
Exploiting Irregular Memory Parallelism in
Quasi-Stencils through Nonlinear Transformation

Juan Escobedo
School of Electrical and
Computer Engineering

University of Central Florida
Orlando, Florida 32816

Mingjie Lin
School of Electrical and
Computer Engineering

University of Central Florida
Orlando, Florida 32816

Abstract—Non-stencil kernels with irregular memory accesses
pose unique challenges to achieving high computing performance
and hardware efficiency in high-level synthesis (HLS) of FPGA.
We present a highly versatile and systematic approach to effecti-
vely synthesizing a special and important subset of non-stencil
computing kernels, quasi-stencils, which possess the mathematical
property that, if studied in a particular kind of high-dimensional
space corresponding to the prime factorization space, the distance
between the memory accesses during each kernel iteration beco-
mes constant and such an irregular non-stencil can be considered
as a stencil. This opens the door to exploiting a vast array
of existing memory optimization algorithms, such as memory
partitioning/banking and data reuse, originally designed for
the standard stencil-based kernel computing, therefore offering
totally new opportunity to effectively synthesizing irregular non-
stencil kernels.

We show the feasibility of our approach implementing our
methodology in a KC705 Xilinx FPGA board and tested it
with several custom code segments that meet the quasi-stencil
requirement vs some of the state-of the art methods in memory
partitioning. We achieve significant reduction in partition factor,
and perhaps more importantly making it proportional to the
number of memory accesses instead of depending on the problem
size with the cost of some wasted space.

I. INTRODUCTION

High-Level Synthesis (HLS) has advanced significantly in
compiling high-level “soft” programs into efficient register-
transfer level (RTL) “hard” specifications. This is of particular
importance in today’s computing world where FPGA devices
become readily available in many heterogeneous computing
systems such as Microsoft Azures servers. Among many well-
known optimization techniques used in HLS, memory partitio-
ning is probably one of the most studied and applied in order to
improve performance and increase parallelism in synthesizing
computing kernels. However, almost all of the previous HLS
work strictly focuses on stencil-based computations, where
the distance between memory accesses within each kernel
iteration remains constant in its data domain. Unfortunately,
stencil-based kernel computations are only but a subset of
all the available code kernels widely used for scientific and
general purpose applications. The case where the geometry
of the memory accesses within each kernel iteration changes
with time is known as non-stencil or sometimes referred to as
irregular memory access.

Many irregular scientific codes, unlike stencil-like compu-
ting kernel with static memory offsets, exhibit much more
general and sophisticated memory access patterns, thus po-
sing much greater challenges to achieving effective memory
partitioning and mapping in order to facilitate parallel memory
accesses. Intuitively, if the memory accesses in non-stencil
kernel computing are completely random, then effectively
extracting any kind of parallelism is unlikely. As such, one
naturally wonders what happens if we limit our scope to a sub-
set of non-stencils that obey special mathematical properties.
Unfortunately, even for the irregular non-stencil kernel with
affine memory accesses, the body of work is quite limited
because its changing geometry of memory accesses during
each kernel iteration makes it complicated to find some sort
of pattern to exploit that is independent of the problem size.
This problem is further aggravated that, in order to keep
calculations simple enough to be implemented efficiently with
hardware, most analysis focuses on linear transformations and
polyhedral analysis of the memory access that restricts the
number of solutions. In short, to fully exploit memory-level
parallelism in non-stencil kernel computing widely found in
scientific applications, finding a versatile yet cost-effective
method to synthesize application-specific hardware module,
which not only is easy to implement but also assures solu-
tion optimality, from high level software code is imperative.
Specifically, we claim the following contributions:

• We define a kind of non-stencil code we call Quasi-
Stencil code that, under certain considerations, can have a
memory partition factor independent of its problem size.

• We introduce a non-linear transformation of original data
domain that allows a Quasi-Stencil code to behave just
like a conventional stencil.

• We show a way of circumventing the problems associated
with the naive implementation of our proposed nonlinear
memory transformation in order to reduce its address
calculation complexity and memory overhead.

II. MOTIVATIONAL EXAMPLE

It is well-known that the irregular memory access pat-
tern found in non-stencil kernel computing renders the well-
known hyperplane- [1], lattice- [2], or graph-based [3] HLS
techniques almost totally ineffective. This is because that all

236

2019 IEEE 27th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)

2019 IEEE
DOI 10.1109/FCCM.2019.00039

©2576-2621/19/$31.00

Authorized licensed use limited to: University of Central Florida. Downloaded on September 23,2020 at 03:42:35 UTC from IEEE Xplore. Restrictions apply.

The Trial Version

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

0

(a)

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

0

a b c d e f g h

a b cd e f g h

a b c d e fg h

ab c d e f g h

a b c d e fg h

ab c d e f g h

a b c de f g h

a b c d e f gh

(b)

Fig. 1. (a) Memory access geometry for 4 distinct iterations in the original
space: (i,j)=[(1,1),(2,3),(3,1),(4,4)]. Note the geometry changes. (b) Memory
partition with 8 banks using the GMP method from [1]. Number of banks is
proportional to the problem size

these approaches rely on exploiting the repeated patterning
of memory accesses, thus can not effectively handle non-
repeatable or irregular memory accesses. Consider a code
segment of a loop with two independent loop variables i :
1 → n − 1 and j : 1 → m − 1. Its loop statement is S =
f(M [i, j],M [2i, j],M [i, 2j],M [2i, 2j]) and operates on a 2-
D data matrix. Clearly, this loop is an example of non-stencil
kernel because the relative distance between its accessed
memory locations varies with its iterations. To illustrate, we
plots its four iterations, (i, j) = [(1, 1), (2, 3), (3, 1), (4, 4)],
in Fig. 1(a). If we directly apply the classical GMP memory
banking scheme [1] to this irregular non-stencil case, as shown
in Fig. 1(b), we will require 8 independent memory banks for
a mere 8× 8 matrix, which makes directly utilizing the GMP
method infeasible for any realistic input data size.

1 2 4 8 3 6

1

2

4

8

3

6

0

(a) a

1 2 4 8 3 6

1

2

4

8

3

6

0

a b

c d

a b

c d

a b

c d

a b

c d

a b

c d

a b

c d

a b

c d

a b

c d

a b

c d

(b) b

Fig. 2. (a) Memory access geometry for 4 distinct iterations in our transformed
domain: (i,j)=[(1,1),(2,3),(3,1),(4,4)]. Note the constant shape. (b) Memory
partition with 4 banks using the ESG method in [3]. Number of banks is
independent of problem size. Work in [1] given the same number of banks
but different layout.

Fortunately, as discussed in Section III-A, the motivational
code segment shown in Fig. 1 can be classified as a quasi-
stencil kernel. A quasi-stencil code is a type of non-stencil
and affine kernel code for which we can find a non-linear data
domain layout transformation based on prime factorization
such that the code behaves effectively as a stencil in this new
data layout. Further details regarding the definition of quasi-
stencil and its requirements can be found in Section III-A

while Section III-C contains more information regarding the
non-linear transformation that converts a quasi-stencil code
into a stencil-based one. After this nonlinear memory trans-
formation, the modified data domain of the non-stencil code
depicted in Fig. 1 is shown in Fig. 2. Here we access the
same memory locations with the same indexes during the
same iteration but comparing the relative distances of the
memory locations accessed it is evident that now we have
code that behaves like a stencil. This allows us to use the
vast repertoire of memory partitioning algorithms that exist
in literature. Applying the partitioning algorithm from [3],
we only need 4 memory banks to do the partition, which
is the optimal solution given the fact that we only have 4
memory accesses. Furthermore, our solution is independent of
the problem size, meaning it scales well for larger problems.

Finally, to further demonstrate the effectiveness of our
methodology, we present one possible circuit implementation
of our method in Fig. 3. In general, our hardware requirements
are very similar to that of the traditional memory banking
schemes for stencil computations [1]–[3] with only an addition
of an extra layer of indirection which can be implemented
using LUT’s or even BRAM. Because the memory pattern is
a stencil in the transformed domain we only need to calculate
one of the addresses in the new domain and the others can be
inferred by the offset of the stencil. Further details re-gathering
implementation details will be discussed in Section III-F.

III. OVERALL METHODOLOGY

In this section, we will first present the definition of quasi-
stencil code, the requirements to be classified as one, and some
additional cases that can be transformed into Quasi-stencil
under certain conditions. In addition, we discuss the mathe-
matical theory behind our nonlinear memory transformation,
i.e., the prime factorization space and its linearization, as well
as its hardware implementations details.

A. Quasi-stencil: Definition and Criteria

We define a quasi-stencil memory access pattern as a kind of
affine and non-stencil kernel code where each memory access
Rk can be written as:

Rk = Ak ·�i, (1)

where each Ak is a square n × n non-singular and diagonal
matrix such that Ai �= Aj , ∀i �= j, n is the loop depth, and
�i is the iteration vector. In this work, we consider only a
perfectly nested loop or its equivalent one. This condition leads
to the observation that each dimension is controlled by a single
loop variable, which is the same for all accesses, but with
different step sizes for each. This kind of code has the property
that now the exploration of all Data Domain dimensions is
independent of the other and we can proceed to analyze them
independently. By doing this, we can perform analysis on a
1D case and use it to extend the results to an n-dimensional
problem.

In order to intuitively visualize the behavior of a non-stencil
kernel code, we develop a new diagram, where each memory

237

Authorized licensed use limited to: University of Central Florida. Downloaded on September 23,2020 at 03:42:35 UTC from IEEE Xplore. Restrictions apply.

The Trial Version

+

+

.

.

.

.

.

.

.

.

. .
.
.

.

.

.

.

.

. .
.
.

.

.

.

.

.

. .
.
.

.

.

.

ϕ1NS

ϕ1PFS

ϕ2PFS

ϕkPFS

LUT ϕ1PFS
%ST

g(ϕ1PFS
)

ϕ2PFS
%ST

g(ϕ2PFS
)

ϕkPFS%ST

g(ϕkPFS
)

Bank 1

Bank 2

Bank N

Output 1

Output 2

Output k

C1

Ck

Fig. 3. Circuit diagram of our implementation. After our layer of indirection represented by a LUT, the circuit schematic remains the same as traditional
banking schemes.

1 2 3 54

0

1

2

3

4

Add

ii

Fig. 4. Memory accesses formed by the lines ϕ11
:i(blue) and ϕ12

=2*i(red)
in the plane ID,DD with as single intersection point at the origin.

access along each dimension can be represented as a straight
line with slope Aki,i

for access k in dimension i. For the afore-
mentioned conditions on the A matrix in Equation 1, all such
lines intersect at the origin. In other words, for an access to
a n-dimensional memory in the form M(ϕ1, ϕ2, . . . , ϕn), the
value of the coordinate for each dimension can be expressed
as:

ϕi = Aki,i
·�i. (2)

For example, in the code segment listed in Section II, two such
line diagrams of the first two accesses M(i, j) and M(2∗ i, j)
along the first dimension are depicted in Fig. 4.

B. Generalizing Quasi-Stencil

To accommodate various memory access patterns found in
real-world applications, we now attempt to generalize the cases
of non-stencil kernels that we can handle, especially these with
a constant in its address. Let us consider the case where we
have memory accesses of the from in

Rk = Ak ·�i+ bk, (3)

sill with the same restriction as before on the Ak matrices
in terms of being non-singular, n × n, diagonal matrices all
different from each other. We consider three special cases that
we can handle, each of which will require a particular modifi-
cation to its data domain besides the non-linear transformation.

i

ϕ

0

1

1

2

2

3

3

4

4 5-1

-2

(a) a

i

ϕ

0

1

1

2

2

3

3

4

4 5-1

-2

(b) b

i

ϕ

0

1

1

2

2

3

3

4

4 5-1

-2

(c) c

Fig. 5. (a) Single intersect at ϕ = 0, i = 0. ϕ11
: i − 1(blue) and ϕ12

=
2(i − 1) (red). (b) Single intersect at ϕ = 0, i = 0. ϕ11

: i(blue) and
ϕ12

= 2i− 1 (red). (c) Multiple intersect, integer delay. ϕ11
: i− 1 (blue),

ϕ12
= 2(i− 1) (red), and ϕ12

= 3(i− 2) (green)

1) Single intersect point at ϕk = 0, i �= 0: If the intersect
point is on the x axis, corresponding to the loop variable
controlling the movement in the corresponding dimension,
we do not need to take extra considerations. The prime
factorization space will natively give a stencil representation
of the code. An example of this can be seen in figure 5 (a).

2) Single intersect point at ϕk �= 0: If the intersect point
is at any point in the x axis such that it is not on ϕ = 0, as
seen in Fig 5 (b) where the intersect point is at (1,1), we take
note of the coordinate in the y axis, corresponding to the ϕ.
This will be used to modify the Data Domain.

3) Multiple intersect points with integer time delay: There
are cases such as the ones seen in Fig. 5 (c) where if we delay
the execution of one or more memory access we can make the
lines intersect at one point. Depending if the y coordinate is
0 or not we end up with one of the previous cases. For (c), if
we delay thee execution of the memory access corresponding
to the green line by -1 iterations, meaning we advance the
execution of the code one iteration, we end up with all lines

238

Authorized licensed use limited to: University of Central Florida. Downloaded on September 23,2020 at 03:42:35 UTC from IEEE Xplore. Restrictions apply.

The Trial Version

intersection at the point (1,0). As it is evident, this is one of
the previous cases which we can handle.

C. Prime Factorization Space

The Prime Factorization Space belongs to the logarithmic-
space family of memory layouts. We take advantage of
the property of logarithms to transform multiplications into
addition in order to obtain a memory layout that converts
non-stencil code that meets the quasi-stencil criteria defined
in Section III-A and III-B into a stencil. To explain this
basic idea, we consider a simple example of a two-element
non-stencil memory accesses consisting of ϕ1 = a1 · i and
ϕ2 = a2 · i with a1 �= a2 and i is a loop variable. As iteration
progresses, it is obvious that the distance between the accesses
Δd = d1 − d2 = a1 · i − a2 · i = (a1 − a2) · i will change
according to i, thus clearly a non-stencil kernel code. Now
if we calculate the logarithm of each memory address, we
will obtain ϕ′1 = logϕ1 = log(a1 · i) = log a1 + log i and
ϕ′2 = logϕ2 = log(a2 · i) = log a2 + log i. Now, if we take
the difference of the accesses in this logarithmic space, we
will obtain Δd = ϕ′1−ϕ′2 = log a1+log i−(log a2+log i) =

log a1 − log a2 = log
(

a1

a2

)
= c, which clearly is a constant

and shows that, in the log space, the distance between the two
memory accesses is independent of the iteration we are in,
thus behaving exactly like a stencil. The iteration will now just
center the access around a memory location but the relative
position of the accesses will remain he same.

1 2 4 8

6 12 24

36 72

3

9 18

5 10 20 40

15 30 60 120

45 90 180 360

20

20

20

21

21

22

22

23

23

30

30

30

31

31

32

32

50

51

Fig. 6. Partial PFS for the first 3 primes 2, 3, and 5. We can represent numbers
from 1-6 without gaps.

However, directly performing such logarithmic operations to
memory addresses will need to represent decimal values that
implies the need for floating point arithmetic. We circumvent
this issue through utilizing a spacial case of the logarithm
spaces: the Prime Factorization Space.

It is well-known that any number can be written as a product
of prime numbers. This is, any rational number n can be
written as n = 2k1 · 3k2 · 5k3 · · · · · pkn

n If we calculate the
log of n, we obtain log n = log(2k1 ·3k2 ·5k3 · · · · ·pkn

n . . .) =
k1 log 2 + k2 log 3 + k3 log 5 + · · · + kn log pn + . . . , where
kn is an integer. With this in mind, we can consider each

of the integers kn as the coordinate of the number in a m-
dimensional space, where m is the number of primes below the
maximum address of the memory we will ever access during
the execution of the program. Each of this m dimensions is a
1-D space corresponding to one of the primes and movement
along this dimension corresponds to changes of the exponent
of the corresponding prime in the prime factorization of the
number. Now we can represent all integer numbers in log space
with integer coordinates. Even negative numbers since we can
mirror the space and consider negative numbers as movement
in the negative direction (towards this mirrored space). We
can see an example of how a partial prime factorization space
looks for the first 3 primes, namely: 2, 3, and 5, forming a
3D space in Fig. 6. Note that numbers where we have more
than 1 non-zero coordinate corresponds to the multiplication
of all the corresponding primes based on which coordinate
is non-zero, to the power of the coordinate. This allows
us to represent any positive rational numbers, particularly
integers, natively. Unfortunately, this log-based memory space
typically possesses a very high dimensionality, which makes it
hard to implement with traditional memory architectures and
increases the complexity of memory address calculations. In
the following section, we circumvent this issue by means of
linearizing such a log-based memory space.

D. Transformed data domain

As mentioned previously, the memory space based on prime
factorization, which converts a quasi-stencil kernel code into
a stencil one, can be very high-dimensional. Unfortunately,
such a transformed memory space is difficult to implement
with traditional memory architectures. To solve this feasibility
problem, we linearize the PFS row/column wise starting from
the 2D space with the smallest origin coordinate. To illustrate,
given the sample PFS in Fig. 6, we can obtain a linearized
PFS depicted in Fig. 7(a). This corresponds to the case in
which the memory addresses of every dimension have a single
intersect point at (0,0). For the case where we have an intersect
point of (x, 0), where x �= 0, we simply add the element
0 to the beginning of the linearized space and mirror the
linearized space around it as needed but with negative offset
numbers. This will allow us to represent memory locations
that occurred before the intersect point as shown in Fig. 7(b).
Note that, in general, memory locations are always positive, so
negative memory locations do not occur. Therefore, this case
usually only happens when we also have a non-zero intersect
coordinate in the y axis. Finally, the general case where the
intersect happens at (x, y) can be seen in Fig. 7(c). Here we
simply take the value of the intersect and add it to the mirrored
domain. In this case, we are considering y = 3 as an example.
Note some of the elements on the transformed domain (≥-3)
now become positive and could be accessed by the code.

E. Overhead Reduction

Although it is possible to calculate the address in the lineari-
zed PFS during runtime it would be computationally expensive
since it would require us to find the prime factorization of

239

Authorized licensed use limited to: University of Central Florida. Downloaded on September 23,2020 at 03:42:35 UTC from IEEE Xplore. Restrictions apply.

The Trial Version

0

1

1

2

2

4

4

8

8

3

3

6

6

12

12

24 9

9

18

18

36 72 5

5

10

10

20 40 15

15

30 60

14 14 16 177 11

. . .

(a) a

0

0

1

1

2

2

4

4

8

8

3

3

6

6

12

12

24 9

9 185 10 1514 14 16 17

-1-2-4-8-3-6-12-24-9

7 11

.

(b) b

0

0

1

1

2

2

4

4 8

3

3

6

6

12

12

9

9 18

5

5 10

15

1514 14 16 17

-1-3-6 -9-21 -5 7

7

11

11

27.

(c) c

Fig. 7. (a) Linearized PFS for the case where memory locations intersect at
the origin. (b) Extended linearized PFS for the case where memory locations
intersect at (x, 0), x > 0. (c) Shifted linearized space for the case where
memory locations at (x, y), x, y > 0. For this example y = 3.

at least one of the addresses in the original domain and
perform a number of Multiply-Accumulate (MAC) operations
to calculate the address in the linearized PFS. To avoid this
we have opted to use a lookup table that could be implement
either in fabric for speed or in a BRAM if the indirection
vector is large enough. This lookup table simply contains the
correct address in the linearized PFS of the address in the
original space. Using a lookup table also allows us to add some
non-linearities to the address conversion that given the nature
of the rectangular linearizion technique we use to reduce the
dimensionality of the PFS would translate to an amount of
wasted memory space that would render the method almost
unusable.

Take the example of section II. The full linearized PFS in
both dimensions would look like the one from figure 8 (a).
Note now the transformed domain has the same dimensionality
of the original data domain. The areas in gray are memory
locations that are never accessed for (i,j)≤5 either because of
the nature of the code or they are artificial memory addresses
generated when we linearize the PFS row/column wise. A data
domain that was originally only 10×10, for a total of 100 data
elements now consist of a 2D grid of 17×17 elements for a
total of 289 elements. And increase in the total number of
elements close to 200%.

This approach, which introduces nonlinearities in the ad-
dress mapping, is particular straightforward to do by using our
lookup table approach to do the memory address indirection
ayer instead of performing the calculation during runtime.

F. Implementation

For the final implementation scheme we have opted to use
the pruned linearized PFS to keep memory overhead to a
manageable amount while using a LUT as an indirection layer
to translate addresses in the original domain to the transformed
domain for hardware simplicity and speed.

Once we have transformed the problem, the quasi stencil
code now behaves like a stencil and thus we are free to
use any of the available stencil banking schemes existing in
literature. For this work we have decided to implement the
method from [3] as our banking scheme given the proven
optimality results for any stencil in terms of partition factor

1

1

2

2

4

4

8

8

3

3

6

6

12

12

24

24

5

5

10

10

20

20

40

40

15

15

30

30

60

60

7

7

120

120

(a) a

1

1

2

2

4

4

8

8

3

3

6

6

12

12

24

24

5

5

10

10

20

20

40

40

15

15

30

30

60

60

7

7

120

120

(b) b

1

1

2

2

4

4

8

8

3

3

6

6

5

5

10

10

(c) c

Fig. 8. (a) Full Linearized PFS for the motivational example. Gray cells are
memory locations that are never accessed for i,j≤5. (b) Full Linearized PFS
with overlapped region of repeated banking. (c) Pruned linearized PFS

and good performance metrics in terms of resource utilization
and clock period.

For this method, bank selection is done by accessing a small
memory of the same dimensionality as the original problem
but much smaller size. This memory represents the smallest
rectangle containing a repeating pattern in the banking scheme.
The size of this memory is independent of the problem size
and only depends on the geometry of the stencil. The access is
done by applying modulo operations to each of the dimensions
of the transformed address by the size of the memory in
the corresponding dimension to obtain the intra-tile index.
Accessing it provides the right bank for parallel, conflict-free
access for a given stencil.

B = OffST(ϕ
′%ST) (4)

The intra bank address ϕB can be calculated from the
transformed memory address ϕ′ by the formula seen in Eq. 5:

ϕB = OffST(ϕ
′%ST) +

n∑
i=0

(ϕ′i/Mi) · ki (5)

As mentioned in section III-E, the intra-bank address
function is composed of 2 parts: the first is the same as
the bank assignment, an access to a small memory of the
same dimensionality as the original problem and applying
modulo operations in the corresponding dimension by the size
of the tile in that dimension. exactly the same as accessing
the memory containing the banking information. This memory
contains the number of accesses to a given bank given a certain

240

Authorized licensed use limited to: University of Central Florida. Downloaded on September 23,2020 at 03:42:35 UTC from IEEE Xplore. Restrictions apply.

The Trial Version

f o r (i =1 ; i<n ; i ++)
S= f (M[i] ,M[2∗ i] ,M[5∗ i]) ;

f o r (i =1 ; i<n ; i ++)
S= f (M[i] ,M[3∗ i] ,M[5∗ i]) ;

f o r (i =1 ; i<n ; i ++)
S= f (M[i +4] ,M[2∗ i +4] ,M[3∗ i + 4]]) ;

(a) (b) (c)
f o r (i =1 ; i<n ; i ++)
S= f (M[i] ,M[2∗ i] ,M[4∗ i]) ;

f o r (i =1 ; i<n ; i ++)
S= f (M[i −1] ,M[3∗ i −4] ,M[4∗ i −6]) ;

f o r (i =1 ; i<n ; i ++)
S= f (M[2∗ i −2] ,M[3∗ i −7] ,M[4∗ i −6]) ;

(d) (e) (f)
f o r (i =1 ; i<n ; i ++)

f o r (j =1 ; j<m; j ++)
S= f (M[i , j] ,M[2∗ i , j] , . . .
M[i , 2∗ j] ,M[2∗ i , 2∗ j]) ;

f o r (i =1 ; i<n ; i ++)
f o r (j =1 ; j<m; j ++)
S= f (M[i , j] ,M[2∗ i−1, j] , . . .
M[i , 2∗ j −1] ,M[2∗ i−1,2∗ j −1]) ;

f o r (i =1 ; i<n ; i ++)
f o r (j =1 ; j<m; j ++)
S= f (M[i−1,3∗ j −6] ,M[2∗ i−2, j − 1] , . . .
M[3∗ i−6,2∗ j −2]]) ;

(g) (h) (i)

Fig. 9. (a),(b) and (g) Code for the Base case. (c), (d), (h) Code for the Single Intersect, Non-Zero case. (e), (f) (i) Code for the Multiple Intersect

exploration order. The second corresponds to an accumulation
operation where we count the number of tiles that have
happened in lower dimensions by diving the coordinate by the
size of the tile in that dimension. The constant ki is calculated
off-line and contains the number of elements in each bank
there are in each tile per row, plane, cube, etc. While in native
stencil code the accumulation operation can be implemented
via counters given the regular exploration of the data space,
in this case, since the center coordinates of the stencil we
area accessioning depends on the prime factorization of an
address which to the best of our knowledge, will not produce
a predictable pattern for any arbitrary sequence of addresses
and thus we need to perform the necessary multiplication and
divisions in real time.

IV. EXPERIMENTAL SETUP AND RESULTS

To test the validity of our approach we implement our
method on a workstation with 16GB of RAM, an Intel i7-
4770 processor, running the latest build of Windows 10.

We use the code from figure 9 as our test cases. We
try matrix sizes of 20,40,and 80 elements for the 1D cases
as a proof of concept and 1080x1080 for the 2D cases to
demonstrate the real effectiveness of our method.

Our methodology is as follows: we first input the matrices
that represent the affine, non-stencil memory accesses and loop
bounds to Matlab 2017a and we calculate the intersection
points of all the lines. Note that this is an intermediate
representation of the code that can also be automatically
extracted from a piece of code by more sophisticated software
such as LLVM.

Once this is done, we use the classification of the in-
tersection point to determine which of the three categories
each memory access pattern falls into: Base, where all lines
intersect at the origin. Single Intersect, Non-Zero (SI,NZ),
Where all lines intersect at one point with address different
from zero(0). And finally Multiple Intersect (MI), where the
lines have multiple intersection points but can be made to
converge by adding an integer delay to one or more of the
memory accesses.

We obtain the PFS and the stencil shape for the current
problem size. We use the method from [3] to obtain the
partition factor as well as the banking scheme. Once we
have the size of the Super Tile, we can apply our pruning
procedure to reduce the memory overhead. From the pruned
PFS we can obtain our LUT with the address for the translation
table. We use all these parameters to generate C code that

TABLE I
PARTITION FACTOR, MEMORY OVERHEAD, CLOCK PERIOD, AND

RESOURCE UTILIZATION FOR ALL THE TEST CASES FOR DIFFERENT
PROBLEM SIZES.

Cat. Test Case Bank # Prob. Size Overhead(%) CP(nS) LUT FF’s DSP Power(mW)

Base

(a)
3 20 65 3.25 1836 2277 3 411
3 40 72.5 3.3 1856 2276 3 409
3 80 76.5 3.3 1879 2319 3 443

(b)
4 20 500 3.25 1857 2308 3 404
3 40 485 3.25 1949 2332 3 436
3 80 635 3.25 2107 2463 3 453

SI,NZ

(c)
3 20 55 3.3 1789 2240 3 405
3 40 112.5 3.35 1936 2278 3 390
3 80 73.75 3.35 1868 2319 3 425

(d)
3 20 55 3.35 1791 2241 3 392
3 40 112.5 3.35 1842 2278 3 390
3 80 73.75 3.3 1883 2319 3 4.39

MI

(e)
3 20 150 3.3 1870 2454 3 374
4 40 265 3.3 1880 2382 7 373
3 80 210 3.3 2088 2552 3 447

(f)
3 20 60 3.2 1861 2421 3 389
3 40 62.5 3.3 1902 2418 3 364
3 80 75 3.3 1960 2506 3 409

Base (g) 4 1080 33.3 3.51 5036 5444 34 557
SI,NZ (h) 4 1080 33.3 4.48 5207 6043 34 621

MI (i) 6 100 392 4.82 5981 7179 45 636

will execute our algorithm that will be used by Vivado HLS
2015.4 to generate Verilog code which will be then synthesized
and implemented by Vivado HLx 2015.4 on a Kintex 7
xc7k160tffg-1 FPGA. We can see the results obtained in terms
of memory overhead with respect to original data space size,
as well as partition factor, clock period and resource utilization
in table I.

We can see that, on average, we have a memory overhead of
162% for all benchmark circuits. For large problems running
on systems with limited memory, this might make our method
impractical (in some cases we have over 500% memory
overhead, although in some cases the overhead can be as little
as 33%). On the other hand, the partition factor achieved by
our approach remains proportional to the number of memory
accesses and not a function of the problem size. Note that
different problems sizes can have different PFS, which in
turn change the geometry of the resulting stencils and also
influence the partition factor that can be achieved. Also note
that, in many cases, the partition factor matches the number
of memory accesses, which guarantees the optimality of our
results if data reuse is not considered.

For comparison, we run the algorithm GMP described in
[1] to obtain the partition factor that state-of-the-art methods
would yield (see Table II). For all non-stencil codes we consi-
der, we see the method GMP needs the number of independent
memory banks proportional to the problem size, while our
method requires a partition factor proportional to the number
of memory access. However, the GMP method incurs no
memory waste, while, depending on the nature of the memory

241

Authorized licensed use limited to: University of Central Florida. Downloaded on September 23,2020 at 03:42:35 UTC from IEEE Xplore. Restrictions apply.

The Trial Version

TABLE II
PARTITION FACTOR FOR OUR METHOD VS GMP FOR ALL CONSIDERED

PROBLEM SIZES. TEST CASES (A)-(F) 20X1,40X1,80X1. (G)-(H)
1080X1080. (I) 100X100.

Method (a) (b) (c) (d) (e) (f) (g) (h) (i)
Ours 3/3/3 4/3/3 3/3/3 3/3/3 3/4/3 3/3/3 4 4 6

GMP
20/40/ 20/40/ 20/40/ 20/40/ 20/40/ 20/40/ 1080 1080 100

80 80 80 80 80 80

access, our method can have a high percentage of memory
overhead. For the 2D code under our consideration, we observe
that the MI case has almost 400% memory overhead. This
clears shows the price we need to pay in order to keep the
partition factor and banking interconnect simple enough to
implement for a Quasi-Stencil code. Because of the large
number of banks, we were unable to implement the algorithm
from [1] for the 2D test kernels, which corresponds to more
realistic applications.

Due to the lack of implementable methodologies to ensure
parallel and conflict-free memory access for non-stencil code,
we inputted the kernels as naive C code into Vivado HLS
2015.4 to obtain a point of reference for our results. We
observed 2 behaviors: If no pragmas are given to the software,
then the HLS tool resorts to data duplication. This yields a
higher usage of BRAM (as many times as accesses the pattern
has) but allows to keep a clock period that is close to the
minimum that can be implemented on the FPGA (for our
case, this was close to 2.8ns) and an unitary Initiation Interval
(II). Data duplication also allows for extremely low resource
utilization, because it only needs LUTs to perform simple
arithmetic operations to calculate the indices of the memory
accesses during every iteration. However, data duplication also
means a sub-optimal utilization of on-chip resource since it
cannot bring enough data during every iteration from off-chip
in order to reserve space for the duplicates. As a consequence,
off-chip accesses become quite costly in terms of memory
access latency. The second behavior was observed when we
explicitly instructed the HLS tool to avoid data duplication,
as is the case when the matrix was forced to be stored
on a ROM implemented using a fixed structure of BRAM
through using pragmas. In this case, the software simply
performed sequential memory access to the matrix, one per
access, and did not try any other optimization. Therefore,
as in the previous case, its hardware utilization and clock
period are kept relatively low, but its initiation interval II has
been increased to the number of accesses during each kernel
iteration.

In contrast, our methodology, with a small increase of its
clock period due to its increased complexity in logic, can
reduce the total number of clock cycles it takes to complete all
the memory accesses to just one, yielding a very signification
speed up, especially for memory patterns with higher access
count. We believe that, if the above two behaviors are left
unconstrained, the existing HLS tool, although taking the
computationally least expensive route, will only achieve a sub-
optimal utilization of on-chip memory resource and off-chip

bandwidth, which is usually the bottleneck of the system. If
better performance is desired, the programmer needs to care-
fully guide the software with pragmas or manually modifying
the code to implement more complex algorithms based on
memory partition.

V. RELATED WORK

Extensive research has been performed to achieve optimal
memory banking and data reuse for regular stencil-based
kernel code. The classical method in [1] uses a single family
of hyperplanes to partition the data. Its main limitation is that
it only considers memory blocks in one dimension and the
linear nature of the hyperplane families limits the possible
solution space which sometimes leads to a suboptimal partition
factor. On the other hand, the method from [4] tessellates the
memory space and finds the smallest rectangle that contains
a repeating pattern to do the banking. This methods offers
the advantage that uses as many families of hyperplanes as
the dimensionality of the space that allows it to find better
solutions. The main limitation is that an upper bound to the
partition factor is not given. The advantage of using more
than one family of hyperplanes is also proven in [5] and
later also in [2] where the authors assume the number of
desired banks to be known and use that to find the basis
of a lattice of the same rank as the original problem. They
are also able to achieve arbitrarily small memory waste at
the cost of increasingly complex memory address calculations.
The main limitation of this method is that it is not guaranteed
to find the optimal solution and would require an undetermined
number of runs to find it, by doing exhaustive exploration of
the solution space. Graph based approaches such as the one
presented in [6] would still not be able to handle this kind
of non-stencil kernels. In that work, the authors analyze the
trace of the memory access pattern and tries to find a binary
mask that maps the addresses to a smaller subset. The main
idea is that this mapped addresses are considered nodes in
a conflict graph and all masked addresses that are accessed
together in any iteration are joined by and edge. This graph is
colored and exploring all possible masks, with a fixed number
of set bits, one is able to find for stencil kernels the one that
maps to a graph with the smalls chromatic number ensuring
zero conflicts. Although this method is general enough to
be used in non-stencil kernels, even those memory access
patterns that can not be written as affine accesses, the solution
space explored leaves out certain solutions that at a minimum
increase of hardware usage, provide a much better conflict
rate, increasing throughput. If the memory access are spread
all over the memory space, one would require a mask that
includes the information for most of the bits, and the resulting
graph would prove increasingly difficult to color given the
NP-complete nature of he problem. More recently in [3],
unlike previous approaches, the authors propose a graph-based
approach to find the optimal partition factor natively. Here
they authors construct a special data structure called ESG, a
spacial graph that, when colored optimally, gives the optimal
partition factor for that given stencil. Coloring this ESG gives

242

Authorized licensed use limited to: University of Central Florida. Downloaded on September 23,2020 at 03:42:35 UTC from IEEE Xplore. Restrictions apply.

The Trial Version

the advantage of the result being optimal without having to
color the entire memory conflict graph of the problems which
given the NP complete nature of the problems is unfeasible
even for small problems. The main limitation of this method is,
for bigger stencils, performing optimal graph coloring can be
computationally expensive. Because to generate the ESG we
require to convolve the stencil with itself, the fact of not having
an stencil to work with discards this method to be implements
for any kind of non-stencil code directly. Memory partitioning
for non-stencil code however presents a very limited body of
study, specially for FPGA and the HLS community. One work
that tries to tackle this problem is [7], where the author propose
a best-effort approach that tries to average out the conflict
graph to a manageable size by overlapping regions of it and
colors this graph to obtain a mapping scheme. Although this
method is general enough to be used for any kind of kernel
code, the obvious limitation of this method is that it does
not offer conflict-free memory access for all cases and cannot
provide the optimal partition factor for a given non-stencil
code.

An approach that tries to take advantage of the expressive-
ness of the polyhedral framework is explored in [8]. They use a
scratchpad memory system and evaluate different arbitrary tile
sizes by solving an optimization problem aiming to minimize
bandwidth while adhering to a maximum buffer size while
exploiting data reuse between iterations when possible. The
main limitations of this method are that it relies on costly
scratchpad memory systems as on-chip storage that have
a high resource utilization due to its complexity. Although
the authors claim the number of possible tile sizes to try
is tractable, claiming in general it remains under 100, this
cannot be ensured for all cases. Their model also suffers from
the general limitation that the possibilities are enumerated
based on a model which if not defined properly might miss
a better solution. They also mention this technique cannot
guarantee correctness of behavior for the case of imperfectly
nested loops. Similarly to the previous work, in [9] the
authors face the problem of exploring the huge design space
that is associated with reducing the amount of off-chip data
transfers. This time, instead of intra-tile reuse optimization, the
authors also explore a design that maximizes inter-tile reuse,
which makes the solution space even larger. They achieve the
reduction in communications mainly by exploring iteration
reordering. Once a target volume of memory operations are
achieved, extra optimizations seek to reduce the size of the
buffers by means of additional transformations. The way this
is done is by modeling the problem with two independent cost
functions, one that tries to minimize inter-tile communication
cost and another one that minimizes intra-tile communication
costs by using reuse buffers. The massive difference between
the bandwidth available for off-chip communication and on-
chip resources is noted in the work in [10]. In this work
the authors take advantage of he cyclo-static representation
that can be used to model certain kind of code, namely
perfectly nested, stencil code, to solve the problem of how
to automatically determine the tile size and optimal buffer

size. Although they achieve significant higher throughput over
Symphony-C and Vivado HLS solutions even for a lower clock
speed, they rely on data duplication to maintain throughput
which is not the most efficient use of on-chip resources which
is supported by their much higher resource utilization. In a
similar manner, the work in [11] seeks to find optimal tile
sizes that partition the data/iteration domain into chunks that
can fit into size-constrained faster on-chip memory. While
most work trying to solve this problem uses a partial solution
enumeration approach, here the authors an analytical approach
based in polyhedral parametric model to find the the size for
optimized data reuse. Their parametric approach formulates
a non-linear optimization problem that takes into account on-
chip memory constraints and finds the tile size for minimizing
communication overhead. To test the validity of their approach
and optimization model, they apply their method to three very
popular computing kernels: matrix multiplication, a full search
motion estimation, and Convolution Neural Network. They
compare their results with results for other methods that use
random enumeration of tile sizes, a method where the tile sizes
are selected through at random and then performance results
are computed. On average, it takes this approach half the time
to find a solution that meets the requirements in comparison
to the random approach while also achieving a much better
communication cost for a given tile size.

VI. CONCLUSIONS AND FUTURE WORK

Given any unstructured computing kernel with irregular
memory accesses, if it satisfies the requirement of being a
quasi-stencil, our methodology can effectively transform its
original memory space into a new one through a nonlinear
transformation based on prime factorization, where the original
non-stencil kernel with irregular memory accesses will behave
like a conventional stencil with regular memory accesses,
therefore allowing for the use of the existing methods of
memory partitioning and data reuse. For several real-world
non-stencils, our results have shown that all of then only
require a small number of memory banks independent of
their problem size. This is a significant improvement over
state-of-the-art methods for non-stencil kernel computations
because the reduction in partition size directly leads to a
reduction of the interconnect complexity which in turn leads to
better resource utilization, power consumption and increased
performance. Our future work will focus on expanding the
definition of quasi-stencil code to more real-world applica-
tions and exploring other effective nonlinear transformations.
Ultimately, we aim at achieving optimal partition factors for an
increasingly larger number of non-stencil kernel computations.

REFERENCES

[1] Y. Wang, P. Li, and J. Cong, “Theory and algorithm for generalized
memory partitioning in high-level synthesis,” in Proceedings of the
2014 ACM/SIGDA International Symposium on Field-programmable
Gate Arrays, FPGA ’14, pp. 199–208, 2014.

[2] A. Cilardo and L. Gallo, “Improving multibank memory access paralle-
lism with lattice-based partitioning,” ACM Trans. Archit. Code Optim.,
vol. 11, pp. 45:1–45:25, 2015.

243

Authorized licensed use limited to: University of Central Florida. Downloaded on September 23,2020 at 03:42:35 UTC from IEEE Xplore. Restrictions apply.

The Trial Version

[3] J. Escobedo and M. Lin, “Graph-theoretically optimal memory banking
for stencil-based computing kernels,” in Proceedings of the 2018 ACM/-
SIGDA International Symposium on Field-Programmable Gate Arrays,
FPGA ’18, (New York, NY, USA), pp. 199–208, ACM, 2018.

[4] E. Juan and M. Lin, “Tessellating memory space for parallel access,” in
ASP-DAC, 2017.

[5] A. Darte, I. C. S. Member, R. Schreiber, and G. Villard, “Lattice-based
memory allocation,” IEEE Transactions on Computers, vol. 10, 2005.

[6] Y. Zhou, K. M. Al-Hawaj, and Z. Zhang, “A new approach to automatic
memory banking using trace-based address mining,” in Proceedings of
the 2017 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, FPGA ’17, (New York, NY, USA), pp. 179–188, ACM,
2017.

[7] J. Escobedo and M. Lin, “Extracting data parallelism in non-stencil
kernel computing by optimally coloring folded memory conflict graph,”
in Proceedings of the 55th Annual Design Automation Conference, DAC
’18, (New York, NY, USA), pp. 156:1–156:6, ACM, 2018.

[8] L.-N. Pouchet, P. Zhang, P. Sadayappan, and J. Cong, “Polyhedral-based
data reuse optimization for configurable computing,” in Proceedings of
the ACM/SIGDA International Symposium on Field Programmable Gate
Arrays, FPGA ’13, (New York, NY, USA), pp. 29–38, ACM, 2013.

[9] M. Peemen, B. Mesman, and H. Corporaal, “Inter-tile reuse optimization
applied to bandwidth constrained embedded accelerators,” in 2015
Design, Automation Test in Europe Conference Exhibition (DATE),
pp. 169–174, March 2015.

[10] M. Milford and J. McAllister, “Constructive synthesis of memory-
intensive accelerators for fpga from nested loop kernels,” IEEE Tran-
sactions on Signal Processing, vol. 64, pp. 4152–4165, Aug 2016.

[11] J. Liu, J. Wickerson, and G. A. Constantinides, “Tile size selection for
optimized memory reuse in high-level synthesis,” in 2017 27th Internati-
onal Conference on Field Programmable Logic and Applications (FPL),
pp. 1–8, Sept 2017.

244

Authorized licensed use limited to: University of Central Florida. Downloaded on September 23,2020 at 03:42:35 UTC from IEEE Xplore. Restrictions apply.

The Trial Version

