
Constructive Policy: Reinforcement Learning Approach for Connected
Multi-Agent Systems

Sayyed Jaffar Ali Raza1 and Mingjie Lin2

jaffar@knights.ucf.edu, mingjie@eecs.ucf.edu

Abstract— Policy based reinforcement learning methods are
widely used for multi-agent systems to learn optimal actions
given any state; with partial or even no model representation.
However multi-agent systems with complex structures (curse
of dimensionality) or with high constraints (like bio-inspired
snake or serpentine robots) show limited performance in such
environments due to sparse-reward nature of environment
and no fully observable model representation. In this paper
we present a constructive learning and planning scheme that
reduces the complexity of high-diemensional agent model by
decomposing it into identical, connected and scaled down multi-
agent structure and then apply learning framework in layers
of local and global ranking. Our layered hierarchy method also
decomposes the final goal into multiple sub-tasks and a global
task (final goal) that is bias-induced function of local sub-tasks.
Local layer deals with learning ’reusable’ local policy for a local
agent to achieve a sub-task optimally; that local policy can also
be reused by other identical local agents. Furthermore, global
layer learns a policy to apply right combination of local policies
that are parameterized over entire connected structure of local
agents to achieve the global task by collaborative construction
of local agents. After learning local policies and while learning
global policy, the framework generates sub-tasks for each
local agent, and accepts local agents’ intrinsic rewards as
positive bias towards maximum global reward based of optimal
sub-tasks assignments. The advantage of proposed approach
includes better exploration due to decomposition of dimensions,
and reusability of learning paradigm over extended dimension
spaces. We apply the constructive policy method to serpentine
robot with hyper-redundant degrees of freedom (DOF), for
achieving optimal control and we also outline connection to
hierarchical apprenticeship learning methods which can be seen
as layered learning framework for complex control tasks.

I. INTRODUCTION

Reinforcement learning (RL) has remarkably enabled
multi-agent systems to achieve policies that can deliver state-
of-the art control in complex learning environments like
playing Atari games or solving Go game with infinitely
broad state-action horizon [1]. RL approaches are being
widely used for training agents to learn control over complex
gait maneuvers (like crawling, walking or running) solely
based on their own learning experiences and corresponding
rewards associated with that experience. Well established RL
frameworks allow agents to learn through trial and error
and stay motivated by improving performance over selecting
better actions iteratively at next time step to yield high
reward. Most of the RL methods assume that agents are at
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Fig. 1: 12-DOF serpentine robot that mimics octopus-like
manipulation. Trained using Constructive Policy method as
6-DOFx2 agents. (a, b, c): ROS Gazebo simulation environ-
ment. (d,e): real-world hand-crafted serpentine robot

freedom to choose any actions that satisfies the condition
of achieving maximum expected reward in return – hence
reward being the major performance factor overall in action
selection [2]. Reward engineering is considered to be one
of the significant challenges for learning an action-selection
policy for real-world problem scenario because, in real-world
behavior; rewards are often delayed and are also decayed
with time [3], [4]. In multi-agent setting, policy search
algorithms need to be modeled with generic behavioral
rewards such that a policy must not go adverse to any
agent and should also suffice for overall shared goals of all
agents – not just a single agent. One of the fundamental
challenges for multi-agent robots is learn an equivalently
beneficial policy for all agents spawned in complex dynamic
environments with sparse or delayed feedback behavior [3].
Learning in such setting requires completely observable
representation of model for efficient exploration, or a well
defined heuristic for action-selection to narrow down action
space; however modeling fully observable environment is
mostly unattainable or requires exceedingly complicated
computations. Policy search algorithms have been in use for
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a long time to address action-selection problem by learning a
function π(s) (or a rule) that can return a decision to choose
an action given available information of the current state s
given s ∈ S, even with partial or no model representations.
The problem with the concept of a policy is that it refers
to any method for determining an action given a state, and
as a result it covers a wide range of algorithmic strategies,
each suited to different problems with different computa-
tional requirements [5]. Current policy search algorithms also
provide notable performance for learning an optimal policy
for continuous domains. Such methods commonly perform
non-linear function approximation coupled with off-the-shelf
policy gradient algorithms to learn state-action transitions
over high-dimensional continuous spaces [6]–[10].

Although these methods significantly improve conver-
gence and give notable control capabilities in high-
dimensional continuous spaces; most of these methods can
only perform under full model observability and determin-
istic beliefs of optimality irrespective of notorious behavior
of sparse rewards and also exploration is mostly engineered
heuristically (ex: by injecting noise) [11]–[13] or is set
by initializing a stochastic policy with high entropy [13].
Agents that possess intricate geometrical structure (like bio-
inspired robots or soft robots) cannot be explicitly modeled
due to their redundant kinematic properties and due to larger
pool of possible sub-optimal solutions that make it difficult to
converge towards most optimal solution [14] [15]. Secondly,
agents with complex structures tend to have exceedingly
convoluted action spaces due to redundant joints causing
curse of dimensionality issues; any sub-optimal action se-
lection at low level will embrace overall deteriorated action
selection. Agents with complex reward behavior due to
physical constraints can only receive sparse rewards be-
cause reward distribution for such agents (ex. bio-inspired
manipulator) is based on expectation of reward as function
of entire action-selection transitions – and action space is
continuous and vectorized sequence of connected acts if an
agent has connected structure (ex:bio-inspired robots) [16],
[17]. Since most traditional algorithms with "vanilla" policy
gradient methods are conceived entirely in context of Markov
Decision Processes (MDP), these methods significantly enjoy
high throughput over control but at a cost of exhaustive
complexity in terms of extended exploration requirement and
longer learning periods [18]. Also such methods easily over-
look abstract simplicites available at temporal scales [19].

We present an approach that learns a policy in high-
dimensional continuous horizon by scaling down the di-
mensions into identical sub-dimensions while keeping the
continuous horizon intact, and by ranking the learning prob-
lem into local and global learning layers such that global
learning layer is eventually engineered quickly with positive
learning bias of its local layers’ knowledge. The approach
is reminiscent to human nature of doing sequential but
lengthy tasks in daily routine. For the sake of simplicity;
take an example of opening a drawer– a person first needs
to maneuver the arm forward (like a servo maneuver) towards
the drawer handle, grasp it (consider grasping as already

learned skill), and move the arm backwards against the
drawer. The backward maneuver (servo maneuver) actually
shares a similar problem model as forward movement; but
the immediate reward for backward joint movement might
get negative if drawn by forward maneuver policy. However
the global or overall reward should still be optimal since
the main goal was to open a drawer. Our constructive
policy approach ranks such identical tasks as local tasks –
generating a pool of local policies. Next step involves to
learn deploying optimal combination of policies by sampling
them with optimal policy parameters. While learning global
policy we modify the single agent into scaled down hierarchy
shadowing apprenticeship learning methodology that allows
the system to accept advice or bias from multiple local ap-
prentices operating at lower layers [10]. The contribution of
our study is build upon decomposition of high-dimensional
spaces into connected multi-agent space scenario that offer
practical benefits for real-world robot models as well. We
demonstrate our method to control remarkably complex
robotic arm design with 12 DOFs – once trained, the arm
follows continuous trajectories in continuous domain.

II. RELATED WORK

Policy learning for agents operating in continuous horizons
and sparse reward environments has been studied as temporal
abstraction problem that inherently constitutes a Semi-MDP
(SMDP) learning model such that an agent has a policy with
parameters θ ∃ πθ:S × A → [0, 1], and follows a stochastic
termination condition β:S+ → [0, 1]. The agent takes an
action at ∈ A and continues to evaluate towards at+1

with Markovian property until it terminates stochastically
with probability distribution of β. When the evaluation is
terminated the agent can stochastically choose to timeout
and restart with newer policy parameter πθ∗ or continue
determining actions with same parameters [18]. At higher-
level, an agent can choose actions that draw varying amount
of time to finish (randomly distributed time) and any sojourn
time in given state is actually a continuous random variable
with distribution depending on states [18], [20], [21].

With SMDPs, the expected recurrent time-average out-
comes can be embedded under a stationary policy with
recurrent states and can be generalized for primitive actions
– furthermore those primitive actions are extended over
temporal course of actions. This learning method is used for
tasks that can be designed with shared meta-controls [22]
and integrated temporal abstractions (options framework,
Sutton [18]). For high dimensional or infinite spaces, approx-
imation can be maximum entropy value approximation over
established distribution models (ex: Boltzmann distribution
or Thompson sampling) and choose actions with respect to
randomly drawn belief that instantaneously is self-corrected
over time steps following Bayesian control rule for calcu-
lating expected rewards. The rewards can be weighted for
a cost utility function that quantifies overall desirability of
corresponding belief [7], [23], [24]. Hierarchical or layered
reinforcement learning is broadly studied topic in field of
artificial intelligence. It is widely used for learning and opti-
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Fig. 2: Reusing local policy with learned global parameters.
Colors show sub-agent intercepts operating under same local
policy with different parameters

mizing policies for environments that cannot be modeled into
discrete representations and are also infinitely huge in terms
of model dimensions. The crucial part in modeling policy is
adapting actions based on dynamic primitives. Policy based
methods such as splines gradients or often called vanilla
policy gradients algorithms are popular in discrete space
behavioral policy modeling due to their trajectory centric
representation of actions. These methods are widely seen
to solve complex tasks like bi-pedal robot walking [25] or
learning primitive motor angles to control joints [26]; also
these vanilla policy gradient methods are relatively easy to
implement and adapt in real-world as well. However such
policies are limited to small-scale horizons that are often
discretized with extended granularity resolution [9], [27].

Besides this, other notable approximation techniques
[28]–[31] also involve Bayesian optimization of cost func-
tions by formulating a conventional transform function type
approach towards specific gradient trajectories with their co-
variance already estimated. Such approaches convert sparsity
of rewards into probability map given that rewards are of
finite and discounted nature. Next step is to take account
of calculated covariance and apply traversal algorithm and
update policy in that direction. The algorithm takes cur-
rent and predicted probabilities and calculates the Bayesian
optimality recursively. When it comes to integrating more
"moving variables" for decision making and taking actions
in continuous horizon, recent works intent to use deeper and
larger systems that can simultaneously perform end-to-end
control for wide range of task in parallel [29], [32], [33].

Such methods normally are build over networked systems
like convolutional neural networks (CNN) with extended
array of parameters that are trained using a guided policy
search method [34] that represent the policy learning as
supervised approach guided by the trajectory [32], [35].
Such methods are also seen to solve real-world problems
like putting a cap on bottle [32] or stacking Lego blocks
[36] Talking about hierarchies, researchers also consider RL
problems as modular task and claim that every problem is
actually composed of concurrent sub-problems with a matter
of abstraction levels [37]. Modular RL or MRL treats agents
with set of sub-goals that can possibly conflict with other
agent’s goal as well. In such setting every sub-agent reports
unique numerical preference to a meta-controller and then
meta-controller assigns an action as whole to agent systems.
One of the foundation study for multi-stage learning was
presented as options framework by Rich. S. Sutton [18]
which can be seen as a two stage system that learns abstract

actions by selecting options over temporal sequences. An
upgrade to options is presented as policy sketches [38] that
annotate global goals as sequential sub-global task providing
guidance at high level [39], [40]. Policy sketch method
represent every sub-goal with a dedicated learned sub-policy
that jointly maximizes a shared policy parameter among all
policies; maximizing expected reward for global policy tied
to shared parameter as well. Policy optimization for these
sketches is done by actor-critic gradient computation [41].

III. CONSTRUCTIVE POLICY ARCHITECTURE

We constitute the learning problem into layers by repre-
senting the a single complex agent into smaller and identical
multi-agent models. We train a sub-agent independently
within its own horizon, and then combine all sub-agents to-
gether by constructing a global policy based on composition
of local policies. Each sub-agent is decomposed heuristically
in such a way that it reminiscent a scaled-down physical
structure of subsequent local agents connected in the global
system—this representation is shown in fig 2. For our test
case we implement our idea on a serpentine robot with
12-DOF joints to mimic octopus like maneuverability with
control over redundant joints. Our goal is to control servo
maneuvers in dynamic environment, which is a complex
objective to be learned as a unified problem due to hyper-
redundant servo joints. The redundancy is necessary to
achieve bio-inspired gait but it comes with a problem of
curse-of-dimensionality which exponentially increases the
action space for an agent. We find serpentine design inter-
esting because it can be seen as a chain of ideally connected
small joint motors like a bio-inspired snake or octopus and
the complexity can be understood by assuming taking a
single joint action changes the decisions of future action
selection entirely for every motor joint in the robot. Since
each local agent represents a physical link in the robotic
arm, they cannot move independently from each other. In
other words, they are subjected to geometric constraints. This
representation differentiates greatly from virtual agent-based
multi-agent systems, such as two-player chess.

We divide the learning architecture into local and global
levels. The local level considers an intercepted version of
serpentine model (6-DOF joints in our case as shown with
different colors in fig 2). At local level, the sub-agent learns
a local policy πlocal for independent maneuver. The policy
πlocal can be considered as a generic local control policy
that can be used for any local agent in the system since
each agent share similar physical structure. However local
agents are constrained with movement of other sub-agents
so the local policy cannot be reused with all sub-agents.
Instead of using the local policy barely with agents we can
parameterize it over independent policy parameters for each
local agent. This parameterization is done on global level
such that global policy π∗ learns a parameter vector

−→
θ

sampled over distribution of local policy which was learned
by a single sub-agent and now being used by all local agents
but with different global parameters.
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Fig. 3: Episodic information flow between local agents and a global moderator controller. Local agents are assigned subgoals
and take actions within external environment based on policy parameters assigned to them. At the end of episode, the global
moderator receives intrinsic rewards from local agents and scalar global reward from environment

The action space for global policy is the sub-goals com-
bination for connected local agents. Global action space can
be defined as a vector G =⇒ (ĝ1 . . . ĝn) ∈ G.

π∗(G,S) −→ πlocal

⎡
⎢⎢⎢⎣
(ĝ1|s1)
(ĝ2|s2)

...
(ĝn|sn)

⎤
⎥⎥⎥⎦πp

[
(X|S)]

The global policy chooses sub-goals from G and then pa-
rameterize those sub-goals with X =⇒ (θ1 . . . θn ∈ (0, 1).
X is the parameter vector for global action. Action space is
then given as

A =
⋃
ĝ∈G

{(ĝ, θ)|θ ∈ X}

A complete global action (ĝ ∈ G, θ ∈ X ) is build with sam-
pling a parameter θ from πp(X|S) and using parameters over
sub-goal vector πp(X|S). The global policy constructs the
sub-goal trajectory that lead the final end-effector to terminal
state or the global goal. Globally, parameter learning and
action-selection (sub-goals) is learnt by alternate updating
between parameter policy and action-value function iteration.
We can formulate the global learning as an MDP 〈S,G,R, γ〉
where reward R is a function of intrinsic signals from sub-
agents that correspond to success at intercept level – however
that does not assures success achieved globally in general.
The intrinsic reward inherently motivates the global gradient
to yield better sub-goals by signaling binary value that is
expressed within global reward function. In order to maintain
global success, the reward function contains a predictate
coefficient that is multiplied with the overall intrinsic reward.

R �
[∑

i

r
i

]
· 1

1 =

{
1, if St = Sgoal

0, otherwise

The predictate helps exploration to logically transition to-
wards the sub-goal selection that is not just optimal intrin-
sically but returns optimality towards global goal as well.
This approach shadows the surrogate technique of proximal
policy optimization or PPO [42]. But PPO is constrained

with continuous model interaction during training which is
expensive for dexterous models like snake robots. Our con-
structive method assumes that the local policy is well-trained
over intercepted sub-agent and only requires a parametric
approximation to be used over subsequent connected sub-
agents. The global layer works as a moderator 3 to monitor
the sug-goals and adapt the gradients for optimal parameters
over their probability distributions.

∵ P (ai) = ai log(θi) + (1− ai) log(1− θi)
For simplicity, assume all agents choose parameter θithen
for single agenti update:

∂
∂ θii

V i
θi

= R
(S, �A)

· ∂
∂ θi

[
P (â1, â2, . . . , âN

]

∂
∂ θii

V i
θi

= R
(S, �A)

· ∂
∂ θi

[
�̂a
θi

− (1−â)
(1−θi)

]
Partial derivatives with respect to the parameter θ for value
functions in and logarithmic transition probability gives
simplified expression for value function that can be iterated
recursively in place of classic bellman function reducing
effort by utilizing localized probability distributions over
shared θ parameters

IV. EXPERIMENTS

We carry out and validate our experiments over a hyper-
redundant serpentine robot arm with 12-DOF maneuvering
capabilities. The arm resembles maneuvering properties of
an octopus’ tentacles. We performed experiments against
Deterministic Proximal Policy Optimization (DPPO) method
and Asynchronous Advantage Actor-Critic (A3C) method.
Both methods have their own benefits in different domains;
A3C provides an edge to process the algorithm over very
low computing power and uses parallel threads over CPU
instead of memory-hungry gradient update methods. How-
ever A3C does not provides leverage of experience replay
buffers which relinquishes it’s performance in sparse rewards
behaviors which can be seen in fig: 5. Also looking at
DPPO success rate, it is apparent that DPPO method has
a promising gradient which verifies [43] (Schulman et. al.)
observations over joint angle architectures. However DPPO
achieves improved performance, but it requires more epoch
cycles to reach to admissible outcomes. The proximal pol-
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6+6 DOF A3C DPPO CONSTRUCTIVE
Accuracy <± 3.0 units ± 2.2 units ± 1.7 units
Success Rate 0.2243 0.398 0.7451
Epochs >>6000 >6000 <5000

TABLE I: Comparison: accuracy, success rate and time taken

Fig. 4: Overall reward trend during training period of our
global policy.

icy optimization updates alternate between sampling data
through interaction with the environment, and optimizing
a "surrogate" objective function using stochastic gradient
ascent [42]. However for problems that involve dexterous
manipulation like serpentine control the environment inter-
action is exhaustive and less likely to happen and this can
be seen by the success rate of DPPO in Table I.

In contrast with DPPO and A3C, our proposed Construc-
tive policy method performs relatively better and requires
less time complexity to give better success rate. Quicker
convergence trend stabilizes the effect of global policy
learning for control of high-dimensional architecture in en-
vironments with rewards that are sparsely distributed. Our
testing environment was setup within ROS ecosystem using
Gazebo simulator for ROS to train and test robot models.
ROS environment has proven to be standardized method to
validate robot simulations [33]. We tested the performance
over both 2D and 3D continuous spaces with Gazebo world.
Furthermore we have also designed a physical robot arm for
executing telemetries of simulation world over real world.
Telemetry tests have been done, however our future work
involves realtime testing of Constructive RL algorithm.

Fig. 5: Comparison plot for success rate (finish at terminal
state) over 5000 epochs. A3C has many steep but slower
increments, and DPPO shows quick but deferred progress.
In long run, our proposed constructive policy method out-
performs both methods and gives a success rate >74%

Fig. 6: Moving reward for proposed method vs. off-the-shelf
DPPO. Though not worse but visibly DPPO has higher jitter
in reward.

V. CONCLUSION

Our study contributes a promising approach in area of
hierarchical deep reinforcement learning specially for com-
plex robotic arms that are inspired by neurophysiology of
living beings. Hyper-redundant robotic arms possess intricate
designs and require exhaustive heuristics to formulate control
functions. We believe that "constructive policy learning"
contributes towards formal simplification of control task for
bio-inspired robots by allowing structured composibility to
divide high-dimensional problem spaces into significantly
identical, smaller agents and treat unified control problem
in distributed manner. Constructive policy method can be
applied in environment where rewards are sparse or often
accumulated with larger delaying factor – in contrast meth-
ods like ε-Greedy search or vanilla policy methods arguably
deteriorate the expected reward outcome in sparse setting.
Our method operates in distributed setting allowing local
agent to share their states in entirety with global moderator
such that the resulting global policy is fused with shared
feedback of local agents’ rewards – offering offline estimate
or positive bias for Q-Value. We believe constructive Policy
RL approach can be most useful in problems that can be
decoupled into smaller sub-problems. Quick examples would
be teaching a robot arm to open drawer, or teaching an
octopus to slide-climb – dividing training process into "wrap
around an object", then "push itself against object to climb".
We have tested our idea in real-world simulation environment
(ROS Gazebo) with active physics conditions and kinematics
requirements. Our testing subject was a simulation robot arm
that has 12 joints operating in continuous state and action
space. Given any location within robot arm’s workspace – it
navigates to that Cartesian coordinate location. We observed
success rate greater than 74% in simulation. We believe that
this work along with recent advancements in connected robot
learning area can contribute significantly towards greater
developments. Also, our on-going work involves testing our
method over a real physical robot (fig: 1) that has identical
joints as simulation model.
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