
Design Insights of Non-volatile Processors and Accelerators
in Energy Harvesting Systems

Keni Qiu
Capital Normal University, China

qiukn@cnu.edu.cn

Mengying Zhao
Shandong University, China
zhaomengying@sdu.edu.cn

Zhenge Jia, Jingtong Hu
University of Pittsburgh, USA

zhenge.jia,jthu@pitt.edu

Chun Jason Xue
City University of Hong Kong, China

jasonxue@cityu.edu.hk

Kaisheng Ma, Xueqing Li,
Yongpan Liu

Tsinghua University, China
kaisheng,xueqingli,ypliu@tsinghua.edu.cn

Vijaykrishnan Narayanan
Pennsylvania State University, USA

vxn9@psu.edu

ABSTRACT
There is growing interest in deploying energy harvesting proces-
sors and accelerators in Internet of Things (IoT). Energy harvesting
harnesses the energy scavenged from the environment to power a
system. Although it has many advantages over battery-operated
systems such as lightweight, compact size, and no necessity of
recharging and maintenance, it may suffer frequently power-down
and a fluctuating power supply even with power on. Non-volatile
processor (NVP) is a promising architecture for effective computing
in energy harvesting scenarios. Recently, non-volatile accelerators
(NVA) have been proposed to perform computations of deep learn-
ing algorithms. In this paper, we overview the recent studies of
NVP and NVA across the layers of hardware, architecture, software
and their co-design. Especially, we present the design insights of
how the state-of-the-art works adapt their specific designs to the
intermittent and fluctuating power conditions with the energy har-
vesting technology. Finally, we discuss recent trends using NVP
and NVA in energy harvesting scenarios.

CCS CONCEPTS
• Computer systems organization → Embedded and cyber-
physical systems; Embedded systems; Embedded hardware;

KEYWORDS
Energy harvesting; Non-volatile processor; PIM; Architecture; Check-
pointing; Task scheduling

ACM Reference Format:
Keni Qiu, Mengying Zhao, Zhenge Jia, Jingtong Hu, Chun Jason Xue,
Kaisheng Ma, Xueqing Li, Yongpan Liu, and Vijaykrishnan Narayanan.
2020. Design Insights of Non-volatile Processors and Accelerators in Energy
Harvesting Systems. In Great Lakes Symposium on VLSI 2020 (GLSVLSI ’20),
September 7–9, 2020, Virtual Event, China.ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3386263.3407596

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GLSVLSI ’20, September 7–9, 2020, Virtual Event, China
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7944-1/20/09. . . $15.00
https://doi.org/10.1145/3386263.3407596

1 INTRODUCTION
The Internet-of-Things (IoT) devices are growing at a rapid speed
because of their huge impact in many sectors. There are an es-
timated 31 billion devices in 2020 [1]. Historically, battery is the
primary power source for many mobile and embedded edge IoT
devices. However, progress in battery technology has not paced
that of the power demand of smart devices. Consequently, the large
form factor, limited charge storage and high replacement cost of
batteries have become impediments to capabilities at edge devices.
In contrast, energy harvesting (EH), a technique enabling the ap-
plications to scavenge energy from the ambient environment can
dramatically extend the operating lifetime of the system [2–4].

An energy harvester extracts power from the ambient environ-
ment and provides an attractive power alternative in many sensing
application scenarios such as implantable medical devices, haz-
ardous war-zone systems, and outer space electronics, where it
is difficult to rely only on batteries. Solar [5], thermal [6], RF sig-
nal [7], piezoelectric [2], kinetic power [8] are all promising sources
of energy. For example, the Ultra-Low Power Sensor Evaluation
Kit (ULPSEK) [6] for evaluation of biomedical sensors and moni-
toring applications is a wearable, multi-parameter health sensor
powered by an efficient body heat harvester. ULPSEK can mea-
sure and process electrocardiogram, respiration, motion and body
temperature. However, ambient harvestable energy is usually un-
stable and difficult to utilize effectively. With such unreliable power
supply, EH-powered computing systems have to run intermittently.

Since traditional computing systems are designed to operate with
a stable power supply, they cannot make much continuous progress
with the intermittent power sources. In the worst case, they cannot
complete even a single task because they have to restart due to
power outage. In addition, a non-adaptive system often cannot
adjust to the power fluctuations, leading to low power efficiency.
Therefore, the critical challenge of an energy harvesting system
is how to make a system operate correctly and efficiently under
unreliable power supply.

The recent adoption of non-volatile processor (NVP) in energy
harvesting devices is deemed as state-of-the-art solution to the
intermittent computing. The NVP processor is usually equipped
with emerging non-volatile memory (NVM) to maintain in-process
data and store configurations between power outages. Thus, the
most important advantage of NVP compared with a conventional
processor is that it can survive power shortage without losing their

https://doi.org/10.1145/3386263.3407596
https://doi.org/10.1145/3386263.3407596

Problem 1: Power failure

3.1 Checkpointing-
centred software

4.1 Resource
allocation

Hardware and Architecture Design (Section 2)

Energy Harvesting
Management

Energy Harvester

Energy Storage

Power Management

Nonvolatile
Digital Logic

2.1 NVP

Nonvolatile
Memory

2.2 NVA
Input Reg.

Output Reg.

Pool Unit

FC Unit

Sigmoid

Adder Tree

Problem 2: Power fluctuation

3.1 Non-checkpointing
software

D
A

C
D

A
C

D
A

C

ADC&S+A

D
A

C ReRAM
crossbar

...

...

I/O ports

Ambient Energy

Piezo Signals

Solar Signals Thermal Signals

TV-RF Signals

Sensor

AD/DA

Transceiver

Peripheral Devices

Power-resilient Software (Section 3) Power-adaptive Design (Section 4)

4.2 Task
scheduling

Figure 1: Overview of the survey.

status meanwhile with fast wake-up property, which fits well with
the intermittent characteristic of the ambient power [9].

Most recently, many works have proposed non-volatile accelera-
tor (NVA) architecture to embed a computing accelerator to offload
inference tasks on IoT nodes rather than merely transmitting raw
sensor data [10, 11]. Since an NVA has to work under fluctuating
power supply, it often features of lightweight and reconfigurable
design along with resilient software scheduling.

As NVP and NVA provide circuit-/architecture-level support to
fit the intermittent computing, adaptive software design is highly
necessary to co-operate with these emerging architectures to ad-
dress the unique challenges from harvestable power supply: (i)
power failure and (ii) power fluctuation. The software-level work
can be divided into two categories. One category studies how to
perform failure-resilient execution to guarantee correctness with or
without checkpointing; the other category studies how to allocate
hardware resources or schedule tasks to adaptively accommodate
the fluctuating power input.

In this paper, we summarize the recent architectural design and
software optimizations in the domain of energy harvesting system,
covering the evolution of NVP and NVA, checkpointing-centred
software optimizations, non-checkpointing approaches and adap-
tive hardware/task scheduling. Figure 1 summarizes the overview
of topics covered in this paper according to different design levels. A
harvester collects ambient energy. The energy management module
regulates the harvested energy to power NVP/NVA and multiple pe-
ripherals. In order for the system to be resilient to power failure and
power fluctuation, failure-resilient and adaptive software strategies
are presented for execution correctness and optimizations.

The remainder of this paper is organized as follows. Section 2
presents the hardware- and architecture-level evolution of NVP and
NVA. Section 3 summarizes the software techniques used to guar-
antee a power-resilient execution. Section 4 summarizes adaptively
resource reconfiguring and task scheduling techniques in order to

achieve high power efficiency. Section 5 discusses the future study
prospects and Section 6 concludes the paper.

2 RECENT NON-VOLATILE PROCESSING
HARDWARE AND ARCHITECTURES

2.1 NVP
The essential difference between NVP and traditional volatile pro-
cessor is data saving to survive power failures, which needs backup
logic to save volatile data to non-volatile memory. Wang et al. [12]
propose a structure of non-volatile flip-flop (NVFF), where a non-
volatile cell is attached to the volatile part for data saving with a
localized fully-parallel bit-to-bit transfer. Li et al. [13] propose a
set of intrinsically nonvolatile latches and DFFs by harnessing the
built-in non-volatility of negative capacitance field-effect transis-
tors (NCFETs), with fJ-level energy and ns-level intrinsic latency
for a backup plus restore operation. Thirumala et al. [14] propose a
structure of dual mode ferroelectric transistor based NVFF, which
can dynamically configure between volatile and non-volatile modes,
leading to automatic backup.

The design of NVFF can also take system features into considera-
tion. Since the storage operation is unnecessary for unused memory
cells, Liu et al. [15] propose to utilize self-write-termination (SWT)
approach to eliminate needless backups. Besides, it supports to
retain data during short power failure stages, leading to reduced
number of backups and restores. This adaptive NVSRAM with
SWT design enables a higher clock frequency and lower storage en-
ergy consumption. A ReRAM-based non-volatile flip-flop is further
developed with fast-off, fast-wake-up features [16]. It leverages ap-
propriate resistance range and sufficient resistance ratio of ReRAM
to avoid loading too much capacitance/DC current on the power
rail. Compared with the previous NVFF [17], this SWT-NVFF can
achieve more than 93% reduction of store energy and more than
27× reduction of restore time.

NVFF enables fast backup with simple control, however, may
induce large area overhead [21]. Thus for large-size memory space
such as high-level cache and main memory, instead of directly
employing NVFF to save all data, they usually attach non-volatile
memory for selective data backup, where emerging non-volatile
memory is preferred than Flash [22–25].

On the basis of backup logic, the architecture of NVP systems
have been explored [26]. In [26], three architectures of NVP systems
pertaining to Non-Pipelined configuration (NP), N-Stage-Pipeline
(NSP) and Out-of-Order Processor (OoO), as well as several data
backup strategies are discussed, providing a design guide to find
optimal configuration of energy harvesting systems.

2.2 NVA
NVAs enable a new paradigm to offload neural network (NN) tasks
on IoT nodes rather than cloud computation especially under a
bandwidth-constrained circumstance. An NVA can be integrated
to an NVP on one die or be an off-chip device beside an NVP.

Targeting the energy harvesting intelligent IoT devices, Su et
al. [19] propose a non-volatile intelligent processor (NIP). In the
NIP, the 1T1R organized ReRAM crossbar can directly use the re-
sistance values stored in ReRAM cells as the NN weights to exe-
cute matrix-vector-multiplication (MVM) operations through a low

Table 1: Evolution of NVP and NVA
Type Volatile Processor NVP NVA

Publication [18] [12] (THU1010N) [15] (NVP-SWT) [19] (NIP) [10] (STICKER-T) [20] (Liquid Silicon)
Technology Flash FeRAM (130 nm) ReRAM (65 nm) ReRAM (150 nm) Transpose SRAM (65 nm) ReRAM (130 nm)

Power/Energy
efficiency

450 𝜇W/MHz
(Active power)

160 𝜇W/MHz
(Active power)

33 𝜇W/MHz
(Active power)
30.3GOPs/J

(Energy efficiency)

10.9 mW
(Power consumption)

469.7GOPs/J
(Energy efficiency)

13.3-339.2 mW
(Power consumption)
0.39-140.3TOPs/W
(Power efficiency)

60.95 TOPs/W
(Power efficiency)

Backup time 6 ms 7 𝜇s 4 𝜇s 200 ns N/A N/A
Restore time 3 ms 3 𝜇s 20 ns 100 ns N/A N/A

Area N/A N/A 1.56×2.86 mm2 3.69 mm2 3.0×2.5 mm2 1.83×4 𝜇m2

Application
type

General embedded
applications

General embedded
applications

General embedded
applications FCNN CNN+FC+RNN Machine learning +

big data applications

Feature
highlights

Off-chip memory
for data backup

Automatic backup
logic with

3𝜇s wake-up time

nvSRAM+SWT &
Adaptive

retention+SWT
Low-power PIM

A unified MVM
supporting
variable NNs

A 2D array of
identical tiles with

flexibly programming

power MVM engine. In this MVM engine, binary input vector is
directly linked to the word line, and the outputs are obtained from
a 1-to-3-bit adaptive sense amplifiers (SAs) at the end of the bit-
lines. The proposed NIP can achieve 470GOPs/J energy efficiency at
10MHz clock frequency, which is 13× higher than the prior design
performance [27].

Architectures proposed to support unified NN algorithms of-
ten suffer from area-inefficiency and/or energy-inefficiency. Yue et
al. [10] propose a unified NN processor, STICKER-T, which supports
a variety of NN algorithms (e.g. CNN/FC/RNN). In this design, the
workloads of CNN/FC/RNN are transformed into a unified MVM in
the transpose domain by adopting a block-circulant algorithm. In
STICKER-T, the 6T HBST-TRAM-based 2D data-reuse MAC array
provides bit-serial MAC units to support 1b-to-12b precision. It
can achieve 8.1× higher TOPS/mm2 and 4.2× higher energy effi-
ciency at 4b accuracy, compared to the most advanced unified NN
processor [28].

To further improve flexibility/programmability to fit diverse ma-
chine learning and big data applications, Zha et al. [20] proposed a
non-volatile fully programmable processing-in-memory (PIM) pro-
cessor based on ReRAM, Liquid Silicon. Through programming the
memory array and connected nodes, the 2D array of identical tiles in
Liquid Silicon can be configured into computation, storage, search,
and neural network modes. Liquid Silicon can be reprogrammed in
a FPGA-like manner to flexibly change the ratio of on-chip comput-
ing and memory resources to accommodate a variety of machine
learning and big data applications.

The superior characteristics of STICKER-T and Liquid Silicon
with low power, high energy efficiency and flexible configurations
make them very likely be used in energy harvesting scenarios.

Table 1 presents the design highlights and comparisons of several
typical NVPs and NVAs.

3 FAILURE-RESILIENT SOFTWARE
3.1 Checkpointing-centred software
The prime objective of NVP systems is to guarantee the correct-
ness with existence of checkpointing. It is observed that there may
be errors with backup and resumptions [37]. For example, error
may occur if an interruption happens during backup, or, certain
instructions are re-executed after power resumption, leading to
duplicate data modifications [38] or I/O operations [39]. To solve
this problem, Lucia et al. [23] develop a system model based on

backup and data versioning techniques to correctly record system
status.

On the basis of system correctness, checkpointing-centred NVP
systems face two design issues, i.e., what to back up and when to
back up.

Theoretically, all volatile data that help system resumption need
to be backed up. However, directly backing up all volatile data,
especially in cache and main memory, would incur high perfor-
mance and energy cost. This motivates researches on reducing the
content needed to be backed up. Wang et al. [21] use compression
techniques to build backup-efficient NVPs. Xie et al. [29] perform
instruction scheduling to reduce the size written to NVMwith fixed
checkpoints. Li et al. [30] trim stack size by sharing space between
variables and functions so that the stack content for backup can be
reduced. Selective backup can be applied. For example, only dirty
blocks need to be saved in cache [24, 31], and live-range analysis
can be employed to decide which data need backup [32].

The question of when backup should be performed has also
been studied. Ransford et al. [33] suggest to back up at loop latch,
function return, and positions having a predetermined distance
with last backup. Considering that the live content to be backed
up varies along the program execution, it provides the flexibility
to choose the backup location to reduce the backup cost. Zhao et
al. [34] propose to select backup locations with less stack content.
The proposed approach leverages the compiler to analyze live data
at each instruction so that active stack size can be derived, which
is then used for runtime reference to select backup activations.
There are also researches targeting maximum forward progress
through backup at the farthest position while guaranteeing success-
ful backups. Li et al. [35] discuss how to integrate cache behavior
analysis into backup location selection, with the objective of maxi-
mizing forward progress. In offline analysis, slots are injected to the
disassembled code as backup location candidates. Then the cache
behavior can be analyzed to insert backup labels into predefined
slots. At runtime, backup is triggered at the farthest label to achieve
maximal forward progress. Fan et al. [36] leverage Q-learning to
determine where to back up. It takes energy and system status into
consideration to guide backup at runtime. A set of states, actions
and reward functions are defined to lead the generation of Q-table,
which is used for backup guidance. When energy warning occurs
at runtime, the proposed controller determines the backup position
aiming to achieve maximum forward progress.

Table 2: Summary of checkpointing-centred software techniques
Correctness What to back up When to back up

Publication [23] [21] [29] [30] [24, 31]/[32] [33] [34] [35] [36]
Backup Reduce backup content Offline Online

Key and Compression Register aware Share space Selective Reduce backup cost Maximize forward progress
technique data based instruction between variables backup Estimate Stack Cache Q-learning

versioning backup selection and functions available energy size aware behavior analysis based backup
Hierarchy Full Register Register Main memory Cache/Full Full Main memory Cache

Table 2 presents the overview of representative checkpointing-
centred software techniques.

3.2 Non-checkpointing software
In contrast to the design philosophy of checkpointing-centered re-
search, some researchers attempt to provide intermittent execution
support from the perspective of operating-system (OS) solutions,
in which the system runtime takes care of intermittence with non-
checkpointing software techniques.

Modern operation system often allows multitasking to improve
CPU utilization. In this situation, the typically adopted runtime
checkpointing techniques for an intermittent system may incur
quite large runtime overheads, which would offset the compu-
tation progress improved by concurrency [40]. To enable low-
overhead concurrent task execution on intermittent systems, a
non-checkpointing failure-resilient approach [41] has been pro-
posed for intermittent systems by leveraging the characteristics of
data accessed in hybrid memory. The main idea is to maintain data
consistency by atomically committing data copies modified by fin-
ished tasks in volatile memory (VM) to persistently consistent ver-
sions in NVM while ensuring the serializability of concurrent task
execution through backward validation. Once power is restored, the
persistently consistent version also allows instant system recovery.

However, in the above failure-resilient approach, tasks could
be aborted and rerun frequently when serializability is violated
due to high concurrency. To address this issue, a locking-based
concurrency control design [42] has been proposed to ensure that
running tasks are serializable from the outset, thus preventing tasks
from being aborted and rerun caused by serializability violation.

Moreover, the failure-resilient approach needs to recreate and
rerun all unfinished tasks from scratch after each power resump-
tion. Under this context, the progress stagnation problem may arise
when lengthy tasks whose execution time is longer than the power-
on period are repeatedly recreated and rerun. To combat this, a
context switch technique was introduced to preserve the computa-
tion progress of lengthy tasks across power cycles without runtime
checkpointing [43]. This design enforces the context of the cur-
rently executed task to be switched out to NVM if it is lengthy and
thus can be preserved during power-off periods. Then, to avoid
data inconsistency, not until the next power-on period will lengthy
task be scheduled and executed in NVM. This allows lengthy tasks
can accumulate their progress across power cycles.

The above discussed efforts have been embedded into an in-
termittent OS built upon FreeRTOS. The intermittent OS endows
energy-harvesting systems with the abilities to (i) run multiple
tasks concurrently to improve computation progress, (ii) achieve
data consistency without system suspension during runtime, (iii)
recover instantly from power failures, and (iv) cumulatively pre-
serve computation progress across power cycles to avoid stagnation.

The intermittent OS is released under an open-source license and
available at [44].

Besides the above idea line of keeping the atomic execution of
critical tasks at the OS level, other works have achieved this at the
compiler or programmer levels co-operated with specific execution
strategies. Kiwan Maeng et al. propose a low-overhead program-
ming model, Alpaca [45] for intermittent computing on energy-
harvesting devices. Alpaca eliminates checkpoints because it can
runtime preserve execution progress at the granularity of a user-
defined task. The key insight is that data originally shared between
tasks are copied into a buffer private to each task. Data consistency
are maintained at the end of a task. Further, Kiwan Maeng et al.
propose CatNap [46], an event-driven energy-harvesting system
where a new embedded programming model allows a program-
mer to express time-critical code subsets. At runtime, the special
time-critical code has higher priority than the rest of the code to
be reliably executed on schedule with the reserved energy. CatNap
can well meet timing requirements of the widespread periodic and
reactive execution modes.

4 POWER-ADAPTIVE DESIGN
4.1 Adaptive hardware reconfiguring
Due to the instability of scaveneged ambient energy, it is found
that ambient energy often cannot be sufficiently translated into
forward progress. For instance, peak power tends to be many times
the average power and lasts for a while, but during this period, the
processor may still be operating at the minimal consumption level.
In this scenario, the energy efficiency will be very low. So besides
the efforts on power failure resilience, the other research category
focuses on how to adapt an energy harvesting system to the power
fluctuation property.

From the perspective of a co-designed hardware and software
system with a reconfigurable power system, A. Colin et al. pro-
pose Capybara [47]. They define the energy demands of capacity-
constrained tasks and temporally-constrained tasks. Capacity-
constrained tasks must be executed atomically without interrup-
tion, while temporally-constrained tasks are reactive, thus requiring
energy to be available on-demand. The proposed Capybara sup-
ports declarative specification of tasks’ energy demands or mixed
demands with a reconfigurable storage capacity mechanism. The
responsiveness of Capybara can be improved by 2×-4× over a static
energy capacity.

From the perspective of computing architectures, Kaisheng Ma
et al. propose a machine learning-based integrated architecture of
NVP [48] on the basis of architecture exploration in [26]. The archi-
tecture integrates three micro-architectures of NP, NSP and OoO,
and their power requirements are 𝑃𝑁𝑃 < 𝑃𝑁𝑆𝑃 < 𝑃𝑂𝑜𝑂 . In [48],
energy-dependent data are fed into a lightweight neural network
for future power level prediction, and then the most appropriate

... ...

... ...

...Hidden
layer 1

Hidden
layer n

Input
layer

Output
layer

 Architecture selection
 (NP、NSP、OoO)

 Hardware resources
 On/Off

 Frequency scaling

Input data Forward propagation networks Decision output

Power and
energy

information

Resource state

... ...

...

...

Figure 2: Several adaptive resource scheduling strategies.

architecture which maximizes progress of an application for the
next power level can be chosen.

Expanding the above idea further, two techniques to improve en-
ergy efficiency are proposed in [49]. One is resource scaling which
manages bottleneck resources in a reconfigurable OoO processor
targeting lower energy per instruction (EPI). The other is dynamic
frequency scaling which aggressively leverages harvested energy
for NVPs. Both approaches are directed by an infrequently called
machine learning algorithm. The proposed Spendthrift that com-
bines the two techniques by setting both frequency and resource
parameters efficiently outperforms either technique in isolation.

Figure 2 depicts the process of how to activate appropriate hard-
ware resources directed by an NN-based power predictor.

Aside from the NN-based resource scaling techniques, a different
idea has been explored from the viewpoint of opportunistic respon-
siveness. The works [50, 51] introduce a novel concept of incidental
computing to address opportunistic responsiveness versus quality
tradeoffs under unstable power availability. The very starting point
is that the quality of older computations targeted for incidental
computing can be gradually improved iteratively, if picked up over
multiple incidental computing passes. The ultimate optimization of
energy efficiency is achieved by reducing the energy of backup op-
erations through a well matched retention time. It is shown that this
approximate computing improves forward progress by an average
of 4.28x over a baseline “precise” NVP.

Addressing Wireless Sensor Network (WSN) composed of mul-
tiple energy harvesting devices, the work NEOFog [52] provides
new optimization opportunities to improve system performance
and efficiency by exploiting the benefit of node-level nonvolatil-
ity. The implementation of Spendthrift [49] and non-volatile ra-
dio frequency controllers (NVRF) can shift nodes’ paradigm to
computation-intensive or frequently-intermittently-on, so as to im-
prove the computation efficiency and reduce the energy of data
transmission. NEOFog also takes advantage of node virtualization
and slotted time-division multiplexing to improve computing QoS.

4.2 Adaptive task scheduling
Besides allocating adaptive hardware resources to match the power
input, there are works exploring finer-grained strategies to ac-
commodate the changing harvesting power through adaptive task
scheduling. Amjad Yousef Majid et al. propose Coala [53], an adap-
tive task-based execution model. By means of task coalescing and
splitting, Coala allows efficient execution on a sub-task scale so as
to preserve computation progress. The challenging issues of task
transition and task termination are also well handled by Coala.

Recently, more researches target NN applications in energy har-
vesting scenarios. As the power requirement of the modern prac-
tical inference tasks such as DNN (hundreds of mW) are several
orders-of-magnitude than the current energy-harvesting systems
(a few mW), DNN inferences can hardly fit the intermittent com-
puting in an extremely short burst fashion. To address this issue,
G. Gobieski et al. propose an intermittent DNN inference frame-
work, SONIC [54, 55], to flexibly size tasks to grow or shrink to
fit the energy budget. SONIC also uses Alpaca [45] tasks to avoid
checkpointing and thus impose very low overheads. K. Qiu et al.
propose a low power, reconfigurable ReRAM crossbar architec-
ture, ResiRCA to be able to dynamically activate different scaled
convolutional computations [11]. At the software layer, a resilient
computation scheduling strategy, ResiShcedule, provides the op-
timal tuning combination of loop tiling, ReRAM duplication and
pipelining techniques to cope with different power inputs. More-
over, directed by a multi-level power predictor, smooth transition
between different computation schedule policies is proposed to
maintain partial results instead of discarding them.

5 FUTURE TRENDS
Continuous improvements in the energy harvesting domain can be
expectedwith advances in NVP/NVA circuits, architecture, software
and cross-layer co-design. Potential advances are anticipated in the
following aspects:

• Circuit designs: emphasizing delivery of higher energy con-
version efficiency;

• Specific NVA prototypes: bringing about fundamental change
on NVP architecture to meet a large variety of scenario demands
(e.g. SNN accelerator);

• Software tools: being further evolved to take full advantage of
the new architectural features at compiler and/or OS levels;

•Compatible I/O operations: achieving a fast I/O operation recov-
ery at minimum cost by novel checkpointing or non-interruptable
strategies through power intermittence sensing; and

• Simulator systems: being able to simulate variable system-level
architectures as well as microarchitectures of NVPs and NVAs with
smart energy harvesting power management modules.

6 CONCLUSION
Energy harvesting is a promising power technology for IoT edge
devices. With advances in enabling smart nodes in IoTs, NVP de-
signs have evolved to encompass NVA. Integrated with software
support, both NVP and NVA should guarantee system correctness
and high energy efficiency. This paper provides an overview of
the recent studies on the energy harvesting-friendly NVP technol-
ogy, including NVP and NVA architectures as well as their circuits,
correctness-aware checkpointing and non-checkpointing software
strategies, power efficiency-driven HW/SW co-designs. We believe
this paper will motivate further evolution and optimizations of
energy harvesting systems.

7 ACKNOWLEDGEMENT
This work was supported in part by NSF #1822923, NSFC #61872251
and Beijing Advanced Innovation Center for Imaging Technology.

REFERENCES
[1] https://www.ubuntupit.com/top-20-emerging-iot-trends-that-will-shape-

your-future-soon/.
[2] A. S. H. Mayue Shi, Eric M Yeatman, “Energy harvesting piezoelectric wind speed

sensor,” Journal of Physics: Conference Series, vol. 1407, pp. 012–044, Nov 2019.
[3] https://assistcenter.org/inertial-energy-harvesting/.
[4] Z. J. Chew and M. Zhu, “Adaptive self-configurable rectifier for extended oper-

ating range of piezoelectric energy harvesting,” IEEE Transactions on Industrial
Electronics (TIE), vol. 67, no. 4, pp. 3267–3276, 2020.

[5] M. Mangrulkar and S. G. Akojwar, “A simple and efficient solar energy harvesting
for wireless sensor node,” in ICRCICN’16, pp. 95–99.

[6] A. Tobola, H. Leutheuser, M. Pollak, P. Spies, C. Hofmann, C. Weigand, B. M. Es-
kofier, and G. Fischer, “Self-powered multiparameter health sensor,” IEEE journal
of biomedical and health informatics, vol. 22, no. 1, pp. 15–22, 2018.

[7] R. Shigeta, T. Sasaki, D. M. Quan, Y. Kawahara, R. J. Vyas, M. M. Tentzeris, and
T. Asami, “Ambient rf energy harvesting sensor device with capacitor-leakage-
aware duty cycle control,” IEEE Sensors Journal, vol. 13, no. 8, pp. 2973–2983,
2013.

[8] M. Gao, P. Wang, Y. Wang, and L. Yao, “Self-powered zigbee wireless sensor
nodes for railway condition monitoring,” IEEE TITS’18, vol. 19, no. 3, pp. 900–909.

[9] M. Xie, C. Pan, J. Hu, C. Yang, and Y. Chen, “Checkpoint-aware instruction
scheduling for nonvolatile processor with multiple functional units,” in ASP-
DAC’15, pp. 316–321.

[10] J. Yue, R. Liu, W. Sun, Z. Yuan, Z. Wang, Y. Tu, Y. Chen, A. Ren, Y. Wang, M. Chang,
X. Li, H. Yang, and Y. Liu, “7.5 a 65nm 0.39-to-140.3tops/w 1-to-12b unified neural
network processor using block-circulant-enabled transpose-domain acceleration
with 8.1 × higher tops/mm2and 6t hbst-tram-based 2d data-reuse architecture,”
in ISSCC’19, pp. 138–140.

[11] K. Qiu, N. Jao, M. Zhao, C. S. Mishra, G. Gudukbay, S. Jose, J. Sampson, M. T.
Kandemir, and V. Narayanan, “Resirca: A resilient energy harvesting reram
crossbar-based accelerator for intelligent embedded processors,” in HPCA’20,
pp. 315–327.

[12] Y. Wang, Y. Liu, S. Li, D. Zhang, B. Zhao, M.-F. Chiang, Y. Yan, B. Sai, and H. Yang,
“A 3us wake-up time nonvolatile processor based on ferroelectric flip-flops,” in
ESSCIRC’12, pp. 149–152.

[13] X. Li, S. George, K. Ma, W. Tsai, A. Aziz, J. Sampson, S. K. Gupta, M. Chang, Y. Liu,
S. Datta, and V. Narayanan, “Advancing nonvolatile computing with nonvolatile
NCFET latches and flip-flops,” TCAS-I’17, vol. 64, no. 11, pp. 2907–2919.

[14] S. K. Thirumala, A. Raha, H. Jayakumar, K. Ma, V. Narayanan, V. Raghunathan,
and S. K. Gupta, “Dual mode ferroelectric transistor based non-volatile flip-flops
for intermittently-powered systems,” in ISLPED’18, pp. 1–6.

[15] Y. Liu, Z. Wang, A. Lee, F. Su, C. Lo, Z. Yuan, C. Lin, Q. Wei, Y. Wang, Y. King,
C. Lin, P. Khalili, K. Wang, M. Chang, and H. Yang, “4.7 a 65nm reram-enabled
nonvolatile processor with 6× reduction in restore time and 4× higher clock
frequency using adaptive data retention and self-write-termination nonvolatile
logic,” in ISSCC’16, pp. 84–86.

[16] A. Lee, C. Lo, C. Lin, W. Chen, K. Hsu, Z. Wang, F. Su, Z. Yuan, Q. Wei, Y. King,
C. Lin, H. Lee, P. Khalili Amiri, K. Wang, Y. Wang, H. Yang, Y. Liu, and M. Chang,
“A reram-based nonvolatile flip-flop with self-write-termination scheme for
frequent-off fast-wake-up nonvolatile processors,” JSSC’17, vol. 52, no. 8, pp. 2194–
2207.

[17] M. Qazi, A. Amerasekera, and A. P. Chandrakasan, “A 3.4-pj feram-enabled d
flip-flop in 0.13-𝜇m cmos for nonvolatile processing in digital systems,” JSSC’14,
vol. 49, no. 1, pp. 202–211.

[18] “Texas instruments. [online]. available: www.ti.com/product/cc1101,”
[19] F. Su, W. Chen, L. Xia, C. Lo, T. Tang, Z. Wang, K. Hsu, M. Cheng, J. Li, Y. Xie,

Y. Wang, M. Chang, H. Yang, and Y. Liu, “A 462gops/j rram-based nonvolatile
intelligent processor for energy harvesting ioe system featuring nonvolatile logics
and processing-in-memory,” in 2017 Symposium on VLSI Circuits, pp. C260–C261.

[20] Y. Zha, E. Nowak, and J. Li, “Liquid silicon: A nonvolatile fully programmable
processing-in-memory processor with monolithically integrated reram for
big data/machine learning applications,” in 2019 Symposium on VLSI Circuits,
pp. C206–C207.

[21] Y. Wang, Y. Liu, S. Li, X. Sheng, D. Zhang, M.-F. Chiang, B. Sai, X. Hu, and H. Yang,
“PaCC: A parallel compare and compress codec for area reduction in nonvolatile
processors,” TVLSI’13, vol. PP, no. 99, pp. 1491–1505.

[22] A. Colin and B. Lucia, “Chain: tasks and channels for reliable intermittent pro-
grams,” in Proc. ACM Program. Lang. (OOPSLA), vol. 51, pp. 514–530, 2016.

[23] B. Lucia and B. Ransford, “A simpler, safer programming and execution model
for intermittent systems,” PLDI’15, vol. 50, no. 6, pp. 575–585.

[24] M. Xie, M. Zhao, C. Pan, H. Li, Y. Liu, Y. Zhang, C. J. Xue, and J. Hu, “Checkpoint
aware hybrid cache architecture for nv processor in energy harvesting powered
systems,” in CODES+ISSS’16, pp. 1–10, Oct.

[25] H. Jayakumar, A. Raha, W. S. Lee, and V. Raghunathan, “Quickrecall: A hw/sw
approach for computing across power cycles in transiently powered computers,”
JETC’15, vol. 12, no. 1.

[26] K. Ma, Y. Zheng, S. Li, K. Swaminathan, X. Li, Y. Liu, J. Sampson, Y. Xie, and
V. Narayanan, “Architecture exploration for ambient energy harvesting non-
volatile processors,” in HPCA’15, pp. 526–537.

[27] T. Onuki, W. Uesugi, A. Isobe, Y. Ando, S. Okamoto, K. Kato, T. R. Yew, J. Y. Wu,
C. C. Shuai, S. H. Wu, J. Myers, K. Doppler, M. Fujita, and S. Yamazaki, “Em-
bedded memory and arm cortex-m0 core using 60-nm c-axis aligned crystalline
indium–gallium–zinc oxide fet integrated with 65-nm si cmos,” JSSC’17, vol. 52,
no. 4, pp. 925–932.

[28] C. Ding, S. Liao, Y. Wang, Z. Li, N. Liu, Y. Zhuo, C. Wang, X. Qian, Y. Bai, G. Yuan,
X. Ma, Y. Zhang, J. Tang, Q. Qiu, X. Lin, and B. Yuan, “CirCNN: Accelerating and
compressing deep neural networks using block-circulant weight matrices,” in
MICRO’17, p. 395–408.

[29] M. Xie, C. Pan, J. Hu, C. J. Xue, and Q. Zhuge, “Non-volatile registers aware
instruction selection for embedded systems,” in RTCSA’14, pp. 1–9.

[30] Q. Li, M. Zhao, J. Hu, Y. Liu, Y. He, and C. J. Xue, “Compiler directed automatic
stack trimming for efficient non-volatile processors,” in DAC’15, pp. 1–6.

[31] W. Song, Y. Zhou, M. Zhao, L. Ju, C. J. Xue, and Z. Jia, “EMC: Energy-aware
morphable cache design for non-volatile processors,” TC’19, vol. 68, no. 4, pp. 498–
509.

[32] K. Maeng and B. Lucia, “Adaptive dynamic checkpointing for safe efficient inter-
mittent computing,” in OSDI’18, pp. 129–144.

[33] B. Ransford, S. S. Clark, M. Salajegheh, and K. Fu, “Getting things done on com-
putational rfids with energy-aware checkpointing and voltage-aware scheduling,”
in Proceedings of the 2008 Conference on Power Aware Computing and Systems,
pp. 5–5.

[34] M. Zhao, C. Fu, Z. Li, Q. Li, M. Xie, Y. Liu, J. Hu, Z. Jia, and C. J. Xue, “Stack-
size sensitive on-chip memory backup for self-powered nonvolatile processors,”
TCAD’17, vol. 36, no. 11, pp. 1804–1816.

[35] J. Li, M. Zhao, L. Ju, C. J. Xue, and Z. Jia, “Maximizing forward progress with
cache-aware backup for self-powered non-volatile processors,” inDAC’17, pp. 1–6.

[36] W. Fan, Y. Zhang, W. Song, M. Zhao, Z. Shen, and Z. Jia, “Q-learning based backup
for energy harvesting powered embedded systems,” in DATE’20, pp. 1247–1252.

[37] B. Ransford and B. Lucia, “Nonvolatile memory is a broken time machine,” in
Proceedings of the workshop on MMSPC’14, pp. 1–3.

[38] M. Xie, M. Zhao, C. Pan, J. Hu, Y. Liu, and C. J. Xue, “Fixing the broken time
machine: consistency-aware checkpointing for energy harvesting powered non-
volatile processor,” in DAC’15, pp. 184:1–184:6.

[39] M. Surbatovich, L. Jia, and B. Lucia, “I/O dependent idempotence bugs in inter-
mittent systems,” Proc. ACM Program. Lang. (OOPSLA), vol. 3, 2019.

[40] W.-M. Chen, T.-S. Cheng, P.-C. Hsiu, and T.-W. Kuo, “Value-Based Task Scheduling
for Nonvolatile Processor-Based Embedded Devices,” in RTSS’16, pp. 247–256.

[41] W.-M. Chen, P.-C. Hsiu, and T.-W. Kuo, “Enabling Failure-resilient Intermittently-
powered Systems Without Runtime Checkpointing,” in DAC’19, pp. 104:1–6.

[42] W.-M. Chen, Y.-T. Chen, P.-C. Hsiu, and T.-W. Kuo, “Multiversion Concurrency
Control on Intermittent Systems,” in ICCAD’19, pp. 1–8.

[43] W.-M. Chen, T.-W. Kuo, and P.-C. Hsiu, “Enabling failure-resilient intermittent
systems without runtime checkpointing,” TCAD’20, Early Access.

[44] https://github.com/EMCLab-Sinica/Intermittent-OS/.
[45] K. Maeng, A. Colin, and B. Lucia, “Alpaca: Intermittent execution without check-

points,” Proc. ACM Program. Lang. (OOPSLA), vol. 1, 2017.
[46] K. Maeng and B. Lucia, “Adaptive low-overhead scheduling for periodic and

reactive intermittent execution,” in PLDI’20, p. 1005–1021.
[47] A. Colin, E. Ruppel, and B. Lucia, “A reconfigurable energy storage architecture

for energy-harvesting devices,” in ASPLOS’18, pp. 767–781.
[48] K. Ma, X. Li, Y. Liu, J. Sampson, Y. Xie, and V. Narayanan, “Dynamic machine

learning based matching of nonvolatile processor microarchitecture to harvested
energy profile,” in ICCAD’15, pp. 670–675.

[49] K. Ma, X. Li, S. R. Srinivasa, Y. Liu, J. Sampson, Y. Xie, and V. Narayanan,
“Spendthrift: Machine learning based resource and frequency scaling for am-
bient energy harvesting nonvolatile processors,” in ASP-DAC’17, pp. 678–683.

[50] K. Ma, X. Li, J. Li, Y. Liu, Y. Xie, J. Sampson, M. T. Kandemir, and V. Narayanan,
“Incidental computing on iot nonvolatile processors,” in MICRO’17, pp. 204–218.

[51] K. Ma, J. Li, X. Li, Y. Liu, Y. Xie, M. Kandemir, J. Sampson, and V. Narayanan, “Iaa:
Incidental approximate architectures for extremely energy-constrained energy
harvesting scenarios using iot nonvolatile processors,” IEEE Micro’18, vol. 38,
no. 4, pp. 11–19.

[52] K.Ma, X. Li, M. T. Kandemir, J. Sampson, V. Narayanan, J. Li, T.Wu, Z.Wang, Y. Liu,
and Y. Xie, “NEOFog: Nonvolatility-exploiting optimizations for fog computing,”
in ASPLOS’18, pp. 782–796.

[53] A. Y. Majid, C. D. Donne, K. Maeng, A. Colin, K. S. Yildirim, B. Lucia, and
P. Pawełczak, “Dynamic task-based intermittent execution for energy-harvesting
devices,” TSN’20, vol. 16, no. 1.

[54] B. L. Graham Gobieski, Nathan Beckmann, “Intermittent deep neural network
inference,” in SysML Conference, pp. 1–3, 2018.

[55] G. Gobieski, B. Lucia, and N. Beckmann, “Intelligence beyond the edge: Inference
on intermittent embedded systems,” in ASPLOS ’19, p. 199–213, 2019.

https://www.ubuntupit.com/top-20-emerging-iot-trends-that-will-shape-your-future-soon/
https://www.ubuntupit.com/top-20-emerging-iot-trends-that-will-shape-your-future-soon/
https://assistcenter.org/inertial-energy-harvesting/
https://github.com/EMCLab-Sinica/Intermittent-OS/

	Abstract
	1 Introduction
	2 Recent Non-volatile Processing Hardware and Architectures
	2.1 NVP
	2.2 NVA

	3 Failure-resilient Software
	3.1 Checkpointing-centred software
	3.2 Non-checkpointing software

	4 Power-adaptive design
	4.1 Adaptive hardware reconfiguring
	4.2 Adaptive task scheduling

	5 Future trends
	6 Conclusion
	7 Acknowledgement
	References

