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Abstract—This paper considers an underlay pulsed radar-
cellular spectrum sharing scenario, where the cellular system uses
pilot-aided demodulation, statistical channel state information (S-
CSI) estimation and limited feedback schemes. Under a realistic
system model, upper and lower bounds are derived on the
probability that at least a specified number of pilot signals are
interfered by a radar pulse train in a finite CSI estimation
window. Exact probabilities are also derived for important special
cases which reveal operational regimes where the lower bound
is achieved. Using these results, this paper (a) provides insights
on pilot interference-minimizing schemes for accurate coherent
symbol demodulation, and (b) demonstrates that pilot-aided
methods fail to accurately estimate S-CSI of the pulsed radar
interference channel for a wide range of radar repetition intervals.

Index Terms—Pilot-aided CSI, probability of pilot interference,
radar-cellular coexistence, limited CSI feedback.

I. INTRODUCTION

Over the last decade, radar-cellular spectrum sharing has

been actively pursued by academia and industry, due to its

high potential in maximizing spectral utilization of heavily

congested sub-6 GHz frequency bands. Due to the support

for underlay spectrum sharing in radar-incumbent 1.3 GHz

[1], 3.5 GHz [2], and 5 GHz [3] bands, cellular technologies

have progressed from licensed bands to unlicensed and shared

bands through standards such as License Assisted Access

(LAA) and 5G New Radio-Unlicensed (NR-U) [4]. Therefore,

evaluating the impact of radar interference on cellular signals

is important for network providers. In particular, pulsed radar

systems occupying these bands [5] can potentially interfere

with control channels of the cellular signal, thus disrupting

critical functionalities of the cellular network.

Pilot/Reference signals are used in modern cellular systems

to estimate the instantaneous channel state information (I-

CSI), and statistical CSI (S-CSI) of the wireless channel.

Due to practical considerations, I-CSI is used at the receiver

for channel equalization and coherent demodulation, S-CSI is

leveraged at the transmitter to choose the optimal transmission

mode for data blocks in subsequent time slots [6], [7]. Fre-

quency division duplex (FDD) systems quantize pilot-aided
S-CSI estimates at the receiver and feed the information back
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to the transmitter using ‘limited feedback’ schemes [8]. This

methodology is used in NR, where I-CSI is estimated using

demodulation reference signals (DMRS), and S-CSI estimates

are based on CSI-reference signals (CSI-RS) [9].

Pilot interference due to pulsed radar signals impact the

accuracy of CSI estimates. It has been demonstrated that

pilot-aided I-CSI estimates are corrupted by pilot interference

[10]. In contrast, pilot interference is desirable for S-CSI

acquisition, since pilot-aided S-CSI estimates account for the

interference only when fading and interference statistics are

the same on pilot and non-pilot resources. The authors of [11]

reported degraded turbo decoder performance in the case of

pulsed radar-LTE spectrum sharing scenarios due to inaccurate

interference estimates, resulting in block decoding failures.

The authors of [12] considered the LTE downlink impaired

by structured non-pilot interference, and demonstrated the

inaccuracy of pilot-aided SINR estimates, which resulted in

significant degradation of throughput and latency performance

due to link adaptation failure.

Unlike conventional multi-cellular scenarios where the in-

terference statistics is homogeneous on all resources, for the

radar-cellular coexistence scenarios considered in this letter,

the radar is pulsed and periodic in nature. Hence, the cellular

channel is bimodal with two states: (a) interference channel,
on data blocks impaired by pulsed radar interference as well

as fading, and (b) fading channel, on data blocks that are

impaired only by fading. While it is desirable to acquire I-

CSI using pilots in the fading channel state, it is necessary

to acquire S-CSI for both channel states to maximize cellular

performance using link adaptation and scheduling.

For robust link adaptation, estimating the S-CSI of the

interference channel is fundamentally important to maximize

performance of the cellular link, as well as to minimize

interference to the radar [7], [12]. However, since pulsed radar

interference is time-selective, the absence of pilot interference

can result in inaccurate pilot-aided S-CSI estimates of the

interference channel.

Before we investigate the effectiveness of pilot-aided S-CSI

and I-CSI estimation methods which were not designed for

pulsed radar-cellular coexistence, we need to characterize the

probability of pilot interference. While an exact analysis can

be done by considering a finite radar pulse width [13], the

resulting expression involving recurrence relations does not

facilitate intuitive interpretation. To remedy this, we use a

realistic infinitesimal wideband radar pulse model that allows

us to derive the bounds as a rational function of the waveform

parameters, and then prove the achievability of the lower

bound. These results lead to important insights regarding

the effectiveness of pilot-aided I-CSI/S-CSI estimation, and

limited S-CSI feedback.
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Contributions: We consider underlay pulsed radar-cellular

spectrum sharing, where the radar waveform and cellular pilots

are modeled as independent pulse trains with a random initial

offset, having different pulse widths and repetition rates. The

cellular system employs two different pilot signals, one for S-

CSI acquisition and the other for I-CSI estimation. The cellular

receiver performs S-CSI estimation using multiple equispaced

pilots in a finite estimation window and uses limited S-CSI
feedback to aid in scheduling and link adaptation at the trans-

mitter. Also, the receiver estimates the I-CSI using a different

equispaced pilot sequence, for coherent data demodulation

[9]. Under this model, we derive upper and lower bounds

on the probability that a pulsed radar with an infinitesimal

pulse width and uniformly distributed time of arrival [13]

interferes with (a) at least one pilot-bearing OFDM symbol

(henceforth referred to as a pilot signal/pilot), and (b) more

than m pilot symbols, in an arbitrary estimation window.

We briefly discuss the impact of multipath on the probability

bounds, and then derive exact expressions for important special

cases where the lower bound is achieved. Using these results,

pilot interference-minimizing radar schemes for accurate I-CSI

estimation can be obtained. A key insight for pulsed radar-

5G coexistence scenarios is that for S-CSI acquisition of the

interference channel, blind methods need to augment pilot-

aided methods for a wide range of radar repetition intervals.

II. SYSTEM MODEL

We consider an underlay radar-cellular spectrum sharing

scenario, where the orthogonal frequency division multiplex-

ing (OFDM)-based cellular signal has a symbol duration of

Tofdm. The pulsed radar system has a repetition interval of

Trep, where Trep > Tofdm. Therefore, an OFDM symbol is

interfered by at most one radar pulse1. Typical high bandwidth

radar pulse widths (Tpulse) satisfy Tpulse � Tofdm
2. Hence, we

assume that Tpulse → 0 and that the radar can be represented

by a periodic impulse train, as shown in Fig. 1.

The cellular system employs pilot-aided CSI estimation

techniques, where Tpil denotes the temporal spacing between

pilots. For example, TDMRS denotes the DMRS spacing and

TCSIRS denotes the CSI-RS spacing. Even though we focus

on pilot-aided statistical CSI (S-CSI) estimation, this analysis

is general and also applicable to pilot design for optimizing

I-CSI (I-CSI) acquisition, as discussed in section IV. S-CSI

is estimated for each pilot-bearing OFDM symbol in the

estimation window of interest denoted by [0, TCSI ], where

TCSI = NpTpil = NofdmTofdm for Np, Nofdm ∈ N and

1 ≤ Np < Nofdm. Here, Np is the number of pilots, and Nofdm

the total number of OFDM symbols in the estimation window.

The estimated S-CSI using the lth pilot (CSIl) is mapped to

the achievable rate3 Rl = r(CSIl) using a non-zero real-valued

function r(·). Defining R � [R1, R2, · · · , RNp ]
T as the vector

of achievable rates estimated by the receiver, we consider two

S-CSI feedback schemes Q(R), given by:

1If Trep ≤ Tofdm, then each OFDM symbol will be interfered by the radar,
and the probability of pilot interference will be 1.

2In sub-6 GHz systems, typical radar systems have Tpulse ∼ 1 μs [5],
while typical values of Tofdm ∼ 70 μs [9].

3LTE and NR define the quantized S-CSI values, how they are fed back,
and the S-CSI-to-throughput mapping function r(·) [9].

Fig. 1. Illustration of the radar-cellular coexistence scenario. A pulsed radar
with repetition interval Trep interferes with an OFDM signal with pilots
spaced Tpil seconds apart. Here, the CSI estimation interval (TCSI ) is
comprised of Np = 4 pilot-bearing OFDM symbols.

1) Minimum S-CSI, calculated using Qmin(R) = min(R),
2) Window-averaged S-CSI [6], calculated using

Qavg(R) = A(R), where A(·) is a window-averaging

function [6].

As a first-order approximation, a pilot-aided S-CSI estimate

of the interference channel is considered to be accurate if

the pilot is affected by interference. The maximum number

of radar pulses that occur in the estimation window is Nr =
�TCSI/Trep�, where �·� denotes the ceiling function. Since

typical cellular systems continuously transmit pilot signals

for CSI acquisition, and pilot interference is the event of

interest, we consider the pilot start and end times to be

deterministic. We consider a finite estimation window in which

pilot signals occupy the time intervals [kTpil, kTpil + Tofdm]
for k = 0, 1, · · · , (Np−1). Due to deterministic pilot intervals,

the time of arrival (ToA) of the first radar pulse tf is assumed

to be uniformly distributed, i.e. tf ∼ U([0, Trep]) [13].

III. PROBABILITY OF PILOT INTERFERENCE IN A FINITE

CSI ESTIMATION WINDOW

Let the random variable M ∈ {1, 2, · · · , Np} denote the

number of pilots affected by the pulsed radar signal in the

estimation window. In the following analysis, we are interested

in the probability that (a) {M ≥ 1}, and (b) {M ≥ m}, for

m = 2, 3, · · · , Np.

A. Bounds on Probability of Pilot Interference

Since tf ∼ U[0, Trep], we have P[M ≥ 1] when Nr ≥ 1, as

shown in the following key result.

Lemma 1. If Trep ≤ TCSI , for m = 2, 3, · · · , Np, we have

Tofdm

Tpil
≤ P[M ≥ 1] ≤ min

(
1,

NpTofdm

Trep

)
(1)

0 ≤ P[M ≥ m] ≤ min
(
1,

NpTofdm

mTrep

)
. (2)

Proof. Since Trep ≤ TCSI , P[M ≥ 1] cannot be smaller than

the fraction of time allocated to pilots in the CSI estimation

interval. Hence, P[M ≥ 1] ≥ NpTofdm

TCSI
. Substituting TCSI =

NpTpil and simplifying, we obtain the lower bound. Similarly,

P[M ≥ 1] cannot be greater than the ratio between the total

time allocated to the Np pilots per estimation window and

the radar pulse repetition interval. Therefore, P[M ≥ 1] ≤
min

(
1,

NpTofdm

Trep

)
.

For m pilot signals to be interfered by radar in an estimation

window TCSI , at least one pilot signal must be affected

every TCSI

m seconds, since both pilots and radar pulses are

equispaced in our model. Hence, using the upper bound in

Lemma 1 and noting that there are an average of
Np

m pilot

signals every TCSI

m seconds, we obtain the upper bound. �
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Achievability of the lower bounds are discussed next. Even

though the lower bound of P[M ≥ m] is zero, it has

important consequences on the limited S-CSI feedback of the

interference channel, as discussed in section IV.

Remark 1. The presence of strong multipath can result in
(a) radar pulse broadening if it is due to local scatterers
near the user, or (b) interference by multiple echoes in the
presence of far-away specular reflections in the channel. For
(a), if the broadened radar pulse width is Tpulse, the same
approach as Lemma 1 can be used to obtain bounds on
the probability of ‘partial radar interference’ on pilots, by
replacing Tofdm by (Tofdm + Tpulse) in (1)-(2). For (b), if
there is one LoS component and (p − 1) specular reflectors
in the environment, the upper bound becomes P[M ≥ m] ≤
min

(
1,

pNpTofdm

mTrep

)
,m = 1, 2, · · · , Np. The lower bound in both

cases remain the same as before.

In the following subsection, we analyze the probability for

important special cases.

B. Exact Analysis for Important Special Cases

Let �(l, tf ) denote the event that the lth pilot (l =
1, 2, · · · , Np) is interfered by a radar pulse in the estimation

window [0, TCSI ], when the ToA of the first radar pulse is tf .

It can be written as

�(l, tf ) =

⎧⎪⎨
⎪⎩
1 if ∃j = 1, 2, · · · , Nr such that

(tf + jTrep − lTpil) ∈ [0, Tofdm]

0 otherwise.

(3)

We can write the conditional probability of {M ≥ m|tf}
(m = 1, 2, · · · , Np) as

P[M ≥ m|tf ] =
{
1 if

∑Np

l=1 �(l, tf ) ≥ m,

0 otherwise.
(4)

Using (4), P[M ≥ 1] is obtained by marginalizing tf using

fTf
(tf ) =

1
Trep

, 0 ≤ tf ≤ Trep to get

P[M ≥ 1] =

∫ min(TCSI ,Trep)

0

1
Trep

P[M ≥ 1|tf ]dtf . (5)

The upper limit of the integral is min(Trep, TCSI) and ac-

counts for cases where Trep ≥ TCSI , since the observation

window of interest is limited to [0, TCSI ].

Theorem 1. The lower bound P[M ≥ 1] = Tofdm

Tpil
is obtained

for Trep ≤ TCSI if Trep = kTpil, where k ∈ {1, 2, · · · , Np}.

Proof. If Trep = kTpil and k ∈ N, we have the following

mutually exclusive events:

1) E0: If no pilot in [0, Trep] is interfered by the radar,

then no pilot will ever be interfered. In other words,

P[M ≥ 1|E0] = 0.

2) E1: If the lth pilot is affected by radar, then the

(l+mk)th pilot will be interfered ∀ m ∈ Z. Therefore,

P[M ≥ 1|tf ] = 1 for tf ∈ [lTpil, lTpil + Tofdm] where

l = 0, 1, · · · , (k − 1).

Applying the total probability theorem in (5), using Trep =
kTpil in the above and simplifying, we obtain the desired

result. �

Fig. 2. Illustration of Theorem 2, for Np = 4, k = 1 and q = 2 when
m = 2 pilots are interfered by radar pulses (indicated in red).

The exact value of P[M ≥ 1] for Trep ≥ TCSI is provided

in the following corollary.

Corollary 1. P[M ≥ 1] =
NpTofdm

Trep
for Trep ≥ TCSI .

Proof. The proof is similar to Theorem 1, obtained by direct

substitution of (4) in (5). �

Finally, we derive the set of Trep for which P[M ≥ m] > 0.

Theorem 2. For Np > 1 and m = 2, · · · , Np,

P[M ≥ m] =

{
non-zero if Trep ∈ Tm,Np

0 if Trep /∈ Tm,Np ∩ (Tofdm,∞),

where Tm,Np
=

⋃
k∈K,q∈N

( (m−1)kTpil−Tofdm

(m−1)q ,
(m−1)kTpil+Tofdm

(m−1)q

)
,

and K =
{
1, 2, · · · ,

⌈Np−1
m−1

⌉}
. (6)

Proof. Due to equispaced pilots, it can be deduced using Theo-

rem 1 (specifically, event E1) that multiple pilots are interfered

when Trep is in some neighborhood of kTpil, where k ∈ N. To

interfere with at least m pilots in the CSI estimation window,

one of the neighborhoods can be shown to be
(−Tofdm

m−1 , Tofdm

m−1

)
using the following construction: Conditioned on the event that

the first pilot is interfered, there exists some tf ∈ [0, Tofdm]
for which the subsequent (m− 1) radar pulses interfere with

a pilot if Trep ∈
(
kTpil − Tofdm

m−1 , kTpil + Tofdm

m−1

)
. The lower

and upper limits of this interval correspond to tf = Tofdm
and tf = 0 respectively. In addition, k must satisfy k ≤⌈Np−1

m−1

⌉
to ensure that at least m radar pulses are present in

[0, (Np−1)Tpil+Tofdm] for {P[M ≥ m] > 0} to be true. Since(
kTpil− Tofdm

m , kTpil+
Tofdm

m

)
⊂

(
kTpil− Tofdm

m−1 , kTpil+
Tofdm

m−1

)
for all m > 1, at least m pilots are interfered by the radar

in the estimation window if Trep ∈ T (1)
m,Np

=
⋃

k∈K
(
kTpil −

Tofdm

m−1 , kTpil +
Tofdm

m−1

)
. In addition, Trep ∈ T (q)

m,Np
= {T

q

∣∣T ∈
T (1)
m , q ∈ N} can also result in non-zero P[M ≥ m], since

Trep ∈ T (1)
m,Np

scaled down by an integer factor preserves the

time offset relationship between the radar pulse train and the

pilots, as shown in Fig. 2. Therefore, P[M ≥ m] is non-zero
if Trep ∈

⋃
q∈N

T (q)
m,Np

= Tm,Np
.

Furthermore, if �(1, tf ) = · · · = �(j, tf ) = 0 and

�(j + 1, tf ) = 1 for j = 1, · · · , (Np − 1), it can be seen

that P[M ≥ m] > 0 if Trep ∈ Tm,Np−j ⊂ Tm,Np , using a

similar construction.
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(a)

(b)

Fig. 3. (a) P[M ≥ 1], and its upper and lower bounds as a function of Trep
and Np for Tofdm = 71.43 μs and TCSI = 5 ms. (b) P[M ≥ m] for m > 1,
and its upper bound as a function of m, for Np = 5. P[M ≥ m] > 0 only
when Trep lies in a small neighborhood of a rational fraction of Tpil.

Finally, we notice that P[M ≥ m] = 1 ∀ m = 1, 2, · · · , Np

if Trep ∈ [0, Tofdm], since every OFDM symbol will be

interfered in this case. Since all the feasible Trep values which

ensure that P [M ≥ m] is non-zero are contained in Tm,Np
,

we have P[M ≥ m] = 0 if Trep /∈ Tm,Np
∩ (Tofdm,∞). �

Before we discuss the implications of these results on I-

CSI estimation and S-CSI feedback, we validate their accuracy

using numerical results.

C. Numerical Results

We consider a cellular system with a typical OFDM symbol

duration of Tofdm = 71.43 μs, and Np ∈ N periodically spaced

pilot-bearing OFDM symbols per estimation window of length

TCSI = 5 ms. Fig. 3(a) shows the values of P[M ≥ 1],
along with the corresponding upper and lower bounds for

different values of Trep and Np. We observe that the upper

and lower bounds derived in Lemma 1 are in agreement with

the numerical results. Furthermore, we also observe that the

lower bound is achieved for Trep = kTpil, k ∈ N, as proven

in Theorem 1.

Fig. 3(b) shows the variation of P[M ≥ m], for m =
1, 2, · · · , 5 in an estimation window of length TCSI = 5 ms.

We observe that the upper bound in (2) is in agreement with

the numerical results. More importantly, it can be seen that

P[M ≥ m] > 0 iff Trep ∈ Tm,5, as proven in Theorem 2.

IV. FUNDAMENTAL INSIGHTS ON COHERENT

DEMODULATION AND LIMITED S-CSI FEEDBACK

In this section, we derive new insights on pilot-aided

demodulation and limited S-CSI feedback.

A. Minimizing Impact on Coherent Demodulation

It is well known that corrupted I-CSI is detrimental to

coherent demodulation [10]. Therefore, minimizing P[M ≥ 1]
for DMRS over an infinite observation interval (TCSI → ∞)

on average minimizes the occurrence of pulsed radar-induced

I-CSI contamination. Using Theorem 1, the lower bound of

P[M ≥ 1] is achieved if Trep = kTDMRS for finite k ∈ N.

Therefore, DMRS interference can be minimized as follows.

1) Partial Radar-Cellular Cooperation: If partial radar-

cellular cooperation is feasible, the radar can adapt Trep based

on (a) prior knowledge, or (b) explicit feedback of TDMRS.

2) Absence of Radar-Cellular Cooperation: In fading chan-

nels with slowly varying channel statistics, throughput can be

enhanced by adapting the pilot spacing in time and frequency

in real-time, as a function of the channel conditions [14]. In

addition, we propose minimizing P[M ≥ 1|Trep] for DMRS

over an infinite observation interval (TCSI → ∞) on average
to mitigate I-CSI contamination. Mathematically, the optimal

DMRS spacing (TDMRS,opt) is obtained using

TDMRS,opt = arg min
TDMRS∈R+

P[M ≥ 1|Trep], s.t. TDMRS ≤ Tcoh. (7)

The constraint is introduced to ensure accurate channel esti-

mation, whereby the DMRS spacing should be smaller than

the coherence time (Tcoh) [15]. In general, an exact solution

cannot be obtained due to the aforementioned constraint.

Nevertheless, a heuristic solution can be obtained using

Theorem 1 by observing that local minima occur at TDMRS =
Trep/k, k ∈ N, where P[M ≥ 1|Trep] = kTofdm

Trep
. The best case

scenario occurs when k = 1, and TDMRS,opt = Trep. In order

to satisfy the constraint, the pilot spacing can be chosen as

TDMRS =
Trep

kopt
, where kopt =

⌈Trep

Tcoh

⌉
. To perform this adaptation

in real-time, T̂rep should be estimated, especially in the case

of military radar systems where Trep is often unknown.

B. Impact on Limited S-CSI Feedback of the Interference
Channel

Pilot-aided S-CSI estimates of the interference channel is

inaccurate if pilots are impaired with low probability, or not

impacted at all [11], [12]. Under our system model, (a) P[M ≥
1] is equivalent to the probability that S-CSI of the interference
channel is accurately acquired using Qmin(R), and (b) P[M ≥
m] denotes the probability S-CSI of the interference channel
is accurately acquired using Qavg(R).

In contrast to I-CSI, limited feedback of Qmin(R) is inaccu-

rate for the interference channel when Trep = kTCSIRS, k ∈ N.

Furthermore, (a) upper bound of the probability of obtaining

m accurate S-CSI estimates of the interference channel state
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Fig. 4. Plot of P
[
M ≥ Np

2

]
and its upper bound as a function of Trep, for

fixed pilot spacing TCSIRS = 2 ms and estimation window lengths TCSI =
4, 8, 16, · · · , 64 ms.

decreases with m, (Lemma 1), and (b) this probability is non-
zero only when Trep ∈ Tm,Np (Theorem 2). Both of these

results imply that window-averaged S-CSI (Qavg(R)) is not

reliable for S-CSI acquisition of the interference channel state,

since P[M ≥ Np/2] = 0 for a large range of Trep values. As

a result, link adaptation and scheduling schemes in 5G NR

will be inefficient in the presence of high-power radar pulses

with low Trep, since pilot-aided schemes fail to capture S-CSI

of the interference channel. Therefore, blind S-CSI estimation
methods need to be used to augment pilot-aided estimates,

when sharing spectrum with pulsed radars.

C. Numerical Results

Fig. 4 shows the impact of the estimation window length on

the mean/median-based limited S-CSI feedback schemes in 5G

NR, for Tofdm = 71.43 μs, TCSI = 4, 8, · · · , 64 ms [9], and

2 ms ≤ Trep ≤ 3 ms. We observe that for a fixed pilot spacing

of TCSIRS = 2 ms, the upper bound of P[M ≥ Np

2 ] is the

same for all cases. However, we also observe that increasing

TCSI shrinks the set of Trep values for which mean/median

S-CSI will be accurate for the interference channel. This

behavior can be explained using Theorem 2: Since TNp/2,Np
=⋃

k∈{1,2},q∈N

(
kTCSIRS− Tofdm

(Np/2−1)q , kTCSIRS+
Tofdm

(Np/2−1)q

)
, in-

creasing TCSI while keeping TCSRIS constant increases Np,

thus contracting the size of TNp/2,Np
. Therefore, increasing

the estimation window length while keeping the pilot spacing

fixed degrades the availability of accurate S-CSI estimates

for the interference channel state, when mean or median S-

CSI feedback is used. In particular, sparsity of CSI-RS in the

time domain [9] reduces the effectiveness of pilot-aided S-CSI

estimation and limited feedback schemes in pulsed radar-NR

spectrum sharing scenarios.

V. CONCLUSION

Considering an underlay pulsed radar-cellular spectrum

sharing scenario, we derived bounds on the probability of

single and multiple pilot-bearing OFDM symbols being inter-

fered in a finite estimation window. We proved achievability

of the lower bound, and provided insights on designing pilot

interference-minimizing schemes as a function of the pilot

spacing and the radar repetition interval. We also proved that

the probability of multiple cellular pilots being interfered by

radar pulses in the estimation window is zero for a large set

of radar repetition intervals. This is detrimental for pilot-aided

statistical CSI estimation in the interference channel, which

highlights the need for blind methods in NR and beyond-5G

systems sharing spectrum with radars. We demonstrated the

accuracy of the derived expressions, and usefulness of the

design principles using examples from 5G NR. As cellular

networks evolve beyond 5G, these results and insights will be

crucial for demodulation reference signal design and robust

S-CSI acquisition and feedback schemes. This work can be

extended to analyze these probabilities in the case of a pulse

radar with an arbitrary staggering sequence, and coexistence

between MIMO pulsed radars and MIMO communication sys-

tems. A practical application of our work is to study the impact

of pulsed interference power on the throughput and latency

performance resulting from inaccurate S-CSI estimates.
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