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Abstract
reinforcement learning problem in continuous state space. Our
method relies on two-layered learning architecture. The first layer
partitions the agent’s problem space into n-folds sub-agents that
are inter-connected with each other with dexterity identical to
original problem. It further learns a local control policy for
standalone 1-fold sub-agent. The second layer learns a global
policy to reuse ‘already learnt’ standalone local policy over each
n sub-agents by sampling local policy with global parameters
for each sub-agent—parameterizing local policy independently
to approximate non-linear interconnections between sub-agents.
We demonstrate our method on simulation example of 12-DOF
modular robot that learns maneuver pattern of snake-like gait.
We also compare our proposed method against standard single-
policy learning methods to benchmark optimality.

reusable policy

I. INTRODUCTION

One of the fundamental objective of artificial intelligence is
to achieve optimal behavior for stochastic system in dynam-
ically changing environment. This involves planning to solve
complex tasks by observing state of the environment and tak-
ing actions based on that observations. Recently reinforcement
learning (RL) has shown significant contribution in achieving
continuous control for virtual agents in game worlds [1].
The de-facto RL methods allows an agent to interact with
the environment and learn by taking temporally extended
actions—actions that are returned from a closed-loop policy
over one time-step behavior [2]. Using the policy for choosing
better actions over time would help an agent to improve
its efficiency to solve a problem. However for agents with
exceedingly complex state and action space representations—
like snake maneuver robot; learning a singular closed-loop
policy for such agents cost significant computation power [3].

A number of approaches have been suggested to improve
learning in complex environments. One approach is to intro-
duce additional exploration knowledge by imitation to define
a positive bias for gradient direction [4] . The user defines
preferred sequence of actions with advice rules [5] to be
followed in different set of states. Another approach is to
accelerate learning new actions by extracting useful macro-
actions by correlating commonalities in solutions to previous
tasks [6]. The core technique of macro-actions is to rein-
force the tendency to perform action b after action a more
frequently if such a pattern had seen more reward in past—
thus the system formulates a macro-action â{b → a} ∈ A.
This gives an action-to-action mapping coupled with state-

πθ1

= {g} Sub-goal

= {G} Global Goal

= {s}Local space

(π , θ)

πglobal

→
local

local

πθ2local πθnlocal

πθ3local  1-fold Standalone :   πlocal
  Action : (d1 , d2)

G

Figur1.Global Policy—Reusing 1-fold standalone policy πlocal with
global parameter vector~θ for each inter-connected modular agent.

to-action mapping. The macro-actions prove to have increase
in performance for grid-world problems with a condition of
known model representation however for continuous horizons;
computing a value function based on values emitting from
both pairs (state-action and action-action) is not guaranteed
to converge due to large variance in learning time of these
pairs [6]. Hierarchical RL on an other hand specially addresses
continuous environment spaces by using different abstraction
levels to learn task-specific partial policies with computable
bounds [7]. The knowledge of partial policies can be used
for learning a new task by initializing Q-values for a new
episode with previously learned Q-values [8], [9] however the
transfer of knowledge requires expert mapping between states
and actions, and it is also restricted to learning optimality of
previous policies that were learnt partially for generic tasks.

In this paper we propose a modular reinforcement learning
method for agents that share analogous structure and can
be classified as inter-connected modular architecture. The
main learning idea has two layers of abstraction. The first
layer evaluates the agent’s modularity and decomposes the
problem space into symmetrical partitions with a condition
of keeping dexterous modularity identical over entire system.
The decomposition is said to be done in n-folds where n is
the number of sub-modules partitioned over entire system. The
first layer then independently learns control over only 1-fold
of overall structure as shown in figure 1, the bold boundary
box shows the 1-fold agent structure that is equipped with a
policy πlocal learnt at layer 1. We are considering the example
of a serpentine (snake-like) robot agent with theoretically
unknown number of DOFs and that its geometric structure
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has potentially bio-inspired gait maneuverability. The policy
πlocal is considered to be well-learnt for the given local space
of (1-fold) sub-agent. We consider local policy learning as
relatively preliminary for the first sub-agent in the system—
such that the very first sub-agent of the system can virtually
operate on πlocal without any need of external parameter
tuning. Looking at figure 1 again, we can see the intuitive
reuse formation of policy πlocal over entire agent architecture.
Due to restricted inter-connection between each sub-agent,
they are subject to geometric constraints and sharing a singular
policy would not suffice optimality for every sub-agent in the
system. For instance, the local policy πlocal is learnt with
a stationary base-joint grounded all the time for the very
first sub-agent, where as rest of the sub-agents experience
dynamically floating bases—the end effector of precedent is
base to the subsequent as shown in figure 1.

In order to utilize the similar policy for all sub-agents, it
needs to adapt parametric changes over entire agent structure.
πlocal can be bounded with a global parameter vector ~θ that
can be used to sample and parameterize local policy before
assigning any tasks to sub-agents. Once the first layer finishes
partitioning the complex agent into n-folds and trains a stan-
dard policy locally for single sub-agent; then the parameter
~θ learning is done at the second layer. ~θ is a vector that
comprises of unit parameters for each sub-agent such that
unit vector θ̂ ∈ ~θ. The second layer learns a global policy
π∗ → {πlocal, ~θ} to use learned parameters in ~θ and sample
the sub-goals for all sub-agents—following a global objective
terminal state. The action space A for global policy learning
tend to be a sequence of real valued coordinates that are taken
by πlocal as local goals to each sub-agent. The formation of
global actions and parameter learning is elaborated with more
detail in later sections. In a nut-shell, we propose a modular
policy reuse idea that improves learning time by partitioning
dexterous agent into symmetrical sub-modules in continuous
state and action space and learn a policy over standalone sub-
module as first part of idea. The next and final part of methods
learns a guided parameter vector to impose standalone policy
repeatedly over all connected sub-modules by building upon
independent parameter updates over identical local policy for
all sub-agents. We test our proposed method on a 6 + 6 DOF
serpentine robot in a simulation world and we demonstrate
optimal maneuverability control of the agent.

II. RELATED WORK

Effective exploration is one of the main challenges in MDPs.
The conventional ε-greedy algorithm can be effective, however
in large state spaces, they are less effective to explore the
full state-action space [10]. For exceedingly large state spaces
hierarchical RL has been widely practised, where multiple
objectives and temporal abstractions are adopted to facilitate
space explorations. For example, in [11] and [12], at each time
t and for each state st, a higher level controller chooses the
goal gt ∈ G where G is the set of all possible goals currently
available for the controller to choose from. These goals provide
intrinsic motivations for the agent so that it finishes the overall

complex task by choosing a sequence of goals in the right
order. Each goal remains active for some amount of time, until
a predefined terminal state is reached. These methods are also
used for end-to-end reinforcement learning where the agent
instead of learning the value functions completely, explores
the environment and builds upon policy over experience gained
from enivronment exploration [13], [14]

Hierarchical or layered reinforcement learning is broadly
studied topic in field of artificial intelligence. It is widely
used for learning and optimizing policies for environments
that cannot be modeled into discrete representations and are
also infinitely huge in terms of model dimensions. The crucial
part in modeling policy is adapting actions based on dynamic
primitives. Policy based methods such as splines gradients or
often called vanilla policy gradients algorithms are popular
in discrete space behavioral policy modeling due to their
trajectory centric representation of actions [15]. These methods
are widely seen to solve complex tasks like bi-pedal robot
walking [16] or learning primitive motor angles to control
joints [17]; also these vanilla policy gradient methods are
relatively easy to implement and adapt in real-world as well.
However such policies are limited to small-scale horizons
that are often discretized with extended granularity resolution
[10], [18]. Besides this, other notable approximation tech-
niques [19]–[22] also involve Bayesian optimization of cost
functions by formulating a conventional transform function
type approach towards specific gradient trajectories with their
covariance already estimated. Such approaches convert the
sparsity of rewards into probability map given that rewards
are of finite and discounted nature. Next step is to take
account of calculated covariance and apply traversal algorithm
and update policy in that direction. The algorithm takes
current and predicted probabilities and calculates the Bayesian
optimality recursively. When it comes to integrating more
”moving variables” for decision making and taking actions
in continuous horizon – recent works intent to use deeper
and larger systems that can simultaneously perform end-to-
end control for a wide range of task in parallel [13], [20].
Such methods normally are build over networked systems
like convolutional neural networks (CNN) with extended array
of parameters that are trained using a guided policy search
method [23] that represent the policy learning as supervised
approach guided by the trajectory [13], [24]. Such methods
are also seen to solve real-world problems like putting a cap
on bottle [13] or stacking Lego blocks [15] Talking about
hierarchies, researchers also consider RL problems as modular
task and claim that every problem is actually composed of
concurrent sub-problems with matter of abstraction levels [3].
This setup is very similar to classical RL, except that an
extra layer of abstraction is defined on the set of actions, so
that there are specific actions for each of the goals. Different
approaches to hierarchical RL result in variants on this overall
approach, choosing different trade-offs in flexibility, training
speed, and other properties [25]. Our approach in this paper is
similar to these hierarchical methods in the sense that multiple
levels of reinforcement learning is employed, but differ in that
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our main objective is to make our overall control learning to
be more scalable and more efficient. As such, our main focus
is to reuse locally learned policy over modular system and
achieve admissible optimality over entire system. We use the
underlying methods of deep Q-learning to learn local policy
and further deploy it with parametric assignments.

III. LEARNING MODEL

In our work We extend existing hierarchical frameworks
[7], [26] which are based on expert behavioral demonstration
at different abstraction levels for learning optimal trajectories
for control a robot agent. In this section we introduce formal
reinforcement learning methods for value iteration and policy
optimization for local learning of πlocal and through local
behavioral experiences we derive global formal method of
connected multi-agents. We consider an infinite-horizon en-
vironment with memoryless attributes such that a state tuple
is an MDP with (S,A, P,R) can use parameterized function
approximators [27] as a value function Vi to store the Q-value
of given (currently observing) state and generalize that for
unseen (expected) state value Vi+1. The parameters for such
function approximator can be tuned to achieve optimality –
updating values over continuous time.

Vi+1(Si) = Vi(Si) + α ∗ δi ≈ Vπ(S)

δi = ri + γ(Vi+1(Si+1)− Vi(Si))
(1)

The value function V states simply estimates the expected
maximized value given in certain state si under some policy π.
In other words it uses a recursive approximation to calculate
all possible values for given state si – not state (si, a) pairs
like in Q-Function.

V (s(t))π = E(r(t) + γr(t+ 1)+

γ2r(t+ 2) + ... + γir(t+ i))
(2)

From dimensionality point of view, it is out of scope to
calculate Q values for all possible combinatorial (si, a) tuples
because state and action pairs can go infinitely long. Short
hand for value function can be written as equation (3).

V (s(t))∗ = maxa′Q(s, a′) (3)

In order to optimize the value function estimation we need to
have tuning parameters to adjust the approximations accord-
ingly that can optimally generate highest Q value possible. Let
θV be the parameter we need to optimize our value function
approximator then using equation (1).

θVi+1
= θVi

+ α ∗ δi
∂Vi(Si)

∂θVi

(4)

Expanding Vi(Si) by partial derivative of (2) and that is
basically expected sum of cumulative rewards.Since in next
steps we want global reward as function of local values we
can calculate parameterized sum of differential local rewards
over existing parameter θ and generating a uniform slope from
the policy or sequence of local policies for adjusting gradient
of global policy. Our local policy is based on an MDP that
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. . . .
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Floating Base
+
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Figure2.Workflow of sub-agent interaction with global controller that
receives observation from external environment and emits sub-goals.

generates max value for (s, a). We can generalize reward at
each time step as equation (5) where γ is the discount factor
and eewrite (2) as sum of expected local reward as (6)

R = ri + ri+1 + ri+2 · · ·+ ri+n

⇒ R =

n=maxSteps∑
i=0

γiri
(5)

V (s(t))π = E

(
n=maxSteps∑

i=1

γir(i)

)
(6)

Assuming we have a well trained policy for local agents that
generates maximum expected value for action selection every
time. We can then further simplify equation (6) as following

V (s(t))π = max
(st,a,st+1)

r(s, a, st+1) (7)

Since we need to formulate a global policy that observes
local rewards in order to generate optimal sub-goals for each
agent and collectively yields to obtain global objective as
well. However when an agent Xi transitions to specified sub-
goal, then agent Xi+1 and all succeeding agents should adapt
to it’s positioning continuously and each agent Xm should
get its sub-goals adjusted after each step of preceding agent
Xm−1 until the last agent’s end effector positions precisely
on the goal or objective position. This adaptive relationship
can be investigated by observing each agents’ combinatorial
rewards in such fashion that each step should be taken with
most choosing optimal combination of local rewards—global
policy needs to generate combination of sub-goals that yield
maximum reward distributed non-linearly among each agent
and yield towards achieving the global objective.

∂V (S(t))π

∂step#︸ ︷︷ ︸
global

= E

(
∂V (s(t))π

∂step#agent1︸ ︷︷ ︸
agent1

+
∂V (s(t))π

∂step#agent2︸ ︷︷ ︸
agent2

+...

)

(8)
We can then compute global value function as expected

sum of local value functions and use any policy optimization
method to learn global approximation function for obtaining a
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combination of maximum expected local rewards for each lo-
cal agent.The global moderator needs to take steps in direction
∇θV . This gradient can be written as (8)

∇V (πparam=θ) = E
(s,a)∈S,A

[∇θ log πθ(a|s)Qπ(s, a)] (9)

Consider N agents with policies πi ∀ i = 1..N parame-
terized by θi ∀ i = 1..N . Each agent performs sequence of
actions such that a single state-action representation grows as
Qπ

i (s, â1, â2, ...âN ) S × A → [0, 1], â ∈ ~A The deterministic
objective gradient function in eq: (9) can be rewritten with
expanded Q function.

∇V (πparam=θi) = E
(s,a)

a∈BUFFER

[∇θi log πθi(a|s)Qπ(s, a)]

BUFFER → (s, st, â, (r1, r2, ..., rN )

⇒ Q
UPDATE

→
∑
i

ri + γQπ
i

(10)

Actions sequences for a local agent in any given state is
πi(s) → âi given that πi is well trained locally; Q∗ : s ∈
S × â ∈ Â which gives global policy expression π∗(S) and
value function V ∗(S)

π∗(S) = argmax
~A

Q∗(S, ~A)

V ∗(S) = max
~A

Q∗(S, ~A) ∀s ∈ S

V ∗(S) = max
~A

[R(s ∈ S, ~A) + γ
∑

P (s
′
∈ S) | (s, ~A)]

⇒ max
~A

∑
S,A

P · R

(11)

Partial derivatives with respect to the shared parameter θ for
value functions in and logarithmic transition probability gives
simplified expression for value function that can be iterated
recursively in place of classic bellman function reducing effort
by utilizing localized probability distributions over shared θ
parameters

∵ P (ai) = ai log(θi) + (1− ai) log(1− θi)
for simplicity, assume all agents choose parameter θithen for
single agenti update:

∂
∂ θii

V i
θi

= R
(S, ~A)

· ∂
∂ θi

[
P (â1, â2, . . . , âN

]
∂

∂ θii
V i
θi

= R
(S, ~A)

· ∂
∂ θi

[
~̂a
θi

− (1−â)
(1−θi)

]
The global moderator generates sub-goals for local agents

and with seclusive nature it accepts all kinds reward signals
from local agents in episodic mode. Once an episode is
finished the environment generates rewards as well – global
moderator correlates local rewards with global objective (in

terms of reward) and takes decision: to restart sub-goal as-
signment randomly or follow same trajectory if that trajectory
does help approaching global convergence. Policy gradient
method buffers all type of experiences, either a success or
failure and then prioritize the most rewarding experiences from
the buffer. Prioritizing rewards can be calculated by measuring
temporal difference error. The critic computes the TD target
value (FILLER) and then uses the temporal difference value
to compute the loss L over the batch size n We can formulate
actor and critic models by using neural networks. The weights
and biases of critic network will be updated by backpropa-
gating the error computed from loss function L. The weight
updates for actor network will be formulated by computing
the gradient of the value function (output of critic network)
and the output of actor itself, that is actually a distribution
over action bounds.

IV. EXPERIMENTS

We carry out experiments over a hyper-redundant serpentine
robot arm with 12-DOF maneuvering capabilities. The arm
resembles maneuvering properties of an octopus tentacles. We
performed experiments against Deterministic Proximal Policy
Optimization (DPPO) method and Asynchronous Advantage
Actor-Critic (A3C) baselines. Figure 3 shows running reward
trend that is initially over-motivating due to high exploration
rate but it settles down above zero ensuring that global
predictate always receives positive value. We tested our idea
against standard policy learning methods, our method performs
better against baselines in figure 4. Though DPPO performs
initially better due to its alternative surrogate update but as the
exploration rate reduces, it seems to slow down as well.
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The global reward floats above zero to ensure constant
intrinsic reward from sub-agents coupled with global objective signal
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Figure4.Overall success rate of our proposed method vs. baselines
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V. CONCLUSION

Modular reinforcement learning problems can be solved
as model free methods. Our proposed method introduces
reusable policy method that contributes towards scale-able
policy learning. We have examined the performance of our
method to learn a control policy for an agent comprised of
complex geometry. Our method primarily delivers optimal
results in shorter epoch counts ensuring that the global policy
is locally guided by the 1-fold standalone policy. Secondly, the
proposed method achieves substantial reduction in exploration
effort of total state space—it explores the standalone space for
local control and then the system only learns parameter vector
to correlate previous learnt space over subsequent sub-agent
spaces. Hence our results also present a comparison against
standard methods to demonstrate improved success rate.
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