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Abstract—This paper considers an underlay pulsed radar-
cellular spectrum sharing scenario, where the cellular system uses
pilot-aided demodulation, statistical channel state information (S-
CSI) estimation and limited feedback schemes. Under a realistic
system model, upper and lower bounds are derived on the
probability that at least a specified number of pilot signals are
interfered by a radar pulse train in a finite CSI estimation
window. Exact probabilities are also derived for important special
cases which reveal operational regimes where the lower bound
is achieved. Using these results, this paper (a) provides insights
on pilot interference-minimizing schemes for accurate coherent
symbol demodulation, and (b) demonstrates that pilot-aided
methods fail to accurately estimate S-CSI of the pulsed radar
interference channel for a wide range of radar repetition intervals.

Index Terms—Pilot-aided CSI, probability of pilot interference,
radar-cellular coexistence, limited CSI feedback.

I. INTRODUCTION

Over the last decade, radar-cellular spectrum sharing has
been actively pursued by academia and industry, due to its
high potential in maximizing spectral utilization of heavily
congested sub-6 GHz frequency bands. Due to the support
for underlay spectrum sharing in radar-incumbent 1.3 GHz
[1], 3.5 GHz [2], and 5 GHz [3] bands, cellular technologies
have progressed from licensed bands to unlicensed and shared
bands through standards such as License Assisted Access
(LAA) and 5G New Radio-Unlicensed (NR-U) [4]. Therefore,
evaluating the impact of radar interference on cellular signals
is important for network providers. In particular, pulsed radar
systems occupying these bands [5] can potentially interfere
with control channels of the cellular signal, thus disrupting
critical functionalities of the cellular network.

Pilot/Reference signals are used in modern cellular systems
to estimate the instantaneous channel state information (I-
CSI), and statistical CSI (S-CSI) of the wireless channel.
Due to practical considerations, I-CSI is used at the receiver
for channel equalization and coherent demodulation, S-CSI is
leveraged at the transmitter to choose the optimal transmission
mode for data blocks in subsequent time slots [6], [7]. Fre-
quency division duplex (FDD) systems quantize pilot-aided
S-CSI estimates at the receiver and feed the information back
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to the transmitter using ‘limited feedback’ schemes [8]. This
methodology is used in NR, where I-CSI is estimated using
demodulation reference signals (DMRS), and S-CSI estimates
are based on CSI-reference signals (CSI-RS) [9].

Pilot interference due to pulsed radar signals impact the
accuracy of CSI estimates. It has been demonstrated that
pilot-aided I-CSI estimates are corrupted by pilot interference
[10]. In contrast, pilot interference is desirable for S-CSI
acquisition, since pilot-aided S-CSI estimates account for the
interference only when fading and interference statistics are
the same on pilot and non-pilot resources. The authors of [11]
reported degraded turbo decoder performance in the case of
pulsed radar-LTE spectrum sharing scenarios due to inaccurate
interference estimates, resulting in block decoding failures.
The authors of [12] considered the LTE downlink impaired
by structured non-pilot interference, and demonstrated the
inaccuracy of pilot-aided SINR estimates, which resulted in
significant degradation of throughput and latency performance
due to link adaptation failure.

Unlike conventional multi-cellular scenarios where the in-
terference statistics is homogeneous on all resources, for the
radar-cellular coexistence scenarios considered in this letter,
the radar is pulsed and periodic in nature. Hence, the cellular
channel is bimodal with two states: (a) interference channel,
on data blocks impaired by pulsed radar interference as well
as fading, and (b) fading channel, on data blocks that are
impaired only by fading. While it is desirable to acquire I-
CSI using pilots in the fading channel state, it is necessary
to acquire S-CSI for both channel states to maximize cellular
performance using link adaptation and scheduling.

For robust link adaptation, estimating the S-CSI of the
interference channel is fundamentally important to maximize
performance of the cellular link, as well as to minimize
interference to the radar [7], [12]. However, since pulsed radar
interference is time-selective, the absence of pilot interference
can result in inaccurate pilot-aided S-CSI estimates of the
interference channel.

Before we investigate the effectiveness of pilot-aided S-CSI
and I-CSI estimation methods which were not designed for
pulsed radar-cellular coexistence, we need to characterize the
probability of pilot interference. While an exact analysis can
be done by considering a finite radar pulse width [13], the
resulting expression involving recurrence relations does not
facilitate intuitive interpretation. To remedy this, we use a
realistic infinitesimal wideband radar pulse model that allows
us to derive the bounds as a rational function of the waveform
parameters, and then prove the achievability of the lower
bound. These results lead to important insights regarding
the effectiveness of pilot-aided I-CSI/S-CSI estimation, and
limited S-CSI feedback.
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Contributions: We consider underlay pulsed radar-cellular
spectrum sharing, where the radar waveform and cellular pilots
are modeled as independent pulse trains with a random initial
offset, having different pulse widths and repetition rates. The
cellular system employs two different pilot signals, one for S-
CSI acquisition and the other for I-CSI estimation. The cellular
receiver performs S-CSI estimation using multiple equispaced
pilots in a finite estimation window and uses limited S-CSI
feedback to aid in scheduling and link adaptation at the trans-
mitter. Also, the receiver estimates the I-CSI using a different
equispaced pilot sequence, for coherent data demodulation
[9]. Under this model, we derive upper and lower bounds
on the probability that a pulsed radar with an infinitesimal
pulse width and uniformly distributed time of arrival [13]
interferes with (a) at least one pilot-bearing OFDM symbol
(henceforth referred to as a pilot signal/pilot), and (b) more
than m pilot symbols, in an arbitrary estimation window.
We briefly discuss the impact of multipath on the probability
bounds, and then derive exact expressions for important special
cases where the lower bound is achieved. Using these results,
pilot interference-minimizing radar schemes for accurate I-CSI
estimation can be obtained. A key insight for pulsed radar-
5G coexistence scenarios is that for S-CSI acquisition of the
interference channel, blind methods need to augment pilot-
aided methods for a wide range of radar repetition intervals.

II. SYSTEM MODEL

We consider an underlay radar-cellular spectrum sharing
scenario, where the orthogonal frequency division multiplex-
ing (OFDM)-based cellular signal has a symbol duration of
Tofan. The pulsed radar system has a repetition interval of
Trep, Where Trep > Tozan. Therefore, an OFDM symbol is
interfered by at most one radar pulse'. Typical high bandwidth
radar pulse widths (Tpulse) satisfy Tpui1se < Tosan’. Hence, we
assume that Thy15 — 0 and that the radar can be represented
by a periodic impulse train, as shown in Fig. 1.

The cellular system employs pilot-aided CSI estimation
techniques, where 1,31 denotes the temporal spacing between
pilots. For example, Tpurs denotes the DMRS spacing and
Tes1rs denotes the CSI-RS spacing. Even though we focus
on pilot-aided statistical CSI (S-CSI) estimation, this analysis
is general and also applicable to pilot design for optimizing
I-CSI (I-CSI) acquisition, as discussed in section IV. S-CSI
is estimated for each pilot-bearing OFDM symbol in the
estimation window of interest denoted by [0,7¢ss], where
TCS[ = Npril = Nofmeofdm for Np, Nofd_m € N and
1 < N, < Nogan. Here, N, is the number of pilots, and Noggn
the total number of OFDM symbols in the estimation window.
The estimated S-CSI using the I*" pilot (CSI;) is mapped to
the achievable rate’ R; = r(CSI;) using a non-zero real-valued
function r(-). Defining R £ [Ry, Ry, -+, Ry, ]7 as the vector
of achievable rates estimated by the receiver, we consider two
S-CSI feedback schemes Q(R), given by:

¢ Trep < Totam, then each OFDM symbol will be interfered by the radar,
and the probability of pilot interference will be 1.

2In sub-6 GHz systems, typical radar systems have Tpuise ~ 1 ps [5],
while typical values of Tosan ~ 70 us [9].

3LTE and NR define the quantized S-CSI values, how they are fed back,
and the S-CSI-to-throughput mapping function r(-) [9].

Totan Pilot-bearing OFDM Symbol  Radar Pulse
/
tf Trep
Tpil
Tesi

Fig. 1. Illustration of the radar-cellular coexistence scenario. A pulsed radar
with repetition interval Trep interferes with an OFDM signal with pilots
spaced Tpi1 seconds apart. Here, the CSI estimation interval (Tcgy) is
comprised of N, = 4 pilot-bearing OFDM symbols.

1) Minimum S-CSI, calculated using Qpin(R) = min(R),
2) Window-averaged S-CSI  [6], calculated using
Qavg(R) = A(R), where A(-) is a window-averaging
function [6].
As a first-order approximation, a pilot-aided S-CSI estimate
of the interference channel is considered to be accurate if
the pilot is affected by interference. The maximum number
of radar pulses that occur in the estimation window is N, =
[Tesr/Trep |, where [-] denotes the ceiling function. Since
typical cellular systems continuously transmit pilot signals
for CSI acquisition, and pilot interference is the event of
interest, we consider the pilot start and end times to be
deterministic. We consider a finite estimation window in which
pilot signals occupy the time intervals [kTpi1, K7 pi1 + Togan)
fork=0,1,---,(/Np—1). Due to deterministic pilot intervals,
the time of arrival (ToA) of the first radar pulse ¢y is assumed
to be uniformly distributed, i.e. ¢t ~ U([0, Trep]) [13].
III. PROBABILITY OF PILOT INTERFERENCE IN A FINITE
CSI ESTIMATION WINDOW
Let the random variable M € {1,2,---,N,} denote the
number of pilots affected by the pulsed radar signal in the
estimation window. In the following analysis, we are interested
in the probability that (a) {M > 1}, and (b) {M > m}, for
m=2,3,---,Np.
A. Bounds on Probability of Pilot Interference
Since ty ~ U[0, Trep|, we have P[M > 1] when N, > 1, as
shown in the following key result.

Lemma 1. If Tz, < Tosy, for m=2,3,--- , Ny, we have

fdn : NpTosan
7o <PIM > 1] < min (1, =) ey
0 <P[M >m] < min (1, 3272%). )

Proof. Since Tyep < Tosr, P[M > 1] cannot be smaller than
the fraction of time allocated to Npllots in the CSI estimation
interval. Hence, P[M > 1] > °f1d“‘ Substituting Tog; =
NypTpi1 and simplifying, we obtaln the lower bound. Similarly,
P[M > 1] cannot be greater than the ratio between the total
time allocated to the [V, pilots per estimation window and
the radar pulse repetition interval. Therefore, P[M > 1] <
min (1, L’f“’" )

For m pilot signals to be interfered by radar in an estimation
window Togy, at least one pilot signal must be affected
every T%? seconds, since both pilots and radar pulses are
equispaced in our model. Hence, using the upper bound in
Lemma 1 and noting that there are an average of —2 pilot
signals every Tfn?I seconds, we obtain the upper bound. |
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Achievability of the lower bounds are discussed next. Even
though the lower bound of P[M > m] is zero, it has
important consequences on the limited S-CSI feedback of the
interference channel, as discussed in section IV.

Remark 1. The presence of strong multipath can result in
(a) radar pulse broadening if it is due to local scatterers
near the user, or (b) interference by multiple echoes in the
presence of far-away specular reflections in the channel. For
(a), if the broadened radar pulse width is Tpuise, the same
approach as Lemma 1 can be used to obtain bounds on
the probability of ‘partial radar interference’ on pilots, by
replacing Tosan by (Totam + Tpurse) in (1)-(2). For (b), if
there is one LoS component and (p — 1) specular reflectors
in the environment, the upper bound becomes P[M > m] <
min (1, %),m =1,2,---, Np. The lower bound in both
cases remain the same as before.

In the following subsection, we analyze the probability for
important special cases.
B. Exact Analysis for Important Special Cases

Let 1(l,t;) denote the event that the [*" pilot (I =
1,2,---,N,) is interfered by a radar pulse in the estimation
window [0, Tgr], when the ToA of the first radar pulse is ¢ .
It can be written as
1 ifd5=1,2,---, N, such that

(tf + jTrep - lTpil) S [07 Tofd.m]
0 otherwise.

1(,t5) = 3)

We can write the conditional probability of {M > m|t;}

(m=1,2,---,N,) as

Lif S 1L ty) 2 m

0 otherwise.

P[M > mlts] = { “)
Using (4),
fo (tf) Trep’

min(Tcosr,Trep)
MMzu:/
0

The upper limit of the integral is min(7yep, Tcsr) and ac-
counts for cases where Tro, > Ty, since the observation
window of interest is limited to [0, Tosy].

Theorem 1. The lower bound P[M > 1] = °“1‘“ is obtained
for Trep < Tosr if Trep = kTpi1, where k € {1,2,- S Np

Proof. If Tyep = kTpi1 and £ € N, we have the following
mutually exclusive events:
1) &: If no pilot in [0, Tyep| is interfered by the radar,
then no pilot will ever be interfered. In other words,
P[M > 1|&] = 0.
2) &: If the I*" pilot is affected by radar, then the
(14 mk)*" pilot will be interfered V m € Z. Therefore,
]P)[M > 1|tf] =1 for tf S [lTpilalTpil + Tofd_m] where
1=0,1,---,(k—1).
Applying the total probability theorem in (5), using Trep =
kT,:1 in the above and simplifying, we obtain the desired
result. ]

[M > 1] is obtained by marginalizing t; using
,0 <ty <Tiep to get

P[M > ]_‘tf}dtf (@)

rep

Pilot-bearing OFDM

symbol/Pilot Signal Radar Pulse

Trep g (Tpi] _2Tofdm , Tpil';Tofd.m)

[T

( Tpn _2Tufd.m , Tonr ';Tnfdm )

[T

Test

Trep €

Fig. 2. Illustration of Theorem 2, for Np = 4,k = 1 and ¢ = 2 when
m = 2 pilots are interfered by radar pulses (indicated in red).

The exact value of P[M > 1] for Tyep > Tesy is provided
in the following corollary.
Corollary 1. P[M > 1] = NTiTpdm for Trep > Tesr.

Proof. The proof is similar to Theorem 1, obtained by direct
substitution of (4) in (5). [ |

Finally, we derive the set of Tyep for which P[M > m] > 0.

Theorem 2. For N, > 1 and m = 2,--- , N,

PIM > m] = {non-zero if Trep € Ti,N,

0 ifTrep ¢ Tm,Np N (Tofdma 00)7
B (m—1)kTpi1—Totan (M—1)kTpi1+Totan
where Ty N, = U ( (m—Pl)q ) (m—Pl)q )’
keK,qeN
N,—1
a}’ld’c:{la27"'?’77n,—1“}' (6)

Proof. Due to equispaced pilots, it can be deduced using Theo-
rem 1 (specifically, event &) that multiple pilots are interfered
when Ty is in some neighborhood of kTy;,, where k € N. To
interfere with at least m pilots in the CSI estimation window,
one of the neighborhoods can be shown to be (=Tt Jotn)
using the following construction: Conditioned on the event that
the first pilot is interfered, there exists some t; € [0, Tosan]
for which the subsequent (m — 1) radar pulses interfere with
a pilot if Trep € (KTps1 — Lo kT + L) The lower
and upper limits of this interval correspond to t; = Toean
and ty = 0 respectively. In addition, £ must satisfy k <

%’:11] to ensure that at least m radar pulses are present in
[0, (Np—1)Tpi1+Tosan) for {P[M > m] > 0} to be true. Since
(kTpi pi1 %) C (kTpil o fdm KT i + Ofdm)
for all m > 1, at least m pilots are interfered by the radar
in the estimation window if Tyep € 7'(1) UkEIC (kTpil —

et |Tsq + 222) In addition, Trep e T N, = {%|T €

m 1’
T q E N} can also result in non-zero P[M > m], since

Trep € T N, scaled down by an integer factor preserves the
time offset relationship between the radar pulse train and the
pilots, as shown in Fig. 2. Therefore, P[M > m)] is non-zero
if Trep € UqEN Tmt{Np = meNp'

Furthermore, if 1(1,tf) = = 1(j,ty) = 0 and
1(j +1,t5) =1 for j = 1,---,(N, — 1), it can be seen
that P[M > m] > 0 if Trep € Tiu,n,—j C TN, Using a
similar construction.

—Totan
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Finally, we notice that P[M > m]=1¥m=1,2,--- |N,
if Trep € [0, Totan], since every OFDM symbol will be
interfered in this case. Since all the feasible I:..p values which
ensure that P[M > m] is non-zero are contained in 7y, n,,
we have P[M > m] = 0 if Trep & TN, N (Totan, 00). [ ]

Before we discuss the implications of these results on I-
CSI estimation and S-CSI feedback, we validate their accuracy
using numerical results.

C. Numerical Results

We consider a cellular system with a typical OFDM symbol
duration of Toeqn = 71.43 pis, and N, € N periodically spaced
pilot-bearing OFDM symbols per estimation window of length
Tesr = 5 ms. Fig. 3(a) shows the values of P[M > 1],
along with the corresponding upper and lower bounds for
different values of 7., and IV,. We observe that the upper
and lower bounds derived in Lemma 1 are in agreement with
the numerical results. Furthermore, we also observe that the
lower bound is achieved for Trep = kTpi1,k € N, as proven
in Theorem 1.

Fig. 3(b) shows the variation of P[M > m], for m =
1,2,---,5 in an estimation window of length Tos; = 5 ms.
We observe that the upper bound in (2) is in agreement with
the numerical results. More importantly, it can be seen that
P[M > m] > 0 iff Tyep € Trn,5, as proven in Theorem 2.

IV. FUNDAMENTAL INSIGHTS ON COHERENT
DEMODULATION AND LIMITED S-CSI FEEDBACK

In this section, we derive new insights on pilot-aided
demodulation and limited S-CSI feedback.

A. Minimizing Impact on Coherent Demodulation

It is well known that corrupted I-CSI is detrimental to
coherent demodulation [10]. Therefore, minimizing P[M > 1]
for DMRS over an infinite observation interval (Tog; — 00)
on average minimizes the occurrence of pulsed radar-induced
I-CSI contamination. Using Theorem 1, the lower bound of
P[M > 1] is achieved if Tyep = kTpwps for finite & € N.
Therefore, DMRS interference can be minimized as follows.

1) Partial Radar-Cellular Cooperation: 1If partial radar-
cellular cooperation is feasible, the radar can adapt 7%, based
on (a) prior knowledge, or (b) explicit feedback of Tpygs.

2) Absence of Radar-Cellular Cooperation: In fading chan-
nels with slowly varying channel statistics, throughput can be
enhanced by adapting the pilot spacing in time and frequency
in real-time, as a function of the channel conditions [14]. In
addition, we propose minimizing P[M > 1|T;cp] for DMRS
over an infinite observation interval (Tog; — 00) on average
to mitigate I-CSI contamination. Mathematically, the optimal
DMRS spacing (Tpwgs,opt) is Obtained using

Tours,opt = arg min P[M > 1|Tvep), s.t. Tomps < Teon-  (7)
Tomps ERT
The constraint is introduced to ensure accurate channel esti-
mation, whereby the DMRS spacing should be smaller than
the coherence time (7,on) [15]. In general, an exact solution
cannot be obtained due to the aforementioned constraint.
Nevertheless, a heuristic solution can be obtained using
Theorem 1 by observing that local minima occur at Thyrs =
Trep/k, k € N, where P[M > 1|Tep| = ’“;J The best case
scenario occurs when k = 1, and Tpugs opt = Trep. In order
to satisfy the constraint, the 7pilot spacing can be chosen as
Trep , where kopt = ( ’e"] To perform this adaptation

Towps = Ty
in real-time, Ty, should be estimated, especially in the case

of military radar systems where T%¢ is often unknown.

B. Impact on Limited S-CSI Feedback of the Interference
Channel

Pilot-aided S-CSI estimates of the interference channel is
inaccurate if pilots are impaired with low probability, or not
impacted at all [11], [12]. Under our system model, (a) P[M >
1] is equivalent to the probability that S-CSI of the interference
channel is accurately acquired using Qnin(R), and (b) P[M >
m| denotes the probability S-CSI of the interference channel
is accurately acquired using Qavg(R).

In contrast to I-CSI, limited feedback of Quin(R.) is inaccu-
rate for the interference channel when T, = Klcsms, k € N.
Furthermore, (a) upper bound of the probability of obtaining
m accurate S-CSI estimates of the interference channel state

kopt
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Fig. 4. Plot of IP[M > %} and its upper bound as a function of Tyep, for
fixed pilot spacing Tcstrs = 2 ms and estimation window lengths Tosr =
4,8,16, - ,64 ms.

decreases with m, (Lemma 1), and (b) this probability is non-
zero only when Trep € Tp n, (Theorem 2). Both of these
results imply that window-averaged S-CSI (Q.vg(R)) is not
reliable for S-CSI acquisition of the interference channel state,
since P[M > N,,/2] = 0 for a large range of Ty, values. As
a result, link adaptation and scheduling schemes in 5G NR
will be inefficient in the presence of high-power radar pulses
with low T%p, since pilot-aided schemes fail to capture S-CSI
of the interference channel. Therefore, blind S-CSI estimation
methods need to be used to augment pilot-aided estimates,
when sharing spectrum with pulsed radars.

C. Numerical Results

Fig. 4 shows the impact of the estimation window length on
the mean/median-based limited S-CSI feedback schemes in 5G
NR, for Toegn = 71.43 us, Tosr = 4,8,--- ,64 ms [9], and
2 ms < Tpep < 3 ms. We observe that for a fixed pilot spacing
of Teses = 2 ms, the upper bound of P[M > %] is the
same for all cases. However, we also observe that increasing
Tosr shrinks the set of Tt values for which mean/median
S-CSI will be accurate for the interference channel. This
behavior can be explained usmg Theorem 2: Since T, /2. N,
Ukeq1.2).ger (RTestas — oy, 555 KT esms + m) in-
creasing To sy while keeplng Tesrrs constant increases N,
thus contracting the size of 'TNp /2,N,- Therefore, increasing
the estimation window length while keeping the pilot spacing
fixed degrades the availability of accurate S-CSI estimates
for the interference channel state, when mean or median S-
CSI feedback is used. In particular, sparsity of CSI-RS in the
time domain [9] reduces the effectiveness of pilot-aided S-CSI
estimation and limited feedback schemes in pulsed radar-NR
spectrum sharing scenarios.

V. CONCLUSION

Considering an underlay pulsed radar-cellular spectrum
sharing scenario, we derived bounds on the probability of
single and multiple pilot-bearing OFDM symbols being inter-
fered in a finite estimation window. We proved achievability
of the lower bound, and provided insights on designing pilot

interference-minimizing schemes as a function of the pilot
spacing and the radar repetition interval. We also proved that
the probability of multiple cellular pilots being interfered by
radar pulses in the estimation window is zero for a large set
of radar repetition intervals. This is detrimental for pilot-aided
statistical CSI estimation in the interference channel, which
highlights the need for blind methods in NR and beyond-5G
systems sharing spectrum with radars. We demonstrated the
accuracy of the derived expressions, and usefulness of the
design principles using examples from 5G NR. As cellular
networks evolve beyond 5G, these results and insights will be
crucial for demodulation reference signal design and robust
S-CSI acquisition and feedback schemes. This work can be
extended to analyze these probabilities in the case of a pulse
radar with an arbitrary staggering sequence, and coexistence
between MIMO pulsed radars and MIMO communication sys-
tems. A practical application of our work is to study the impact
of pulsed interference power on the throughput and latency
performance resulting from inaccurate S-CSI estimates.
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