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ABSTRACT

Everyone needs to make decisions under uncertainty and with lim-
ited resources, e.g., an investor who is building a stock portfolio
subject to an investment budget and a bounded risk tolerance. Do-
ing this with current technology is hard. There is a disconnect be-
tween software tools for data management, stochastic predictive
modeling (e.g., simulation of future stock prices), and optimiza-
tion; this leads to cumbersome analytical workflows. Moreover,
current methods do not scale. To handle a broad class of uncertainty
models, analysts approximate the original stochastic optimization
problem by a large deterministic optimization problem that incor-
porates many “scenarios”, i.e., sample realizations of the uncertain
data values. For large problems, a huge number of scenarios is
required, often causing the solver to fail. We demonstrate sPaQL-
TooLs, a system for in-database specification and scalable solution
of constrained optimization problems. The key ingredients are (i) a
database-oriented specification of constrained stochastic optimiza-
tion problems as “stochastic package queries” (SPQs), (ii) use of a
Monte Carlo database to incorporate stochastic predictive models,
and (iii) a new SUMMARYSEARCH algorithm for scalably solv-
ing SPQs with approximation guarantees. In this demonstration,
the attendees will experience first-hand the difficulty of manually
constructing feasible and high-quality portfolios, using real-world
stock market data. We will then demonstrate how SUMMARY-
SEARCH can easily and efficiently help them find very good port-
folios, while being orders of magnitude faster than prior methods.
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1. INTRODUCTION

Constrained optimization is central to decision making over a
broad range of domains, including finance [7], transportation [4],
healthcare [6], and the travel industry [5]. Consider, for example,
the following very common investment problem.
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Stock_Investments (Table) Scenario;
id | stock price sell_in GAIN gain
1 | AAPL 234 1 day ? 0.1
2 | AAPL 234 1 week ? 0.05
3 | MSFT 140 1 day ? —0.2
4 | MSFT 140 1 week ? 0.2
5 | TSLA 258 1 day ? 0.1
6 | TSLA 258 1 week ? —0.7

Figure 1: Example input table for the FINANCIAL PORTFOLIO
(left). The values of a stochastic attribute (GAIN, in this example)
are unknown (shown by a question mark). Sample realizations of
the uncertain ? values are generated by calls to simulation func-
tions. Drawing a realization for each ? value generates a possible
world, or scenario (right).

EXAMPLE 1 (FINANCIAL PORTFOLIO). Given uncertain
predictions for future stock prices based on financial models
derived from historical data, an investor wants to invest $1,000 in
a set of trades (decisions on which stocks to buy and when to sell
them) that will maximize the expected future gain, while ensuring
that a loss of more than $10 will only happen with probability at
most 5%.

Suppose each row in a table contains a possible stock trade an
investor can make: whether to buy one share of a certain stock, and
when to sell it back, as shown in the left-hand side of Figure 1. The
investor wants a “package” of trades—a subset of the input table,
with possible repetitions (i.e., multiple shares)—that is feasible, in
that it satisfies the given constraints (total price at most $1,000, and
loss of more than $10 with probability at most 5%), and optimal,
in that it maximizes an objective (expected future gain). Although
the current price of a stock is known—i.e., price is a deterministic
attribute—its future price, thus the gain obtained after reselling the
stock, is unknown. In the input table, GAIN is a stochastic attribute.
If the future gains were known, Example 1 would be a “package
query” [2], directly solvable as an Integer Linear Program (ILP)
using off-the-shelf linear solvers such as IBM CPLEX [8], and
declaratively expressible in the Package Query Language (PAQL).
Because GAIN is stochastic, the investor is solving a stochastic
ILP (SILP) instead. Stochastic package queries (SPQs) are a gen-
eralization of package queries that allow uncertainty in the data,
thereby allowing specification and solution of stochastic ILP prob-
lems.

In our prior work [3], we introduced SPAQL, a simple language
extension to PAQL [2] that allows easy specification of package
queries with stochastic constraints and objectives. The SPAQL
query for the FINANCIAL PORTFOLIO is:



SELECT PACKAGE(*) AS Portfolio
FROM Stock_Investments
SUCH THAT
SUM(price) < 1000 AND
SUM(GAIN) < —10 WITH PROBABILITY < 0.05
MAXIMIZE EXPECTED SUM(GAIN)

The result of this query is a package that informs the investor
about how many trades to buy for each individual stock, and when
to plan reselling them to the stock market. For simplicity, we focus
on a one-time decision; in real life, the stock information would be
updated daily and new decisions would be made over time.

Our system demonstrates SUMMARYSEARCH [3], our scalable
SPAQL evaluation algorithm. SUMMARYSEARCH approximates
the given SILP by a deterministic ILP (DILP) that simultaneously
incorporates multiple “scenarios”, or possible worlds, for the fu-
ture stock market. A scenario is a table where all random variables
have been realized. The right-hand side of Figure 1 shows a pos-
sible scenario. To generate scenarios, we employ the Monte Carlo
probabilistic data model [9], which offers support for arbitrary dis-
tributions via user-defined variable generation (VG) functions.

The solution of the DILP, however, may not be feasible with re-
spect to the original SILP, especially if the approximation is based
on only a small number of scenarios that do not well represent the
true uncertainty distribution. For example, a financial package ob-
tained by using too few scenarios might have a 10% probability of
losing more than $10, rather than a 5% probability, incurring more
risk than desired. The state-of-the-art techniques attempt to miti-
gate this by iteratively adding more scenarios into the DILP. We
implement this approach in an algorithm that we call NAIVE; un-
fortunately, the NATVE DILP may quickly become too large for the
solver to handle, and this approach often fails.

Our approach, SUMMARYSEARCH, instead facilitates feasible
packages by replacing a set of scenarios with a very small synop-
sis thereof, called a “summary”, which results in a “reduced” DILP
that is much smaller than the original DILP used by NAIVE. A sum-
mary is carefully crafted to be “conservative” in that the constraints
in the reduced DILP are harder to satisfy than the constraints in the
NAIVE DILP. Because the reduced DILP is much smaller than the
NAIVE DILP, it can be solved much faster; moreover, the resulting
solution is much more likely to be feasible, so that the required
number of iterations is typically reduced. Of course, if a sum-
mary is overly conservative, the resulting solution will be feasible,
but highly suboptimal. Therefore, during each optimization phase,
SUMMARYSEARCH implements a sophisticated search procedure
aimed at finding a “minimally” conservative summary; this search
requires solution of a sequence of reduced DILPs, but each can be
solved quickly.

In our demonstration, participants are given an investment bud-
get and asked to use our interactive interface sPaQLTooLs [13] to
construct an investment portfolio on real stock market data. They
first attempt to build a financial portfolio manually, using common-
sense techniques, such as looking for low-volatility stocks, and
greedily adding one stock at a time to the portfolio package. The
system then evaluates their portfolio on a large number of scenar-
ios. Manually constructed portfolios are unlikely to be feasible, and
therefore attendees experience first-hand the difficulty of building
low-risk portfolios without our automated methods. Finally, the
users solve the problem automatically, as a SPAQL query, via our
advanced SUMMARYSEARCH. The interface shows how the initial
solutions found by the system can potentially also be infeasible,
and how quickly the system finds feasible solutions and improve
on their objective value (expected gain). We also compare the solu-
tions found by SUMMARYSEARCH and (when possible) the NATVE
algorithm.

2. STOCHASTICILP

The field of stochastic programming (SP) [11] studies optimiza-
tion problems—selecting values of decision variables, subject to
constraints, to optimize an objective value—having uncertainty in
the data. We focus on SILPs with linear expectation and probabilis-
tic constraints and objective functions.

Constraints.  Given random variables &p,...,&n, decision
variables x1,...xn, a real number v € IR, and a relation
® € {<,>}, a linear expectation constraint takes the form

E(Zi\]zl &mi) ® v, and a linear probabilistic constraint takes the
form Pr(Z;N:l &ixi O v) > p, where p € [0, 1]. In our example,
x; is the number of shares of the ith stock to buy, and &; is the
random gain from a share of this stock on the sell date. We refer
to the constraint vazl &ix; O v as the inner constraint of the
probabilistic constraint. Constraints of the form Pr(-) < p can
be rewritten in the aforementioned form by flipping the inequality
sign of the inner constraint and using 1 — p instead. If for constants
ci,...,cn € IR we have Pr(§ =¢;) = 1 fori € [1..N], then
we obtain the deterministic constraint vazl cix; © v as a special
case of an expectation constraint.

Objective. Without loss of generality, we assume throughout that
the objective has the canonical form min, Ei\le c;x; for deter-
ministic constants ci,...,cn. Indeed, observe that an objective
in the form of an expectation of a linear function can be written
in canonical form: min, E(Zi\;l &iz;) = min, SV UE(&) @
and thus we take ¢; = E (&;). Similarly, an objective in the form
of a probability can be written in canonical form using epigraphic
rewriting [3].

3. QUERY EVALUATION METHODS

The state of the art in solving SILPs has been developed outside
of the database setting [1]. We first describe this approach, which
we embody in an algorithm called NAIVE, and discuss its draw-
backs. We then briefly sketch our improved algorithm, SUMMARY-
SEARCH, which is typically faster than NAIVE by orders of mag-
nitude and can handle problems that cause NAIVE to fail. More
details about both algorithms can be found in our prior work [3].

3.1 Naive Query Evaluation

The NAIVE algorithm follows these steps: First, it generates a
sample of independent and identically-distributed (iid) scenarios; It
then combines them into an approximating DILP, solves the DILP
to obtain a solution x, and then validates the feasibility of = against
a large number of out-of-sample validation scenarios. The process
is iterated, adding more scenarios until the validation phase suc-
ceeds.

We obtain the DILP from the original SILP by replacing the dis-
tributions of the random variables with the empirical distributions
corresponding to the sample. That is, the probability of an event is
approximated by its relative frequency in the sample, and the ex-
pectation of a random variable by its sample average. In the SP
literature, this approach is known as Sample Average Approxima-
tion (SAA) [10]. For example, with M scenarios, to approximate
a probabilistic constraint of the form Pr(X:Z].V:1 &ixi O v) >p
we add to the problem a new indicator variable, y; € {0,1} for
each scenario j € [1..M], along with an associated indicator con-
straint y; = 1 (Zi\; SijTi © v) where the indicator function
1 (-) equals 1 if the inner constraint is satisfied and equals O other-
wise, and where s;; is the realized value of the ith tuple under the
jth scenario. Finally, we add the following linear constraint over
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the indicator variables: Zjle y; > [pM1], where [u] is the small-
est integer greater than or equal to u. That is, we require that the
solution x satisfies at least a fraction p of the M scenarios.

The optimization phase for this SAA formulation can be very
slow, and often the convergence to feasibility requires so many op-
timize/validate iterations that the SAA becomes too large for the
solver to handle, so that NAIVE fails. Our algorithm SUMMARY-
SEARCH uses “summaries” to speed up the optimization phase and
reduce the number of required iterations.

3.2 Summary-based Query Evaluation

The NAIVE algorithm has two major drawbacks. (1) The time to
derive a solution to an SAA can be unacceptably long, since the size
of the SAA sharply increases as M increases. (2) It often fails to
obtain a feasible solution altogether; in our experiments, the solver
(CPLEX) started failing with just a few hundred scenarios.

Our key observation is that the randomly selected set of scenarios
used to form the DILP during an iteration of NAIVE tend to be
overly “optimistic”, leading the solver towards a seemingly good
solution that “in reality”—i.e., when tested against the validation
scenarios—turns out to be infeasible. This problem is also known
as the “optimizer’s curse” [12].

Our improved algorithm, SUMMARYSEARCH, addresses these
challenges by ensuring the efficient generation of feasible results
through much smaller “reduced” DILPs that each replace a large
collection of M scenarios with a very small number Z of scenario
“summaries”; in many cases it suffices to take Z = 1. We call such
areduced DILP a Conservative Summary Approximation (CSA), in
contrast to the much larger sample-average approximation (SAA)
used by NAIVE. The summaries are carefully designed to be more
“conservative” than the original scenario sets that they replace: the
constraints are more stringent, and thus the solver is induced to
produce feasible solutions faster.

SUMMARYSEARCH starts with an initial number of scenarios,
M > 1, and uses a CSA formulation that replaces the M sce-
narios with Z conservative summaries, where Z 1 initially.
The feasibility of the resulting solution is checked using a large
set of validation scenarios. If the current solution is infeasible,
SUMMARYSEARCH increments M and tries again, until feasibil-
ity is achieved. Then the algorithm checks whether the objective
value is within (1 + €) of the true optimal value, where € is defined
by the user; this check uses the validation scenarios together with
worst-case bounds developed in [3]. If the current approximation
ratio exceeds (1 + €), then SUMMARY SEARCH increases Z and it-
erates again. Increasing Z improves the approximation ratio; if this
results in a loss of feasibility, then SUMMARYSEARCH increases
M and the iterations continue. The algorithm stops if and when a
feasible and (1 + €)-approximate solution is found.

Given values for M and Z, the summaries are computed as fol-
lows. First suppose that Z = 1. Let « € [0, 1], and consider an

inner constraint of the form Zi\; &ixi > v. An a-summary of a
set of scenarios is a newly constructed scenario (s1,...,Sn) such
that if a solution x satisfies the summary in that Zf\il SiTi > v,
then x satisfies at least [aM| of the original scenarios. Construct-
ing an a-summary, for o > 0, is simple: Given any subset G(«)
of [aM] scenarios, we define the summary as the tuple-wise min-
imum over G(«), i.e., s; ‘= Minjeg(a) Sij. SUMMARYSEARCH
searches through values of « via a root-finding routine until it finds
the least conservative one that (based on the validation scenarios)
satisfies the inner constraint with probability greater or equal than,
but as close as possible to, the required value p. (If no satisfactory
« is found, then M is increased.) When Z > 1, the search pro-
cess computes a separate « value for each summary. This overall
process is executed independently for each probabilistic constraint.

Our experiments [3] showed that, since its iterations are much
faster than those of NAIVE, SUMMARYSEARCH exhibits a large
net performance gain even when the number of iterations is compa-

2883



rable; typically, however, the number of iterations is actually much
lower for SUMMARYSEARCH than for NATVE due to the conser-
vative nature of summaries, further augmenting the performance
gain.

4. DEMONSTRATION

We demonstrate our SPAQL query engine on a real dataset of
stocks for portfolio optimization. Figure 2 shows a screenshot of
the sPaQLTooLs’s graphical user interface. During the demonstra-
tion, we guide the participants through the following steps.

Step @ (Loading the sPaQLTooLs application). The User loads
a sPaQLTooLs application from a . spgt configuration file, which
points to the input database and tables, as well as the SPAQL query
template and input parameters that populate all the graphical inter-
face elements. While the interface can support a variety of appli-
cations, we showcase the FINANCIAL PLANNER. This phase pop-
ulates the Stock_Investments table and the query parameters
described next.

Step @ (Specifying the budget constraint). The first query pa-
rameter indicates how much money ($) the user wants to invest at
most.

Step @ (Specifying the accepted risk constraint). The next two
parameters set the risk level the user is willing to accept with the in-
vestment. The maximum accepted loss indicates how much money
($) the user is willing to lose at most, and the risk (%) indicates the
maximum probability with which this loss can occur.

Step @ (Specifying the maximum holding period). The user
then specifies the maximum number of days d to hold any stock.
This will generate d rows in the Stock_Investments table for
each unique stock. The larger the value of d, the more uncertainty
and hence the harder the optimization.

Step @ (SPAQL inspection). Once all query parameters have
been specified, the user can inspect the SPAQL query used by the
system to search for the optimal portfolio.

Step @ (Specifying the simulation model). For all the stochastic
attributes in the input table (in this application, only GAIN), the
user selects a simulation model from a drop-down menu. Users can
select a different simulation model for different tuples, the same for
all tuples, or any other combination. Simulation models are defined
in the application configuration.

Step @ (Manual financial planning). Attendees are asked to
build a financial portfolio manually, in an attempt to compete
against our system that uses SUMMARYSEARCH to find the
optimal portfolio automatically. For example, a user may filter
stocks by their volatility and price, as shown in the figure, and
decide to buy a number of shares for some low-volatility stocks.
As the user starts building their manual portfolio, the system runs
simulations in the background, to estimate the associated risk and
expected gain. The constructed portfolio is then shown in the
Visual Summary at the bottom as a square, placed in the graph
according to its risk and expected gain. The portfolio may be
infeasible, i.e., it may not not satisfy the risk constraint, in which
case it is colored in red and placed in a gray area. Users experience
first-hand the difficulty of manually constructing feasible portfolios
with high-enough gain.

Step (Automatic financial planning). Users then run our sys-
tem to search for the optimal portfolio according to their needs. We
concurrently run both SUMMARYSEARCH and NAIVE (for com-
parison).
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Step @ (Visual exploration of the results). The results of our
system are interactively shown in the Visual Summary as they be-
come available. As the system produces a solution, the interface
plots its associated risk and expected gain. As feasible solutions are
found, SUMMARYSEARCH starts improving their objective value
(expected gain). At the end of the search, the final solution has the
highest expected gain, under the acceptable risk. Users are able
to compare this result with the portfolio that they manually built.
Attendees can also click on any solution in the Visual Summary in
order to view the full portfolio details, as a table on the left of the
summary.
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