
tensor force was included in the shell-model interaction as a
result of the fit well done (Lisetskiy et al., 2004, 2005). The
single-particle nature of the lowest 5=2− being the 1f5=2
single-particle state in 75Cu was confirmed by the measured
magnetic moment and by the shell-model calculation, as was
the lowest 3=2− being the 2p3=2 single-particle state in 69Cu.
On the other hand, the ground state (i.e., the 3=2− state) of
71;73Cu was shown to have a mixed nature. Besides such
intermediate situations, an inversion between the 1f5=2 and
2p3=2 states has thus been suggested (Flanagan et al., 2009),
and the trend was extended to heavier Cu isotopes (Daugas et
al., 2010; Köster et al., 2011). This series of experiments
showing a clear signal of the lowering of the 1f5=2 orbit can be

considered a major milestone in establishing the shell
evolution.
The effects of various correlations, including collective

ones, have been investigated both theoretically and exper-
imentally, but the main conclusion remains unchanged, apart
from minor changes. For instance, the precise point of the
inversion is sensitive theoretically to the adopted values of
ESPEs at N ¼ 40, which are not known to be so accurately
constrained to date; see Fig. 24.
The structures of neutron-rich 77Cu and 79Cu isotopes have

recently been studied experimentally by Sahin et al. (2017) and
Olivier et al. (2017), respectively, and experimental data
compared well to the results of the shell-model calculation
with the A3DA-m Hamiltonian introduced in Tsunoda, Otsuka
et al. (2014). The right panel of Fig. 24 indicates the ESPEs
obtained from this Hamiltonian including the 1f5=2-2p3=2

crossing, and it also shows that the Z ¼ 28 gap becomes
smaller but still remains greater than 4 MeV up to N ¼ 50.
As the shell-model calculations contain correlations in the
configuration space, the 5=2− and 3=2− levels are inverted at
N ¼ 46, in agreement with experiment. Because the A3DA-m
interaction contains empirical corrections (for the given model
space) compared to the VMU interaction, they produce a
somewhat different reduction of the 1f7=2-1f5=2 splitting,
but the substantial reduction is common, which is consistent
with the tensor-force-driven shell evolution.

2. Shell evolution from 90Zr to 100Sn

Another typical case of the tensor-force-driven shell evo-
lution is discussed in Fig. 26, in the filling scheme on top of
the Z ¼ 40 and N ¼ 50 closed shell. In the left panel of
Fig. 26, the ESPEs of neutrons are displayed relative to the
one for the 2d5=2 orbit, where the number of protons in
the 1g9=2 orbit is increased from 0 to 10. This represents the
change from 90Zr to 100Sn. The neutron ESPEs for Z ¼ 40

were adjusted to experimental data including the fragmenta-
tion of single-particle strengths (ENSDF, 2017), and their
evolution for larger Z’s follows Eq. (39) with the VMU

FIG. 25. Energy of the lowest levels from experiment and shell-
model calculations. From Flanagan et al., 2009.
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FIG. 26. (Left panel)NeutronESPEs relative to the2d5=2 orbit as a
function of Z. Dashed and full lines have the same meaning as in
Fig. 24. Adapted from Otsuka, Suzuki, Honma et al., 2010. (Right
panel) Measured energies of the 7=2þ level relative to the 5=2þ1
states forN ¼ 51 isotones. The squares show stateswith large 1g7=2
single-neutron strength, as quoted by Federman and Pittel (1977).
The circles stand for the lowest observed 7=2þ level (ENSDF,
2017). The present assignment for 101Sn is by Darby et al. (2010).
The straight line connects the points at Z ¼ 38 and 50.
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interaction. The corresponding experimental data, including
those mentioned by Federman and Pittel (1977), are shown in
the right panel of Fig. 26.
One finds, in the left panel of Fig. 26, two sets of calculated

results: one (solid lines) is obtained with the full VMU
interaction, while the other (dashed lines) is only with the
central-force part of VMU. A sharp drop of the 1g7=2 ESPE
with the full VMU interaction is remarkable, ending up
with an ESPE below 2d5=2. A similar behavior is seen in
the experimental data (see the right panel of Fig. 26). This
drop is largely due to a strong proton-neutron monopole
interaction on a proton in the 1g7=2 orbit generated by neutrons
in the 1g9=2 orbit. The actual values of the relevant central-
force monopole matrix elements are −0.51 MeV for the
proton-neutron 1g9=2-1g7=2 coupling and −0.32 MeV for
the 1g9=2-2d5=2 coupling (see Fig. 13 for the T ¼ 0 contri-
bution), while the tensor-force contribution is −0.13 MeV for
the former and þ0.02 MeV for the latter (see Fig. 20 for the
T ¼ 0 contribution). Thus, the difference between the two
couplings is −0.19 MeV from central force, and −0.15 MeV
from tensor force. The notable central-force contribution was
suggested by Federman and Pittel (1977), as stated in
Sec. IV.A.
The left panel of Fig. 26 also shows also that if only the

central-force part is taken, the 1g7=2 and 1h11=2 ESPEs come
down together (dashed lines). These two ESPEs, however,
repel each other toward Z ¼ 50 if the tensor force is included
(solid lines). This is because a repulsive monopole interaction
works on the h11=2 orbit due to the j>-j0> coupling, whereas
the tensor interaction is attractive on the 1g7=2, as discussed
previously. This attraction produces an additional lowering of
1g7=2, letting it reach below 2d5=2 at Z ¼ 50. We note that a
similar trend in the 1g7=2-1h11=2 splitting was shown with a
monopole-corrected G-matrix interaction by Sieja et al.
(2009). The energy levels of 101Sn have been investigated
experimentally by Seweryniak et al. (2007) and Darby et al.
(2010), whose results show different ground-state spins but
are consistent with the lowering of the 1g7=2 orbit.
As a second point, we mention that the bunching of three

orbits, 1h11=2, 2d3=2, and 3s1=2, seems to be consistent with the
shell structure of the Sn isotopes. The left panel of Fig. 26
demonstrates that the tensor force plays a crucial role for
obtaining it. The tensor-force contribution is thus essential for
the shell structure of 100Sn, which has further relevance to
various issues of exotic nuclei.
Another feature is the relation to the Skyrme Hartree-

Fock calculation shown in Fig. 27. With the SIII interaction,
the 1g7=2-2d5=2 gap is decreased by about 1.2 MeV. This
change is comparable to the corresponding shift by the
central force of the VMU interaction. Note that the ESPE of
the 1g7=2 (2d5=2) orbit is predicted to be lower (higher) than
the empirical value, and thereby the change of their splitting
is smaller than that shown in Fig. 26. Thus, the tensor force
is needed to account for a larger relative change between the
2d5=2 and 1g7=2 orbits, eventually leading to their crossing
in Sn. Furthermore, the right panel of Fig. 27 indicates that
the gap between the 1g7=2 and 2d5=2 orbits is even increased
with the SLy4 interaction.

3. Appearance of N = 16 magic number and disappearance
of N = 20

The change of the neutron 1d3=2 ESPE is discussed in
Sec. IV.A. Figure 14 shows that the neutron 1d3=2 ESPE is
about 6 MeVabove the 2s1=2 ESPE in 24O, but it comes down
by about 4 MeV in 30Si.
This change is discussed in Sec. IV.A as a consequence of

the strong attractive monopole matrix element between the
lþ 1=2 and l − 1=2 orbits. This strong coupling is included
in shell-model effective interactions, e.g., SDPF-M (Utsuno et
al., 1999) and in the G matrix (Kuo and Brown, 1966),
whereas it is weakened in some others, e.g., USD (Brown and
Wildenthal, 1988). It is indicated in Sec. IV.A that the ττσσ
interaction in Eq. (47) can lower, in principle, the neutron
1d3=2 orbit as protons occupy the 1d5=2 orbit. Although this
coupling is strongest in Table I, if the ττσσ interaction is
taken, the neutron 1d5=2 orbit is lowered by about half,
implying some difficulty. On the other hand, the strong
attraction between the lþ 1=2 and l − 1=2 orbits was
suggested, leading us to a sizable spin-isospin coupling
(Otsuka et al., 2001).
Four years later, Otsuka et al. (2005) proposed

another origin in nuclear forces for this spin-isospin
coupling, the tensor force. In fact, the tensor force provides
the relevant monopole matrix elements V ten;m

pn ð1d5=2; 1d3=2Þ ¼
−0.37 MeV and V ten;m

pn ð1d5=2; 2s1=2Þ ¼ 0 MeV. By having six
protons in the 1d5=2 orbit, the 1d3=2 orbit is then lowered by
2.2 MeV relative to the 2s1=2 orbit. This implies that half of the
lowering of the 1d3=2 orbit is due to the tensor force. We also
stress that the neutron 1d5=2 orbit is pushed up by the tensor
force with six protons in 1d5=2, in contrast to the ττσσ
interaction.
The neutron 1d3=2 orbit needs to be shifted down by another

2 MeV relative to the 2s1=2 orbit by the central force because
the tensor-force effect is robust (not that tunable), as we
discuss in Sec. V.A. In fact, the central force should produce a
weaker monopole matrix element for the 1d5=2-2s1=2 cou-
pling, and this is the case.
We mention here that some features of the ττσσ interaction

are shared by the tensor force; for instance, the spin-isospin
operator τσ acts on the vertex in favor of spin-isospin-flip

S III SLy4emp. emp.

FIG. 27. Single-particle energies of 90Zr and 100Sn calculated by
(left panel) SIII and (right panel) SLy4 Skyrme interactions.
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process, and only the exchange process contributes to the
monopole matrix element (see Figs. 14 and 17). These
properties produce stronger couplings between j> and j<
orbits with a common l for both the central and tensor forces,
but only the tensor force also does it for j> and j0<, i.e., l ≠ l0.
In this sense, the special importance of the spin-isospin
interaction in the shell evolution in exotic nuclei was pointed
out as an initial study by Otsuka et al. (2001), a precursor to
more comprehensive studies including the tensor force.
The relative raising of the neutron 1d3=2 orbit from

Fig. 14(a) to Fig. 14(b) occurs as Z is reduced from 14 to
8 while N is kept at 16. This isotonic change from a stable to
an exotic nucleus creates an N ¼ 16 gap and diminishes the
N ¼ 20 conventional gap. Thus, the present shell evolution
can change the magic numbers. We mention here that the large
N ¼ 16 gap was recognized in an earlier shell-model study
within the systematics of the oxygen isotopes (Brown, 1993).
The gap was pointed out based on experimental data on the
masses and radii (Ozawa et al., 2000).
We come back to the N ¼ 20 magic number in Secs. V.D

and VI.A.

4. Appearance of N = 34 magic number in the isotonic chain

Another case of new magic numbers has been found in the
Ca isotopes, with N ¼ 32 and 34. A remarkable proton-
neutron j>-j< coupling within a major shell is seen in the shell
evolution between Ca and Ni. Figure 28 displays this shell
evolution concretely in terms of the VMU interaction. We take
the filling scheme, where no proton occupies the 1f7=2 orbit in
48Ca. In 56Ni, on the other side, eight protons occupy the 1f7=2
orbit, changing the ESPEs of the neutron orbits 1f5=2, 2p3=2,
and 2p1=2. Figure 28 then indicates how much each orbit is
moved with the decomposition into the tensor- and central-
force monopole contributions. It is found that, in going from
56Ni to 48Ca, both forces contribute additively to the sharp rise

of the 1f5=2 orbit relative to the 2p3=2 and 2p1=2 orbits. The
splitting between the 2p3=2 and 2p1=2 orbits is slightly
increased and becomes a (sub)magic gap, as the 1f5=2 orbit
is not in between any longer.
Figure 28 exhibits the changes of the ESPEs with the

decomposition into the tensor- and central-force monopole
contributions. We point out that the monopole components
of the tensor and central forces contribute to the evolution
of the 1f5=2 ESPE, showing its sharp rise. The splitting
between the 2p3=2 and 2p1=2 orbits remains almost unchanged
and becomes a (sub)magic gap after the 1f5=2 orbit is
shifted above 2p1=2. Thus, the N ¼ 32 gap corresponds to
the 2p3=2-2p1=2 spin-orbit gap, but its effect is hidden if the
1f5=2 is lying between the 2p3=2 and 2p1=2 orbits. Thus, the
evolution of the 1f5=2 orbit crucially affects the appearance of
the N ¼ 32 magic number. It is noted that the tensor force
enlarges the gap between the 2p3=2 and the 2p1=2. The magic
numbers 32 and 34 thus appear in going from Ni to Ca, as
indicated in Fig. 28, as the eight protons in 56Ni are taken
away. We emphasize that the N ¼ 34 gap basically vanishes
when the tensor-force effect is taken away, and that is, since
the present shell-evolution effect is linearly dependent on the
number of proton holes in the 1f7=2 orbit, as Z decreases, the
N ¼ 34 (sub)magic structure fades away first and the N ¼ 32

structure also disappears eventually.
The far-right part of Fig. 28 shows the shell evolution from

48Ca to 54Ca due to the neutron-neutron interaction, adding six
more neutrons still in the filling scheme. The GXPF1Br shell-
model interaction introduced in Steppenbeck et al. (2013) is
used, as more fine details are relevant now. The neutron-neutron
effective interaction produces the shell evolution with patterns
very different from those of the proton-neutron interaction.
Four and two neutrons occupy the 2p3=2 and 2p1=2 orbits,
respectively, in 54Ca. The ESPE is shown for the 1f5=2 orbit on
top of the 54Ca core, with a very small change from 48Ca. As the
2p3=2 and 2p1=2 orbits are occupied in the 54Ca core, we show
the ESPE for the last neutron to occupy these orbits. The 2p3=2

ESPE is calculated for 54Ca by assuming a fully occupied 2p1=2

orbit. In order to assess the energy needed for particle-hole
excitation, in the far-right part of Fig. 28, the dashed line
beneath the 1f5=2 level shows the ESPE calculated with one
neutron hole in the 2p1=2 orbit, which is very close to the solid
line. Thus, the effects of the neutron-neutron monopole
interaction is minor and can be repulsive. The 2p3=2 and
2p1=2 ESPEs are somewhat lowered due to the pairing
component between the same orbit, when they are occupied.
We can thus see the basic mechanism of the appearance of

the N ¼ 32 and 34 gaps. This was the prediction by Otsuka
et al. (2001), a consequence of the strong attractive coupling
between the lþ 1=2 and l − 1=2 orbits with l ¼ 3, analo-
gous to a similar coupling with l ¼ 2 leading to the N ¼ 16

new magic number. The corresponding text of Otsuka et al.
(2001) is as follows: “we can predict other magic numbers, for
instance, N ¼ 34 associated with the 0f7=2 − 0f5=2 interac-
tion.” Here 0f7=2;5=2 corresponds to 1f7=2;5=2 in the present
notation. The experimental investigation of the N ¼ 34 magic
number in the Ca isotopes had not been feasible for over a

FIG. 28. Change of ESPEs from 56Ni to 48Ca, and to 54Ca. The
arrows indicate the change of the ESPE of each orbit. The arising
magic numbers, N ¼ 32 and 34, are shown in black circles. The
dashed line just beneath the 1f5=2 ESPE (red bar) in the right
column means the 1f5=2 ESPE calculated with one neutron hole
in the 2p1=2 orbit.
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decade, casting doubt over this magic number (Janssens,
2005). In 2013, finally, the 2þ excitation energy was measured
at the RIBF (Steppenbeck et al., 2013) to be significantly
higher than in heavier isotones consistent with an N ¼ 34 gap,
as shown in Fig. 29. A sharp rise of the 2þ excitation energy as
a function of Z was thus confirmed experimentally for 54Ca, as
shown in Fig. 29(b), in accordance with the rise of the 1f5=2
orbit from 56Ni to 48Ca; see Fig. 28. The intermediate situation
between the Ca and Ni isotopes was discussed by
Steppenbeck et al. (2013). The N ¼ 32 gap in the Ca isotopes
was investigated experimentally at ISOLDE in 1985 in terms
of the 2þ excitation energy (Huck et al., 1985). The magic
structures of Ca isotopes have attracted much attention in
recent years (Prisciandaro et al., 2001; Janssens et al., 2002;
Liddick et al., 2004; Bürger et al., 2005; Dinca et al., 2005;
Gade et al., 2006; Perrot et al., 2006; Rejmund et al., 2007;
Rodríguez and Egido, 2007; Honma, Otsuka, and Mizusaki,
2008; Coraggio et al., 2009; Crawford et al., 2010; Kaneko et
al., 2011; Hagen et al., 2012a; Holt et al., 2012; Utsuno et al.,
2012b; Wienholtz et al., 2013; Steppenbeck et al., 2015; Ruiz,
Garcia et al., 2016).
Figure 29(b) exhibits that raising pattern toward Z ¼ 20 of

the 2þ1 level differs between N ¼ 32 and 34 isotonic chains.
Significant experimental efforts were made, particularly for Ti
(Z ¼ 22), for instance, by Janssens et al. (2002), Fornal et al.
(2004, 2005), Dinca et al. (2005), and Liddick et al. (2004),
partly because Ti is only ΔZ ¼ 2 away from Ca. As three
quarters of the shift from Ni to Ca occurs in Ti in Fig. 28, the
1f5=2 level is located near the 2p1=2 level, making the N ¼ 32

gap rather visible but not the N ¼ 34 gap, which is consistent
with these experiments. Thus, studies on Ti and Sc isotopes
(Steppenbeck et al., 2017) support the appearance mechanism
of N ¼ 32 and 34 magic numbers in Ca isotopes.
The levels of single-particle-like states on top of the

NðZÞ ¼ 28 and NðZÞ ¼ 50 closure were discussed system-
atically by Grawe (2004), with sharp decreases of (a) neutron
1f5=2 with proton 1f7=2 filled, (b) proton 1f5=2 with neutron
1g9=2 filled, (c) proton 1g7=2 with neutron 1h11=2 filled, and
(d) neutron 1g7=2 with proton 1g9=2 filled. Case (a) is simply
the change from 48Ca to 56Ni depicted in Fig. 28. All cases are
of the j>-j0< coupling with large j and j0; hence, the sharp
decreases can be understood in terms of the coherent effects of
the central and tensor forces discussed thus far. Related
systematic trends of the monopole matrix elements were

obtained empirically by Sorlin (2014), indicating that the
proton-neutron 1d5=2-1d3=2 monopole matrix element is more
attractive than the 1d5=2-1f7=2 one, which is more attractive
than the 1d5=2-2p3=2 one. This is consistent with the monopole
properties discussed, and it supports them.

5. Repulsion between proton 1h11=2 and 1g7=2 orbits in the Sb
isotopes

Figure 30 shows the ESPEs of the proton 1h11=2 and 1g7=2
orbits in Sb isotopes as a function of N. There are 51 protons
in the Sb isotopes: one proton atop the Z ¼ 50 magic core in
the filling scheme. This last proton can be in either the 1h11=2
orbit or the 1g7=2 orbit. The experimental values are taken
from Schiffer et al. (2004), who reported that the centroid of
fragmented single-particle strengths were evaluated as much
as possible. Some questions on the validity of this analysis
have been raised, for instance, by Sorlin and Porquet (2008),
in connection to the couplings to various collective modes,
including the octupole one. While this remains an open
problem both experimentally and theoretically, we discuss
it here from the viewpoint of the monopole effect to explore
what can be presented with such a simple argument. We
expect more developments to lead to further clarifications.
Around the middle (N ∼ 66) of the major shell between

N ¼ 50 and 82, the 1h11=2 and 1g7=2 orbits (or two corre-
sponding experimental states) are close to each other with a
gap of less than 1 MeV. The gap increases with N, as seen in
Fig. 30. It was quite difficult to reproduce this enlargement of
the gap within mean-field models when the experimental
values were published (Schiffer et al., 2004). In those Sb
isotopes, the neutron 1h11=2 orbit is filled more and more as N
increases. The monopole interaction from the tensor force is
repulsive between the proton 1h11=2 orbit and the neutron
1h11=2 orbit; see Fig. 18. Its effect is, on the other hand,
attractive between the proton 1g7=2 orbit and the neutron
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1h11=2 orbit; see also Fig. 18. In fact, the theoretical ESPEs in
Fig. 30 are calculated from the monopole matrix elements [see
Eq. (38)] of the VMU interaction, which consists of the π þ ρ
meson-exchange tensor force and the Gaussian central force,
as discussed in Sec. IV.C.
The ESPEs in Fig. 30 are calculated with the monotonic

increase of the uniform occupation probabilities of the neutron
1h11=2, 2d3=2, and 3s1=2 orbits starting from N ¼ 64 for
simplicity. Figure 30 shows the ESPEs calculated without
the tensor force (dashed lines), indicating that the two ESPEs
come down together with the gap even slightly narrowing.
Once the tensor force is included (solid lines in Fig. 30),
however, itmoves the twoorbits farther apart from each other as
N increases. A similar but simpler figurewas shown in Fig. 4(d)
of Otsuka et al. (2005), which was published immediately after
Schiffer et al. (2004), demonstrating the explanation of the
anomalous gapwidening in terms of the tensor force for the first
time. The gap increase can be explained almost perfectly once
the tensor force is incorporated without an adjustment of the
tensor-force strength. This point has to be clarified with more
precise calculations including other correlations. We also point
out the upbending curvature toward N ¼ 82 shown in Fig. 30
may suggest some effects beyond the monopole effect.
It is thus important and essential to examine to what extent

other effects, for instance, couplings to collective excitations,
affect the observed energy levels, while the tensor-force
effects seem to remain a major mechanism.

E. Mean-field approaches to the tensor-force-driven shell
evolution

The effect of the tensor force has been included in various
recent studies based on mean-field models (Brown et al.,
2006; Long, Giai, and Meng, 2006; Otsuka, Matsuo, and Abe,
2006; Brink and Stancu, 2007; Colò et al., 2007; Lesinski
et al., 2007; Bender et al., 2009; Lalazissis et al., 2009).
Regarding the inclusion of the tensor force into Skyrme-
based mean-field approaches, relatively few studies were
done before these works, probably in consideration of some
issues pointed out, for instance, in Bender, Heenen, and
Reinhard (2003).
The importance of the tensor force was anticipated by

Skyrme (1958) when the original form of the Skyrme inter-
action was proposed. The tensor force was, however, not
studied much within the Skyrme-model calculations for a
while, probably with the exception only of the work of Stancu,
Brink, and Flocard (1977), who adopted the zero-range
approximate form for the tensor force with terms mixing S
andDwaves of the relativemotion aswell asPwaves (Skyrme,
1958; Vautherin and Brink, 1970). This form can be written as

vT ¼ 1
2
Tf½ðσ⃗1 · k⃗0Þðσ⃗2 · k⃗0Þ − 1

3
ðσ⃗1 · σ⃗2Þk02�δðr⃗1 − r⃗2Þ

þ δðr⃗1 − r⃗2Þððσ⃗1 · k⃗Þðσ⃗2 · k⃗Þ − 1
3
ðσ⃗1 · σ⃗2Þk2�g

þ Ufðσ⃗1 · k⃗0Þδðr⃗1 − r⃗2Þðσ⃗1 · k⃗Þ
− 1

3
ðσ⃗1 · σ⃗2Þ½k⃗0δðr⃗1 − r⃗2Þk⃗�g; ð69Þ

where k⃗ ¼ ð∇⃗1 − ∇⃗2Þ=2i acts on the right and k⃗0 ¼ −ð∇⃗1 −
∇⃗2Þ=2i acts on the left.

The tensor term gives rise to additional spin-orbit strengths
written as

ΔWn ¼ αTJn þ βTJp;

ΔWp ¼ αTJp þ βTJn; ð70Þ
where Jρ (ρ ¼ p, n) are the spin densities given by

JρðrÞ¼
1

4πr3
X
a

ð2jaþ1Þ
�
jaðjaþ1Þ−laðlaþ1Þ−3

4

�
R2
aðrÞ

ð71Þ
with occupied orbitals fag. Since the spin-orbit potential for

ρ ¼ p, n isWρl⃗ · σ⃗=r, a large negativeWρ gives a strong spin-
orbit splitting. From the sign of jaðjaþ1Þ−laðlaþ1Þ−3=4,
one can see that Jρ increases and decreases with the occu-
pation of the α ¼ j> and j< orbitals, respectively, and that
changing Jρ causes the evolution of the spin-orbit coupling as
previously discussed. αT and βT correspond to like-particle
and proton-neutron tensor forces. The equality βT ¼ 2αT
holds if the tensor force has the same isospin structure,
τ1τ2, as the π þ ρ meson-exchange potential. Monopole terms
of the tensor forces given by the two parameters are compared
with those of the tensor forces by π þ ρ meson exchanges to
study the validity of the use of the approximate zero-
range form.

(a) pn monopole matrix element

tensor force by 

tensor force by

(b) pn monopole matrix element

FIG. 31. Comparison of monopole matrix elements of the zero-
range tensor force of Stancu, Brink, and Flocard (1977) to those
of the π þ ρ meson-exchange tensor force. The p, sd, and pf
shells are covered in (a), while the valence shell relevant to A ∼
140 is considered in (b). The parameter βT ¼ 128.75MeV fm5

is used.
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Figure 31 depicts a comparison between monopole matrix
elements of the zero-range tensor force of Stancu, Brink, and
Flocard (1977) to those of the π þ ρ meson-exchange tensor
force. For the former, the parameters obtained by a χ-square
fitting to the monopole matrix elements of the π þ ρ tensor
forces for the A ≈ 40 mass region are used with actual values
ðαT; βTÞ ¼ ð64.38; 128.75Þ MeV fm5. As shown in Fig. 31,
the zero-range form for the tensor force can simulate the
monopole interaction of the π þ ρ tensor force to a certain
extent, but there are rather large fluctuations and deviations,
especially in the case of light nuclei. We note that the present
ðαT; βTÞ values are close to the G-matrix ones ðαT; βTÞ ¼
ð60; 110Þ MeV fm5 (Brown et al., 2006). For lighter nuclei,
larger parameters become necessary to reproduce the monop-
ole matrix elements of the π þ ρ tensor force, whereas the
deviation is the opposite in heavy nuclei. This variation of
parameters is not in accordance with the Skyrme phenom-
enology, where constant parameters for all nuclei are a major
advantage.
Although the effect of the tensor force on the spin-orbit

potential was recognized in the 1970s, the tensor term was
dropped in most of the Skyrme parametrizations until recently.
One of the probable reasons for this is that the inclusion of the
tensor term does not lead to significant improvement in the
single-particle spectra for doubly magic nuclei (Stancu, Brink,
and Flocard, 1977). In addition, as pointed out by Sagawa and
Colò (2014), not much attention was paid to the evolution of

shells with successive mass numbers, likely due to the missing
expectation of the shell evolution. We point out also that the
meaning of the zero-range approximation of the tensor force
remains to be investigated.
Following the work of Otsuka et al. (2005), the tensor term

in the Skyrme forces was revisited in terms of the shell
evolution. For instance, Brown et al. (2006) reported
the first investigation of the effects of the inclusion
of tensor forces into the shell evolution based on the
Skyrme density functionals, employing empirical values
ðαT; βTÞ ¼ ð−118; 110Þ MeV fm5. Brink and Stancu (2007)
reinvestigated, after their work in Stancu, Brink, and Flocard
(1977), the ESPE gaps between the proton 1h11=2 and 1g9=2
single-particle levels in Sb (Z ¼ 51) isotopes as well as those
between the neutron 1i13=2 and 1h9=2 single-particle levels in
N ¼ 83 isotones. Figures 32 and 33 depict results of various
calculations on the proton 1h11=2-1g9=2 gap in Sb isotopes.
While this gap is discussed in case (5) in Sec. IV.Dwith Fig. 30
from theviewpoint of theVMU interaction,we now survey other
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FIG. 32. Evolution of the proton h11=2-g7=2 gap in the Sb
isotopes with and without the tensor term. (Upper left panel)
π þ ρ meson-exchange tensor force on top of the usual Woods-
Saxon potential. From Otsuka et al., 2005. (Upper right panel) A
Gogny-type calculation with the tensor force (GT2) and without
it (D1S). From Otsuka, Matsuo, and Abe, 2006. (Lower panel) A
zero-range tensor force calculation added to the SLy5 force. From
Colò et al., 2007.

FIG. 33. The same as Fig. 32. (Upper panel) A zero-range tensor
force calculation. (Lower panel) A relativistic mean-field calcu-
lation. From Brink and Stancu, 2007, and Lalazissis et al., 2009.
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approaches, in some of which other correlation effects are
investigated. The upper panels of Fig. 32 show, as a reference,
the monopole effect by the π þ ρmeson-exchange tensor force
on top of the usual mean potential effect, like a Woods-Saxon
potential (Otsuka et al., 2005) or a Gogny-type potential
(Otsuka, Matsuo, and Abe, 2006). Colò et al. (2007) examined
this shell evolution, as shown in the lower panel of Fig. 32,
confirming that the inclusion of the tensor term clearly
improves the agreement with experimental data with the
adopted values ðαT; βTÞ ¼ ð−170; 100Þ MeV fm5. The upper
panel of Fig. 33 displays a similar calculation by Brink and
Stancu (2007) with ðαT; βTÞ ¼ ð−118.75; 120Þ MeV fm5. To
the present shell evolution, the proton-neutron monopole
interaction, which is controlled by the βT parameter, matters.
We notice that three works (Brown et al., 2006; Brink and
Stancu, 2007; Colò et al., 2007) use rather close values,
βT ¼ 110, 100, and 120 MeV fm5, respectively.
Besides the extension of Skyrme phenomenology, there was

another early attempt based on the Gogny force plus Gaussian-
type finite-range tensor force (Otsuka, Matsuo, and Abe, 2006)
like the AV8′ interaction (Pudliner et al., 1997). The result for
the previously discussed shell evolution is shown in upper right
panel of Fig. 32, exhibiting a good reproduction of the observed
systematics. A relevant systematic study with the M3Y-type
interactions was reported by Nakada (2008). Combining these
works with Skyrme-based calculations, the tensor-force-driven
shell evolution has been confirmed (Dobaczewski, 2006;
Bartel, Bencheikh, and Meyer, 2008; Tarpanov et al., 2008;
Zalewski et al., 2008; Zou et al., 2008; Zalewski, Olbratowski
et al., 2009; Zalewski, Satuła et al., 2009; Moreno-Torres et al.,
2010; Anguiano et al., 2011, 2012; Dong et al., 2011; Wang,
Dong, and Long, 2013; Shi, 2017).
We comment on αT values empirically determined. They

cause the opposite direction of the evolution of the ones for the
π þ ρmeson-exchange potential and theG-matrix results. The
justification of using such negative αT values is not clear in
connection to the nucleon-nucleon forces. Regarding open
problems with Skyrme-based approaches, we quote the com-
ment “the currently used central and spin-orbit parts of the
Skyrme energy density functional are not flexible enough to
allow for the presence of large tensor terms” from Lesinski
et al. (2007), and another remark, “studies of tensor terms are
extended to the case with deformations for future construction
of improved density functionals” from Bender et al. (2009). It
is another open question as to what extent observed states are
of a single-particle nature.
In relativistic mean-field models, π-meson degrees of free-

domwere taken into account in relativistic Hartree-Fock (RHF)
method by its exchange contributions (Bouyssy et al., 1987;
Long, Giai, andMeng, 2006; Lalazissis et al., 2009). The lower
panel of Fig. 33 depicts an example of such calculations for the
proton 1h11=2-1g9=2 gap in Sb isotopes, presenting the tensor-
force effect within the relativistic framework and the more
explicit treatment of a π meson in contrast to Skyrme zero-
range tensor force. Contributions from the ρmeson were found
to cure the pseudoshell closures atN or Z ¼ 58 and 92, leading
to realistic subshell closure at 64 (Long et al., 2007). In recent
RHF models, density-dependent meson-nucleon couplings
(Long, Giai, and Meng, 2006; Long et al., 2007) or softened

parametrized couplings (Lalazissis et al., 2009) are adopted,
which results in smaller effects of tensor forces from π or π þ ρ
meson exchanges compared to nonrelativistic models (Liang,
Van Giai, and Meng, 2008; Lalazissis et al., 2009). Inclusion
of many-body correlations beyond RHFþ RPA is still in
progress (Litvinova and Ring, 2006; Litvinova, 2016) and left
to future investigations.

F. Contributions from the two-body LS force

The two-body LS (2b-LS) force is another substantial
source of the monopole interaction. Although it was proposed
by Elliott and Lane (1954) based on an earlier work
(Blanchard and Avery, 1951), its monopole component has
never appeared explicitly in the literature. We sketch its major
monopole features here with more detailed discussions pre-
sented in Sec. S5 of the Supplemental Material (364).
The monopole matrix elements of the 2b-LS force con-

tribute, in many cases, to the spin-orbit splitting in the usual
sense. Schematic explanations on their basic properties are
shown in Sec. S5 of the Supplemental Material (364), and the
obtained characteristic features are listed here.

(1) The monopole interaction from the 2b-LS force turns
out to be consistent with the usual one-body spin-orbit
splitting [see, e.g., Bohr and Mottelson (1969)] in
many cases, as discussed soon.

(2) A schematic semiclassical picture can be drawn for the
intuitive understanding of the general and basic
properties of the 2b-LS monopole interaction; see
Fig. S2 in the Supplemental Material (364). The usual
one-body spin-orbit interaction [see Bohr and Mot-
telson (1969)] includes the radial derivative of the
density ∂ρ=∂r, with ρ and r being the nucleon density
and the distance from the center of the nucleus,
respectively. The present picture leads us to an
explanation of this dependence in terms of the differ-
ence between the monopole contributions from nucle-
ons inside r and those from nucleons outside r.

(3) Based on this feature, a standard value for each 2b-LS
monopole matrix element can be introduced; see the
text with Eq. (S49) in the Supplemental Material (364).
The actual values of the 2b-LS monopole matrix
elements are not far from the corresponding standard
values in many cases. This property may be related to
the empirical systematics suggested by Mairle (1993).

(4) Sizable deviations are found in some cases, however.
Among them, the coupling between an s and a p orbit
can be quite strong with a large magnitude of the
monopole matrix element; see Fig. S3 in the Supple-
mental Material (364), for example. This anomaly can
be explained in a simple quantum mechanical manner
based on the range of the 2b-LS force and the relative
motion of two interacting nucleons, a robust effect.

Although this effect has been presented orally since
2004, the first publication of one of its outcomes was
as recent as Suzuki and Otsuka (2008), where a
notable enlargement of the proton 1p3=2-1p1=2 split-
ting due to neutrons in the 2s1=2 orbit was shown as a
consequence of the 2b-LS force; see Fig. 1 of Suzuki
and Otsuka (2008) and the relevant text. Another
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example was presented by Burgunder et al. (2014) for
the effect of the proton 2s1=2 occupation on the neutron
2p3=2-2p1=2 splitting in comparison to experiment, as
is discussed in Secs. VI.A.7 and VI.A.8. A trend
consistent with the present effect can be seen in, for
instance, the spin-tensor decomposition in Sec. V.B.

(5) In some other cases, the sign of the monopole
interaction can be the opposite of the standard one
mentioned previously due to the radial wave functions;
see Fig. S5 of the Supplemental Material (364).

(6) If two nucleons are in the same orbit, the semiclassical
picture is inapplicable, and another type of large
deviation occurs, for instance, between two nucleons
in the same 2p1=2 orbit; see Fig. S6 of the Supplemental
Material (364). This case is interesting and important. In
fact, the monopole matrix element represents the whole
interaction for two neutrons in the 2p1=2 orbit, and the
tensor and 2b-LS forces produce strong repulsion [see
Figs. 22(c) and 35(b), and Fig. S6 of the Supplemental
Material (364)]. This feature lowers the 2þ level of 54Ca
discussed in Sec. IV.D.4 by reducing the pairing gap
and thereby shifting the ground-state energy upward.
Thus, the actual N ¼ 34 shell gap is likely larger than
what is expected from the actual 2þ level. The present
repulsive effect also gives a natural explanation to the
unusually weak or even repulsive value of the 2p2

1=2

pairing matrix element mentioned by Brown (2013).
While the tensor-force effect was suggested earlier
(Otsuka, Suzuki, Honma et al., 2010), another argu-
ment was given by Brown (2013).

We now look into the shell structure of 15C and 17O as an
example of notable contributions of the 2b-LS monopole
interaction. Although this case was discussed in Sec. III.G,
we revisit it. Figure 9 depicts the inversion between neutron
2s1=2 and1d5=2 orbits between 15Cand 17O, andFig. 34(a) shows
how the monopole matrix elements work for this inversion. We
now illustrate the origins of those monopole matrix elements in
Fig. 34 in terms of the tensor, 2b-LS, and central forces between
protons and neutrons.Here it is assumed that from 15C to 17O, the
proton 1p1=2 orbit is fully occupied, and the last neutron is in
either the 2s1=2 or 1d5=2 orbit. Figure 34(a) displays how the
neutron 2s1=2 orbit is shifted relative to the 1d5=2 orbit in going
from 15C to 17O in this genuine single-particle limit.
Figure 34(b) shows a related analysis. This is similar to

Fig. 34(a), but the contributions of the tensor and 2b-LS forces
and the rest of Hamiltonian are shown with respect to the
shell-model eigenstates obtained by the diagonalization
of the Hamiltonian. These energy levels can be calculated
by recently developed shell-model Hamiltonians, SFO-tls
introduced in Suzuki and Otsuka (2008) and YSOX intro-
duced in Yuan et al. (2012). The latter is taken in Fig. 34(b),
while the former gives a similar result. The contributions here
refer to the expectation values. The tensor and 2b-LS values
are about 80% of the corresponding values in Fig. 34(a),
which appear to be very similar to the probability of the lowest
configuration in the shell-model full wave functions of 17O.
Thus, the discussions in terms of the monopole matrix
elements and ESPEs are further proven to be sensible. On
the other hand, the contributions from the central force in

Fig. 34(a) is reduced significantly in the rest of Fig. 34(b).
Here the rest includes not only effects of the central force but
also effects of the (bare) single-particle energies due to
excitations from lower to higher orbits. It is clear that various
correlations due to the remainder decrease the raising of the
1=2þ1 level. The general aspect of this feature is of interest. The
importance of noncentral forces is thus confirmed in the case
shown in Fig. 34, which is consistent with earlier remarks
(Millener and Kurath, 1975).

V. RELATED FEATURES OF NUCLEAR FORCES

Here we discuss some features of nuclear forces related to
the shell evolution.

A. Renormalization persistency of the tensor force

The effects of the tensor force have been discussed already in
terms of the π þ ρ-meson-exchange potential. This potential is
derived in the free space, and one has to investigate the changes
due to various renormalization procedures for the short-range
repulsion and the in-medium corrections. This study was done
by Otsuka, Suzuki, Honma et al. (2010) and Tsunoda et al.
(2011), who suggest that the changes are quite small for the
tensor force, referred to as renormalization persistency.
An example is shown in Fig. 35 (Otsuka, Suzuki, Honma

et al., 2010), where the AV8′ interaction (Pudliner et al.,
1997) was used as the starting nuclear force in the free space.
A low-momentum interaction V low k (Bogner, Kuo, and
Schwenk, 2003) was derived in order to treat short-range
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exp.single-particle modeling (a)
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2b-LS
rest
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exp.shell model calc. (b)
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FIG. 34. (a) Energy of the neutron 2s1=2 orbit relative to the
1d5=2 orbit in 15C and 17O, calculated within the single-particle
scheme using the VMU interaction plus the M3Y 2b-LS force
(see the text). Contributions from the tensor, 2b-LS, and central
forces are decomposed. The changes are added to the exper-
imental 1=2þ1 level placed relative to the experimental 5=2þ1 level.
The experimentally observed level of 17O is shown at the far
right. (b) Analysis similar to (a) in terms of the shell-model
calculation with the YSOX (Yuan et al., 2012) interaction. Some
expectation values obtained by the YSOX calculation corre-
sponding to (a) are shown with respect to the shell-model
eigenstates. See the caption for (a).
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correlations, and the third-orderQ-box calculation with folded
diagram corrections (Hjorth-Jensen, Kuo, and Osnes, 1995)
was performed in order to include medium effects like core
polarization.
The spin-tensor decomposition has been carried out for

decades (Elliott et al., 1968; Kirson, 1973; Klingenbeck et al.,
1977; Yoro, 1980; Brown et al., 1988; Osnes and Strottman,
1992) in order to extract the tensor-force component. Here the
spin-tensor decomposition serves as a useful classification
technique of a given two-body interaction into several pieces,
such as the scalar-coupled (central force), axial-vector-coupled
[two-body LS (spin-orbit) force], and tensor-coupled spin
components.
We outline this now. A given two-body interaction can be

rewritten in general as

V ¼
X

k¼0;1;2

Vk ¼
X

k¼0;1;2

Uk ⋅ Xk; ð72Þ

whereUk andXk are tensor operators of rank k in the coordinate
and spin spaces, respectively. One can thus uniquely extract the
LS-coupled matrix elements of each k component:

hnalanblbLSJTjVkjnclcndldL0S0JTi

¼ ð−1ÞJð2kþ 1Þ
�
L S J

S0 L0 k

�

×
X
J0
ð−1ÞJ0 ð2J0 þ 1Þ

�
L S J0

S0 L0 k

�

× hnalanblbLSJ0TjVjnclcndldL0S0J0Ti: ð73Þ

The k ¼ 0, 1, 2 matrix elements correspond, as mentioned
previously, to the central force, spin-orbit (plus antisymmetric
spin-orbit) force(s), and tensor force, respectively.
These are all possible components for interactions with the

dependence on relative coordinates. If dependence on the center-
of-mass coordinate is allowed for some reason, other terms like
antisymmetric LS appear. Since the shells being considered are
full harmonic oscillator shells containing all spin-orbit partners,
this spin-tensor decomposition is possible. We note that the
tensor component here is obtained from a given interaction and
can differ from the one from the π þ ρ-meson-exchange
potential. We will see that this turns out to be a minor difference
in the present discussion with realistic interactions.
Figure 35 displays monopole matrix elements thus calcu-

lated for T ¼ 0 and 1 in the pf shell, starting with the AV8′
interaction (Pudliner et al., 1997) and varying the cutoff
parameter in the V low k process. For the usual value 2.1 fm−1,
the result is very close to those obtained directly from the bare
AV8′ tensor force.
The feature in which a nuclear-force component remains

unchanged to a good extent by the renormalization processes
has been referred to as renormalization persistency (Tsunoda
et al., 2011). Renormalization persistency was particularly well
studied for the monopole interaction of the tensor force with a
combination of the shell, the original interaction, and the
renormalization methods. Such studies, not only the earliest
one (Tsunoda et al., 2011) but also more recent ones with χEFT
forces (Yoshida, 2017), indicate that the tensor force fulfills the
renormalization persistency at least at the level of the monopole
interaction. The renormalization persistency therefore provides
us with a good rationale to discuss general features of the
monopole effects of the tensor force in terms of the π þ ρ-
meson-exchange potential, as has been done so far.

B. Spin-tensor decomposition of shell-model interaction

The spin-tensor decomposition discussed previously is a
useful tool to analyze the amount of the tensor and other
components contained in the shell-model interaction. Smirnova
et al. (2010, 2012) applied the spin-tensor decomposition
technique (Elliott et al., 1968; Kirson, 1973; Klingenbeck
et al., 1977; Yoro, 1980; Brown et al., 1988; Osnes and
Strottman, 1992) to a realistic interaction for the sd-pf shell
(Nowacki and Poves, 2009) and examined k ¼ 0, 1, 2 con-
tributions to the ESPEs in Eq. (72). Figure 36 shows the
evolution of the neutron effective single-particle energies with
protons occupying d5=2 (Z ¼ 8–14), s1=2 (Z ¼ 14–16), and
d3=2 (Z ¼ 16–20). It is demonstrated that the spin-orbit
splittings, especially those of f7=2-f5=2 and d5=2-d3=2, are
changed notably by the tensor component, and that their
increase from Z ¼ 16 to 20 and their decrease from Z ¼ 8
to 14 follow the path we have presented already, which can be
regarded as a confirmation of the appropriateness of the
empirically fitted shell-model interaction used by Smirnova
et al. (2010, 2012). The tensor component also accounts for
nearly half the reduction of the N ¼ 20 shell gap (i.e., the
d3=2-f7=2 gap) when going from Z ¼ 14 to 8. These behaviors
are in accordance with what the VMU interaction gives (Otsuka,
Suzuki, Honma et al., 2010); see the left panel of Fig. 47.

(a)

(b)

FIG. 35. Monopole matrix elements from tensor forces in the
AV8′ interaction (Pudliner et al., 1997), in low-momentum
interactions obtained from the AV8′, and in the third-order
Q-box interaction for (a) T ¼ 0 and (b) T ¼ 1. From Otsuka,
Suzuki, Honma et al., 2010.
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C. Fujita-Miyazawa three-body force and the shell evolution

We now turn to three-nucleon forces (3NF), shedding light
on their contributions to the shell evolution. Three-nucleon
forces were introduced in the pioneering work of Fujita and
Miyazawa (1957) (FM). One of the main sources of 3NF is the
fact that nucleons are composite particles. In fact, the FM 3N
mechanism is due to one nucleon virtually exciting a second
nucleon to the Δð1232 MeVÞ resonance, which is deexcited
by scattering off a third nucleon; see Fig. 37(e).
The quantitative role of FM 3N interactions was pointed out

in ab initio calculations for A ≤ 12 by the Green’s function
Monte Carlo (GFMC) method (Pudliner et al., 1997; Pieper
and Wiringa, 2001; Pieper, 2005) and by the no-core shell-
model (NCSM) method (Navrátil, Vary, and Barrett, 2000a,
2000b; Navrátil et al., 2007). These works were reviewed by
Barrett, Navrátil, and Vary (2013) and Carlson et al. (2015),
respectively. Three-nucleon interactions arise naturally also
in the chiral effective field theory (χEFT) [see the review
by Hammer, Nogga, and Schwenk (2013)] as we discuss
in Sec. V.D.
We focus here on the monopole effect from the FM 3NF

with the actual example of the oxygen anomaly (Otsuka,
Suzuki, Holt et al., 2010). We first sketch the mechanism for
the monopole effect presented by Otsuka, Suzuki, Holt et al.
(2010). Figure 37(a) depicts the leading contribution to NN
forces due toΔ-resonance excitation, induced by the exchange
of π mesons between nucleons. Because this is a second-order
perturbation approach, its contribution to the monopole
interaction is attractive. The same process changes the SPE
of the state j,m, as illustrated in Fig. 37(b), by the Δ–nucleon-
hole loop where the initial nucleon in the state j,m is virtually
excited to another state j0, m0. This lowers the energy of the
state j, m. However, if another nucleon of the same kind

occupies the state j0, m0 as shown in Fig. 37(c), this process is
forbidden by the Pauli exclusion principle. The corresponding
contribution must be subtracted from the SPE change. This is
taken into account by the inclusion of the exchange diagram
shown in Fig. 37(d), where the nucleons in the intermediate
state are exchanged, and this leads to the exchange of the final
(or initial) labels j, m and j0, m0. Because this process reflects
a cancellation of the lowering of the SPE, the contribution
from Fig. 37(d) has to be repulsive. Finally, we can rewrite
Fig. 37(d) as the FM 3N force of Fig. 37(e), where the middle
nucleon is summed over all nucleons in the core. We thus
obtain robustly repulsive monopole interactions between the
valence nucleons originating in the FM 3NF. It is clear that
only the monopole component is produced by this particular
process, without touching on multipole components.
Figure 38 shows, as an example, neutron ESPEs of the

oxygen isotopes starting from the stable 16O to heavier ones
with more neutrons. The ESPEs calculated (Otsuka, Suzuki,
Holt et al., 2010) with NN interactions in the G-matrix
formalism (Hjorth-Jensen, Kuo, and Osnes, 1995). A similar
result with χEFT forces is discussed in Sec. V.D. The d3=2
ESPE decreases rapidly as neutrons occupy the d5=2 orbit and
remains well bound from N ¼ 14 on. This leads to bound
oxygen isotopes out to N ¼ 20 and puts the neutron dripline
incorrectly beyond 28O.
The changes in the ESPE evolution due to the addition of

FM 3NF are included in the left panel of Fig. 38. The repulsive

FIG. 36. (a) Neutron effective single-particle energies of the
SDPF-U interaction (Nowacki and Poves, 2009) and their
(b) k ¼ 0, (c) k ¼ 1, and (d) k ¼ 2 contributions with increasing
proton number. From Smirnova et al., 2010.

(a) (b) (c)

(d) (e)

(f) (g) (h)

FIG. 37. Processes involved in the discussion of 3N forces and
their contributions to the monopole components of the effective
interactions between two valence neutrons. The solid lines denote
nucleons, the dashed lines denote π mesons, and the thick lines
denote Δ excitations. Nucleon-hole lines are indicated by down-
ward arrows. (a) The leading contribution to NN forces due to
Δ-resonance excitation, and (b) the change of SPE of the state j,
m by the process (a). The process (b) is forbidden with another
nucleon with the same j0, m0, as shown (c), which requires the
inclusion of the exchange diagram (d), which is equivalent to
the FM 3N force (e). The leading χEFT 3N forces include (f) the
long-range two-π-exchange parts, which take into account the
excitation to a Δ and other resonances, plus shorter-range (g)
one--π-exchange and (h) 3N contact interactions. From Otsuka,
Suzuki, Holt et al., 2010.
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FM 3N contributions become significant with increasing N.
Figures 22(g) and 22(h) indicate that monopole components
are modified to be more repulsive from G matrix to SDPF-M
in the sd shell, except for the case with j ¼ j0 ¼ d3=2. Since
SDPF-M reproduces the experimental data rather well, this
general trend seems to suggest that a good fraction of the
effects of the FM 3NF, and perhaps other 3NFs in general, is
included empirically in shell-model interactions. It was argued
by Zuker (2003, 2005) that an effective NN interaction was
nearly perfect and that any deviation suggested by experiment
should be due to some three-body force.
The ground-state energies of oxygen isotopes are shown in

Fig. 39, where the 3NF changes them to be very close to
experimental values and places the dripline correctly. Figure 38
shows the key role of the FM 3NF for new magic numbers
N ¼ 14 between the 1d5=2 and 2s1=2 orbits (Stanoiu et al.,
2004), and N ¼ 16 between the 2s1=2 and 1d3=2 orbits (Ozawa
et al., 2000; Hoffman et al., 2008; Kanungo et al., 2009).

D. Ab initio approaches to nuclear structure

We discuss ab initio approaches to the nuclear structure
here. As there have been many activities regarding this topic
recently, a devoted review is needed, and we mainly discuss

certain recent outcomes related to the shell and structure
evolutions in exotic nuclei. Naturally, few-body systems have
been studied in ab initio ways, as reviewed by Leidemann and
Orlandini (2013). The GFMC (Pudliner et al., 1997; Pieper
and Wiringa, 2001; Pieper, 2005; Carlson et al., 2015) and
NCSM (Navrátil, Vary, and Barrett, 2000a, 2000b; Navrátil
et al., 2007; Barrett, Navrátil, and Vary, 2013) calculations
were started around 2000, showing that the structure of light
nuclei (up to A ∼ 10) can be described well from the nucleon-
nucleon forces (2NF) determined by the nucleon-nucleon
scattering combined with the 3NF appropriately determined.
In the meantime, the χEFT (van Kolck, 1994; Epelbaum
et al., 2002) was developed to construct nuclear forces in a
systematic expansion from leading to successively higher
orders (Entem and Machleidt, 2003; Epelbaum, 2006;
Epelbaum, Hammer, andMeißner, 2009), which are visualized
by diagrams showing nucleons interacting via π exchanges and
shorter-range contact terms; see the review by Machleidt and
Entem (2011). The interactions from the χEFT are modified to
be applicable to low-momentum phenomena by using the low-
momentum interactions V low k (Bogner, Kuo, and Schwenk,
2003) or by the similarity renormalization method (SRG)
(Bogner, Furnstahl, and Perry, 2007).
The right panel of Fig. 38 displays the ESPE calculated

from chiral low-momentum interactions V low k, including the
changes due to the leading [next-to-next-to-leading order
(N2LO)] 3N forces in χEFT (van Kolck, 1994; Epelbaum
et al., 2002) [see Figs. 37(f)–37(h)], as well as changes due to
Δ excitations (Bogner et al., 2009). The second from left panel
of Fig. 39 shows the ground-state energy of oxygen isotopes
calculated with these interactions, depicting good agreement
with experiment (Otsuka, Suzuki, Holt et al., 2010).
A similar shell evolution is seen in exotic Ca isotopes,

where the inclusion of 3NF effects raises ESPE’s of the
pf-shell neutron orbits (Holt et al., 2012; Otsuka and
Suzuki, 2013).
The coupled-cluster (CC) calculations (Hagen et al., 2008,

2009, 2010) started with the 2NF obtained as the next-to-next-
to-next-to-leading order (N3LO) χEFT interaction. The N2LO
3NF was included in the CC calculation (Hagen et al., 2012a,
2012b) for O and Ca isotopes, with results consistent with
those just mentioned. Figure 40 shows the 2þ1 level of Ca
isotopes calculated by the CC method (Hagen et al., 2012b),

Δ

Δ

Δ

Δ

FIG. 38. ESPE of neutron 1d5=2, 2s1=2, and 1d3=2 orbitals
measured from the energy of 16O as a function of N. The ESPEs
calculated (left panel) from a G matrix and (right panel) from
low-momentum interactions V low k are shown. The changes due to
3N forces based on Δ excitations are highlighted by the shaded
areas. Adapted from Otsuka, Suzuki, Holt et al., 2010.

FIG. 39. (Left and second from left panels) Ground-state energies of oxygen isotopes including processes shown in the second from
right panel. Adapted from Otsuka, Suzuki, Holt et al., 2010. (Right panel) The ground-state energies calculated in several χEFT
approaches (Hergert et al., 2016). From Hergert et al., 2016.
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showing results consistent with the shell evolution in Ca
isotopes discussed in Sec. IV.D.4, including the 54Ca 2þ level;
see Fig. 29.
The 3NF is converted into an effective 2NF by the normal

ordering combined with a reference state, which is a Fermi
gas or Hartree-Fock state. The in-medium SRG (IM-SRG)
was introduced and developed by Tsukiyama, Bogner, and
Schwenk (2011, 2012), Hergert, Binder et al. (2013), Hergert,
Bogner et al. (2013), and Hergert et al. (2014) [see the review
by Hergert et al. (2016)] to renormalize in-medium effects into
effective interactions.
A frequently used interaction (called A for brevity) was

introduced by Hebeler et al. (2011) using the SRG trans-
formation of the N3LO 2NF of Entem and Machleidt
(2003) with the cutoff parameter 500 MeV=c combined with
the N2LO 3NF where the parameters cD and cE [shown in
Figs. 37(g) and 37(h), respectively] are fitted to the triton
binding energy and the 4He charge radius. This set A
interaction was shown to produce larger radii of proton
distribution by the CC calculations (Hagen et al., 2016).
Since then, this interaction has been used in many works: for
magic nuclei (Hagen, Jansen, and Papenbrock, 2016), for sd-
shell nuclei (Simonis et al., 2016), and for density saturation
in finite nuclei (Simonis et al., 2017). The CC calculations
show larger charge radii of heavy Ca isotopes, which is
consistent with recent measurements made up to 52Ca (Ruiz,
Garcia et al., 2016).
There is another frequently used interaction (called B for

brevity) introduced by Roth et al. (2012), where the 3NF is
different from the set A in a local form with the cutoff
parameter 400 MeV=c. This set B interaction was used by
Binder et al. (2013, 2014), Hergert et al. (2014), and Tichal
et al. (2014) for ground-state properties of Ca, Ni, Sn, etc.
The self-consistent Green’s function theory also provided
ground-state energies (Soma, Duguet, and Barbieri, 2011;
Soma et al., 2014) and, furthermore, the ESPEs (Cipollone,
Barbieri, and Navrátil, 2013, 2015), as shown in Fig. 41,
which indicates results consistent with those shown in
Sec. V.C. We point out that the ESPE in Cipollone,
Barbieri, and Navrátil (2013, 2015), based on the formulation
by Baranger (1970), is consistent with the ESPE discussed in
this article, as illustrated in Sec. III.F.

The procedures with the sets A and B can be summarized as
follows.

(1) The Hamiltonian consisting of N3LO 2NF and N2LO
3NF is obtained from the χEFT. For set B, the values
of the parameters cD and cE are fitted to the triton and
4He properties by performing a few-body calculation.

(2) Short-range correlations are processed by the SRG,
truncated up to three-nucleon terms. These are 2NF
and 3NF for set A, with cD and cE fitted in the same
way at this stage.

(3) A HF calculation is carried out with 2NF and 3NF thus
derived or fitted as the reference state(s).

(4) The Hamiltonian is truncated up to two-nucleon terms
by the normal ordering with the reference state(s).

(5) With such two-nucleon interactions, the CC, IM-SRG,
MBPT, etc. are carried out.

The right panel of Fig. 39 shows that ab initio calculations
based on the χEFT reproduce the ground-state energies of
oxygen isotopes well (Hergert et al., 2016), which is con-
sistent with other work in the left panels. In going to proton-
neutron open-shell nuclei, further developments are made to
obtain the shell-model interactions so that their eigenvalues
are calculated. A shell-model interaction was calculated by
Lisetskiy et al. (2008) based on the NCSM. With the IM-SRG
(Stroberg et al., 2016, 2017; Simonis et al., 2017), the
reference state was improved so that two reference states
are considered with the ensemble normal ordering (ENO) in
going through an open shell taking a weighted average.

42 48 50 52 54 56
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NN+3NF

FIG. 40. 2þ1 level of Ca isotopes calculated by the CC method.
From Hagen et al., 2012b.

FIG. 41. (Upper panel) ESPEs of neutrons calculated by
Cipollone, Barbieri, and Navrátil (2013) at subshell closures
of oxygen isotopes. (Lower panel) Similarly calculated ground-
state energies compared to experiment (bars). From Cipollone,
Barbieri, and Navrátil, 2013.
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Figures 42 and 43 display, respectively, the ground-state
energies (Stroberg et al., 2017) and the two-neutron separation
energies (Simonis et al., 2017) of Na isotopes. The agreement
with experiment was improved, with certain differences
between the two calculations. The difference is mainly due
to the different interactions sets A and B. In the latter, the
experimental values are reproduced up to N ∼ 16, but some
deviations arise over the neutron magic number 20, probably
because of substantial mixings of intruder configurations.
It is worth mentioning that the radius is often predicted to be

too small in ab initio calculations, but this problem was
avoided by the so-called N2LOsat interaction, where the
parameters are taken only up to the N2LO being fitted to
properties of heavier nuclei such as 14C and 16;23;24;25O
(Ekström et al., 2015).
Despite these significant improvements in ab initio

approaches, in general, the discrepancy with experiment
remains at present. For instance, the extra binding due to
intruder configurations may not be reproduced well, as
discussed for Figs. 42 and 43. On the other hand, this is
one of the most crucial features of exotic nuclei, as empha-
sized also in Sec. VI.A. As a possible breakthrough, the
extended Kuo-Krenciglowa (EKK) method was proposed and

developed (Takayanagi, 2011a, 2011b; Tsunoda, Takayanagi
et al., 2014). The EKK method is one of the many-body
perturbation theories (MBPTs). The other MBPT calculations
have a possibility of divergence when applied to two or more
major shells, but the EKK method is free from this difficulty.
As two major shells merge or the shell gap becomes smaller in
exotic nuclei rather often, it is crucial to include two or more
shells properly.
The EEdf1 interaction was obtained for the sd-pf shell

from a χEFT NN interaction at N3LO with the EKK treatment
of in-medium effects and from the FM 3NF; see Sec. V.C and
Tsunoda, Takayanagi et al. (2014). Figure 44 shows ESPE
calculated from the EEdf1 interaction forN ¼ 20 isotones as a
function of Z. Figure 44(a) shows the ESPEs obtained by the
full calculation and those obtained after removing the FM
3NF. One finds that this 3NF shifts the SPEs upward, and that
the shifts become larger as Z increases. Figure 44(b) depicts
the ESPEs obtained by the full calculation and those obtained
after removing the tensor component from the EEdf1 inter-
action. Although the magnitude of the tensor-force effects is
smaller than that of the 3NF as a whole, the tensor-force
effects are not monotonic and produce more rapid changes in
the shell structure in contrast to the 3NF effects. We note that
the tensor component is quite minor in the effective NN
interaction originating in the FM 3NF. In those calculations,
although the one-body SPEs are fitted at certain nuclei, the
evolution of the ESPEs is given by the interaction thus
derived, and the resulting changes as a function of Z or N
have nothing to dowith the fit. In this sense, Figs. 44(a) and 44
(b) confirms the shell evolution at N ¼ 20, which appears to
be consistent with earlier results discussed in Sec. VI.A.4.
Some results of the EEdf1 interaction will be presented in
Sec. VI.A.

VI. EXAMPLES OF STRUCTURAL CHANGEMANIFESTED
IN EXPERIMENTAL OBSERVABLES

We discuss here how theoretical results are confronted with
a variety of experimental measurements. In such cases, both
shell-evolution effects and other many-body correlations arise
and can mutually affect each other. For our examples, we
explain the mechanisms of shell evolution at play.

FIG. 43. The two-neutron separation energies of Na isotopes
calculated with IM-SRG. From Simonis et al., 2017.

FIG. 42. Ground-state energies of Na isotopes calculated with
IM-SRG (SM). The IM-SRG (SM) curves use a core reference,
while the curves labeled IM-SRG (ENO) use an ensemble
reference. From Stroberg et al., 2017.
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FIG. 44. ESPEs of N ¼ 20 isotones for neutrons obtained in the
normal filling scheme. The solid (dotted) lines in (a) show the
case with (without) three-nucleon forces, while the solid (dot-
dashed) lines in (b) represent the case with (without) the tensor
component. From Tsunoda et al., 2017.
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A. Measuring the key indicators of shell evolution in the island of
inversion

Since short-lived “exotic” nuclei cannot be made into
targets, measurements of their properties have to start from
an ion beam which is subjected to an in-beam measurement in
inverse kinematics, implanted into an active or passive stopper
to observe its decay, or manipulated for ion trapping or laser
spectroscopic approaches, for example.
The first challenge of any experimentwith short-lived, exotic

nuclei is their production. Today, a broad range of rare isotopes
is available for experiments in the form of ion beams. Twomain
production and separation mechanisms have emerged as the
workhorse techniques in rare-isotope beam production and are
employed in nuclear physics laboratories around the world.

• Beams of short-lived nuclei are produced and separated
in flight and are directly used for experiments (in-flight
separation).

• Exotic nuclei are produced and thermalized in a thick
target, extracted, ionized, transported, or reaccelerated
(isotope separation on-line).

The production strategies for rare-isotope beams
and the different types of rare-isotope facilities around the
world were recently reviewed by Blumenfeld, Nilsson, and
Duppen (2013).
Here we use the example of the “island of inversion” (IoI)

centered around 32Na (see Fig. 45) in order to describe how
typical observables are measured and interpreted as indicators
of structure changes.

1. Sketch of the island of inversion

We first sketch the IoI mainly from the shell-evolution
viewpoint, briefly because dedicated reviews exist (Caurier
et al., 2005). The IoI was named by Warburton, Becker, and
Brown (1990) after earlier experimental studies had reported
various anomalous features, for example, Thibault et al.
(1975), followed by Huber et al. (1978), Détraz et al.,
1979, and Guillemaud-Mueller et al. (1984). It is character-
ized by deformation-related neutron particle-hole excitations
from the sd shell into the pf shell across theN ¼ 20 shell gap.

Such particle-hole excitations across a shell gap are often
referred to as intruder configurations, which can be energeti-
cally favored over the normal configurations and dominate
the ground states of the nuclei in the IoI, as shown in the
right panel of Fig. 45. States composed mainly of intruder
configurations are called intruder states or intruders. Most of
the binding-energy gains are due to the deformation from a
sphere to an ellipsoid. Thus, an intruder at zero or low
excitation energy implies shape coexistence with states based
on spherical normal-order configurations, which is seen in
many exotic nuclei.
Early theoretical studies also indicated that the ground

states can be deformed for nuclei in the IoI, such as the
deformed Hartree-Fock solution for 31Na by Campi et al.
(1975), and intruder shell-model ground states despite the
rather constant N ¼ 20 gap by Poves and Retamosa (1987).
Regarding the shell evolution, so-called modified single-
particle energy was introduced by Storm, Watt, and
Whitehead (1983), corresponding to the present ESPE in
the special case of a (sub)shell closure � one particle; see the
text around Eq. (37). Although the monopole interaction was
not mentioned, this may be the first appearance of the ESPE.
The changes of the neutron shell structure were then discussed
by Storm, Watt, and Whitehead (1983), with some differences
from the current picture.
The left panel of Fig. 46 displays the N ¼ 20 shell gap of

N ¼ 20 isotones obtained from Warburton, Becker, and
Brown (1990), with values > 5 MeV. The right panel of
Fig. 46 presents ESPEs calculated from the SDPF-M inter-
action (Utsuno et al., 1999), and the resulting N ¼ 20 gap is
included in the left panel of Fig. 46. The gaps now varies
more, and they become as low as 2 MeV for Z ¼ 8. A similar
evolution of the ESPEs of the d3=2 and f7=2 orbits was
obtained by Fukunishi, Otsuka, and Sebe (1992), where large-
scale shell-model calculations were made for successful
predictions. The d3=2 ESPE changes more steeply with the
SDPF-M interaction, however. This is because Fukunishi,
Otsuka, and Sebe (1992) used the USD interaction, where a
change was made from theGmatrix (Kuo, 1967). This change
appeared to be rather inappropriate (Otsuka et al., 2001) and
was removed for the SDPF-M interaction, resulting in a better
description. This is an example of the importance of nuclear
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forces to the shell evolution. This N ¼ 20 gap reduction was
schematically shown earlier by Heyde and Wood (1991) in
terms of the proton-neutron monopole interaction of a δ-
function interaction, while the obtained pattern is too mon-
otonic partly due to the missing tensor force. The intruder
states stayed higher toward Z ¼ 8 in Caurier et al. (1998), as
exhibited in the right panel of Fig. 45. Thus, although the
breakdown of the N ¼ 20 magicity in the IoI was commonly
accepted, in the 1990s, the vanishing of the N ¼ 20 gap
toward Z ¼ 8 was suggested in a quantitative way rather
uniquely by Fukunishi, Otsuka, and Sebe (1992) and Utsuno
et al. (1999). The situation has changed now, and other
calculations also suggest a similar reduction (see Figs. 47 and
44), as part of a trend with more realistic interactions,
particularly with the tensor force. Note that such a reduction
of the gap facilitates more particle-hole excitations, which can
enhance quadrupole deformation and pairing correlations.
Thus, anomalous features around N ¼ 20 have been intensely
studied, providing a strong motivation to clarify, both exper-
imentally and theoretically, how the gap evolution occurs and
what consequences arise. We here refer to other related works
from mean-field or clustering viewpoints (Campi et al., 1975;
Ren et al., 1996; Terasaki et al., 1997; Reinhard et al., 1999;
Péru, Girod, and Berger, 2000; Rodríguez-Guzmán, Egido,
and Robledo, 2000; Stoitsov et al., 2000; Stevenson, Stone,
and Strayer, 2002; Kimura, 2007; Hinohara et al., 2011; Yao
et al., 2011; Péru and Martini, 2014), some of which have
been or will be discussed concretely. Those anomalous
features are still contemporary subjects, as we see later.

2. Masses and separation energies

The mass of a nucleus is among the most basic properties
directly accessible to measurements. Masses and derived
quantities, e.g., one- and two-nucleon separation energies,
frequently provide the first hints for the evolution of shell
structure and signal the onset of deformation.
Experimental methods for the determination of atomic

masses basically fall into two broad categories. Approaches
that measure the Q values in decays or reactions make use of
Einstein’s mass-energy equivalence; mass measurements that
are based on the deflection of ions in electromagnetic fields
determine the mass-to-charge ratio. The most precise mass
spectrometry is accomplished through frequency measure-
ments (Myers, 2013). The cyclotron or revolution frequencies
of ions in a magnetic field are measured to determine the

mass-to-charge ratio in a Penning trap (Blaum, 2006) or a
storage ring (Franzke, Geissel, and Münzenberg, 2008).
A recent example for a mass measurement at the northern
boundary of the IoI is taken out to A ¼ 34 (Kwiatkowski
et al., 2015) from Penning-trap mass spectrometry at the
TITAN facility (Dilling et al., 2006).
The two-neutron separation energies (S2n values) for the Al

and Mg isotopic chains are shown in Fig. 48 with overlaid
shell-model calculations in the sd-pf model space using the
SDPF-U-MIX interaction introduced in Caurier, Nowacki, and
Poves (2014). Typically, along an isotopic chain, the two-
neutron separation energy S2n decreases steadily toward the
neutron dripline. We remind the interested reader that, in the
presence of a large spherical shell gap atN ¼ 20, the S2n values
would drop atN ¼ 21when the shells above the gap start to be
filled. The flattening in the trend for N ¼ 19–21 in the Mg
chain contradicts this, and indicates the increased correlation
energy of these deformed nuclei relative to their neighbors with
two neutrons fewer. In Al, a hint of this effect appears only
beyond N ¼ 21, putting 31–34Al outside and 35–37Al at the very
boundary, if not inside the IoI. Of interest is the unique crossing
of S2n in the Mg and Al isotopic chains at 34Al, which, in
comparison to the shell model, is attributed to Mg significantly
gaining correlation energy upon entrance into the IoI between
N ¼ 20 and 21, while the S2n in the Al chain is still on its
almost linear downward trend up to N ¼ 22.

3. Magnetic dipole and electric quadrupole moments

The deviation from sphericity of nucleus that has nonzero
spin can be quantified through its electric quadrupole moment.
The electric quadrupole moment was measured for the ground
state of Al isotopes at the LISE spectrometer at GANIL
(DeRydt et al., 2009), with spectroscopic quadrupole moment
jQsj extracted for 31;33Al relative to 27Al (Heylen et al., 2016).
The implications for the structure of 33Al are shown in

Fig. 49. The improved uncertainty of jQsð33AlÞj compared to
that of the previous measurement (Shimada et al., 2012) led
to argue the presence of neutron intruder configurations in
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FIG. 48. Symbols indicate two-neutron separation energies for
the Mg and Al isotopic chains from the 2015 TITAN experiment
and the mass compilation by Audi et al. (2012). Shell-model
calculations in the sd-pf shell (Caurier, Nowacki, and Poves,
2014) are shown also by the solid and dashed lines. From
Kwiatkowski et al., 2015.
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comparison to shell-model calculations that are restricted to
the sd shell only (USD) and that allow for neutron intruder
configurations across the N ¼ 20 shell gap (SDPF-M)
(Utsuno et al., 1999, 2004). It is noted that these conclusions
contradict the ones from the mass measurements reviewed
previously, where 33Al was placed outside of the IoI and they
are at odds with shell-model calculations using the SDPF-U-
MIX effective interaction (Caurier, Nowacki, and Poves,
2014) that also allows for neutrons in the pf shell. This
may highlight the different levels of detail probed, with the
moment measurement more sensitive to the very details of the
configurations, or point to a puzzle in our understanding of
33Al at the northern border of the IoI. Spectroscopic data on
33Al, obtained, for example, using direct reactions, may
identify the energies of intruder states, assessing in a com-
plementary way the degree of intruder admixtures to the low-
lying level structure of this nucleus.
Measuring hyperfine structure using laser spectroscopy is a

powerful method to unambiguously determine the spin and
magnetic moment of the ground state. A good example
applied to the IoI is 31Mg, whose ground state was assigned
to be 1=2þ by Neyens et al. (2005). This measurement clearly
shows that the N ¼ 19 nucleus 31Mg belongs to the IoI
because the normal state, dominated by neutron 1d−13=2, must

have Jπ ¼ 3=2þ. The spectroscopy of 31;33Mg and their
particle-hole structure were reviewed by Neyens (2011),
indicating that a variety of intruders coexist at low excitation
energies. The properties of low-lying states of odd-A nuclei,
including their spin parities, can thus be related to the shell
evolution sometimes, up to the gap between two major shells,
as exemplified in Fig. 50 for positive- and negative-parity
states of the 31Mg nucleus.

4. Excitation energy

Energies of excited nuclear states are often among the first
quantities accessible in experiments (Gade, 2015). They can

be measured directly and without any model dependence and
are thus some of the key observables that can be tracked to
unravel changes in the nuclear structure. For instance, the
systematics of the lowest 2þ energies was discussed in Sec. I
as one of the indicators of the magic structure; see Fig. 4. For
excited states below the nucleon separation energies, prompt
or delayed γ-ray spectroscopy is frequently used to extract
excitation energies of rare isotopes with great precision,
measured from the spectroscopy of the γ-ray transitions that
connect different states. Electric monopole transitions
between 0þ states (Wood et al., 1999) of E0 character proceed
to a large extent through conversion electron emission and
electron spectroscopy or other charged-particle spectroscopy
techniques, e.g., in transfer reactions, are required (Gade and
Liddick, 2016). Excited states can be populated in nuclear
reactions (Gade and Glasmacher, 2008) or β decay (Rubio and
Gelletly, 2009), exploiting the selectivities inherent in the
different population mechanisms. For instance, the coexist-
ence of normal and intruder states in 29Na was found through
β-delayed γ-ray spectroscopy (Tripathi et al., 2005). The
energies of long-lived isomeric states can be accessed, for
example, with Penning-trap (Block et al., 2008) or storage-
ring (Reed et al., 2010) mass spectrometry. For states that are
unbound with respect to neutron or proton emission, excited-
state energies can be deduced from invariant mass or missing
mass spectroscopy. The spectroscopies of bound (Gade, 2015)
and unbound (Baumann, Spyrou, and Thoennessen, 2012)
excited states were reviewed recently.
The most recent spectroscopy inside the N ¼ 20 IoI

addressed one of the hallmark nuclei in this region of shell
evolution, 32Mg, which has been subject to experimental study
since its low-lying 2þ1 energy contradicted the presence of the
N ¼ 20 magic number in this isotopic chain (Détraz et al.,
1979). Using the advanced γ-ray tracking array GRETINA
(Paschalis et al., 2013), excited states in 32Mg (Crawford et al.,
2016) were populated in the secondary fragmentation of an
46Ar rare-isotope beam at NSCL. The γ rays spectrum is
displayed in Fig. 51. Aside from the previously known γ-ray
transitions at 885 and 1438 keV that are attributed to the 2þ1 →
0þ1 and 4þ1 → 2þ1 transitions, respectively, a new transition at
1773 keV was observed that is proposed to connect the 6þ1 and
4þ1 states (Crawford et al., 2016). With 32Mg suspected to be
well deformed, this would establish the lowest part of the yrast
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rotational band. Figure 51 shows good agreement with shell-
model calculationwith the SDPF-U-MIX interaction, aswell as
that with the EEdf1 interaction which is of the ab initio type.

5. Electromagnetic transition strength

Nuclear structure can be probed experimentally in quanti-
tative ways by a variety of nuclear reactions that are selective
to specific degrees of freedom. Inelastic scattering, in par-
ticular, Coulomb excitation, of nuclei has long been used to
investigate collective degrees of freedom that involve the
coherent motion of many nucleons. BðσλÞ reduced electro-
magnetic transition matrix elements are extracted from mea-
sured cross sections to quantify the degree of collectivity
(Alder et al., 1956; Cline, 1986; Glasmacher, 1998). Reduced
electromagnetic transition strength can alternatively be
deduced from excited-state lifetime measurement, extracted
from Doppler energy shifts or line shapes in γ-ray spectros-
copy (Dewald, Möller, and Petkov, 2012).
At collision energies beneath the Coulomb barrier, the

excitation probabilities and interaction times are large enough
to allow for multistep excitations and the determination of
quadrupole moments and their signs, giving a glimpse at the
degree and the character of deformation (Cline, 1986). In the
regime of intermediate-energy or relativistic projectile ener-
gies, multistep processes are suppressed by several orders of
magnitude. This greatly simplifies the analysis of the resulting
excitation spectra, and the BðE2; 0þ1 → 2þ1 Þ value has been
measured for 32Mg (Motobayashi et al., 1995), establishing
the strong deformation of this nucleus, for instance, a
prediction by Fukunishi, Otsuka, and Sebe (1992) shown in
the left panel of Fig. 52. The higher-lying states of collective
bands, on the other hand, remain out of reach with this
technique in typical experiments lasting a few days with beam
rates of a few per second (Glasmacher, 1998; Gade and
Glasmacher, 2008). Excited-state lifetime measurements, on
the other hand, do not require nuclear models to extract
transition strengths but can suffer from observed and unob-
served feeding from higher-lying states, depending on the
population mechanism of the excited states.
In a recent inelastic scattering experiment at RIBF in

RIKEN (Nakamura, Sakurai, and Watanabe, 2017), the
quadrupole collectivity or deformation of 36Mg and 30Ne
was determined from measured 0þ1 → 2þ1 excitation cross

sections. The beams of 30Ne and 36Mg impinged upon the Pb
and C targets. Inelastic scattering off C and relativistic
Coulomb excitation on a Pb target revealed a BðE2Þ value
and deformation length, respectively, which indicates a
quadrupole deformation parameter of β2 ≈ 0.5 for both,
showing that the quadrupole deformation in the Mg chain
persists toward the neutron dripline, and that neutron excita-
tions across N ¼ 20 are critical for reproducing the collec-
tivity of N ¼ 20 30Ne (Doornenbal et al., 2016). The telltale
nature of the reduced BðE2; 0þ1 → 2þ1 Þ value as nuclear-
structure observable is illustrated in the right panel of
Fig. 52, where the BðE2Þ strength of the N ¼ 20 isotones
is plotted as a function of Z. The measured values show good
agreement with the earlier shell-model prediction by
Fukunishi, Otsuka, and Sebe (1992). Note that the order is
inverted between the left and right panels. In addition, the
measured values are confronted with the phenomenology of
the NpNn scheme (Casten and Zamfir, 1993) for Nn ¼ 0

(N ¼ 20 shell closure intact and no valence neutrons) and
Nn ¼ 12 (sd shellþ f7=2 þ p3=2 combined as the neutron
shell). The sharp onset of collectivity for Z ≤ 12 is consistent
with the picture of dominant neutron particle-hole excitations
across the N ¼ 20 shell gap for the Mg and Ne N ¼ 20
isotones, a hallmark of the IoI, at least for its northern
boundary. When moving from Z ¼ 12 to 14, the proton
quadrupole collectivity is likely reduced due to the closure
of the 1d5=2 orbit, and the N ¼ 20 shell gap becomes wider;
see Figs. 44, 46, and 47.

6. Shape coexistence in the island of inversion and at its
boundaries: Additional evidence from β decay and E0 transition

Outside the IoI, excited intruder states can coexist with
the still spherical ground states (Gade and Liddick, 2016).
To date, shape-coexisting 0þ states have been identified in
34Si (Rotaru et al., 2012) and 30Mg (Schwerdtfeger et al.,
2009). Along the lines of the N ¼ 20 isotones, 34Si is situated
at the northern boundary of the IoI. In a pioneering meas-
urement at GANIL, the β decay of the 1þ isomer of 34Al was
used to selectively feed 0þ states in 34Si, including the
previously unobserved excited 0þ2 state at 2719(3) keV
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(Rotaru et al., 2012). This state is located below the 2þ1 one,
presenting an experimental challenge. Since γ-ray decays
between 0þ states are angular-momentum forbidden, this
low-lying 0þ state can deexcite only via electron conversion
or internal pair formation, where an electron-positron eþe−

pair is released with a total energy of Ee− þ Eeþ ¼ Eð0þ2 Þ −
2 × 511 keV. From the difference timing between the β-decay
events and the eþe− pair signals, a half-life of 19.4(7) ns was
determined for the 0þ2 state (Rotaru et al., 2012). The resulting
low E0 transition strength indicates only weak mixing
between the 0þ1 ground state and the 0þ2 excited state.
Combining all spectroscopic information, including
BðE2; 2þ1 → 0þ2 Þ ¼ 61ð40Þe2 fm4, as extracted from a small
γ-ray branch and the 2þ1 lifetime, results in a quadrupole
deformation parameter for the 0þ2 state of β ¼ 0.29ð4Þ, in
agreement with SDPF-U-MIX shell-model calculations
(Rotaru et al., 2012). All of these properties are consistent
with the argument presented at the end of Sec. VI.A.5 . Once
the ground state becomes closed-shell-like, the shape coex-
istence often arises (Heyde and Wood, 2011).
For 32Mg, at the heart of the IoI, a ðt; pÞ neutron-pair

transfer reaction was used in reverse kinematics to, for the
first time, identify the 0þ2 state in 32Mg at 1058(2) keV at the
REX-ISOLDE facility (CERN) (Wimmer et al., 2010;
Bildstein et al., 2012). The proton angular distributions of
both states were shown to display the shape of an angular-
momentum transfer of ΔL ¼ 0 onto the ground state of 30Mg.
It was thus concluded that both states in 32Mg populated in the
ðt; pÞ transfer have spin 0.
Coincident γ-ray transitions detected, as a new transition

with an energy of 172 keV and the well-known 2þ1 → 0þ1
transition at 886 keV, allowed experimenters to put the newly
discovered excited 0þ state at the more precise energy of 1058
(2) keV. Based on distorted wave Born approximation
(DWBA) calculations, it was concluded that the ground state
comprises ðf7=2Þ2 and ðp3=2Þ2 intruder configurations, and
the excited 0þ state could be largely described with the
assumption of sd-shell normal-order configurations, such as
ðd5=2Þ2, however, with a small ðp3=2Þ2 intruder contribution
necessary (Wimmer et al., 2010). These findings support the
picture of a deformed fp-shell intruder ground state and an
sd-shell dominated (spherical) first excited 0þ state. The
approximately equal cross sections for the formation of the
two 0þ states in ðt; pÞ were used to infer significant mixing
between the two states. A measurement of the electric
monopole strength connecting the two states remains a
challenge for future experiments. The 0þ2 excitation energy
of about 1 MeV was found to be significantly below available
model predictions at the time (Wimmer et al., 2010). These
properties of the 0þ2 state of 32Mg pose a formidable challenge
for theory, including beyond-mean-field models (Rodríguez-
Guzmán, Egido, and Robledo, 2000; Péru and Martini, 2014).
Recently, shell-model calculations that allow for the mixing

of configurations that have two, four, and six neutrons
promoted across the N ¼ 20 shell gap (SDPF-U-MIX) repro-
duce the reported low 0þ2 energy and suggest a rather unique
character of this 0þ state (Caurier, Nowacki, and Poves, 2014).
A ground-state neutron configuration of 9% 0p-0h, 54%

2p-2h, 35% 4p-4h, and 1% 6p-6h emerges and suggests a
mixture of deformed and superdeformed configurations. The
excited 0þ state is calculated to be composed of 33% 0p-0h,
12% 2p-2h, 54% 4p-4h, and 1% 6p-6h neutron particle-hole
configurations, painting a rather complex picture of 32Mg
where the second 0þ state carries significant spherical as well
as superdeformed configurations, rendering the simple con-
cept of a deformed ground state and a spherical excited 0þ as
too simplistic. The confirmation and further characterization
of the 0þ2 state of 32Mg appears to be warranted to clarify
the important phenomenon of shape coexistence inside the
N ¼ 20 IoI.
Seemingly contradictory conclusions to what was inferred

by Wimmer et al. (2010), termed the 32Mg puzzle, were drawn
from a simple two-level mixing model (Fortune, 2011, 2012)
and resolved recently using a three-level mixing approach
(Macchiavelli et al., 2016), in line with a more complicated
structure that has been suggested by the shell-model calcu-
lations mentioned previously.

7. Direct reactions as a probe of nuclear wave function

Direct nuclear reactions have proven to be a vital tool for
the spectroscopy of the single-particle components in the
nuclear wave function, showing direct relevance to the
probing of the shell evolution. In a glancing collision of a
projectile and a target nucleus, one or a few nucleons are
transferred directly without formation of an intermediate
compound system.
The classic low-energy transfer reactions that, for

stable target nuclei, use a variety of light projectiles to probe
occupied single-particle levels and valence states (Macfarlane
and French, 1960), e.g., the ðd; pÞ neutron-adding and
ðd; 3HeÞ proton-removing transfers, are now employed at
low-energy rare-isotope facilities in inverse kinematics when
low-emittance, high-intensity rare-isotope beams are avail-
able; see Gaudefroy et al. (2006), Catford et al. (2010),
Kanungo et al. (2010), Wimmer et al. (2010), Fernández-
Domínguez et al. (2011), and Burgunder et al. (2014) for
examples from different facilities. At intermediate beam
energies (∼100 MeV=nucleon), thick-target γ-ray tagged
one- and two-nucleon knockout reactions on 9Be or 12C
targets have been developed into spectroscopic tools to study
single-nucleon-hole states and correlations of two like nucle-
ons in exotic nuclei (Bazin et al., 2003; Hansen and Tostevin,
2003; Tostevin et al., 2004; Yoneda et al., 2006; Gade et al.,
2008; Simpson et al., 2009; Simpson and Tostevin, 2010).
By comparing cross sections with C and Pb targets, it is also

possible to extract Coulomb reaction cross sections, which are
used to look into the neutron shell structure through the halo
formation in 31Ne and 37Mg (Nakamura et al., 2009, 2014;
Kobayashi et al., 2014).
At high beam energies, typically exceeding

70 MeV=nucleon, a theoretical description (Tostevin, 1999)
in the framework of eikonal trajectories and sudden approxi-
mation is applicable. Therefore, the model dependence is
limited compared to the classical low-energy transfer reac-
tions, whose description involves the DWBA or higher-order
formalisms, which depend strongly on entrance-channel and
exit-channel optical model potentials (Kramer et al., 1988),
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which have not yet been established for nuclei with extreme
neutron-to-proton ratios. It was shown recently that low-
energy transfer reactions and nucleon removal reactions can
be analyzed to give consistent results (Mutschler et al.,
2016b). Both knockout and transfer reactions have been used
to track the descent of intruder states along isotopic chains
approaching the IoI. Two complementary examples are
reviewed in the following.
The onset of pf shell intruder configurations was

quantified along the Mg chain with γ-ray tagged one-
neutron removal measurements 9Beð30Mg; 29Mgþ γÞX and
9Beð32Mg; 31Mgþ γÞX, performed at NSCL (Terry et al.,
2008). From the shapes of the 29;31Mg parallel momentum
distributions gated on the individual γ-ray transitions, the
1.095 and 1.431 MeV states in 29Mg, and the 0.221 and
0.461 MeV levels in 31Mg were shown to be of l ¼ 1 and 3
orbital angular momentum, respectively, identifying p3=2 and
f7=2 single-neutron configurations in the ground states of both
30Mg and 32Mg. From the partial cross sections for the
population of the negative-parity states in the knockout
residues, f7=2 and p3=2 spectroscopic factors were deduced.
The resulting quantification of the onset of f and p intruder
configurations in the ground states of 30Mg and 32Mg is seen in
Fig. 53: the neutron pf-shell strengths increase significantly
atN ¼ 20, signaling a dramatic shift in the nuclear structure of
32Mg compared to 30Mg. The spectroscopic factors calculated
with EEdf1 interaction (Tsunoda et al., 2017, 2018) show
good agreement with experiment when this calculation
includes the reduction factor of 0.75 that is inherent to
knockout reactions (Tostevin and Gade, 2014). The occupa-
tion numbers obtained with the SDPF-M interaction (Utsuno
et al., 1999) were used in the analysis of Terry et al. (2008), as
shown in Fig. 53, depicting a similar trend. Compared to the
SDPF-M interaction, the EEdf1 interaction gives a better
description for the energy levels for 32;31Mg in Figs. 51 and 50,
respectively, as well as for the spectroscopic factors in Fig. 53.
The last figure illustrates the amount of the excitations across
the N ¼ 20 magic gap. We stress that the shell evolution

through this EEdf1 interaction (see Fig. 44) exhibits similar-
ities to earlier results shown in Figs. 46 and 47.
In the Ne isotopic chain, a γ-ray tagged neutron-adding

transfer reaction dð26Ne; 27Neþ γÞp, performed at GANIL,
identified for the first time the neutron-unbound 7=2 −

1 state at
1.74(9) MeV in 27Ne (Brown et al., 2012). The l ¼ 3 orbital
angular momentum of the state was concluded from the
proton angular distribution in comparison to adiabatic dis-
torted wave approximation transfer reaction calculations;
see Fig. 54.
The 3=2− state could be identified at 0.765 MeV, confirm-

ing earlier work that could restrict the orbital angular
momentum of this state only to l ¼ 0 and 1 (Terry et al.,
2006). The fact that the 7=2− state is higher in energy than the
3=2− level presents a remarkable inversion from the ordering
closer to stability and disagrees with the sequence predicted
by the SDPF-M Hamiltonian (Brown et al., 2012). This result
will serve as an important benchmark for new effective shell-
model Hamiltonians in the region in their quest to describe the
shell evolution in and around the IoI.

8. More on direct reactions: Tracking single-particle strengths to
learn about the spin-orbit force

The spin-orbit splitting is a corner stone of the nuclear shell
model. Recent work using inverse-kinematics transfer reac-
tions (Burgunder et al., 2014) and one-proton knockout
reactions (Mutschler et al., 2016a) on the key nucleus 34Si,
located at the boundary of the island of inversion, explored the
signatures and evolution of the spin-orbit splitting in neutron-
rich nuclei.
At GANIL, the single-particle nature of states in 37S and

35Si and the associated spectroscopic strengths were obtained
for the first time by inverse-kinematics ðd; pÞ reactions
(Burgunder et al., 2014). In comparison to reaction theory,
the proton angular distributions were measured (i) to assign l
values for the transferred neutrons from their shape, and (ii) to
extract spectroscopic factors from their absolute scale. By
tracking the location of the dominant 2p1=2 and 2p3=2 frag-
ments, it was reported that the spin-orbit splitting between the
2p3=2 and 2p1=2 neutron orbits decreases by 25% in 35Si

FIG. 54. Proton angular distribution for the new neutron-
unbound state discovered at 1.74 MeV in 27Ne. In comparison
to reaction theory, an l ¼ 3 orbital angular momentum was
assigned. From Brown et al., 2012.

FIG. 53. Spectroscopic factors from 9Beð32;30Mg; 31;29MgÞX
knockout reactions to two negative-parity states of 32;30Mg.
Deduced spectroscopic factors are indicated by blue point with
error bar (Terry et al., 2008). Single-particle occupancies ob-
tained using the SDPF-M shell model (Utsuno et al., 1999) are
represented by empty histograms. Spectroscopic factors calcu-
lated with the EEdf1 interaction are shown as red histograms
(Tsunoda, 2018).
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relative to the less exotic isotone 37S, while almost no change
was found for the neutron 1f7=2-1f5=2 spin-orbit splitting
[Fig. 55(a)] (Burgunder et al., 2014). We can understand this
feature as explained later. The major difference from 35Si to
37S is the occupancy of the proton 2s1=2 orbit, which has a
large effect on the 2p3=2-2p1=2 splitting due to the 2b-LS
force; see Sec. IV.F. On the other hand, the 2s1=2 occupancy
has a vanished effect on the 1f7=2-1f5=2 splitting due to the
tensor force; see the third item of the remarks in Sec. IV.B.4.
Further studies on the neutron 2p3=2-2p1=2 splitting of the

same nuclei have been made recently (Kay, Hoffman, and
Macchiavelli, 2017) where the change of this splitting was
interpreted in terms of loose binding effects. It, however, can
be described in terms of the monopole effect of the 2b-LS
force, as described in Sec. S6 of the Supplemental Material
(364). Further studies are of great interest.
Electron scattering off stable nuclei demonstrated that their

central densities are saturated, as for a liquid drop, for example.
In rare isotopes at the extreme of isospin, the possibility of a
depleted central density, or a “bubble” structure, has been
discussed for more than 40 years. If observed, it will be of much
interest. In general, central depletions will arise from the
reduced occupation of low-l single-particle orbits, as exem-
plified in Fig. 55(b) for the N ¼ 20 isotones 40Ca, 36S, and 34Si
with calculated proton density distributions from a relativistic
mean-field functional (DDME2) (Lalazissis et al., 2005). The
central depletion in the proton density for 34Si is attributed to a
vanishing occupancy of the proton 2s1=2 orbital. A one-proton
knockout measurement from a 34Si projectile beam at NSCL,
combined with in-beam γ-ray spectroscopy using GRETINA,
revealed indeed that the proton 2s1=2 orbital in this nucleus is
depleted, possibly leading to a depleted central proton density
or bubble inside of neutron-rich 34Si, making this the best

candidate for this phenomenon to date (Mutschler et al.,
2016a). In knockout reactions, the shape of the parallel
momentum distributions of the knockout residues is sensitive
to the l value of the removed nucleon, and the partial cross
sections for the population of individual final states can be used
to extract spectroscopic factors in comparison to reaction theory
(Hansen and Tostevin, 2003). With this approach, the cross
section for the removal of an l ¼ 0 proton from 34Si was found
to be only 10% of that for the proton removal from 36S
(Mutschler et al., 2016a, 2016b). Since the cross section for the
removal of protons from an orbit is proportional to the orbit’s
proton occupancy, this difference in cross section was inter-
preted as evidence for a depleted 2s1=2 proton orbital in 34Si, in
striking contrast to the same orbital being fully occupied in the
36S isotone (Khan et al., 1985; Mutschler et al., 2016b).

9. At the southern border: Continuum and shell-evolution cases
with multinucleon transfer reaction

On the nuclear chart, two protons south of the island-of-
inversion nucleus 30Ne lies 28O. The N ¼ 20 nucleus 28O has
been suspected to be unbound with respect to neutron decay
based on cross section or yield systematics established in its
attempted production in the fragmentation of intermediate-
energy 36S and 40Ar beams at GANIL and RIKEN, respec-
tively (Tarasov et al., 1997; Sakurai et al., 1999). The neutron-
rich oxygen isotopes at the southern border of the island of
inversion have been a formidable testing ground for nuclear
theory, where the particularly visible feature is that 24O is the
last bound oxygen isotope, while the fluorine isotopes with
just one more proton exist out to at least mass number A ¼ 31,
sometimes called the oxygen anomaly by Otsuka, Suzuki, Holt
et al. (2010). Shell-model approaches (Volya and Zelevinsky,
2005; Otsuka, Suzuki, Holt et al., 2010; Tsukiyama, Otsuka,
and Fujimoto, 2015), mean-field theory (Co’ et al., 2012;
Erler et al., 2012), and ab initio–type calculations (Hagen
et al., 2009, 2010; Duguet and Hagen, 2012; Cipollone,
Barbieri, and Navrátil, 2013; Bogner et al., 2014; Simonis
et al., 2016) have been made in the quest for new physics
in nuclei near driplines. The incorporation of the continuum
is an ongoing effort in the development of many-body
approaches.
The nucleus 26O is a unique three-body system since it was

found to be barely unbound, able to decay by two-neutron
emission only with an energy of less than 20 keV (Kondo
et al., 2016). Two early measurements at NSCL and GSI
provided the first evidence for the ground-state resonance of
26O at 150þ50

−150 keV (Lunderberg et al., 2012) and 25�
25 keV (Caesar et al., 2013), respectively. In all measure-
ments, the experimental scheme was very similar. In kine-
matically complete measurements, the energy of decaying
resonances was reconstructed in invariant mass spectroscopy
from the momentum vectors of the two emitted neutrons and
the residue in 24Oþ nþ n. The highest-statistics measure-
ment yet was performed at RIBF/RIKEN with the SAMURAI
spectrometer (Kobayashi et al., 2013; Kondo et al., 2016;
Nakamura, Sakurai, and Watanabe, 2017). From reconstruc-
tion of the invariant mass, the ground state of 26O was found at
only 18� 3ðstatÞ � 4ðsystÞ keV above the two-neutron

FIG. 55. (a) Evidence for a reduction of the 2p3=2-2p1=2 spin-
orbit splitting in the N ¼ 21 isotonic chain at 35Si. For compari-
son, the spin-orbit splitting remains unchanged between 41Ca and
37S. From Burgunder et al., 2014. (b) Change of the proton
density along the N ¼ 20 isotone line from density functional
theory [relativistic mean field with the DDME2 interaction
(Lalazissis et al., 2005)]. The vanishing proton occupation of
the s1=2 orbital leads to a central depletion in the density that has
been likened to a bubble. From O. Sorlin and J. P. Ebran.
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decay threshold (Kondo et al., 2016). In addition, a candidate
for the excited 2þ1 state at 1.28þ0.11

−0.08 MeVwas identified for the
first time.
Regarding the shell evolution, Kondo et al. (2016) write,

“The structure of 26Omay be influenced by shell evolution, nn
correlations, and continuum effects.” It is, however, not trivial
how and what type of “resonance” states can be created in
various transfer reactions, including those involving heavy
ions. Using Fig. 56, we explain schematically the relation
between the shell evolution and the neutron emission after
such reactions. Figures 56(a)–56(c) exhibit the doorway state
in a (γ, n) process, while Figs. 56(d)–56(f) depict a similar
doorway state due to a sudden removal of a proton by a
transfer reaction. The removal of the proton lifts up neutron
ESPEs by the amount of its monopole effect; see Fig. 56(d). If
this single-particle state is in the continuum, it becomes a
doorway state, as shown in Fig. 56(e). Its wave function is the
same as the corresponding state before the reaction. The
neutron in the doorway state goes away through one of the
continuum states, with the probability given basically by
the squared overlap between the doorway state and such
continuum states. The shape of the energy spectrum is
determined by this probability, with the peak shifted by
continuum couplings. Thus, the neutron spectrum indicates
the combined effect of the shell evolution and the continuum;
see Tsukiyama, Otsuka, and Fujimoto (2015) for details.
Although actual situations may contain different details, the
basic picture is expected to remain.
A possible long lifetime of the ground-state resonance that

would allow for “two-neutron radioactivity” is discussed by
Caesar et al. (2013), Grigorenko, Mukha, and Zhukov (2013),

Kohley et al. (2013), and Kondo et al. (2016) and remains an
interesting possibility for a new phenomenon beyond the
neutron dripline.

B. Neutron halo observed in exotic C isotopes and
N = 16 magic number

Halo nuclei have been identified through their greatly
enhanced interaction cross section measured in the bombard-
ment with a variety of targets. With the example of the
C isotopes, we discuss in the following the relationship between
halo formation and shell evolution. The SFO-tls (Suzuki
and Otsuka, 2008) Hamiltonian is used, while the Cohen-
Kurath (called CK usually) (Cohen and Kurath, 1965) and
Millener-Kurath (called MK usually) (Millener and Kurath,
1975) Hamiltonians were employed earlier. The SFO-tls
Hamiltonian is designed for p-sd shell nuclei with the cross-
shell tensor and 2b-LS parts taken from theVMU interaction (see
Sec. IV.C) and the M3Y 2b-LS interaction [see Sec. IV.F and
Sec. S5 of the Supplemental Material (364)], respectively, so as
to include shell-evolution effects in a manner quantitatively
similar to the results presented so far. The sd-shell part is also
improved by taking into account the effects of three-body forces;
see Secs. V.C and V.D. Calculations with this Hamiltonian
reproduce well the shell evolution in the 15C-16N-17O isotones
including the 5=2þ-1=2þ inversion; see Sec. IV.F.
Figure 57(a) depicts neutron ESPEs of C isotopes obtained

from the SFO-tls Hamiltonian in the filling scheme. While the
2s1=2 orbit is below the 1d5=2 orbit in 12C, the 2s1=2 ESPE is
raised through A ¼ 20, crossing the 1d5=2 orbit. This is
because the neutron-neutron 1p1=2-2s1=2 and 1d5=2-2s1=2
monopole interactions are both repulsive, and they push up
the 2s1=2 orbit as neutrons occupy the 1p1=2 and 1d5=2 orbits.
This disappearance of the gap at N ¼ 14 in C isotopes around
A ¼ 16 was reported by Stanoiu et al. (2008). This shell
evolution produces the 1=2þ ground state in 15C, and the 3=2þ

ground state in 17C, which is natural with a dominant neutron
1d35=2 configuration. The present irregular variation of the
ground-state spin can thus be understood. Figure 57(a)
indicates that the N ¼ 16 magic gap appears around
A ¼ 16. It then disappears around A ¼ 20 because of the
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FIG. 57. (a) ESPEs for neutron orbits in C isotopes obtained
with the SFO-tls interaction. (b) Ground-state energies of C
isotopes obtained with SFO-tls, SFO, and WBP (Warburton and
Brown, 1992) as well as experimental data. In (a), the filling
scheme is taken in the order of 1p1=2, 1d5=2, 2s1=2, and 1d3=2, as
this order represents rather well the configurations of actual
eigenstates. The ESPEs at their closures are connected. The
N ¼ 16 (sub)magic gap is highlighted by the yellow circle.
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excitation and (d)–(f) a reaction induced by the removal of a
proton. Dashed lines indicate the neutron threshold. Red filled
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circles are neutron holes. Blue circles are protons, and crossed
blue circles are absent after the initial impact of the reaction.
From Tsukiyama, Otsuka, and Fujimoto, 2015.
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raise of the 2s1=2 orbit. The 2s1=2 orbit becomes loosely
bound. Because this is an s orbit, a neutron halo occurs in the
1=2þ ground state of 19C with the s11=2 d

4
5=2 neutron configu-

ration, which is consistent with experiments (Nakamura et al.,
1999; Kanungo et al., 2016). This shows how the shell
evolution is related to the neutron halo formation. We note
that the 2s1=2 orbit is raised by a repulsive effect simulating the
three-body-force effect, as mentioned previously. As the 20C
ground state consists, to a large extent, of the subshell closure
of the d5=2 orbit in the shell-model calculation (Suzuki et al.,
2016), no neutron halo is expected there.
Figure 57(a) indicates that the N ¼ 16 magic number

appears again around A ¼ 22, which brings about more inter-
play between the shell evolution and the neutron halo.
Figure 57(b) shows the ground-state energies of C isotopes
relative to that of 12C for SFO-tls, SFO, and WBT (Warburton
and Brown, 1992) Hamiltonians in comparison to experiment.
A repulsive neutron-neutron monopole interaction contained in
the SFO-tls interaction pushes up the energy in the neutron-rich
region, reproducing the experimental data, similar to the O
isotopes discussed in Secs. V.C and V.D. Figure 57(a) shows
that the 2s1=2 orbit is rather well bound with an ESPE below
−2 MeV at A ¼ 22 in the filling scheme, indicative of a
situation opposing a two-neutron halo. On the other hand,
Fig. 57(b) displays that 22C is barely bound with respect to 20C
as far as the total binding energy is concerned. The many-body
correlations in 22C bring about the formation of a two-neutron
halo, which is unlikely from the viewpoint of the mean
potential. The neutron halo of 22C was reported experimentally
by Tanaka et al. (2010), Kobayashi et al. (2012), and Togano
et al. (2016), while theoretical studies were performed
with three-body models (Horiuchi et al., 2006; Yamashita
et al., 2011; Kucuk and Tostevin, 2014). We report here on a
rather different approach: the extended shell-model calculation
is performed not only by including usual shell-model correla-
tions but also by taking into account the interaction between the
halo neutrons taken from the low-energy limit of neutron-
neutron scattering (Suzuki et al., 2016). Figure 58 depicts the
radius of the two-neutron halo (∼6–7 fm) as consistent with
experiment (Togano et al., 2016); the halo radius deduced from
the experimental matter radius (Togano et al., 2016) is
6.79þ0.70

−0.66 fm, which is well below the value obtained for such
a small separation energy by the usual simple relation
(halo radius > 10 fm for S2n < 0.3 MeV) (Suzuki et al.,
2016). Thus, the combination of shell evolution and dynamical
correlations can give a proper description of this unusual
formation of a two-neutron halo. It is of interest that the
ground-state neutron halo seems to occur in 19C as a single-
particle phenomena and in 22C as a result of correlations.
As Z becomes smaller, below Z ¼ 6, the neutron 1p1=2

orbit is raised due to weakened attraction with the proton
1p3=2 orbit, and it approaches the 2s1=2 orbit. This shell
evolution leads to a vanishing of the shell closure at N ¼ 8,
and the SO magic number N ¼ 6 becomes reinforced; see
Fig. 2. The decrease of the gap between the 1p1=2 and 2s1=2
orbits enhances the large admixture of sd-shell components in
the ground states of nuclei such as 12Be, as well as in the
dripline nucleus 11Li.

C. Shell evolution examined by ðe;e0pÞ experiment

The electron scattering enables us to carry out a model-
independent analysis of obtained data, and it therefore
provides us with an excellent and unique tool to see the
nuclear structure, apart from the limitation due to low cross
sections and the limited applicability only to stable nuclei at
present. Among various types of experiments, the ðe; e0pÞ

FIG. 58. The rms radius of the halo neutron as a function of
two-neutron separation energy S2n. The blue dashed line and
filled circle indicate the result obtained with the core of the
closed-shell 20C, while the red solid line and filled circle indicate
the result with the core of the correlated 20C. The result obtained
from the Woods-Saxon potential (Sn ¼ S2n=2) without vnn is
shown as the black dotted line. The range of S2n obtained from
ENSDF (2017) is shown by green thin vertical lines. Green
arrows denote the values discussed by Kobayashi et al. (2012).
The halo radius, 6.79þ0.70

−0.66 fm, can be deduced from the exper-
imental matter radius (Togano et al., 2016) (see the text). From
Suzuki et al., 2016.
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FIG. 59. Distribution of proton-hole strengths in 48Ca compared
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shell-model calculations with the SDPF-MU interaction. The left
and right panels show the calculations with and without the cross-
shell tensor force, respectively. The calculated overall spectro-
scopic factors are quenched by 0.7. From Utsuno et al., 2012a.
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experiment is a superb method to investigate proton single-
particle properties including the shell structure. Figure 59
shows in the upper panels the distribution of the proton-hole
strengths with respect to the 48Ca nucleus measured with the
48Caðe; e0pÞ47K reaction (Kramer, Blok, and Lapikás, 2001).
In Fig. 59, the measured distribution is compared to shell-
model calculations using the SDPF-MU interaction intro-
duced in Utsuno et al. (2012a), with (lower left panel) and
without (lower right panel) the tensor force. The sd-pf cross-
shell part of the SDPF-MU interaction is the VMU interaction
with which many theoretical analyses have been carried out,
as mentioned earlier in this review, and it contains the same
tensor force used throughout the article. Figure 59 exhibits
that calculations by the SDPF-MU interaction with the tensor
force reproduce quite well the measurement for both energies
and strengths. The proton 1d5=2-1d3=2 splitting is calculated to
be 5.1 MeV with the SDPF-MU interaction. Once the tensor
part of the interaction is switched off, the 1d5=2 strengths are
shifted to higher energies by the absence of the mechanism
shown in Fig. 17. Note that the hole energy goes up when the
corresponding orbit is lowered.
The proton spin-orbit splitting in 40Ca is estimated to be

∼6.7 MeV on the basis of the centroid energy using the
ðd; 3HeÞ reaction data (Doll et al., 1976), where the 1d5=2
strengths are highly fragmented in the Ex > 5 MeV region.
A precise measurement for 40Ca similar to the one for 48Ca is
of much interest. See Sorlin and Porquet (2008) for details of
deducing proton-hole energies in the K isotopes from the
ðd; 3HeÞ data.

D. Other cases in heavy nuclei

Some of other relevant studies on heavier nuclei are worked
out in Sec. S7 of the Supplemental Material (364) (Federman
and Pittel, 1977; Goodman, 1977; Ogawa et al., 1978;
Federman, Pittel, and Campos, 1979; Zeldes, Dumitrescu,
and Köhler, 1983; Federman, Pittel, and Etchegoyen, 1984;
Pittel et al., 1993; Kay et al., 2008, 2011; Schiffer et al., 2013;
Santamaria et al., 2015).

VII. SUMMARY

This article presents a review of the structure of exotic
nuclei mainly from the viewpoint of the shell evolution driven
by nuclear forces. While shell evolution implies changes of
the shell-magic structure, such changes, in particular, sub-
stantial and/or systematic ones, were not expected several
decades ago. In fact, the shell-magic structure proposed by
Mayer and Jensen was shown to be extremely successful in
the description of the structure of nuclei. A few exceptional
cases of notable changes were known, with their examples
mentioned in Secs. II and III.G. Certain changes of the shell
structure have gradually been noticed, and some empirical
analyses were made as reviewed, for instance, by Grawe
(2004) and Sorlin and Porquet (2008, 2013). However, over
the past two decades, many cases of substantial and systematic
changes of the shell-magic structure have been clarified with
underlying theoretical mechanisms and/or with experimental
data thanks mostly to rare-isotope beam experiments. Among
the various outcomes and phenomena, particularly visible

ones are the identification of new magic numbers (16;
32; 34;…) and the recognition of diminished traditional magic
numbers (8; 20; 28;…), occurring in certain regions of the
Segré nuclear chart. Thus, the shell evolution turned out to be
a distinctive phenomenon, visible particularly in exotic nuclei.
The shell evolution is driven by the monopole interaction,

which is a component of the nuclear force in nuclei. The
monopole interaction has been discussed in various ways
since 1964 (Sec. III.E), and we review, throughout this article,
its underlying mechanism and its appearance in a variety of
physics phenomena.
After a brief survey of earlier works in Secs. I and II, we

start with a possible definition of the monopole interaction in
Sec. III, which is applicable for closed-shell and open-shell
nuclei. In the case of atomic nuclei, rotational invariance is
imposed as a symmetry constraint, and this symmetry pro-
duces degeneracy with respect to the magnetic substates of
each single-particle orbit. The monopole interaction then
arises for a given two-body interaction from this degeneracy:
the motion of two interacting particles in given single-particle
orbits j and j0 can take various two-body quantum states. The
monopole matrix element is an average with respect to them
(Sec. III). The ESPE is obtained by combining this monopole
interaction and a given configuration (an occupation pattern
over all single-particle orbits) (Sec. III.D). The ESPEs are
operators, but they can be c numbers if the configuration is
fixed. The ESPEs calculated for a typical configuration
provide us with a clear and simple perspective of nuclear
structure, for example, as neutrons are added to a specific orbit
in an isotopic chain. While the definition or meaning of the
ESPE might look different among different formulations, they
are shown to be consistent (Secs. III.E and III.F).
The monopole interactions of the central, tensor, two-body

spin-orbit and three-nucleon forces produce different charac-
teristic features in the variations of the ESPEs (i.e., shell
evolution), as illustrated in Secs. IVand V. The tensor and two-
body spin-orbit forces provide unique and notable effects
because of their spin dependences (Sec. IV). Many of the
underlying properties of thesemany-body effectswere clarified
rather recently both theoretically and experimentally, although
these forces have been known for several decades. Because of
the renormalization persistency, the monopole effect of the
tensor force can be evaluated in a simple way (Sec. V.A).
The central force basically senses similarities of radial single-

particle wave functions (Sec. IV.A) and produces important
contributions; in many of the cases of shell evolution, the
central and tensor forces work coherently with similar magni-
tudes. For instance, this coherence is directly related to the
appearance of the N ¼ 34 magic number (Sec. IV.D.4), as
well as the shell structure on top of the 100Sn closed shell
(Sec. IV.D.2), for which extensive experimental studies are
ongoing. Some aspects of central-force effects have been
discussed since its early days (Secs. IV.A and IV.D). A wide
variety of mean-field approaches, nonrelativistic and relativis-
tic, have been proposed for the description of the shell structure,
including various functionals for the tensor-force effects
(Sec. IV.E).
Modern ab initio approaches are expected to derive

effective NN interactions from the QCD level (Sec. V),
including three-nucleon-force effects. The monopole effect
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from the three-nucleon forces has been shown to be crucial for
nuclear binding, including the dripline of the oxygen iso-
topes (Sec. V).
The shell evolution was evaluated in many analyses pre-

sented in this review in terms of the VMU interaction and the
two-body spin-orbit force in the M3Y interaction. These are
given in simple analytic forms and provide us with a consistent
assessment in a unifiedway. Although these interactions can be
improved for fine details, we focus on overall trends.
Further studies on the effective NN interactions, including

those of the origin in the three-nucleon forces, are ongoing
with various approaches, but more studies are needed to
develop and deepen the physics of exotic nuclei up to
driplines. The shell evolution is expected to play a major
role, as it reflects an average property.
The effects of the shell evolution in actual nuclei have been

examined and explored experimentally, as discussed in
Sec. VI and elsewhere. The use of a variety of experimental
probes, from γ-ray spectroscopy to transfer reactions to
electron scattering, is demonstrated in Sec. VI, with a focus
on the island of inversion.
The lowering of intruder states containing particle-hole

excitations across a magic gap is a dominant phenomenon in
the island of inversion or in the shape coexistence in general
(Secs. I and II), and it has naturally strong connections to the
shell evolution. Various experimental probes clarify different
aspects of it.
The interplay of the shell evolution with the continuum

physics and weakly bound states, etc., is mentioned in
Sec. VI.A.9. This subject is being developed and is of interest
both theoretically and experimentally. It will be a subject of
forthcoming studies. In those states, substantial changes may
appear in the effective interaction, single-particle wave func-
tion, etc., and the field continues to devise innovative
experimental approaches to investigate them. After all, it is
of much interest how the shell evolution changes or persists at
the dripline, as well as for loosely bound states.
As the shell evolution will keep unveiling static and

dynamic features of exotic nuclei not expected within the
conventional view, there will be intriguing, diverse, and
glorious frontiers emerging in many ways in nuclear-structure
physics. Such frontiers do include heavy nuclei eventually up
to the nuclei of superheavy elements, where improvements to
predictive power will also contribute. Furthermore, such
changes in the understanding and properties of exotic nuclei
may also impact other disciplines of science, for instance,
astrophysics, astronomy, and nuclear engineering, as neutron-
rich exotic nuclei are intermediate products in explosive stellar
processes and nuclear reactors.
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