
ResiRCA: A resilient energy harvesting
ReRAM crossbar-based accelerator
for intelligent embedded processors

Keni Qiu1, Nicholas Jao3, Mengying Zhao2, Cyan Subhra Mishra3, Gulsum Gudukbay3, Sethu Jose3, Jack
Sampson3, Mahmut Taylan Kandemir3 and Vijaykrishnan Narayanan3

1Capital Normal University, Beijing, China, (Email: qiukn@cnu.edu.cn)
2Shandong University, Qingdao, China , (Email: zhaomengying@sdu.edu.cn)

3Pennsylvania State University, USA, (Email: {naj5075, cyan, gulsum, sethu}@psu.edu, {sampson, mtk2,
vijay}@cse.psu.edu)

Abstract—Many recent works have shown substantial efficiency
boosts from performing inference tasks on Internet of Things
(IoT) nodes rather than merely transmitting raw sensor data.
However, such tasks, e.g., convolutional neural networks (CNN),
are very compute intensive. They are therefore challenging to
complete at sensing-matched latencies in ultra-low-power and
energy-harvesting IoT nodes. ReRAM crossbar-based accelera-
tors (RCAs) are an ideal candidate to perform the dominant
multiplication-and-accumulation (MAC) operations in CNNs ef-
ficiently, but conventional, performance-oriented RCAs, while
energy-efficient, are power hungry and ill-optimized for the
intermittent and unstable power supply of energy-harvesting IoT
nodes.

This paper presents the ResiRCA architecture that integrates
a new, lightweight, and configurable RCA suitable for energy
harvesting environments as an opportunistically executing aug-
mentation to a baseline sense-and-transmit battery-powered IoT
node. To maximize ResiRCA throughput under different power
levels, we develop the ResiSchedule approach for dynamic RCA
reconfiguration. The proposed approach uses loop tiling-based
computation decomposition, model duplication within the RCA,
and inter-layer pipelining to reduce RCA activation thresholds
and more closely track execution costs with dynamic power in-
come. Experimental results show that ResiRCA and ResiSchedule
achieve average speedups and energy efficiency improvements
of 8× and 14× respectively compared to a baseline RCA with
intermittency-unaware scheduling.

Keywords-Energy harvesting, ReRAM crossbar, CNN, Recon-
figurable hardware, Loop tiling, Computation scheduling

I. INTRODUCTION

In recent years, inference tasks, such as convolutional neural
networks (CNNs), have been integrated into an increasing
number of embedded applications to process edge-device
collected data locally [1]. Such integration grants IoT devices an
important degree of independence from remote servers, which
can be critical in deployments with challenging communication
environments. However, continuing this trend onto ultra-low-
power (ULP) IoT nodes presents clear design challenges due
to the mismatch between the performance and computation
requirements of CNNs and the limited resources of ULP
platforms. Such platforms often already operate at their limits
just in order to transmit sensed data at acceptable quality of

service (QoS) rates for deployment-viable battery lifetimes,
and may not have additional resources available for further
computation.

For many inference tasks, it is known that multiplication-
and-accumulation (MAC) is the dominant operation type. In
CNNs, for instance, MACs between the feature map data and
kernel weights comprise nearly 90% of the total operations [2],
[3]. Resistive random-access memory (ReRAM) crossbars are
regarded as a promising mechanism for accelerating CNNs with
high energy-efficiency as they can perform MAC operations
through analog current summation and can retain model
parameters in memory during inactive periods with extremely
low power overheads [3], [4], [5], [6], [7], [8], [9], [10]. In
the remainder of the paper, we may shorten the term ReRAM
crossbars to ReRAMs.

Despite the obvious potential synergy between ReRAM
crossbar-based CNN accelerators (RCAs) and IoT applications
needing CNN inference, there can remain substantial challenges
in efficiently performing inference on an IoT device if it does
not have either a high power or high stability power source.
Given form factor constraints on energy storage, the former
may be challenging, and energy-harvesting from sources such
as solar, thermal, kinetic and radio frequency [11], [12], [13],
[14], [15], [16] is notoriously unstable. While unstable power
sources have been successfully utilized for applications in
the IoT space [17], [18], [19], their use has not been heavily
explored for RCA design. Current RCA approaches can be
divided into two categories. The approaches in the first category
employ precision-conservative high power consuming ReRAM
circuits and organize numerous large scale ReRAMs [3],
[4], [5], whereas those in the second category adopt simple
ReRAM organizations that constrain their execution style (e.g.,
parallelism granularity), which disadvantages them in coping
with both variances across different ReRAMs and changing
power supply [6], [8]. However, neither of them is a good fit
for energy-harvesting scenarios.

To address these challenges, this paper proposes and experi-
mentally evaluates ResiRCA, a resilient ReRAM crossbar-based
CNN accelerator. Supported by a reconfigurable lightweight

hardware design, ResiRCA is able to activate scalable com-
putations via a multi-dimension tuning strategy. ResiRCA is
designed as an auxiliary co-processor, powered by energy-
harvesting, that augments a baseline, battery-powered MCU-
style IoT node that would otherwise transmit its data without
performing inference. In this design paradigm, the basic low
power, lightweight MCU system can enjoy the advantage
of continuous operation without suffering power outages,
while the compute-heavy inference tasks can be offloaded
to the RCA during periods when power income is sufficiently
high and to external systems otherwise. Such a system is
capable of both continuously collecting data and computing
CNNs locally near data. ResiRCA allows an RCA to adapt
to changing harvested energy and, with our co-designed
scheduling approach, ResiSchedule, it can achieve very high
throughput. To the best of our knowledge, this is the first
work that focuses on low power and reconfigurable RCA
design from both the hardware and software angles targeting
energy harvesting systems. This paper makes the following
key contributions:
• Low power, reconfigurable hardware design: We pro-

pose a novel architecture that implements a lightweight and
low power RCA to adapt to time-varying power resources.
Furthermore, the proposed hardware is reconfigurable at a
fine grain, to be able to dynamically activate different scaled
computations, which can fit to the changing features of the
underlying power resources.
• Resilient computation scheduling: We provide three

knobs to schedule computation blocks in the proposed ar-
chitecture: (i) loop tiling which decomposes MAC operations
in a given layer (ReRAM) into small blocks, (ii) ReRAM
duplication which provides opportunity to perform one-layer
operations with multiple weight copies, and (iii) pipelining that
can organize multiple ReRAM tiles to further exploit the har-
vested power. These knobs can be integrated to form sequential
or pipelined computation modes. For each computation mode,
we can derive the optimal activation solutions under each power
level directed by the power model and throughput model offline.
We propose ResiSchedule, which combines the advantages of
the two computation modes to cope with different power levels
during the course of execution.
• Smooth schedule transitioning: We identify smooth

transition conditions to transfer as many partial results as
possible from the last incomplete inference in one power cycle
to the next power cycle with a different power level. In addition,
we discuss how to keep the partial results in appropriate
computation points with or without power prediction.

II. MOTIVATION

To avoid negatively impacting the underlying system’s QoS,
we consider RCA-based acceleration for ULP IoT nodes as an
opportunistic computation knob, operating solely on ambiently
harvested energy, when available. In energy harvesting systems,
there are two critical features, namely, power strength and
power window length. First, the variance of input power
strength can be quite large: peak power can be hundreds or
thousands of times larger than average power. Second, the

variance of the input power window, i.e., how long the power
input stays at a given level, can be large as well.

It is known that RCAs achieve their highest efficiency
when every cell participates in the MAC computations simul-
taneously [20]. However, naively integrating such an RCA
renders its activation power requirement so high that the
system will likely have very low duty-cycle on an intermittent
supply and may never activate at all for weaker power sources
unless a substantial energy store were added, which could be
burdensome for form factor constraints in a system that already
employs a battery for sensing and other non-inference tasks.

TABLE I
AN EXAMPLE OF DIFFERENT ACTIVATION SCHEMES FOR AN EIGHT-CYCLE

POWER TRACE.

Power
cycle

Harv.
Power
(µW)

Power consumption
with full-size

acti.(µW)/
Thr. (GiGa MACs/s)/

Power utilization

Power consumption
with resilient acti. (µW)/

Thr. (Giga MACs/s)
/Power utilization

1 50 0/Power failure/0/0% 0/Power failure/0/0%
2 100 0/Power failure/0/0% 80/25×1×1/0.312/80%
3 500 480/25×6×1/1.872/96% 480/25×6×1/1.872/96%
4 200 0/Power failure/0/0% 160/25×2×1/0.624/80%
5 250 0/Power failure/0/0% 240/25×3×1/0.936/96%
6 750 480/25×6×1/1.872/64% 720/25×3×3/2.808/96%
7 650 480/25×6×1/1.872/74% 640/25×2×4/2.496/98%
8 350 0/Power failure/0/0% 320/25×2×2/1.248/91%

100

0.4

1.2

1.6

2.0

2.4

2.8

Power

(W)

Throughput

(Giga MACs/s)

Power consumption

with full-size activation

Power consumption

with tile-size activation

Throughput with

full-size activation

Throughput with

tile-size activation

Power

trace

Average

harvested power

Average power

consumption with

full-size activation

Average power

consumption with

tile-size activation

Average throughput

with full-size activation

Average throughput

with tile-size activation

3
5
6
.3

1
8
0

3
3
0

1.3

200

300

400

500

600

700

800

0.8 0.7

PC1

PC2

PC3

PC4

PC5

PC6

PC7

PC8

0

0 0

0 8
0

4
8
0

4
8
0

0 1
6
0 0 2
4
0

4
8
0

4
8
0

6
4
0

0 3
2
0

0 0 0
0
.3
1
2

1
.8
7
2

1
.8
7
2

0

0
.6
2
4

0

0
.9
3
6

1
.8
7
2

2
.8
0
8

1
.8
7
2

2
.4
9
6

0

1
.2
4
8

Fig. 1. Comparisons on power consumption and throughput with
tile-size over full-size activation

From the perspective of an intelligent embedded system, the
dominant power consuming part, the RCA, exhibits a highly
parallel and uniform execution property. Under this context, if
the power dominant RCA works in a fixed high-power mode,
as in traditional RCA designs, there would be large mismatches
between the harvested power and the consumed power. These
mismatches can lead to the following two “nonideal” working
scenarios:

(i) Unutilized energy: As long as the harvested power is
less than the activation power requirement of one ReRAM, it
is regarded as a power failure because the RCA is inactive. In
this case, the harvested energy will leak away and cannot be
recovered.

(ii) Underutilized energy: When the harvested power is
much higher than the activation power of the RCA, the RCA
can only work in the default lower energy consuming level. In
this case, the unused energy will be wasted, resulting in low
energy efficiency.

Considering the simple RCA working under a harvested
power trace shown in Table II and Figure 1, the RCA consists
of four 25× 6 ReRAM crossbars, each can be mapped to six
kernels, all sized 5×5×1. In the default case, the RCA works
under an either ON or OFF mode with a power threshold of
80µW. During the eight harvested power cycles, the ReRAM
can be ON during power cycles PC3, PC6 and PC7 and
OFF with the other five power cycles. However, even when
the system goes through the three power cycles, only some
portion of the harvested power is consumed. As a result, the
gap between the harvested power source and the consuming
trace indicates a large energy waste from an RCA designed
for efficiency under stable, high-power scenarios.

Fig. 2. Comparisons on loop code and ReRAM activation with tile-
size activation over full-size activation. (a) The original MAC codes;
(b) The kernel loops are mapped to a full-size ReRAM activation;
(c) The tiled MAC codes; (d) The tiled kernel loops are mapped to a
tiled-size ReRAM activation

If we tentatively use loop tiling to decompose the MAC
operations at the kernel level as shown in Figure 2 and perform
the MAC operations on the ReRAM tile one by one sequentially,
the system can achieve “continuous progress” under lower
power supply. This is because the starting power requirement
of the RCA is reduced, and the system can thus get through
power failures and translate even the low input energy into
forward progress. If only one tile is activated to perform
the MAC operations at one time, the system can still make
progress during time windows of power cycles PC2, PC4,
PC5 and PC8 under limited power budget, as depicted in
Table II and Figure 1. The annotations indicate the consumed
power (µW), tile size and duplication count (e.g., 25x2x1)
and power efficiency. With the resilient activation approach
supported by loop tiling and ReRAM duplication, it can be
seen that the power exploitation is increased from an average of

180µW to 330µW, and the throughput is increased by 85.7%.
Note that the partial activation of computation cells can be
realized by partially activating the peripheral circuits of the
corresponding rows and columns in the ReRAM crossbar. This
resilient activation approach can effectively combat Nonideal
scenario 1.

The underlying reason of encountering so many power
failures in the case of conventional working mode is that the
power threshold of the system to remain alive is set too high.
With the loop tiling technique, the power failure threshold can
be dropped to the requirements of the minimum activation tile
of a ReRAM. With this, the RCA can be active in a very large
power range and find more opportunities to make execution
progress. Further, if the power supply is larger than the starting
power threshold of one entire ReRAM, we can even arrange
multiple ReRAMs to work in a parallel fashion, as seen in
power cycles PC6, PC7 and PC8. Parallel computations across
multiple ReRAMs and loop tiling-based computation for each
ReRAM are orthogonal optimizations.

Figure 2 shows the codes and ReRAM mapping schemes
under full-size activation mode over tile-size activation mode.
In this example, the full size of ReRAM (or loop nest) is
M ×N = A×B × C ×N , and the tile size of ReRAM (or
loop nest) is m × n = 1 × tb × C × tn. Since each single
ReRAM can be activated at a finer granularity with tiling, the
parallelism can be achieved under a flexible range of power
consumption to match a variable power supply. Furthermore,
the better the high-power supply can be aggressively utilized,
the more ambient energy can be continuously extracted without
increasing the energy storage capacity for the energy-harvesting
power delivery system. Therefore, this weight duplication-
based execution style built upon fine-granularity activation
can effectively combat Nonideal scenario 2.

Figure 1 also shows the throughput under the full-size
activation mode and the tile-size activation mode. The flexible
working mode based on the loop tiling technique can achieve
more forward progress and higher power utilization. Extending
this single-ReRAM toy architecture to a practical multi-ReRAM
architecture to process multi-layer convolutions for real-world
CNNs introduces a new source of power variation in terms of
the different time and power costs of different convolution
layers. In this scenario, the idea of integrating tiling on
ReRAMs and paralleling ReRAMs, can also achieve high
energy efficiency.

III. SYSTEM LEVEL FLOW

This section presents the system level design of ResiRCA
from both the hardware and software perspectives. Below, we
provide an overview of the RCA interfaces and our system
integration model and then discuss the two main steps to map
a CNN to ResiRCA: offline compilation and runtime execution.

A. ResiRCA overview

Figure 3 shows the conceptual architecture of an intelligent
embedded system where an RCA is added to an existing MCU
system. The baseline, battery-powered MCU system samples
data at a fixed rate, supported by the provisioned battery, and
transmits either sensor data or the results of RCA processing

D
A
C

D
A
C

D
A
C

D
A
C

D
A
C

D
A
C

MCU

Memory
I/O

Ports

Interconnected Bus

Clock

Power

Intelligent Embedded System

...

...

ADC&S+A

D
A
C

Input Reg.

Output Reg.

Pool Unit

FC Unit

Adder Tree

ResiRCA

ReRAM

crossbar

...

ADC&S+A

D
A
C ReRAM

crossbar
Tx/RX

Energy

Harvestor

Sensors

Energy harvesting (EH)

...

Battery (B)

B

EH

Sigmoid

...

ReRAM

Memory

Basic MCU System

B

EH
EH

EH

EH

B

Fig. 3. ResiRCA architecture overview

to the network. The RCA is powered by harvesting ambient
energy and employs a separate, very small capacitor as its only
energy storage medium, primarily for power smoothing, similar
to prior energy-harvesting NVP designs [17], [21], rather than
as a task-scaled energy reservoir [22]. Note that the ReRAM
memory depicted in Figure 3 functions as both data storage for
the sensors and input/output storage for the RCA; so, it must
be able to operate from both the battery and harvested power
sources. Similar hybrid arrangements have been explored in the
NVP literature [23] and impose minimal design overheads. The
baseline MCU system is also augmented with a power-level and
RCA activity feedback mechanism from the energy-harvesting
portion of the platform to allow initial MCU programming
of the RCA control registers and model parameters and RCA
completion notifications.

B. Mapping inference tasks to ResiRCA

To achieve both generally low power and intermittency-
compatible execution, the proposed ResiRCA architecture has
the following two features that impact the software management
of the RCA:

Lightweight: From the perspective of the ReRAM circuit at
the core of the RCA, the precision and resolution of inputs,
weights and outputs are kept low to yield low power. This
entails that only models trained or adapted to low-precision
implementations can be used with ResiRCA. Similarly, total
model size, including any granularity overheads (e.g., from the
partitioning used to store both positive and negative weights by
having the kernels of one layer mapped to two crossbars, one
each for positive and negative weights, which share the same
input port) must fit within the allocated RCAs of a particular
ResiRCA design.

Fine-grained reconfiguration: The ResiRCA architecture
supports not only partial activation for one ReRAM or multiple
ReRAMs, but also sequential and pipelining execution modes.
This flexible reconfigurability enables fine-grained activations
to exploit the harvested power. While execution is relatively
straightforward when maintaining a specific configuration of
tiling and pipelining strategy, transitions between configurations
require additional management and power-intermittency aware-
ness to preserve progress from partial executions after power
level transitions and failures. The hardware design details will
be presented in Section IV.

As part of compiling a CNN to ResiRCA, we build a profiling
table relating each potential tiling and pipeline configuration

that might be used with the target CNN with its ReRAM
model resources, activation requirements, and power draw. This
profiling collects data used to determine the best activation
solution for each power level.

At runtime, each time when entering a new power cycle, we
first check the statically determined solution tables and pick
up the corresponding activation solution for the ReRAMs for
the current power level. Then, the execution process the “data
loading→ Mac computing→ data storing” steps in a sequential
way to perform convolution operations. The hardware design
details will be presented in Section V.

IV. A HARVESTING-COMPATIBLE, LOW-
POWER RESIRCA

Supporting the necessary features for adapting RCAs to a
harvested power supply will require optimizations in both RCA
circuit design and the development of variable-power-optimized
loop-tiling strategies. First, feasible implementations of flexible
activation options require a low power and reconfigurable
RCA. Second, a dynamic loop tiling strategy alongside a
coordinated parallelism scheme should be devised to match
execution power consumption as closely as possible to power
income to maximize efficiency. This section addresses the first
of these challenges, and Section V discusses our approach to
the second.

Challenge 1: Achieving low-power, reconfigurable RCA
Although recent works have presented systems [4], [3], [5]

and circuits [24], [6] for inference-oriented RCAs, they are not
directly suitable for adoption in our target scenario because of
either their high power consumption or their stringent execution
parameters (e.g., computation granularity). In general, these
designs are not optimized for enabling the small-scale partial
activation on ReRAM that would allow for power tracking in
an energy-harvesting environment.

Figure 4 shows five harvested power sources with the
maximum, mean and median values and their ratios indicated.
It has been shown that the power requirement to fully activate
a 128×8 sized ReRAM and obtain 8 outputs concurrently is
more than 24mW [3]. With this design, the presented power
sources can hardly activate even a small ReRAM. In order for
the ResiRCA to operate on harvested power, it must reduce
minimum ReRAM activation power. Therefore, the the RCA
should be built on the basis of a low power hardware design
that is upwardly reconfigurable to higher power scenarios rather
than the reverse.

One approach to achieve lower RCA power is to limit
precision. The impact of different precisions on CNN accuracy
has been extensively studied [24], [25], [26], [27], [28], [29],
[30], [31], [32], [33]. To meet our power constraints while
preserving reasonable accuracy, we adopt a 4-bit input with
a resolution of 1-bit, a cell resolution of 1-bit and a 4-bit
output. With this design setting, the ReRAM size only needs
to be equal to the kernel size, and the ReRAM scale does not
need to be extended using a bit composing scheme (e.g. as
in ISAAC [3]). In addition, it consumes very low power to
handle the Successive-Approximation Register (SAR)-ADC
referencing with the 4-bit output resolution. Moreover, we
adopt the 1T1R technique to build high resistance and low

2000

2500

3000

3500

1

3
0

5
9

8
8

1
1
7

1
4
6

1
7
5

2
0
4

2
3
3

2
6
2

2
9
1

3
2
0

3
4
9

3
7
8

4
0
7

4
3
6

4
6
5

4
9
4

5
2
3

5
5
2

5
8
1

6
1
0

6
3
9

6
6
8

6
9
7

7
2
6

7
5
5

7
8
4

8
1
3

8
4
2

8
7
1

9
0
0

9
2
9

9
5
8

9
8
7

1
0
1
6

1
0
4
5

1
0
7
4

P
o

w
e
r

(u
W

)

Thermal Signals

Pmax =3378 W

Pmean

=2943 W

Pmedian

=

Ratiomax/mean = 1.1 Ratiomax/median = 1.1

Data volume: 1098, Sampling time: 0.2 second, Time duration: 3.66 minutes

0

5000

10000

15000

20000

25000

30000

1

4
8

9
5

1
4
2

1
8
9

2
3
6

2
8
3

3
3
0

3
7
7

4
2
4

4
7
1

5
1
8

5
6
5

6
1
2

6
5
9

7
0
6

7
5
3

8
0
0

8
4
7

8
9
4

9
4
1

9
8
8

1
0
3
5

1
0
8
2

1
1
2
9

1
1
7
6

1
2
2
3

1
2
7
0

1
3
1
7

1
3
6
4

1
4
1
1

1
4
5
8

1
5
0
5

1
5
5
2

1
5
9
9

1
6
4
6

1
6
9
3

1
7
4
0

1
7
8
7

P
o

w
e
r

(
)

TV-RF Signals

Pmax

=25828 W

Pmean

=5571 W

Pmedian

Ratiomax/mean = 4.6 Ratiomax/median = 10.3

Data volume: 1800, Sampling time: 0.1 second, Time duration: 3 minutes

100

600

1100

1600

2100

2600

3100

3600

4100

1

7
7

1
5
3

2
2
9

3
0
5

3
8
1

4
5
7

5
3
3

6
0
9

6
8
5

7
6
1

8
3
7

9
1
3

9
8
9

1
0
6
5

1
1
4
1

1
2
1
7

1
2
9
3

1
3
6
9

1
4
4
5

1
5
2
1

1
5
9
7

1
6
7
3

1
7
4
9

1
8
2
5

1
9
0
1

1
9
7
7

2
0
5
3

2
1
2
9

2
2
0
5

2
2
8
1

2
3
5
7

2
4
3
3

2
5
0
9

2
5
8
5

2
6
6
1

2
7
3
7

2
8
1
3

2
8
8
9

2
9
6
5

P
o

w
e
r

(u
W

)

WiFi-office Signals
Pmax =3981 W

Pmean

=419 W

Pmedian

=

Ratiomax/mean = 9.5 Ratiomax/median = 11.2

Data volume: 3000, Sampling time: 0.2 second, Time duration: 10 minutes

300

400

500

600

700

800

900

1

5
2

1
0
3

1
5
4

2
0
5

2
5
6

3
0
7

3
5
8

4
0
9

4
6
0

5
1
1

5
6
2

6
1
3

6
6
4

7
1
5

7
6
6

8
1
7

8
6
8

9
1
9

9
7
0

1
0
2
1

1
0
7
2

1
1
2
3

1
1
7
4

1
2
2
5

1
2
7
6

1
3
2
7

1
3
7
8

1
4
2
9

1
4
8
0

1
5
3
1

1
5
8
2

1
6
3
3

1
6
8
4

1
7
3
5

1
7
8
6

1
8
3
7

1
8
8
8

1
9
3
9

1
9
9
0

WiFi-home Signals
Pmax=891 W

Pmean

=500 W

Pmedian

Ratiomax/mean = 1.8 Ratiomax/median = 1.8

Data volume: 2000, Sampling time: 0.2 second, Time duration: 6.7 minutes

0

200

400

600

800

1000

1

1
6
5

3
2
9

4
9
3

6
5
7

8
2
1

9
8
5

1
1
4
9

1
3
1
3

1
4
7
7

1
6
4
1

1
8
0
5

1
9
6
9

2
1
3
3

2
2
9
7

2
4
6
1

2
6
2
5

2
7
8
9

2
9
5
3

3
1
1
7

3
2
8
1

3
4
4
5

3
6
0
9

3
7
7
3

3
9
3
7

4
1
0
1

4
2
6
5

4
4
2
9

4
5
9
3

4
7
5
7

4
9
2
1

5
0
8
5

5
2
4
9

5
4
1
3

5
5
7
7

5
7
4
1

5
9
0
5

6
0
6
9

6
2
3
3

6
3
9
7

6
5
6
1

6
7
2
5

6
8
8
9

7
0
5
3

7
2
1
7

7
3
8
1

7
5
4
5

7
7
0
9

7
8
7
3

8
0
3
7

8
2
0
1

8
3
6
5

8
5
2
9

8
6
9
3

8
8
5
7

9
0
2
1

9
1
8
5

9
3
4
9

9
5
1
3

9
6
7
7

9
8
4
1

P
o

w
e
r

(u
W

)

Piezo Signals Pmax=998 W

Ratiomax/mean = 42.3 Ratiomax/median = 249.0

Pmean

=24 W

Pmedian

Data volume: 10000, Sample time: 0.1 millisecond, Time duration: 1 second

Fig. 4. Variance feature of different power sources

III-ADC

BL

WL

SL

Column 1

CSA

+

-

SAR

Ref

Shift&Add

Driver

Row 1

Row 2

Row m

Driver

Driver

I-DAC

II-Comp

4-bit inputs

1-bit resolution

1-bit weights

4-bit outputs

bit-

serial

Input

Reg.

4-bit

Output

Reg.

C

C

C

controlling

circuit

Fig. 5. Lightweight ReRAM circuit design

power ReRAM cells. Figure 5 shows the proposed peripheral
circuit design for one ReRAM crossbar. This design is more
concise even than the SINWP [6], because we target low power
as the primary goal.

To increase efficiency further our design supports aggressive
power gating and other circuit techniques to dynamically
reconfigure active tile sizes and shut-off inactive ReRAMs.
Specifically, we employ clock gating and input vector control
(IVC) techniques to further reduce leakage in inactive rows.
We modify the column multiplexers to enable variable active
columns and turn off the ADCs of inactive channels.

Lastly, we apply coarse-grain power gating to configure the
number of duplicated ReRAMs. This reconfiguration ability
can enable scaled activation of the circuits such that small
tile-size computation can be enabled while yielding very low
power consumption.

V. POWER-DYNAMIC RCA SCHEDULING

Given a viable RCA architecture for energy-harvesting
IoT nodes, the other key issue is the design of a software
scheduling mechanism to choreograph resilient execution on
this architecture.

Challenge 2: Software controlled dynamic RCA activation
and scheduling

The idea of loop tiling has been widely leveraged in RCA
design to either increase system throughput by smoothing
the pipelining or reduce memory accesses by improving
data locality [34], [3]. In this work, we re-purpose loop
tiling to perform computation decomposition on ReRAM

accelerated MACs. Moreover, we allow parallelism along
different dimensions to seamlessly integrate it with loop tiling,
and as a result, a range of scalable computations that can fit
in different power supplies are achieved. With this design idea,
the system can keep making forward progress over a large
range of power incomes. Sections V-A-V-C develop a dynamic
activation strategy for different power levels and Section V-D
discusses the transition strategy between dynamic activation
solutions.

A. Computation decomposition and parallelism

If the harvested power P budget is larger than the power
requirement of activating the smallest size of ReRAM, it implies
that the RCA is active and can make computation progress.
For active RCAs, one option is to use loop tiling to decompose
computations, and the other is to parallelize computations.
The parallelism in this context is of two types: intra layer
parallelism via layer duplication and inter layer parallelism
via layer pipelining. Further, tiling and parallelization can also
be combined to generate fine-grained scales of computations
to efficiently fit into the changing harvested power.

1) Computation tiling: In this work, we use loop tiling [35]
to decompose large parallel MAC operations into smaller
parallel blocks and execute the resulting blocks one by one.
As shown in Figure 2, if loop tiling is applied to the unrolled
MAC operations, only a tile of ReRAM cells along with their
peripheral circuits is enabled to perform MAC operations. After
traversing all the tiles one by one, one batch of MAC operations
on the entire ReRAM is completed. Note that, if the row-
wise tiling factor is less than the ReRAM row number, this
tiled execution strategy will introduce partial sums. When the
traversal completes, an Adder Tree will be used to merge the
partial sums for ReRAM columns and obtain the final MAC
result.

2) Computation parallelism: Intra-layer parallelism means
overlapping the layer computations on duplicated copies of
ReRAMs that store the same weights for one layer. We use
parallelism granularity G to denote the duplication count as
defined in [5]. G can be determined considering the tradeoff
between energy efficiency and chip area during the design
phase.

In this work, the parallelism granularity G of a layer is
determined by the ratio between 50% of the peak harvested
power during profiling and the power consumption of the full-
size ReRAM corresponding to this layer. That is, if the 50%
peak harvested power by profiling is twice (G=2) of the power
consumption with a ReRAM size of Layer 1 of 25x6, the RCA
will be designed to offer two sets of ReRAMs sized 25x6
for Layer 1. The actual parallelism granularity aG≤ G for a
layer is decided by the harvested power level. If we allow aG
ReRAMs to perform the concerned layer’s computations in
parallel, the input data should be divided into aG partitions.
In this way, the data in the same partition are processed in
a sequential fashion whereas the data in different partitions
are processed in parallel. This offers a flexible way to tune
the power consumption in a large design space, even though
the kernel size, convolution count and power consumption of
different layers can significantly vary.

Inter-layer parallelism means overlapping ReRAM compu-
tations for different convolution layers in a pipelined fashion.
This pipeline parallelism provides us with another dimension
to aggressively exploit the harvested energy. We can naturally
integrate the duplication based parallelism into the pipeline
parallelism to build a parallelization strategy where the pipeline
stages are composed of ReRAMs mapped from different
convolution layers. Previous work [3] has noted vulnerabilities
to pipeline bubbles and execution stalls in CNNs because of the
large variance in weight and feature map scales across different
layers. In this work, the pipeline imbalance issue is addressed
by tuning the activation degrees, duplication degrees and even
the pipeline execution style in a very fine-grain fashion.

3) Execution strategies: Figure 6 shows five different
execution strategies for a two-layer convolution execution
experiencing two power cycles with different levels. In Fig-
ure 6(a), a naive scheduling strategy is employed on a Simple
architecture. In this scheduling strategy, the RCA is only active
when the harvested power is adequate to support the maximal
power requirement among all the convolution layers and, in
the “simple” architecture, one convolution layer can only be
mapped to one ReRAM (no ReRAM duplication).

In the remainder of this paper, this execution strategy is
referred to as Naive1. We assume that Naive1 is also designed
with the proposed lightweight circuits.

In Figure 6(b), a naive scheduling scheme is applied, but this
time on the proposed ResiRCA architecture, which supports
ReRAM duplication. This execution strategy is referred as
Naive2. None of Naive1 and Naive2 executions can go through
power cycle PC-i and the power utilization is very low, as
there is a significant mismatch between the power producer
and consumer.

Figure 6(c) presents a flexible scheduling strategy applied to
ResiRCA. In this strategy, the loop tiling technique integrated
with the ReRAM duplication is enabled to obtain resilient
MAC computation blocks. The layers are scheduled in a
sequential fashion. This execution style is called Sequential.
In the example, we allow activating L1 ReRAMs with aG=4
and one partial L2 ReRAM in a sequential fashion.

In Figure 6(d), the loop tiling technique integrated with both
duplication and pipelining is used to schedule all layers on the

I4-L1

I4-

L2

I1-

L2

I3-L1

I3-

L2

I3-L1

I3-L1

I3-L1

I1-L1

I1-

L2

Power

Cycles

Power
Harvested

power

(a) Naive 1

Power

Cycles

Power
Harvested

power

(b) Naive 2

I1-

L2

-T1

I1

-L2

-T2

Power

Cycles

Power
Harvested

power

(c) Sequential

I1-L1-

T1

I1-L1-

T1

I1-L1-

T1

I1-L1-

T1

I1-L1-

T2

I1-L1-

T2

I1-L1-

T2

I1-L1-

T2
I2-

L2

-T1

I2

-L2

-T2
I2-L1-

T1

I2-L1-

T1

I2-L1-

T1

I2-L1-

T1

I2-L1-

T2

I2-L1-

T2

I2-L1-

T2

I2-L1-

T2

I1-L1

I1-L1

I1-

L2

I1-

L2

Power

Cycles

Harvested

power

I1-L1-

T1

I1-L1-

T1

I1-L1-

T2

I1-L1-

T2

Power

I1-

L2

-T1

I1

-L2

-T2

Power

Cycles

Harvested

power

I1-L1-

T1

I1-L1-

T1

I1-L1-

T1

I1-L1-

T1

I1-L1-

T2

I1-L1-

T2

I1-L1-

T2

I1-L1-

T2

Power

I1-L1-

T3

I1-L1-

T3

I1-

L2

-T1

I2-L1-

T1

I2-L1-

T1

I2-L1-

T2

I2-L1-

T2

I1-

L2

-T2

I1-

L2

-T3

I2-L1-

T3

I2-L1-

T3

I1-

L2

-T4

I3-L1-

T1

I3-L1-

T1

I3-L1-

T1

I3-L1-

T1

I3-L1-

T2

I3-L1-

T2

I3-L1-

T2

I3-L1-

T2

I2-

L2

-T1

I2

-L2

-T2

I4-L1-

T1

I4-L1-

T1

I4-L1-

T1

I4-L1-

T1

I4-L1-

T2

I4-L1-

T2

I4-L1-

T2

I4-L1-

T2

I3-

L2

-T1

I3

-L2

-T2

I5-L1-

T1

I5-L1-

T1

I5-L1-

T1

I5-L1-

T1

I5-L1-

T2

I5-L1-

T2

I5-L1-

T2

I5-L1-

T2

I4-

L2

-T1

I4

-L2

-T2

I2-

L2

-T1

I2

-L2

-T2
I2-L1-

T1

I2-L1-

T1

I2-L1-

T1

I2-L1-

T1

I2-L1-

T2

I2-L1-

T2

I2-L1-

T2

I2-L1-

T2

I3-L1-

T1

I3-L1-

T1

I3-L1-

T1

I3-L1-

T1

I3-L1-

T2

I3-L1-

T2

I3-L1-

T2

I3-L1-

T2

I2-

L2

-T1

I2

-L2

-T2

I4-L1-

T1

I4-L1-

T1

I4-L1-

T1

I4-L1-

T1

I4-L1-

T2

I4-L1-

T2

I4-L1-

T2

I4-L1-

T2

I3-

L2

-T1

I3

-L2

-T2

I5-L1-

T1

I5-L1-

T1

I5-L1-

T1

I5-L1-

T1

I5-L1-

T2

I5-L1-

T2

I5-L1-

T2

I5-L1-

T2

I4-

L2

-T1

I4

-L2

-T2

(d) Pipelining

(e) ResiSchedule

I1-L1

I1-L1

I1-L1

I2-L1

I2-

L2

I2-L1

I2-L1

I2-L1

I1-L1

PC-i PC-i+1

PC-i PC-i+1

PC-i PC-i+1

PC-i PC-i+1

PC-i PC-i+1

I5-L1

I5-

L2

I5-L1

I5-L1

I5-L1

I3-L1

I3-

L2

I3-L1

I3-L1

I3-L1

I4-L1

I4-L1

I4-L1

Fig. 6. Five layer scheduling schemes: (a) Naive execution @Simple
architecture; (b) Naive execution @ResiRCA architecture; (c) Se-
quential resilient execution @ResiRCA architecture; (d) Pipelining
resilient execution @ResiRCA architecture; and (e) Hybrid resilient
execution @ResiRCA architecture

ResiRCA architecture; we call this execution style Pipelining.
For ease of explanation and simulation, we only allow full
pipelining in this execution, which means MAC operations of
all the layers are included in each pipeline stage.

Finally, Figure 6(e) shows the loop tiling technique inte-
grated with a hybrid parallelism scheme. We refer to this as
ResiSchedule. At runtime, ResiSchecule dynamically selects
activation solutions from either Sequential or Pipelining in
each power cycle, depending on which can provide a better
throughput. With ResiSchedule, we can cover a large tuning
range commensurate with power supply variation. Section V-C
will further present quantitative analysis and solution on how

tofigureouttheoptimalactivationsize,duplicationdegreeand
executionstyletoachieveanidealResiScheduleforResiRCA.

B.Powermodelandlatencymodel

PowersupplyisasignificantconstraintforResiSchedule.
Byanalyzingthepowercostofeachstepoftheconvolution
operations,wecanbuildapowermodelrelatedtotheactivation
solutionm,n,aG wherem,n,andaGdenoterowfactorand
columnfactoroftheReRAMtilingandtheactualparallelism
granularityofReRAMduplicationcopies.ResiRCApower
consumptiondividesintothreemajorpartsfromanarchitectural
viewpoint,Pload,PcompandPstore,andtheyareperformed
insequence.

1)Loadandstore:PloadandPstore denotethepower
consumedbyloadingthedatafromthepureReRAMmem-
oryintotheinputregistersandstoringthedatafromthe
outputregistersintotheReRAM memory.Pload= aG×
(Bitsinput/BNin)×Pld−bit modelsloadpoweroperation.
Here,thetermsBitsinputandBNindenotethenumberof
inputbitstoserve MACoperationsforafull-sizedReRAMand
thebatchnumberoftransferringtheseinputbitsrespectively.
Therefore,Bitinput/BNinmeanstheactualloadeddatabits
eachbatch.ThetermPld−bitdenotesthepowerconsumption
ofloadingonebitfromReRAMmemorytotheinputregister.
TheinputbatchnumberBNinisdeterminedbythepower
budgetbecausePload<=Pbudgetshouldalwaysbesatisfied.

Thelatency modelfordataloadforoneconvolution
operationisLatload= Bitsinput/BWld.ThetermLatload

representsthelatencytoloadthedatarequiredbythe
convolutionoperationsforone-cycle MACoperationsfora
full-sizeReRAM.ThetermBWlddenotesthebandwidthof
eachloadoperation.ThemodelsofPstoreandLatstorecan
bederivedinasimilarfashion.

2) ComputationonReRAMs:Pcompisthedominantand
mostcomplicatedpartwheretheanaloganddigitalsignals
aremixed.Theenergyofone-cycle MACoperationsforan
activationsizeofm×nandactualduplicationaG,Pcomp−tile

dividesintothefollowingparts:1)EDAC denotestheenergy
consumedforconvertingthedigitalinputsignaltotheanalog
signalinabit-serialfashion;2)EMAC denotestheenergy
forperforming MACoperationsonReRAMs;and3)EADC

consistsofthreepartsasshowninFigure5:3i)EBL denoting
theenergyforactivatingbitlines;3ii)ESA−Ref denotingthe
energyforsensingandamplifyingthe MACresultsignaland
thenreferencinganalogsignalstodigitalsignals;and,3iii)
ES+A denotingtheenergyofShift&Addparttocomposethe
finaloutput.

IntheResiRCAdesign,thetimeforperformingone-cycle
of MACoperationsononeReRAMtileisfixedasLatcomp=
Tcomp,andisindependentoftheactivationsize.Therefore,we
canbuildthepowermodelforthecomputationpartinterms
ofatileasshowninEquation1.

Ecomp=Ecomp tile/Latcomp

=(EDAC +EMAC +EADC)/Tcomp
(1)

Thepowerofeachpartistakentobelineartothetiling
factorsofm ornortheactualparallelismgranularityaG.

TheenergyforoneReRAMrow(eDAC),oneReRAMcell
(eMAC)andoneReRAMcolumn(eBL,eSA−Ref,eS+A)are
theworst-casevaluesfromthesimulation.TableV-B2presents
therelationshipofenergyandtheReRAMtilingsizeand
ReRAMcopies.

TABLEII
RELATIONSHIPOFENERGYANDTHERERAMTILINGSIZEAND

RERAMCOPIES.

Component Energyequation

DAC EDAC=eDAC×m×aG
Computation EM AC=eMAC ×m×n×aG

ADC
BL EBL=eBL×n×aG
SA-Ref ESA−Ref=eSA−Ref×n×aG
S+A ES+A=eS+A×n×aG

3)Partialsums:Thecomputationdecompositionacross
ReRAMsbylooptiling mayproducepartialsumsforthe
activatedtileswheneachcolumninthetileisnotfullyactivated.
Asaresult,thesepartialsumsneedtobe mergedoncethe
(tile)traversalofanentireReRAMiscomplete.Thesum
mergingoperationisperformedbyanAdderTreeasillustrated
inFigure3. Wecanprovidetreetopologycandidatesfor
differentpowerlevels,keepingin mindthattheconstraint
ofPmerg <Pbudget shouldbealways met.Therefore,the
powerPmerge andlatencyLatmerge ofthepartialsummerging
operationunderdifferentmergingcasescanbeobtainedoffline.

4)Activationtransitioncost:Theexecutiontransitionfrom
onetiletoanotherinsideonepowercycleorfromoneactivation
solutiontoanotherindifferentpowerlevelsalsocostspower
PtransandlatencyLattrans.Activationtransitionimpliesthat
weneedtoenablethecorrespondingcircuitsoftheto-be-
activatedrowsandcolumnswhileshuttingdowntheothers.
Thisfunctionissupportedbythegatingcircuitsdescribedin
SectionIV.Thiscostwillbeonlycountedatthebeginningof
apowercyclewhenanactivationtransitionoccurs.

5)Powerandlatencymodels:Theaboveanalysiscaptures
thepowerconsumptionandexecutionlatencyofprocessing
oneconvolutionlayer.Itisassumedthatallofthesesteps
areperformedinsequence.Puttingthemalltogether,for
convolutionlayerLk,thepowerandlatencypaircanbemodeled
asinEquation2and3.

PLK =(Pld× Latld
Lk +Pcomp× Latcomp

Lk

+Pst× Latst
Lk +Pmerge × Latmerge

Lk)/LatLk

(2)

LatLK = Latld
Lk + Latcomp

Lk + Latst
Lk + Latmerge

Lk

(3)

Consideringprocessing multipleinferenceswith multiple
convolutionallayersLC(LC≥2),thelayerscanbescheduled
foreithersequentialorpipelinedcomputationmode,asshown
intheexamplesinFigures6(c)and(d),respectively.Based
onthe modelscapturingonelayerinEquations2and3,
wecanbuildthe modelsforeachconvolutionlayerofa
CNNapplication. Underthesequentialcomputation mode,
theconvolutionlayersareexecutedonebyoneinasequential

fashion, and as a result, the power model and latency model
in Equations 2 and 3 can be directly used. We also model the
pipelined computation mode shown in Equations 4 and 5. Note
that the pipelined computation mode means that all the LC
convolution layers are executed fully parallel.

P pipe =

LC∑
Lk=1

PLk (4)

Latpipe = max(LatL1, LatL2...LatLC) (5)

C. Dynamic activation strategy

1) Problem formulation: In this section, we focus on
figuring out the ResiSchedule solution to achieve the maximal
throughput. Although we can arrange more hardware resources
with the pipelined computation mode, it does not mean this
mode will always yield greater computation progress than
the sequential mode due to the constraints of tile size and
parallelism granularity. Therefore, in order to achieve optimal
progress, we need to select the best activation solution offered
by both the computation modes. Given a power supply level,
we can derive the optimal tile size and actual duplication
granularity to form the activation solution 〈m, n, aG〉 for
sequential or pipelined computation modes, respectively. Then,
a global activation strategy can pick up the best one of these
two and generate a hybrid solution for the concerned power
level.

Throughput model Achieving the maximal computation
progress under the harvested energy has two implications. The
first one is that we expect more energy can be used for program
progress. The other is more subtle in that we expect the power
can be consumed quickly in order to receive more energy from
outside. In this regard, the metric throughput measured by
computations (convolutional MACs) per second is a useful
proxy for ResiRCA in energy-harvesting scenarios. We use
the number of convolutional MAC operations to represent
the computations. For the sequential computation mode, the
throughput for Layer Lk can be expressed as below:

ThrsequLk =
(m× n)Lk × aGLk

LatLk

(6)

The average throughput with a LC-convolution CNN infer-
ence can be expressed as shown below.

Thrsequave =

∑Lk=LC
Lk=1 (m× n)Lk × aGLk∑Lk=C

Lk=1 LatLk

(7)

For the pipelining computation mode, all the LC layers
are executed in parallel. The throughput can be expressed as
follows:

Thrpipeave =

∑Lk=LC
Lk=1 (m× n)Lk × aGLk

Latpipe
(8)

2) Activation strategy formulation : The activation strategy
for the sequential mode can be described as shown below. In
order to formulate the problem in a concise way, the tiling
factors, m and n, are constrained to be divisors of the ReRAM
weight matrix M× N using the annotations of m |M ; n | N .

Objective: Maximize Thrsequave

Subjected to: for each layer Lk,
P load
Lk , P store

Lk , P comp
Lk , P trans

Lk , Pmerge
Lk < P budget;

aGLk < GLk;

mLk |MLk; nLk | NLk;

Solution output: 〈mLk, nLk, aGLk〉 for each layer Lk

Similarly, the activation strategy under the pipeline execution
mode can be described as below.

Objective: Maximize Thrpipeave

Subjected to:∑
P load,

∑
P store,

∑
P comp
pipe ,

∑
P trans,

∑
Pmerge <

P budget;

aGLk < GLk;

mLk |MLk; nLk | NLk;

Solution output: 〈mLk, nLk, aGLk〉 for each layer Lk

By solving the above problems, we can obtain activation
solution 〈m, n, aG〉 for each power level under the sequential
and pipelining computation modes, referred to as SOLsequ

and SOLpipe respectively. Then the optimal solution can be
selected from among them. The solution space is actually very
small because of the constraints that tile size candidates and
aG are all bounded in the integer domain. It may happen
that multiple equivialent solutions can be obtained either for
sequential computing mode or pipelining computing mode. In
this case, we choose the activation solution with larger tiling
size by taking into account the transition cost. If the tiling
sizes of output solutions are the same, we choose larger m
because larger m implies fewer partial sum adds.

D. Activation transition

The power instability of energy harvesting implies that the
activation solution needs to change dynamically as power
level changes. Figure 7 shows the finite state machine (FSM)
directing transition strategy. An FSM transition can happen
between any pair of power levels.

Activation solution under

power level l: <m
l
, n

l
, aG

l
>

Activation solution under

power level h: <m
h
, n

h
, aG

h
>

Smooth transition
l->h

without power prediction

Smooth transition
l->h

with power prediction

Smooth transition
h->l

without power prediction

Smooth transition
h->l

with power prediction

1

2

3

4

Fig. 7. Activation solution transition FSM

The convolution computations of one inference may not
be completed while transitioning to a new power level. For
small-scale applications with strong harvested power supply,
discarding the incomplete execution may have only modest
overheads. However, for large-scale applications with weak
harvested power supply, it is highly desirable to maintain the
already-obtained results and smoothly transfer them to the next
power cycle.

Fortunately, there exist opportunities to keep and transfer
the intermediate computation results of the last incomplete
inference to the next power cycle. Considering a transition

for one layer from an activation solution 〈m1, n1, aG1〉 to
〈m2, n2, aG2〉, we find that, if the expression Conditiontrans:
(m1 = m2)&(n2 | (Tilecount1 × n1))&(aG1 = aG2)
is true for each convolution layer, the activation solution
〈m1, n1, aG1〉 with power level PL1 can be transferred to be
equivalent to an execution of activation solution 〈m2, n2, aG2〉
with PL2. The execution equivalency can be transferred by
Tilecount2 = Tilecount1 × n1/n2.

The next power cycle’s level information cannot be known
with certainty. In order to not discard the acquired results,
we can search the maximal ∗Tilecount1 where ∗Tilecount1 ≤
Tilecount1 to make the expression n2 | (∗Tilecount1 × n1)
conservatively true for each layer, and then transfer the tile
count ∗Tilecount1 to accommodate to the new activation
solution. This means that only a portion of computation
results from ∗Tilecount1 to Tilecount1 will be discarded. The
discussion on this transition without power prediction is applied
for transitions 1 and 2 in the Figure 7. We call this smooth
transition strategy as TransitionKeep.

With a power predictor [36], we can estimate the power
level of the next power cycle in advance. In this way, we
can, when accurate, make a much smoother transition when
transferring the results of an incomplete inference. Still, with
Conditiontrans satisfied, the smooth transition can be achieved
in a similar way. Otherwise, if the expression Conditiontrans

is not satisfied, with power prediction, we can still speculatively
attempt to perform a smooth transition. There are two strategies
to achieve this.
• We can search for an intermediate power level, where

we first switch to the activation solution corresponding to this
intermediate power level and then switch to the solution of the
actual power level – this strategy is called Multi-step Transition.
• If the power predictor reports a power transition from a

high level to a low level, we can move to the new activation
solution before performing the last incomplete inference – this
strategy is referred to as Eager Transition.

The discussion on this transition with power prediction is
applied for transitions 3 and 4 in the Figure 7. Since
a power predictor itself consumes power, it makes sense to
employ it for large-scale applications under weak power sources
where discarding a portion of computations may impose a big
loss or for the scenarios where power level transitions happen
frequently.

VI. EXPERIMENTS

To evaluate ResiRCA, we have extended the Gem5 [37]
simulator with RCA modeling. The basic MCU is built on an
ARM core, and the entire system runs on a 200MHz clock.
The energy harvesting mechanism is supported by the power
management unit, which can record power production and
consumption at an execution cycle level. The added RCA
module consists of ReRAM crossbars, the activation solution
table, and other function units (e.g., Pooling, FC, sigmoid) of
the CNNs. We perform cycle-accurate simulation for the MAC
computations based on tile activation and the data load/store
process. However, for other functional units, we assign a fixed
latency. For the ReRAM circuit simulation, we quantify power
and performance of our design in HSPice [38] using 20nm

FinFET ReRAM parameters from [39]. Load/store parameters
of the ReRAM memory are from NVSim [40]. The main
parameters of our simulations are given in Table VI. Four
practical CNNs listed in Table VI are evaluated on the five
power traces illustrated in Figure 4 for each of the five execution
strategies from Section V-A3: Naive1; Naive2; Sequential;
Pipelining; and ResiSchedule.

TABLE III
RERAM PARAMETERS

ReRAM computing
crossbar

DAC(150×N×1 title) 5.4 pJ
ADC(M×1×1 title) 749 fJ
S+A(M×1×1 title) 41.6 fJ
area (all peripherals included) 2950.47 µm2

ReRAM memory
(16KB)

bandwidth 128 bit/s
read energy 37.993 pJ
read latency 1.577 ns
write energy 95.412 pJ
write latency 20.09 ns

TABLE IV
IOT-PRACTICAL CNN WORKLOADS

CNN Layer Kernel RRAM Size Acti. power Input

PV [41]

Input 1@50×50
Conv1 8@6×6×1 36×8 752.2µW 8@45×45
Conv2 12@3×3×8 72×12 1125.6µW 12@20×20
Conv3 16@3×3×12 108×16 1526µW 16@8×8
Conv4 10@3×3×16 144×10 1114µW 10@6×6
Conv5 6@3×3×10 90×6 676.2µW 6@4×4

FR [42]
Input 1@32×32
Conv1 4@5×5×1 25×4 377.4µW 4@28×28
Conv2 16@4×4×4 64×16 1433.6µW 16@10×10

LeNet [43]
Input 1@32×32
Conv1 6@5×5×1 25×6 539.7µW 6@28×28
Conv2 16@5×5×6 150×16 1614.2µW 16@10×10

HG [44]
Input 1@28×28
Conv1 6@5×5×1 25×6 539.7µW 6@24×24
Conv2 12@4×4×6 96×12 1176µW 12@8×8

For each application on each power trace, we report the
throughput and energy efficiency under the five different
execution strategies. We then demonstrate the benefits from the
proposed smooth transition strategy and power prediction. We
also study the sensitivity of our proposed approach to available
ReRAM hardware resources.

A. Throughput

Figure 8 shows the throughput comparison of the five exe-
cution strategies. The bars are all normalized to ResiSchedule.
The included table gives the absolute values of throughput by
ResiSchedule. The results show that ResiRCA and ResiSched-
ule combine to achieve an average throughput improvement of
8× compared to a baseline RCA with intermittency-unaware
scheduling. One can make the following observations and
analyses from these results:
• For each workload with each power source, ResiSchedule

always achieves the highest throughput because it combines
the best activation solution in each power cycle. The results of
Naive1 are the worst because it lacks both adequate hardware
resources and scheduling flexibility. Although Naive2 is based
on the ResiRCA architecture, the throughput is still relatively
low because it lacks scheduling adaptation to fit to the changing
harvested power.
• The results of ResiSchedule are very close or equal to that

of Sequential under most cases. When we track the simulation
cycles, it is found that the throughput of Sequential solution

R
e
s
iS
c
h
e
d
u
le

Piezo WiFi-home WiFi-office Thermal TV-RF

Fig. 8. Throughput of CNNs across the power sources normalized to
ResiSchedule

Piezo WiFi-home WiFi-office Thermal TV-RF

Fig. 9. Energy efficiency of CNNs across the power sources
normalized to ResiSchedule

is higher than that of Pipelining solution for a significant
fraction of the active power cycles. That is, the selection ratio
of Sequential is much higher than the ratio of Pipelining in
ResiSchedule solutions in the whole power trace.
• Consistent with the above observation, the entire Sequential

strategy competes with the entire Pipelining. The reason is
that the active power threshold of Pipelining is much higher
than that of Sequential. As a result, fewer power cycles of
Pipelining are available than that of Sequential. However,
we believe that this is highly related to the default ReRAM
duplication assignment in the experiments. When we change
to a smaller ReRAM duplication granularity G, we find that
the throughput of Pipelining is better than that of Sequential
for many power levels. The duplication sensitivity results are
presented in Section VI-F.
• Regarding the throughput absolute values, the results with

the power sources of Thermal and TV-RF are much higher
than those with the others, which is constant with the power
strength illustrated in Figure 4.

B. Energy efficiency

We evaluate energy efficiency by measuring MAC operations
per Joule, as shown in Figure 9. Note that this includes the
energy overheads of data movements and other functional units
in addition to MACs. Overall, the normalized results of energy
efficiency are very similar to those of the throughput evaluation.
The results show that ResiRCA and ResiSchedule achieve
average energy efficiency improvements of 14× compared to
a baseline RCA with intermittency-unaware scheduling.

The only difference that can be observed is that, regarding
LeNet and PV with the power source of Thermal, relatively
speaking, the results of energy efficiency with Pipelining
strategy are higher than that appearing in the throughput
evaluation. One possible reason for this is that Pipelining

requires loading several inputs from ReRAM memory to
perform the parallel operations, which is power-expensive.
This results in a behavior where, albeit less frequently having
enough power to activate at all, the energy efficiency when
active is high.

Compared to the cloud for online processing, the preference
for local compute over offload can stem from security, con-
nectivity and latency concerns as well as power and energy
constraints. In our work, local computation across the CNN
applications is ∼50x more efficient than transmission over
Bluetooth with 3Mbps and 2.5mW.

C. Power utilization

In order to further understand the power utilization, we
use a two-dimensional plot that illustrates the features of
power consumption with theResiSchedule strategy, as shown in
Figure 10. The x-axis (power efficiency) denotes the percentage
of power cycles where the RCA can activate. The y-axis
(power utilization), on the other hand, denotes the percentage
of valid power during activations which is actually utilized for
computation and data transfer. An ideal system would be at
the point (1,1). It can be observed from these results that the
proposed ResiSchedule strategy can make good use of the Piezo
source when it does exceed the minimal activation thresholds,
though the very low duty cycle yields very low throughput.

0.84
0.86
0.88
0.9

0.92
0.94
0.96
0.98

0 0.10.20.30.40.50.60.70.80.9 1

P
o

w
e
r

U
ti

li
z
a
ti

o
n

Power efficiency

Piezo-LeNet Piezo-FR

Piezo-HG Piezo-PV

WiFi-h-LeNet WiFi-h-FR

WiFi-h-HG WiFi-h-PV

WiFi-o-LeNet WiFi-o-FR

WiFi-o-HG Thermal-LeNet

Thermal-FR Thermal-HG

Fig. 10. ResiSchedule power efficiency analysis

D. Transition efficiency

Table VI-D shows the ratio of inferences using smooth-
transitioned partial results and total inference count number.
These results indicate that the smooth transition strategy
TransitionKeep enables a significant fraction of the inferences
for all workloads on Piezo. However, a very small fraction
is observed with the other, stronger power sources. For
Piezo, saving the intermediate results of one incomplete
inference is meaningful. However, one power cycle of the
other power sources can usually process thousands or hundreds
of inferences.

TABLE V
THE RATIO OF ADDITIONAL INFERENCES ENABLED BY THE

SMOOTH TRANSITION STRATEGY VS. TOTAL INFERENCES

Piezo WiFi-h WiFi-o Thermal TV-RF

LeNet 0.978632 0.000574 0.000782 0.000096 0.000068
FR 0.927445 0.000538 0.000594 0.000067 0.000059
HG 0.862620 0.000319 0.000416 0.000062 0.000049
PV 0.980769 0.002529 0.003181 0.000335 0.000266

E. Power predictor

With an accurate power predictor [45], [36], we can make
more smooth transitions among different power levels. The
benefit is that we can keep more MAC results of the last

incomplete inference when switching from a higher power
level to a lower power level, even if Conditiontrans is not
satisfied. However, to be valuable the power predictor must have
high accuracy. For both Piezo and Thermal power sources the
prediction accuracy when using a multi-power-level-optimized
extension of the power predictor in [36] are above 80%.
Figure 11 shows the percentages of additional inferences
enabled by power prediction over all inferences and additional
inferences with Transitionkeep for all the workloads with
these power sources.

0
.0

%

0
.3

%

0
.0

%

0
.3

%

0
.0

%

0
.9

%

1
.9

%

2
.0

%

0
.0

%

0
.5

%

0.0%

20.0%

40.0%

60.0%

vs. # all inferences vs. # addi. inferences

w/ smooth transition

vs. # all inferences vs. # addi. inferences

w/ smooth transition

Piezo Thermal

LeNet FR HG PV

Fig. 11. Percentages of additional inferences with power prediction
over all inferences and additional inferences with the Transitionkeep

strategy

The portion of inferences added with power prediction are
significant for Piezo for most workloads. This is because, the
Piezo source is very weak and and the total completed number
of inferences is quite small. Speculative action supported by
power prediction can keep quite a few incomplete inferences
to be completed in the next power cycle. This can also explain
why the portions with the power source of Thermal are very
small. However, for both Piezo and Thermal, the portions
for PV are very small. The underlying reason is that the
smooth Transitionkeep strategy can already handle the smooth
transitions with no need of power prediction support for this
workload.

F. Sensitivity study on duplication copy

We vary the ReRAM duplication granularity G for each
layer and evaluate with TV-RF source. Throughput results are
plotted in Figure 12 and area costs for G1 ∼ G5 can be
found in Figure 13. For each benchmark, all the numbers are
normalized to that of the G4 setting with the Naive2 policy.
As expected, the throughput increases as G grows for every
benchmark. Another interesting observation is that the results
of ResiSchedule policy can be competitive to that of Sequential
policy when G is small and vice versa. The main reason for this
is that the ResiSchedule policy can efficiently organize more
hardware resources than the Sequential policy when hardware
resources are limited.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

G1 G2 G3 G4 G5 G1 G2 G3 G4 G5 G1 G2 G3 G4 G5 G1 G2 G3 G4 G5

PV HG LeNet FR

Naive2 Sequential Pipelining ResiSchedule

Fig. 12. Throughput normalized to G4 with Naive2 vs. ReRAM
duplication granularity

The RCA area is impacted from the parallelism granularity
G, as shown in Figure 13. It also demonstrates that the proposed
ResiRCA has total area requirements smaller than previously
proposed “smart dust” solutions [8]. The ideal parallelism
granularity determination for a particular deployment should
consider the balance between throughput and area.

0

20000

40000

60000

80000

100000

120000

140000

160000

PV HG LeNet FR

G1 G2 G3 G4 (default) G5

A
re
a
in

m
2

<
2
,
2
,
2
,
2
,
2
>

<
4
,
3
,
2
,
3
,
5
>

<
6
,
4
,
3
,
4
,
7
>

<
8
,
5
,
4
,
5
,
9
>

<
1
2
,
7
,
6
,
7
,
1
3
>

<
2
,
2
>

<
6
,
2
>

<
9
,
3
>

<
1
1
,
5
>

<
1
6
,
7
>

<
2
,
2
>

<
5
,
2
>

<
8
,
3
> <
1
1
,
4
> <
1
6
,
6
>

<
2
,
2
>

<
7
,
2
> <
1
3
,
3
>

<
1
7
,
4
>

<
2
2
,
6
>

Fig. 13. Area with different duplication granularity

VII. RELATED WORK

The previous RCA related work can be divided into the
following two categories:
High Performance RCA Architectures: PRIME [4] uses
6-bit inputs and 8-bit weights and targets 6-bit output precision.
A composition scheme is proposed, which uses two 3-bit
input signals to construct one 6-bit input signal and two 4-bit
cells representing one 8-bit synaptic weight. In the PRIME
configuration, the ReRAM-based Full Function (FF) subarrays
have both computation and data storage capabilities. To achieve
the dual modes of FF subarrays and maximize reusability,
custom peripheral circuits are designed.

In the ISAAC design [3], the inputs, weights and outputs
are all 16 bits, where the DAC, ReRAM cell and ADC
resolutions are, respectively, 1-bit, 2-bit and 8-bit. Also, a
similar composition scheme is employed to organize the input,
weight and output data. The ISAAC architecture is composed
of 16 tiles and each tile consists of 8 IMAs which includes 4
ReRAMs along with 4 sets of peripheral circuits. An intra-tile
pipeline is formed to boost the dot-product throughput.

In the PipeLayer design [5], a spike-based scheme, instead
of a voltage-level based scheme, is used for input to eliminate
the power overhead of DACs and ADCs. The underlying idea
is to use spike counts to represent the data value. They propose
intra-layer and inter-layer parallelism to support the training
phase by reducing potential stalls.
ReRAM MAC circuits for the IoT: The nonvolatile
intelligent processor (NIP) [8] is designed for accelerating
fully-connected layers in energy harvesting IoT scenarios, in
contrast to the convolutional layers ResiRCA targets. It includes
four ReRAMs, each 32x32. The inputs and weights are binary
and the output is adaptive between 1-3 bits. The serial-input
non-weighted product (SINWP) structure [6] is the first work
to propose multi-bit input/weight and output design from the
circuit level, adopting a 2-bit input, 3-bit weight, and 4-bit
output scheme. Note that each 3-bit signed weight needs a
single-level-cell (SLC) ReRAM cell and is processed with a

3-bit resolution, which is a high performance but also a high
power consuming design.

Although the above designs provide different approaches to
achieve high throughput, high energy efficiency and low power,
they cannot be directly applied or combined to be applied in
the energy harvested edge devices due to the following reasons.
• The architecture-centric works [3], [4], [5] conservatively

maintain high precision data and high resolution circuit signals,
leading to high power consumption. Furthermore, the hierarchy
they adopt with multiple ReRAMs targets primarily high
throughput, leading to high power consumption on the whole
RCA. For example, the total 168 Tiles and one IMA element
of the ISAAC architecture [3] collectively consume 55.4W and
27.5mW respectively, while the peak harvested power for edge
devices often lies in the range from hundreds of micro-watts to
a few milli-watts in our collection sets. It can be seen that those
designs are not suitable for an RCA supplied with harvested
unstable power.
• Although the spike-based scheme [5] eliminates the power

consuming part of the ReRAM peripheral circuits, it introduces
very long latency to input/output data. It is known that the
energy harvesting system often suffers from power failures
and works in an intermittent mode; so, the spike-based data
injection scheme is not favorable.
• For the ReRAM circuit concerned works [6], [8], although

they are lightweight, they cannot be dynamically reconfigured
to adapt changing power levels. In addition, such works have
not presented any software level solution to maximize the
utilization of the hardware platform. In order to accommodate
the RCA to the changing harvested power supply, we need a
“lightweight” and “fine-grain controllable” design from both
the hardware and software angles.

VIII. CONCLUSION

MAC operations are the dominant computations in CNN
applications which play a key role in intelligent edge devices
such as smart sensors in IoTs. Considering the application sce-
narios where the accelerator is supported by harvested energy,
we find that the previous designs cannot well accommodate
the RCA to the changing power sources. This paper proposes
ResiRCA, a resilient energy harvesting accelerator. We propose
a lightweight and flexibly tuning RCA architecture and a
ResiSchedule scheme to dynamically activate various scaled
MAC operations so as to fully translate the “harvested energy”
into “computation progress”. ResiRCA supports smooth transi-
tions among different activation solutions against computation
loss. The experiment results show that the proposed ResiRCA
along with the ResiSchedule scheme can achieve much higher
speedups and energy efficiency compared to the baselines.
ResiRCA for the first time supports harvested energy, expecting
to initialize deeper researches on intelligent energy harvesting
IoTs in the future.

IX. ACKNOWLEDGEMENTS

This work was supported in part by Semiconductor Re-
search Corporation (SRC), Center for Brain-inspired Com-
puting (C-BRIC), Center for Research in Intelligent Storage
and Processing in Memory (CRISP), NSF Grants #1822923

(SPX: SOPHIA), #1763681, #1629915, #1629129, #1317560,
#1526750, National Natural Science Foundation of China
[NSFC Project No. 61872251] and Beijing Advanced Innova-
tion Center for Imaging Technology.

This work was completed when Dr. Keni Qiu was visiting
the Pennsylvania State University. The authors also greatly
appreciate Dr. Yongpan Liu, Dr. Kaisheng Ma, Dr. Xulong Tang
and Mr. Challapalle Nagadastagiri Reddy’s useful discussion.

REFERENCES

[1] C. Xia, J. Zhao, H. Cui, and X. Feng, “Characterizing DNN models
for edge-cloud computing,” in 2018 IEEE International Symposium on
Workload Characterization (IISWC), pp. 82–83, 2018.

[2] L. Xia, T. Tang, W. Huangfu, M. Cheng, X. Yin, B. Li, Y. Wang, and
H. Yang, “Switched by input: Power efficient structure for RRAM-based
convolutional neural network,” in 2016 53nd ACM/EDAC/IEEE Design
Automation Conference (DAC), pp. 1–6, 2016.

[3] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P.
Strachan, M. Hu, R. S. Williams, and V. Srikumar, “ISAAC: A
convolutional neural network accelerator with in-situ analog arithmetic
in crossbars,” in 2016 ACM/IEEE 43rd Annual International Symposium
on Computer Architecture (ISCA), pp. 14–26, 2016.

[4] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie,
“PRIME: A novel processing-in-memory architecture for neural network
computation in reram-based main memory,” in 2016 ACM/IEEE 43rd
Annual International Symposium on Computer Architecture (ISCA),
pp. 27–39, 2016.

[5] L. Song, X. Qian, H. Li, and Y. Chen, “Pipelayer: A pipelined ReRAM-
Based accelerator for deep learning,” in 2017 IEEE International
Symposium on High Performance Computer Architecture (HPCA),
pp. 541–552, 2017.

[6] C. Xue, W. Chen, J. Liu, J. Li, W. Lin, W. Lin, J. Wang, W. Wei,
T. Chang, T. Chang, T. Huang, H. Kao, S. Wei, Y. Chiu, C. Lee, C. Lo,
Y. King, C. Lin, R. Liu, C. Hsieh, K. Tang, and M. Chang, “24.1 a
1mb multibit ReRAM computing-in-memory macro with 14.6ns parallel
mac computing time for CNN based AI edge processors,” in 2019 IEEE
International Solid- State Circuits Conference - (ISSCC), pp. 388–390,
2019.

[7] W. Chen, K. Li, W. Lin, K. Hsu, P. Li, C. Yang, C. Xue, E. Yang,
Y. Chen, Y. Chang, T. Hsu, Y. King, C. Lin, R. Liu, C. Hsieh, K. Tang,
and M. Chang, “A 65nm 1mb nonvolatile computing-in-memory ReRAM
macro with sub-16ns multiply-and-accumulate for binary DNN AI edge
processors,” in 2018 IEEE International Solid - State Circuits Conference
(ISSCC), pp. 494–496, 2018.

[8] F. Su, W. Chen, L. Xia, C. Lo, T. Tang, Z. Wang, K. Hsu, M. Cheng,
J. Li, Y. Xie, Y. Wang, M. Chang, H. Yang, and Y. Liu, “A 462gops/j
RRAM-based nonvolatile intelligent processor for energy harvesting ioe
system featuring nonvolatile logics and processing-in-memory,” in 2017
Symposium on VLSI Technology, pp. T260–T261, 2017.

[9] Y. Ji, Y. Zhang, X. Xie, S. Li, P. Wang, X. Hu, Y. Zhang, and Y. Xie,
“FPSA: A full system stack solution for reconfigurable reram-based
NN accelerator architecture,” in Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pp. 733–747, 2019.

[10] K. Qiu, W. Chen, Y. Xu, L. Xia, Y. Wang, and Z. Shao, “A peripheral
circuit reuse structure integrated with a retimed data flow for low power
rram crossbar-based cnn,” in 2018 Design, Automation Test in Europe
Conference Exhibition (DATE), pp. 1057–1062, March 2018.

[11] X. Jiang, J. Polastre, and D. Culler, “Perpetual environmentally powered
sensor networks,” in Fourth International Symposium on Information
Processing in Sensor Networks (IPSN), pp. 463–468, 2005.

[12] S. Sudevalayam and P. Kulkarni, “Energy harvesting sensor nodes: Survey
and implications,” IEEE Communications Surveys Tutorials, vol. 13, no. 3,
pp. 443–461, 2011.

[13] M. Mangrulkar and S. G. Akojwar, “A simple and efficient solar energy
harvesting for wireless sensor node,” in 2016 Second International Con-
ference on Research in Computational Intelligence and Communication
Networks (ICRCICN), pp. 95–99, 2016.

[14] R. Grezaud and J. Willemin, “A self-starting fully integrated auto-adaptive
converter for battery-less thermal energy harvesting,” in 2013 IEEE 11th
International New Circuits and Systems Conference (NEWCAS), pp. 1–4,
2013.

[15] V. Leonov, T. Torfs, P. Fiorini, and C. Van Hoof, “Thermoelectric
converters of human warmth for self-powered wireless sensor nodes,”
IEEE Sensors Journal, vol. 7, pp. 650–657, May 2007.

[16] X. Li, U. Dennis Heo, K. Ma, V. Narayanan, H. Liu, and S. Datta,
“RF-powered systems using steep-slope devices,” in 2014 IEEE 12th
International New Circuits and Systems Conference (NEWCAS), pp. 73–
76, 2014.

[17] K. Ma, Y. Zheng, S. Li, K. Swaminathan, X. Li, Y. Liu, J. Sampson,
Y. Xie, and V. Narayanan, “Architecture exploration for ambient energy
harvesting nonvolatile processors,” in 2015 IEEE 21st International
Symposium on High Performance Computer Architecture (HPCA),
pp. 526–537, 2015.

[18] K. Ma, X. Li, M. T. Kandemir, J. Sampson, V. Narayanan, J. Li,
T. Wu, Z. Wang, Y. Liu, and Y. Xie, “NEOFog: Nonvolatility-exploiting
optimizations for fog computing,” in Proceedings of the Twenty-Third
International Conference on Architectural Support for Programming
Languages and Operating Systems ASPLOS, pp. 782–796, 2018.

[19] M. Zhao, K. Qiu, Y. Xie, J. Hu, and C. J. Xue, “Redesigning software
and systems for non-volatile processors on self-powered devices,” in 2016
IFIP/IEEE International Conference on Very Large Scale Integration
(VLSI-SoC), pp. 1–6, Sep. 2016.

[20] L. Ni, Z. Liu, H. Yu, and R. V. Joshi, “An energy-efficient digital
ReRAM-crossbar-based cnn with bitwise parallelism,” IEEE Journal
on Exploratory Solid-State Computational Devices and Circuits, vol. 3,
pp. 37–46, Dec 2017.

[21] M. Zhao, C. Fu, Z. Li, Q. Li, M. Xie, Y. Liu, J. Hu, Z. Jia, and C. J. Xue,
“Stack-size sensitive on-chip memory backup for self-powered nonvolatile
processors,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD), vol. 36, pp. 1804–1816, Nov 2017.

[22] A. Colin, E. Ruppel, and B. Lucia, “A reconfigurable energy storage
architecture for energy-harvesting devices,” in Proceedings of the Twenty-
Third International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2018, Williamsburg, VA,
USA, March 24-28, 2018, pp. 767–781, 2018.

[23] X. Sheng, C. Wang, Y. Liu, H. G. Lee, N. Chang, and H. Yang, “A high-
efficiency dual-channel photovoltaic power system for nonvolatile sensor
nodes,” in 2014 IEEE Non-Volatile Memory Systems and Applications
Symposium (NVMSA), pp. 1–2, Aug 2014.

[24] X. Sun, S. Yin, X. Peng, R. Liu, J. Seo, and S. Yu, “XNOR-RRAM: A
scalable and parallel resistive synaptic architecture for binary neural
networks,” in 2018 Design, Automation Test in Europe Conference
Exhibition (DATE), pp. 1423–1428, 2018.

[25] A. K. Mishra and D. Marr, “WRPN & apprentice: Methods for training
and inference using low-precision numerics,” CoRR, vol. abs/1803.00227,
Apr 2018.

[26] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep
neural network with pruning, trained quantization and huffman coding,”
CoRR, vol. abs/1510.00149, 2015.

[27] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep
learning with limited numerical precision,” in Proceedings of the 32Nd
International Conference on International Conference on Machine
Learning - Volume 37, ICML’15, pp. 1737–1746, 2015.

[28] S. Jain, S. Venkataramani, V. Srinivasan, J. Choi, P. Chuang, and L. Chang,
“Compensated-dnn: Energy efficient low-precision deep neural networks
by compensating quantization errors,” in 2018 55th ACM/ESDA/IEEE
Design Automation Conference (DAC), pp. 1–6, 2018.

[29] N. Wang, J. Choi, D. Brand, C. Chen, and K. Gopalakrishnan, “Training
deep neural networks with 8-bit floating point numbers,” in Advances in
Neural Information Processing Systems 31: Annual Conference on Neural
Information Processing Systems 2018, NeurIPS 2018, 3-8 December 2018,
Montréal, Canada., pp. 7686–7695, 2018.

[30] Z. Cai, X. He, J. Sun, and N. Vasconcelos, “Deep learning with low
precision by half-wave gaussian quantization,” 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 5406–5414,
2017.

[31] G. Venkatesh, E. Nurvitadhi, and D. Marr, “Accelerating deep con-
volutional networks using low-precision and sparsity,” in 2017 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 2861–2865, 2017.

[32] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Quantized neural networks: Training neural networks with low precision
weights and activations,” J. Mach. Learn. Res., vol. 18, pp. 6869–6898,
Jan. 2017.

[33] M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect: Training
deep neural networks with binary weights during propagations,” in
Proceedings of the 28th International Conference on Neural Information
Processing Systems - Volume 2, NIPS’15, pp. 3123–3131, 2015.

[34] M. Alwani, H. Chen, M. Ferdman, and P. Milder, “Fused-layer cnn
accelerators,” in 2016 49th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), pp. 1–12, 2016.

[35] M. D. Lam, E. E. Rothberg, and M. E. Wolf, “The cache performance
and optimizations of blocked algorithms,” in Proceedings of the Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pp. 63–74, 1991.

[36] K. Ma, X. Li, S. R. Srinivasa, Y. Liu, J. Sampson, Y. Xie, and
V. Narayanan, “Spendthrift: Machine learning based resource and
frequency scaling for ambient energy harvesting nonvolatile processors,”
in 2017 22nd Asia and South Pacific Design Automation Conference
(ASP-DAC), pp. 678–683, 2017.

[37] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The Gem5 Simulator,”
SIGARCH Comput. Archit. News, vol. 39, pp. 1–7, Aug. 2011.

[38] Synopsis, “HSPICE.” https://www.synopsys.com/verification/ams-
verification/hspice.html/.

[39] H. Lv, X. Xu, P. Yuan, D. Dong, T. Gong, J. Liu, Z. Yu, P. Huang,
K. Zhang, C. Huo, C. Chen, Y. Xie, Q. Luo, S. Long, Q. Liu, J. Kang,
D. Yang, S. Yin, S. Chiu, and M. Liu, “BEOL based RRAM with one
extra-mask for low cost, highly reliable embedded application in 28 nm
node and beyond,” in 2017 IEEE International Electron Devices Meeting
(IEDM), pp. 2.4.1–2.4.4, 2017.

[40] X. Dong, C. Xu, Y. Xie, and N. P. Jouppi, “NVSim: A circuit-level
performance, energy, and area model for emerging nonvolatile memory,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems (TCAD), vol. 31, pp. 994–1007, July 2012.

[41] R. Wang and Z. Xu, “A pedestrian and vehicle rapid identification
model based on convolutional neural network,” in Proceedings of the
7th International Conference on Internet Multimedia Computing and
Service, ICIMCS ’15, pp. 32:1–32:4, 2015.

[42] S. A. Dawwd and B. S. Mahmood, “A reconfigurable interconnected
filter for face recognition based on convolution neural network,” in 2009
4th International Design and Test Workshop (IDT), pp. 1–6, 2009.

[43] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
pp. 2278–2324, Nov 1998.

[44] H. Lin, M. Hsu, and W. Chen, “Human hand gesture recognition using
a convolution neural network,” in 2014 IEEE International Conference
on Automation Science and Engineering (CASE), pp. 1038–1043, 2014.

[45] K. Ma, X. Li, Y. Liu, J. Sampson, Y. Xie, and V. Narayanan, “Dynamic
machine learning based matching of nonvolatile processor microarchi-
tecture to harvested energy profile,” in 2015 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pp. 670–675, 2015.

https://www.synopsys.com/verification/ams-verification/hspice.html/
https://www.synopsys.com/verification/ams-verification/hspice.html/

	Introduction
	Motivation
	System level flow
	ResiRCA overview
	Mapping inference tasks to ResiRCA

	A harvesting-compatible, low- power ResiRCA
	Power-dynamic RCA scheduling
	Computation decomposition and parallelism
	Computation tiling
	Computation parallelism
	Execution strategies

	Power model and latency model
	Load and store
	Computation on ReRAMs
	Partial sums
	Activation transition cost
	Power and latency models

	Dynamic activation strategy
	Problem formulation
	Activation strategy formulation

	Activation transition

	Experiments
	Throughput
	Energy efficiency
	Power utilization
	Transition efficiency
	Power predictor
	Sensitivity study on duplication copy

	Related Work
	Conclusion
	Acknowledgements
	References

