
Available online at www.sciencedirect.com
ScienceDirect

Comput. Methods Appl. Mech. Engrg. 371 (2020) 113299
www.elsevier.com/locate/cma

Geometric deep learning for computational mechanics Part I:
anisotropic hyperelasticity

Nikolaos N. Vlassisa, Ran Maa, WaiChing Suna,∗

a Department of Civil Engineering and Engineering Mechanics, Columbia University, 610 SW Mudd, Mail Code: 4709,
New York, NY 10027, United States of America

Received 3 January 2020; received in revised form 19 May 2020; accepted 19 July 2020
Available online xxxx

Abstract

We present a machine learning approach that integrates geometric deep learning and Sobolev training to generate a family
of finite strain anisotropic hyperelastic models that predict the homogenized responses of polycrystals previously unseen during
the training. While hand-crafted hyperelasticity models often incorporate homogenized measures of microstructural attributes,
such as the porosity or the averaged orientation of constituents, these measures may not adequately represent the topological
structures of the attributes. We fill this knowledge gap by introducing the concept of the weighted graph as a new high-
dimensional descriptor that represents topological information, such as the connectivity of anisotropic grains in an assemble.
By leveraging a graph convolutional deep neural network in a hybrid machine learning architecture previously used in Frankel
et al. (2019), the artificial intelligence extracts low-dimensional features from the weighted graphs and subsequently learns the
influence of these low-dimensional features on the resultant stored elastic energy functionals. To ensure smoothness and prevent
unintentionally generating a non-convex stored energy functional, we adopt the Sobolev training method for neural networks
such that a stress measure is obtained implicitly by taking directional derivatives of the trained energy functional. Results from
numerical experiments suggest that Sobolev training is capable of generating a hyperelastic energy functional that predicts
both the elastic energy and stress measures more accurately than the classical training that minimizes L2 norms. Verification
exercises against unseen benchmark FFT simulations and phase-field fracture simulations that employ the geometric learning
generated elastic energy functional are conducted to demonstrate the quality of the predictions.
c⃝ 2020 Elsevier B.V. All rights reserved.
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1. Introduction

Conventional constitutive modeling efforts often rely on human interpretations of geometric descriptors to
incorporate microstructural information into predictions. These descriptors, such as the volume fraction of
void/constituents, dislocation density, twinning, degradation function, slip system, orientation, and shape factors
are often incorporated as state variables in a system of ordinary differential equations that leads to the constitutive
responses at a material point. Classical examples include the family of Gurson models in which the volume fraction
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Fig. 1. Polycrystal interpreted as a weighted connectivity graph. The graph is undirected and weighted at the nodes.

f voids is related to ductile fracture [1–6], critical state plasticity in which porosity and over-consolidation ratio
ictates the plastic dilatancy and hardening law [7–12] and crystal plasticity where the activation of slip systems
eads to plastic deformation [13–15]. In these cases, a specific subset of descriptors is often incorporated manually
uch that the most crucial deformation mechanisms for the stress–strain relationships are described mathematically.

While this approach has achieved a level of success, especially for isotropic materials, materials of complex
icrostructures often require more complex geometric and topological descriptors to sufficiently describe the

eometrical features [16–19]. The human interpretation limits the complexity of the state variables and may lead
o lost opportunity of utilizing all the available information for the microstructure, which could in turn reduce the
rediction quality. A data-driven approach should be considered to discover constitutive law mechanisms when
uman interpretation capabilities become restrictive [20–25]. In this work, we consider the general form of a strain
nergy functional that reads,

ψ = ψ(F,G) , P =
∂ψ

∂F
, (1)

where G is a graph that stores the non-Euclidean data of the microstructures (e.g. crystal connectivity, grain
connectivity). Specifically, we attempt to train a neural network approximator of the anisotropic stored elastic energy
functional across different polycrystals with the sole extra input to describe the anisotropy being the weighted crystal
connectivity graph (see Fig. 1).

It can be difficult to directly incorporate either Euclidean or non-Euclidean data to a hand-crafted constitutive
model. There have been attempts to infer information directly from scanned microstructural images using neural
networks that utilize a convolutional layer architecture (CNN) [26]. The endeavor to distill physically meaningful
and interpretable features from scanned microstructural images stored in a Euclidean grid can be a complex and
sometimes futile process. While recent advancements in convolutional neural networks have provided an effective
means to extract features that lead to extraordinary superhuman performance for image classification tasks [27],
similar success has not been recorded for mechanics predictions. Image-related problems, such as camera noise,
saturation, image compression as well as ring artifacts, which often occur in micro-CT images, may lead to issues
in the deconvolution operators and, in some cases, may constitute an obstacle in acquiring useful and interpretable
features from the image dataset [28]. In some cases, over-fitting and under-fitting can both render the trained CNN
extremely vulnerable to adversarial attacks and hence not suitable for high-risk, high-regret applications.

As demonstrated in previous works [29,30], using images directly as an additional input to the polycrystal energy
functional approximator may be contingent to the quality and size of the training pool. A large number of images,
possibly in three dimensions, and in high enough resolution would be necessary to represent the latent features
that will aid the approximator to distinguish successfully between different polycrystals. Using data in a Euclidean
grid is an esoteric process that is dependent on empirical evidence that the current training sample holds adequate
information to infer features useful in formulating a constitutive law. However, gathering that evidence can be a
laborious process as it requires numerous trial and error runs and is weighed down by the heavy computational
costs of performing filtering on Euclidean data (e.g. on high resolution 3D image voxels).
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Graph representation of the data structures can provide a momentous head-start to overcome this very impedi-
ent. An example is the connectivity graph used in granular mechanics community where the formations and evo-

ution of force chains are linked to macroscopic phenomena, such as shear band formation and failures [18,31–35].
he distinct advantage of the graph representation of data is the relatively high interpretability of the data
tructures [18,34]. This graph representation is not only helpful for understanding the topology of interrelated
ntities in a network but also provides a convenient means to create universal and interpretable features via graph
onvolutional neural networks [36,37].

At the same time, by concisely selecting appropriate graph weights, one may incorporate only the essential
nformation of micro-structural data critical for mechanics predictions which could prove to be more interpretable,
exible, economical, and efficient than incorporating feature spaces inferred from 3D voxel images. Furthermore,
ince one may easily use rotational and transitional invariant data as weights, the graph approach is also
dvantageous for predicting constitutive responses that require frame indifference.

Currently, machine learning applications often employ two families of algorithms to take graphs as inputs,
.e., representation learning algorithms and graph neural networks. The former usually refers to unsupervised

ethods that convert graph data structures into formats or features that are easily comprehensible by machine
earning algorithms [38]. The latter refers to neural network algorithms that accept graphs as inputs with layer
ormulations that can operate directly on graph structures [39]. Representation learning on graphs shares concepts
ith the rather popular embedding techniques on text and speech recognition [40] to encode the input in a vector

ormat that can be utilized by common regression and classification algorithms. There have been multiple studies
n encoding graph structures, spanning from the level of nodes [41] up to the level of entire graphs [42,43].
raph embedding algorithms, like DeepWalk [42], utilize techniques such as random walks to “read” sequences of
eighboring nodes resembling reading word sequences in a sentence and encode those graph data in an unsupervised
ashion.

While these algorithms have been proven to be rather powerful and demonstrate competitive results in tasks
ike classification problems, they do come with disadvantages that can be limiting for use in engineering problems.
raph representation algorithms work very well on encoding the training dataset. However, they could be difficult

o generalize and cannot accommodate dynamic data structures. This can be proven problematic for mechanics
roblems, where we expect a model to be as generalized as much as possible in terms of material structure
ariations (e.g. polycrystals, granular assemblies). Furthermore, representation learning algorithms can be difficult to
ombine with another neural network architecture for a supervised learning task in a sequential manner. In particular,
hen the representation learning is performed separately and independently from the supervised learning task that
enerates the energy functional approximation, there is no guarantee that the clustering or classifications obtained
rom the representative learning are physically meaningful. Hence, the representation learning may not be capable
f generating features that facilitate the energy functional prediction task in a completely unsupervised setting.

For the above reasons, we have opted for a hybrid neural network architecture that combines an unsupervised
raph convolutional neural network with a multilayer perceptron to perform the regression task of predicting an
nergy functional. Both branches of our suggested hybrid architecture learn simultaneously from the same back-
ropagation process with a common loss function tailored to the approximated function. The graph encoder part –
orrowing its name from the popular autoencoder architecture [44,45] – learns and adjusts its weights to encode
nput graphs in a manner that serves the approximation task at hand. Thus, it does eliminate the obstacle of trying to
oordinate the asynchronous steps of graph embedding and approximator training by parallel fitting both the graph
ncoder and the energy functional approximator with a common training goal (loss function).

As for notations and symbols in this current work, bold-faced letters denote tensors (including vectors which are
ank-one tensors); the symbol ‘·’ denotes a single contraction of adjacent indices of two tensors (e.g. a · b = ai bi

r c · d = ci j d jk ); the symbol ‘:’ denotes a double contraction of adjacent indices of tensor of rank two or higher
e.g. C : ϵe

= Ci jklϵ
e
kl ); the symbol ‘⊗’ denotes a juxtaposition of two vectors (e.g. a⊗b = ai b j ) or two symmetric

econd order tensors (e.g. (α ⊗ β)i jkl = αi jβkl). Moreover, (α ⊕ β)i jkl = α jlβik and (α ⊖ β)i jkl = αilβ jk . We also
define identity tensors (I)i j = δi j , (I4)i jkl = δikδ jl , and (I4

sym)i jkl =
1
2 (δikδ jl + δilδk j ), where δi j is the Kronecker

elta. As for sign conventions, unless specified otherwise, we consider the direction of the tensile stress and dilative
ressure as positive.
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Fig. 2. An illustrative example of a polycrystal (a) represented as an undirected weighted graph (b). If two crystals in the formation share
a face, their nodes are also connected in the graph. Each node is weighted by two features f A and fB in this illustrative example.

2. Graphs as non-euclidean descriptors for micro-structures

This section provides a detailed account of how to incorporate microstructural data represented by weighted
graphs as descriptors for modeling hyperelastic responses of different microstructures. In particular, we describe how
topological information of an assemble composed of grains with different properties can be effectively represented
as a node-weighted graph (Section 2.1). A brief review of some basic concepts of graph theory is included in
Appendix A. An illustrative example of the graph representation for a polycrystal structure in Fig. 2 is included in
Appendix B.

2.1. Polycrystals represented as node-weighted undirected graphs

Inferring microstructural data as weighted graphs from field data may require pooling, a down-sampling
procedure to convert field data of a specified domain into low-dimensional features that preserve topological
information. Examples of applications of pooling inferring include the grain connectivity graph from micro-CT
images of assembles [12,46] or realization of micro-structures generated from software packages such as Neper
or DREAM.3D [47,48]. In these cases, the node and edge set can be defined in a rather intuitive manner, as the
micro-structures are formed by assembles consisting of parts (grains) connected in a specific way represented by the
edge set as illustrated in Fig. 2. In this work, we treat each crystal grain as a node or vertex in a graph and create
an edge for each in-contact grain pair. Attributes of each grain are represented in a collection of node weights. The
features of the edges (such as the contact surface areas, roughness) are neglected to simplify the learning procedures
but will be considered in the future. For simplicity, we also assume that the polycrystal contains no voids and the
contacts remain intact.

Given a polycrystal microstructure consisting of a finite number of crystal grains N , we define the graph
epresentation used in this work. The shape of the grains is idealized as polyhedrons such that the faces of each grain
ay be in contact with at most one face of the other grain. As such, an edge is assigned between each in-contact

adjacent) grain pair such that there exist E edges in the graph. The collection of the grains is then represented as
vertex set V = {v1, . . . , vN }, and the collection of edges as a edge set E ⊆ V×V. There can only be one unique

edge defined between two vertices and the order of the vertices of an edge does not matter — i.e. the pairs are
unordered or undirected. As a result, the connectivity of the polycrystal can then be represented by an undirected
graph G = (V,E) where V = {v1, . . . , vN } (cf. Definition 1).

Note that G alone only provides the connectivity information. To predict the elasticity of the polycrystals, more
information about the geometrical features and mechanical properties of grains must be extracted in the machine
learning process. In our design, these features and properties are stored as weights assigned to each vertex and the
purpose of the geometric learning is to find a set of descriptors of lower dimensions than the weighted graph such
that they can be directly incorporated into the energy functional calculations. For each vertex vi in the graph, we
define a feature vector f i

= { f i
1 , . . . , f i

D} where D is the number of node weights that represent the geometrical

features (e.g. size, number of faces, aspect ratios) and mechanical properties (e.g. elastic moduli, crystal orientation)
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f the grain vi . In this work, the feature vectors store information about the volume, the crystal orientation (in Euler
ngles), the total surface area, the number of faces, the numbers of neighbors, as well as other shape descriptors,
e.g. the equivalent diameter) for every crystal grain in the polycrystals. The set of node weights for the entire graph
eads

F = { f 1, f 2, . . . , f N
}. (2)

emark 1. Note that including the edge weights in the learning problems is likely to provide a more rich source of
ata for the learning problems. Information such as the attributes of each contact between each grain pair, including
he contact surface areas and the angle of contact — could be used as weights for the edges of the graph. While
his current work is solely focused on node-weighted graphs, future work will examine an efficient way to generate
nergy functional from a node-weighted/edge-weighted graph.

.2. Adjacency matrix, graph Laplacian and feature matrix

In order to prepare the available data for the geometric learning, it is often more convenient to adopt a matrix
epresentation of a graph. In this work, the geometric learning algorithm used requires the normalized symmetric
aplacian matrix Lsym and the node feature matrix X as inputs (see Appendix A).

First of all, we define the node feature matrix X by simply stacking the feature vectors f i together. As such,
he dimension of the node feature matrix X is N × D. The symmetric normalized Laplacian is obtained from
he Laplacian matrix L = D − A where A and D are the adjacency and degree matrices (cf. Definition 9) and
efinition 10) . The adjacency matrix A is a symmetric matrix of dimensions N × N representing the connectivity
f the microstructure. The entries αi j of the matrix A are defined as,

αi j =

{
1, vi is adjacent to v j

0, otherwise. (3)

The degree di of a vertex vi is defined as the total number of adjacent (neighboring) vertices to vi or, equivalently,
he number of crystal grains in contact with the crystal grain vi . The matrix D is a N × N diagonal matrix. The

entries ri j of the diagonal matrix D are defined as,

ri j =

{
di , i = j
0, otherwise. (4)

The symmetric normalized Laplacian matrix Lsym
= D−1/2 L D−1/2 represents the graph connectivity structure

and is one of the inputs for the geometric learning algorithm described in Section 3.2. The matrix Lsym is of N × N
dimensions. The entries lsym

i j of the matrix Lsym read,

lsym
i j =

⎧⎨⎩
1, i = j and di ̸= 0
−(di d j )−

1
2 , i ̸= j and vi is adjacent to v j

0, otherwise.
(5)

Note that while the Laplacian matrix L and the symmetric normalized Laplacian matrix Lsym both represent the
connectivity of the grains in the polycrystals, the normalized Lsym is often a more popular choice for spectral-based
graph convolutions due to the symmetric and positive-semi-definite properties, as well as properties .

3. Deep learning on graphs

Machine learning often involves algorithms designed to generate functions to represent the available data.
Some common applications in machine learning are those of regression and classification. A regression algorithm
attempts to make predictions of a numerical value provided with input data. A classification algorithm attempts
to assign a label to an input and place it to one or multiple classes/categories that it belongs to. Classification
tasks can be supervised, if information for the true labels of the inputs is available during the learning process.
Classification tasks can also be unsupervised, if the algorithm is not exposed to the true labels of the input during
the learning process but attempts to infer labels for the input by learning properties of the input dataset structure.

The hybrid geometric learning neural network introduced in this work simultaneously performs an unsupervised
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Fig. 3. A two-layer perceptron. The input vector x has d features, each of the two hidden layers hl has m neurons.

lassification of polycrystal graph structures and the regression of an anisotropic elastic energy potential functional.
his combination of unsupervised learning classification and supervised learning regression has been first adopted

or solid mechanics problems in [30] where convolutional neural network is used to generate features of 3D voxel
mages to aid predictions of elasto-plastic responses under monotonically increasing strain. The only feature of the
rain incorporated in the learning problem is the crystal orientation. In our design, a 3D voxel image is first converted
nto a lower dimensional weighted graph that contains only connectivity information stored in the symmetric
ormalized graph Laplacian Lsym, while we consider multiple effective properties of each grain stored in the matrix

X . Then, a geometric learning encoder is trained to provide an even lower dimensional latent representation of the
eighted graph to aid the predictions of hyperelastic energy functional.
In this section, we provide a brief description of the supervised and unsupervised components of the hybrid

rchitecture. The supervised learning component conducted via regression with the multilayer perceptron (MLP) is
eviewed in Section 3.1. While the graph convolution technique that will carry out the unsupervised classification
f the polycrystals is described in Section 3.2. Finally, in Section 3.3, we introduce our hybrid architecture that
ombines these two architectures to perform their tasks simultaneously.

.1. Deep learning for supervised regression

The architecture described in this section constitutes the energy functional regression branch of the hybrid
rchitecture described in Section 3.3. The regression task is completed via training an artificial neural network
ANN) with multiple layers. While there are other feasible options, such as support vector regression machines [49]
r Gaussian process regression [50], we choose to train a multilayer perceptron (MLP) or often called feed-forward
eural network due to the ease of implementations via various existing libraries and the fact that it is a universal
unction approximator.

The formulation for the two-layer perceptron in Fig. 3, that will also used in this work, is presented below as a
eries of matrix multiplications:

z1 = xW 1 + b1 (6)

h1 = σ (z1) (7)

z2 = h1W 2 + b2 (8)

h2 = σ (z2) (9)

zout = h2W 3 + b3 (10)

ŷ = σout(zout). (11)

In the above formulation, the input vector xl contains the features of a sample, the weight matrix W l contains
he weights — parameters of the network, and b is the bias vector for every layer. The function σ is the chosen
l
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ctivation function for the hidden layers. In the current work, the ELU function is used as an activation function
or the MLP hidden layers, defined as:

ELU(α) =

{
eα − 1, α < 0
α, α ≥ 0. (12)

The vector hl contains the activation function values for every neuron in the hidden layer. The vector ŷ is the
utput vector of the network with linear activation σout(•) = (•).

Defining y as the true function values corresponding to the inputs x, then the MLP architecture could be
implified as an approximator function ŷ = ŷ(x|W , b) of the true function y with inputs x parametrized by W and

b, such that:

W ′, b′
= argmin

W ,b
ℓ( ŷ(x|W , b), y), (13)

here W ′ and b′ are the optimal weights and biases of the neural network that arrive from the optimization —
raining process such that a defined loss function ℓ is minimized. The loss functions used in this work are discussed
n Section 4.

The fully-connected (Dense) layer that is used as the hidden layer for a standard MLP architecture has the
ollowing general formulation:

h(l+1)
dense = σ (h(l)W (l)

+ b(l)). (14)

In the supervised learning branch, the neural network consists of two layers and each layer contains 200 neurons.
he number of layers and the number of neurons per layer are hyperparameters. The optimal combination of
yperparameters can be estimated through repeated trial and error or sometimes through Bayesian optimization [51].
o examine if overfitting occurs, we use a k-fold validation to split the training and testing data and measure the
ifferences in performance when the trained neural network is used to make predictions within and outside the
raining data. A brief review of this issue can be found in [52].

.2. Graph convolution network for unsupervised classification of polycrystals

Geometric learning refers to the extension of previously established neural network techniques to graph structures
nd manifold-structured data. Graph Neural Networks (GNN) refer to a specific type of neural networks architectures
hat operate directly on graph structures. An extensive summary of different graph neural network architectures
urrently developed can be found in [53]. Graph convolution networks (GCN) [54,55] are variations of graph neural
etworks that bear similarities with the highly popular convolutional neural network (CNN) algorithms, commonly
sed in image processing [27,56]. The mutual term convolutional refers to the use of filter parameters that are
hared over all locations in the graph similar to image processing. Graph convolution networks are designed to
earn a function of features or signals in graphs G = (V,E) and they have demonstrated competitive scores at tasks
f classification [36,55,57,58].

In this current work, we utilize a GCN layer implementation similar to that introduced in [55]. The implemen-
ation is based on the open-source neural network library Keras [59] and the open-source library Spektral [60]
n graph neural networks. The GCN layers will be the ones that learn from the polycrystal connectivity graph
nformation. A GCN layer accepts two inputs, a symmetric normalized graph Laplacian matrix Lsym and a node
eature matrix X as described in Section 2.1. The matrix Lsym holds information about the graph structure. The
atrix X holds information about the features of every node in the graph — every crystal in the polycrystal. In
atrix form, the GCN layer has the following structure:

h(l+1)
GCN = σ (Lsymh(l)W (l)

+ b(l)). (15)

In the above formulation, hl is the output of a layer l. For l = 0, the first GCN layer of the network accepts
he graph features as input such that h0

= X . For l > 1, h represents a higher dimensional representation of
he graph features that are produced from the convolution function, similar to a CNN layer. The function σ is

non-linear activation function. In this work, the GCN layers use the Rectified Linear Unit activation function,
efined as ReLU (•) = max(0, •). The weight matrix W l and bias vector bl are the parameters of the layer that

ill be optimized during training.
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The matrix Lsym acts as an operator on the node feature matrix X so that, for every node, the sum of every
neighboring node features and the node itself is accounted for. The i th row of the feature matrix h(l) represents
he weights for the i th node/crystal in the graph. The output of the multiplication with the i th row of the feature

atrix, controlled by the i th row of the Lsym matrix, corresponds to a weighted aggregation output of the features
f the i th node and all its neighbors. In order to include the features of the node itself, the matrix Lsym is derived,
s defined in Section 2.1 and demonstrated in Appendix B, from the binary adjacency matrix Â allowing self-loops

and the equivalent degree matrix D. Using the normalized Laplacian matrix Lsym, instead of the adjacency matrix
Â, for feature filtering remedies possible numerical and vanishing/exploding gradient issues when using the GCN
layer in deep neural networks.

This type of spatial filtering can be of great use in constitutive modeling of microstructures where both the
statistics and topology of attributes may both significantly affect the macroscopic outcome. In the case of the
polycrystals, for example, the neural network model does not solely learn on the features of every crystal separately.
It also learns by aggregating the features of the neighboring crystals in the graph to potentially reveal a behavior that
stems from the feature correlation among different nodes. This property deems this filtering function a considerable
candidate for learning on spatially heterogeneous material structures.

Remark 2. It is noted that the GCN method can use unweighted graphs as input — in that case the feature
matrix is a vector of length N with every component equal to unity, as suggested in [55]. However, due to the
ignificantly less amount of information represented by unweighted graphs, we speculate that the performance of
he resultant trained neural network with unweighted graphs is likely to be inferior to that trained on the weighted
raph counterparts. The effects of incorporating different combinations of node features on the performance of
redictions are examined in the numerical experiments performed in Section 7.

.3. Hybrid neural network architecture for simultaneous unsupervised classification and regression

The hybrid network architecture employed in this current work is designed to perform two tasks simultaneously,
uided by a common objective function. This hybrid design is first applied to mechanics problem by [30] who
ombine a spatial convolution network with a recurrent neural network to predict constitutive responses. In this
ork, we adopt the hybrid design where a graph convolutional neural network is combined with a feed-forward
eural network to generate elastic stored energy that leads to constitutive responses. While both approaches generate
eature vectors as additional inputs for the mechanical predictions, the feature vectors generated from the data
tored in voxels (i.e. the Euclidean data) in [30] and the feature vectors generated from the weighted graph (i.e. the
on-Euclidean data) are fundamentally different. This is due to the graph convolutional approach requires only
rain-scale data where all the feature of the crystal grain is stored as weights at each node, whereas the spatial
onvolutional approach uses information that is stored at each voxel and, hence, potentially much larger, especially
or higher voxel grid resolutions.

The first task is the unsupervised classification of the connectivity graphs of the polycrystals. This is carried
hrough by the first branch of the hybrid architecture that resembles that of a convolutional encoder, commonly
sed in image classification [27,56] and autoencoders [44,45]. However, the convolutional layers are now following
he aforementioned GCN layer formulation. A convolutional encoder passes a complex structure (i.e images, graphs)
hrough a series of filters to generate a higher level representation and encode — compress the information in a
tructure of lower dimensions (i.e. a vector). It is common practice, for example, in image classification [27], to pass
n image through a series of stacked convolutional layers, that increase the feature space dimensionality, and then
ncode the information in a vector through a multilayer perceptron — a series of stacked fully connected layers.
he weights of every layer in the network are optimized using a loss function so that the output vector matches the
lassification labels of the input image.

A similar concept is employed for the geometric learning encoder branch of the hybrid architecture. This branch
ccepts as inputs the normalized graph Laplacian and the node feature matrices. The graph convolutional layers
ead the graph features and increase the dimensionality of the node features. These features are flattened and then
ed into fully connected layers that encode the graph information in a feature vector.

The second task performed by the hybrid network is a supervised regression task — the prediction of the energy
unctional. The architecture of this branch of the network follows that of a simple feed-forward network with
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ully connected layers, similar to the one described in Section 3.1. The input of this branch is the encoded feature
ector, arriving from the geometric learning encoder branch, concatenated with the second-order right Cauchy–Green
eformation tensor C in Voigt vector notation. The output of this branch is the predicted energy functional ψ̂ . It
s noted that in this current work, an elastic energy functional is predicted and the not history-dependent behavior
an be adequately mapped with feed-forward architectures. Applications of geometric learning on plastic behavior
ill be the object of future work and will require recurrent network architectures that can capture the material’s
ehavior history, similar to Wang and Sun [52].

The layer weights of these two branches are updated in tandem with a common back-propagation algorithm and
n objective function that rewards the better energy functional and stress field predictions, using a Sobolev training
rocedure, described in Section 4.

Simultaneously, we implement regularization on the graph encoder branch of the hybrid architecture, in the
orm of Dropout layers [61]. We have discovered that regularization techniques provide a competent method for
ombating overfitting issues, addressed later in this work. This work is a first attempt to utilizing geometric learning
n material mechanics and the model refinement will be considered when approaching more complex problems in
he future (e.g. history-dependent plasticity problems).

. Sobolev training for hyperelastic energy functional predictions

In principle, forecast engines for elastic constitutive responses are trained by (1) an energy-conjugate pair of
tress and strain measures [52,62,63], (2) a power-conjugate pair of stress and strain rates [64] and (3) a pair of
train measure and Helmholtz stored energy [65,66]. While options (1) and (2) can both be simple and easy to
rain once the proper configuration of the neural networks is determined, one critical drawback is that the resultant

odel may predict non-convex energy response and exhibit ad-hoc path-dependence [67,68].
An alternative is to introduce supervised learning that takes strain measure as input and output the stored energy

unctional. This formulation leads to the so-called hyperelastic or Green-elastic material, which postulates the
xistence of a Helmholtz free-energy function [69]. The concept of learning a free energy function as a means to
escribe multi-scale materials has been previously explored [70,71]. However, without direct control of the gradient
f the energy functional, the predicted stress and elastic tangential operator may not be sufficiently smooth unless
he activation functions and the architecture of the neural network are carefully designed. To rectify the drawbacks
f these existing options, we leverage the recent work on Sobolev training [73] in which we incorporate both the
tored elastic energy functional and the derivatives (i.e. conjugate stress tensor) into the loss function such that the
bjective of the training is not solely minimizing the errors of the energy predictions but the discrepancy of the
tress response as well.

Traditional deep learning regression algorithms aim to train a neural network to approximate a function by
inimizing the discrepancy between the predicted values and the benchmark data. However, the metric or norm

sed to measure discrepancy is often the L2 norm, which does not regularize the derivative or gradients of the
earned function. When combined with the types of activation functions that include a high-frequency basis, the
earned function may exhibit spurious oscillations and, hence, be unsuitable for training hyperelastic energy function
hat requires convexity.

The Sobolev training method that we adopt from Czarnecki et al. [73] is designed to maximize the utilization of
ata by leveraging the available additional higher order data in the form of higher order constraints in the training
bjective function. In the Sobolev training, objective functions are constructed for minimizing the H K Sobolev
orms of the corresponding Sobolev space. Recall that a Sobolev space refers to the space of functions equipped
ith norm comprised of L p norms of the functions and their derivatives up to a certain order K .
Since it has been shown that neural networks with the ReLU activation function (as well as functions similar to

that) can be universal approximators for C1 functions in a Sobolev space [74], our goal here is to directly predict
the elastic energy functional by using the Sobolev norm as loss function to train the hybrid neural network models.

This current work focuses on the prediction of an elastic stored energy functional listed in Eq. (1), thus, for
simplicity, the superscript e (denoting elastic behavior) will be omitted for all energy, strain, stress, and stiffness
scalar and tensor values herein. In the case of the simple MLP feed-forward network, the network can be seen
as an approximator function ψ̂ = ψ̂(C|W , b) of the true energy functional ψ with input the right Cauchy–Green

eformation tensor C , parametrized by weights W and biases b. In the case of the hybrid neural network architecture,
he network can be seen as an approximator function ψ̂ = ψ̂(C,G|W , b) of the true energy functional ψ with input
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Fig. 4. Hybrid neural network architecture. The network is comprised of two branches — a graph convolutional encoder and a multi-layer
perceptron. The first branch accepts the graph structure (normalized Laplacian Lsym) and graph weights (feature matrix X) (Input A) as
inputs and outputs an encoded feature vector. The second branch accepts the concatenated encoded feature vector and the right Cauchy–Green
deformation tensor C in Voigt notation (Input B) as inputs and outputs the energy functional ψ̂ prediction.

he polycrystal connectivity graph information (as described in Fig. 4) and the tensor C, parametrized by weights
W and biases b. The first training objective in Eq. (16) for the training samples i ∈ [1, . . . , N ] is modeled after an
L2 norm, constraining only ψ :

W ′, b′
= argmin

W ,b

(
1
N

N∑
i=1

ψi − ψ̂i

2

2

)
. (16)

The second training objective in Eq. (17) for the training samples i ∈ [1, . . . , N ] is modeled after an H1 norm,
constraining both ψ and its first derivative with respect to C — i.e. one half of the 2nd Piola–Kirchhoff stress
tensor S:

W ′, b′
= argmin

W ,b

⎛⎝ 1
N

N∑
i=1

ψi − ψ̂i

2

2
+

 ∂ψi

∂C i
−
∂ψ̂i

∂C i


2

2

⎞⎠ , (17)

where in the above:

S = 2
∂ψ

∂C
. (18)

It is noted that higher order objective functions can be constructed as well, such as an H2 norm constraining the
redicted ψ̂ , stress, and stiffness values. This would be expected to procure even more accurate ψ̂ results, smoother
tress predictions, and more accurate stiffness predictions. However, since a neural network is a combination of
inear functions — the second-order derivative of the ReLU and its adjacent activation functions are zero, it becomes
nnately difficult to control the second-order derivative during training, thus in this work we mainly focus on the
rst-order Sobolev method (see Fig. 5). In case it is desired to control the behavior of the stiffness tensor, a first-order
obolev training scheme can be designed with strain as input and stress as output. The gradient of this approximated
elationship would be the stiffness tensor. This experiment would also be meaningful and useful in finite element
imulations.

It is noted that, in this current work, the Sobolev training is implemented using the available stress information
s the higher order constraint, assuring that the predicted stress tensors are accurate component-wise. In simpler
erms, the H1 norm constrains every single component of the second-order stress tensor. It is expected that this
ould be handled more efficiently and elegantly by constraining the spectral decomposition of the stress tensor

the principal values and directions. It has been shown in [75] that using loss functions structured to constrain
ensorial values in such a manner can be beneficial in mechanics-oriented problems and will be investigated in
uture work.
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Fig. 5. Schematic of the training procedure of a hyperelastic material surrogate model with the right Cauchy–Green deformation tensor C
s input and the energy functional ψ̂ as output. A Sobolev trained surrogate model will output smooth ψ̂ predictions and the gradient of
he model with respect to C will be a valid stress tensor Ŝ.

. Verification exercises for checking compatibility with physical constraints

While data-driven techniques, such as the neural network architectures discussed in this work, have provided
nprecedented efficiency in generating constitutive laws, the consistency of these laws with well-known mechanical
heory principles can be rather dubious. Furthermore, Black-box constitutive models generated by training neural
etwork may lack interpretability and therefore verification and validation exercises are essential to ensure that
he predictions are compatible with the physics constraints without over-fitting. In this work, we leverage the

echanical knowledge on fundamental properties of hyperelastic constitutive laws to check and – if necessary
enforce the consistency of the approximated material models with said properties. In particular for this work,

he generated neural network energy functional models are tested for their objectivity, isotropy (or lack of), and
onvexity properties. A brief discussion of these desired properties is presented in this section.

.1. Objectivity

Objectivity requires that the energy and stress response of a deformed elastic body remains unchanged when rigid
ody motion takes place. The trained models are expected to meet the objectivity condition — i.e. the material
esponse should not depend on the choice of the reference frame. While translation invariance is automatically
nsured by describing the material response as a function of the deformation, invariance for rigid body rotations is
ot necessarily imposed and must be checked. For a given microstructure represented by a graph G, the definition
f objectivity for an elastic energy functional ψ formulation is described as follows [20,76]:

ψ( Q F,G) = ψ(F,G) for all F ∈ GL+(3,R), Q ∈ SO(3), (19)

where Q is a rotation tensor. The above definition can be proven to expand for the equivalent stress and stiffness
easures:

P( Q F,G) = Q P(F,G) for all F ∈ GL+(3,R), Q ∈ SO(3), (20)

C( Q F,G) = Q QC(F,G) for all F ∈ GL+(3,R), Q ∈ SO(3). (21)

where C is the Lagrangian tangential elasticity tensor. Thus, a constitutive law is frame-indifferent, if the
esponses for the energy, the stress, and stiffness predictions are left rotationally invariant. This is automatically
atisfied when the response is modeled as an equivalent function of the right Cauchy–Green deformation tensor C ,
ince:

C+
= (F+)T F+

= FT QT Q F = FT F ≡ C, for all F+
= Q F. (22)

By training all the models in this work as a function of the right Cauchy–Green deformation tensor C, this
ondition is automatically satisfied and, thus, it will not be further checked.
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5.2. Isotropy

For a given microstructure represented by a graph G, the material response described by a constitutive law is
xpected to be isotropic, if the following is valid:

ψ(F Q,G) = ψ(F,G) for all F ∈ GL+(3,R), Q ∈ SO(3). (23)

This expands to the stress and stiffness response of the material:

P(F Q,G) = P(F,G) Q for all F ∈ GL+(3,R), Q ∈ SO(3), (24)

C(F Q,G) = C(F,G) Q Q for all F ∈ GL+(3,R), Q ∈ SO(3). (25)

Thus, for a material to be isotropic, its response must be right rotationally invariant. In the case that the response
s anisotropic, as in the inherently anisotropic material studied in this work, the above should not be valid.

.3. Convexity

To ensure the thermodynamical consistency of the trained neural network models, the predicted energy functional
ust be convex. Testing the convexity of a black box data-driven function without an explicitly stated equation is

ot necessarily a straightforward process. There have been developed certain algorithms to estimate the convexity
f black-box functions [77], however, it is outside the scope of this work and will be considered in the future. While
onvexity would be straight-forward to visually check for a low-dimensional function, this is not necessarily true
or a high-dimensional function described by the hybrid models.

A function f : Rn
→ R is convex over a compact domain D if for all x, y ∈ D and all λ ∈ [0, 1], if:

f (λx + (1 − λ)y) ≤ λ f (x) + (1 − λ) f (y). (26)

For a twice differentiable function f : Rn
→ R over a compact domain D, the definition of convexity can be

proven to be equivalent with the following statement:

f (y) ≥ f (x) + ∇ f (x)T (y − x), for all x, y ∈ D. (27)

The above can be interpreted as the first-order Taylor expansion at any point of the domain being a global
nder-estimator of the function f . In terms of the approximated black-box function ψ̂(C,G) used in the current
ork, the inequality (27) can be rewritten as:

ψ̂(Cα,G) ≥ ψ̂(Cβ,G) +
∂ψ̂

∂C
(Cβ,G) : (Cα − Cβ), for all Cα,Cβ ∈ D. (28)

The above constitutes a necessary condition for the approximated energy functional for a specific polycrystal
represented by the connectivity graph G) to be convex, if it is valid for any pair of right Cauchy deformation
ensors Cα and Cβ in a compact domain D. This check is shown to be satisfied in Section 7.3.4.

emark 3. The trained neural network models in this work will be shown in Section 7 to satisfy the checks
nd necessary conditions for being consistent with the expected objectivity, anisotropy, and convexity principles.
owever, in the case where one or more of these properties appears to be absent, it is noted that it can be enforced
uring the optimization procedure by modifying the loss function. Additional weighted penalty terms could be
dded to the loss function to promote consistency to required mechanical principles. For example, in the case of
bjectivity, the additional training objective, parallel to those expressed in Eqs. (16) and (17), could be expressed
s:

W ′, b′
= argmin

W ,b

(
1
N

N∑
i=1

λ

ψ̂( Q F,G|W , b) − ψ̂(F,G|W , b)
2

2

)
, Q ∈ SO(3), (29)

where λ is a weight variable, chosen between [0, 1], setting the importance of this objective in the now multi-
objective loss function, and Q are randomly sampled rigid rotations from the SO(3) group. Constraints of this kind
were not deemed necessary in the current paper and will be investigated in future work.
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. FFT offline database generation

This section firstly introduces the fast Fourier transform (FFT) based method for the mesoscale homogenization
roblem, which was chosen to efficiently provide the database of graph structures and material responses to be
sed in geometric learning. Following that, the anisotropic Fung hyperelastic model is briefly summarized as the
onstitutive relation at the basis of the simulations. Finally, the numerical setup is introduced focusing on the
umerical discretization, grain structure generation, and initial orientation of the structures in question.

.1. FFT based method with periodic boundary condition

This section deals with solving the mesoscale homogenization problem using an FFT-based method. Supposing
hat the mesoscale problem is defined in a 3D periodic domain, where the displacement field is periodic while the
urface traction is anti-periodic, the homogenized deformation gradient F and first P-K stress P can be defined as:

F = ⟨F⟩, P = ⟨P⟩, (30)

where ⟨·⟩ denotes the volume average operation.
Within a time step, when the average deformation gradient increment ∆F is prescribed, the local stress P within

the periodic domain can be computed by solving the Lippmann–Schwinger equation:

F + Γ0
∗
(

P(F) − C0
: F
)

= F, (31)

here ∗ denotes a convolution operation, Γ0 is Green’s operator, and C0 is the homogeneous stiffness of the
eference material. The convolution operation can be conveniently performed in the Fourier domain, so the
ippmann–Schwinger equation is usually solved by the FFT based spectral method [78]. Note that due to the
eriodicity of the trigonometric basis functions, the displacement field and the strain field are always periodic.

.2. Anisotropic fung elasticity

An anisotropic elasticity model at the mesoscale level is utilized to generate the homogenized response database
or then training the graph-based model in the macroscale. In this section, a generalized Fung elasticity model is
tilized as the mesoscale constitutive relation due to its frame-invariance and convenient implementation [79,80].

In the generalized Fung elasticity model, the strain energy density function W is written as:

W =
1
2

c
[
exp (Q)− 1

]
, Q =

1
2

E : a : E, (32)

where c is a scalar material constant, E is the Green strain tensor, and a is the fourth-order stiffness tensor. The
material anisotropy is reflected in the stiffness tensor a, which is a function of the spatial orientation and the material
symmetry type.

For a material with orthotropic symmetry, the strain energy density can be written in a simpler form as:

Q = c−1
3∑

a=1

[
2µa A0

a : E2
+

3∑
b=1

λab
(

A0
a : E

) (
A0

b : E
)]
, A0

a = a0
a ⊗ a0

a, (33)

where µa and λab are anisotropic Lamé constants, and a0
a is the unit vector of the orthotropic plane normal,

which represents the orientation of the material point in the reference configuration. Note that λab is a symmetric
second-order tensor, and the material symmetry type becomes cubic symmetry when certain values of λ and µ are
adopted.

The elastic constants take the value:

c = 2 (MPa), λ =

⎡⎣0.6 0.7 0.6
0.7 1.4 0.7
0.6 0.7 0.5

⎤⎦ (MPa), µ =

⎡⎣0.1
0.7
0.5

⎤⎦ (MPa), (34)

and remain constant across all the mesoscale simulations. The only changing variable is the grain structure and the

initial orientation of the representative volume element (RVE), which is introduced in the following section.
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Fig. 6. Sample of the randomly generated initial microstructure: (a) Initial RVE with 50 equiaxed grains, which is equally discretized by
49 × 49 × 49 grid points; (b) Pole figure plot of initial orientation distribution function (ODF) combining uniform and unimodal ODF.
The Euler angles of the unimodal direction are (304◦, 61◦, 211◦) in Bunge notation, and the half width of the unimodal ODF is 10◦. The
weight value is 0.50 for uniform ODF and 0.50 for unimodal ODF.

6.3. Numerical aspects of the database generation

The grain structures and initial orientations of the mesoscale simulations are randomly generated in the parameter
space to generate the database. The mesoscale RVE is equally divided into 49 × 49 × 49 grid points to maintain a
high enough resolution at an acceptable computational cost. The grain structures are generated by the open-source
software NEPER [47]. An equiaxed grain structure is randomly generated with 40 to 50 grains. A sample RVE is
shown in Fig. 6.

The initial orientations are generated using the open source software MTEX [81]. The orientation distribution
function (ODF) is randomly generated by combining uniform orientation and unimodal orientation:

f (x; g) = w + (1 − w)ψ (x, g) , x ∈ SO(3), (35)

where w ∈ [0, 1] is a random weight value, g ∈ SO(3) is a random modal orientation, and ψ (x, g) is the von
Mises–Fisher distribution function considering cubic symmetry. The half width of the unimodal texture ψ (x, g) is
10◦, and the preferential orientation g of the unimodal texture is also randomly generated. A sample initial ODF is
hown in Fig. 6(b).

The average strain is randomly generated from an acceptable strain space, and simulations are performed for each
VE with 200 average strains. Note that the constitutive relation is hyperelastic, so the simulation result is path

ndependent. To avoid any numerical convergence issues, the range of each strain component (F − I) is between
0.0 and 0.1 in the RVE coordinate.

7. Numerical experiments

One major advantage of the hybrid [30] or graph-based training [52] is that the resultant neural network is not
only suitable to be a surrogate model for one RVE but a family of RVEs with different microstructures. In this
section, we present the results of 13 sets of numerical experiments grouped in four subsections to examine and
demonstrate the performances of the neural network models we trained. In Section 7.1, we conducted a numerical
experiment to examine the neural network trained by the Sobolev method and compare the predictions obtained from
the classical loss function that employs L2 norm. In Section 7.2, we include 4 sets of numerical experiments (a k-fold
validation of a Sobolev trained MLP on data for a single polycrystal, a number of input features test for the hybrid
architecture, an overfitting check, and a comparison of the k-fold validation results from both the hybrid and the MLP
models). In Section 7.3, we include 5 additional verification tests (homogenization experiments, blind predictions for
microstructures in the training set, blind predictions for microstructures in the testing set, an isomorphism check,

and a model convexity check) to further examine whether the predictions violate any necessary conditions that
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able 1
ummary of the considered model and training algorithm combinations.

Model Description

ML2
mlp Multilayer perceptron feed-forward architecture. Loss function used is the L2 norm (Eq. (16))

MH1
mlp Multilayer perceptron feed-forward architecture. Loss function used is the H1 norm (Eq. (17))

MH1
hybrid Hybrid architecture described in Fig. 4. Loss function used is the H1 norm (Eq. (17))

MH1
reg Hybrid architecture described in Fig. 4. Loss function used is the H1 norm (Eq. (17)). The geometric learning

branch of the network is regularized against overfitting.

are not explicitly enforced in the objective functions but are crucial for forward predictions. In Section 7.4, we
introduced 3 set of tests (dynamic simulations of a single polycrystal, mesh refinement simulations, comparison of
crack patterns for different polycrystal inputs) to demonstrate the potential applications of the hyperelastic energy
functional predictions for brittle fracture problems using the hybrid architecture. Each of these experiments include
multiple calculations that involve both predictions within the calibration range and forward predictions for unseen
data previously unused in the training process. The abbreviations we have used for all the model architectures we
implemented and tested are summarized in Table 1.

To compare the performance of the training and testing results, the scaled MSE performances of different models
are represented using non-parametric, empirical cumulative distribution functions (eCDFs), as in [82,83]. The results
are plotted in scaled MSE vs. eCDF curves in a semilogarithmic scale for the training and testing partitions of the
dataset. The distance between these curves can be a qualitative metric for the performance of the various models
on various datasets — e.g. the distance of the eCDF curves of a model for the training and testing datasets is a
qualitative metric of the overfitting phenomenon. For a dataset M with MSEi sorted in ascending order, the eCDF
an be computed as follows:

FM (MSE) =

⎧⎪⎪⎨⎪⎪⎩
0, MSE < MSE1,
r
M
, MSEr ≤ MSE < MSEr+1, r = 1, . . . ,M − 1,

1, MSEM ≤ MSE .

(36)

To compare all the models in equal terms, the neural network training hyperparameters throughout all the
xperiments were kept identical wherever it was possible. All the strain and node weight inputs as well as the
nergy and stress outputs were scaled in the range between [0, 1] during the neural network training. The learning
apacity of the models (i.e. layer depth and layer dimensions) for the multilayer perceptrons for ML2

mlp and MH1
mlp, as

ell as the multilayer perceptron branch of the MH1
hybrid and MH1

reg were kept identical. The multilayer perceptron
ranch in all the networks consists of two Dense layers (200 neurons each) with ELU activation functions. The
eometric learning branch consists of two GCN layers (64 filters each with ReLU activation functions) followed
y two Dense layers (100 neurons each with ReLU activation functions). The selected encoded feature vector layer
as chosen to have 9 neurons. For the MH1

reg model, Dropout layers (dropout rate of 0.2) are defined between every
CN and Dense layer in the geometric learning branch. The optimizer used for the training of the neural networks
as Nadam and all the networks were trained for 1000 epochs, utilizing an early stopping algorithm to terminate

raining when the performance would stop improving. The hyperparameter space of the neural network architecture
as deemed rather large to perform a comprehensive parameter search study and the network was tuned through

onsecutive trial and error iterations. An illustrative example of this trial and error process to tune the number of
eurons of the encoded feature vector is demonstrated in Appendix D. In this current work, the values used for the
yperparameters were deemed adequate to provide as accurate results as possible for all methods while maintaining
air comparison terms. The optimization of these hyperparameters to achieve the maximum possible accuracy will
e the objective of future work.

emark 4. Since the energy functional ψ and the stress values are on different scales of magnitude, the prediction
rrors are demonstrated using a common scaled metric. For all the numerical experiments in this current work, to
emonstrate the discrepancy between the predicted values of energy (ψpred) and the equivalent true energy values
(ψtrue) as well as between the predicted principal values of the 2nd Piola–Kirchhoff stress tensor (SA,pred) and the
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equivalent true principal values (SA,true) for A = 1, 2, 3, the following scaled mean squared error (scaled MSE)
metrics are defined respectively for a sample of size M :

scaled M SEψ =
1
M

M∑
i=1

[
(ψ true)i − (ψpred)i

]2
with ψ :=

ψ − ψmin

ψmax − ψmin
. (37)

scaled M SESA =
1

3M

M∑
i=1

3∑
A=1

[
(S A,true)i − (S A,pred)i

]2
with S A :=

SA − SA,min

SA,max − SA,min
, (38)

The functions mentioned above scale the values ψpred, ψtrue, SA,pred, and SA,true to be in the feature range [0, 1].
It is noted that the scaling functions ψ and S A are defined on the training data set — i.e. the values ψmin, ψmax,
SA,min, and SA,max are derived from the true values of the training data.

emark 5. When comparing the performance of models in predicting the directions of a second-order stress
ensor, we utilize a distance function between two rotation tensors R1, R2 belonging to the Special Orthogonal

Group, SO(3). The rotation tensors are constructed by concatenating the orthogonal, normalized eigenvectors of
the stress tensors. The Euclidean distance measure φEu, discussed in detail in [75,84], can be expressed as:

φEu =

√
d
(
φ̄1, φ̄2

)2
+ d

(
θ̄1, θ̄2

)2
+ d

(
ψ̄1, ψ̄2

)2
. (39)

In the above, {φ̄i , θ̄i , ψ̄i } ∈ E ⊆ R+ are the set of Euler angles associated with Ri , and the Euclidean distance d
etween two scalar-valued quantities α1, α2 is expressed as d (α1, α2) = min{|α1 − α2|, 2π − |α1 − α2|} ∈ [0, π].
he distance measure φEu belongs to the range [0, π

√
3] and the results used in the figures in this work are presented

ormalized in the range [0, 1]. For this distance measure, the statement φEu(R1, R2) is equivalent to R1 = R2.

7.1. Numerical experiment 1: Generating an isotropic hyperelastic energy functional with Sobolev training

In this section, a numerical experiment is presented to demonstrate the benefits of training a neural network on
hyperelastic energy functional data in the Sobolev training framework. The experiment was performed on synthetic
data generated from a small-strain hyperelastic energy functional designed for the Modified Cam-Clay plasticity
model [85–87]. The hyperelastic elastic stored energy functional is described in a strain invariant space (volumetric
strain ϵv , deviatoric strain ϵs). The strain invariants are defined as:

ϵv = tr (ϵ) , ϵs =

√
2
3

∥e∥ , e = ϵ −
1
3
ϵv1, (40)

where ϵ is the small strain tensor and e the deviatoric part of the small strain tensor. Using the chain rule, the
auchy stress tensor can be described in the invariant space as follows:

σ =
∂ψ

∂ϵv

∂ϵv

∂ϵ
+
∂ψ

∂ϵs

∂ϵs

∂ϵ
. (41)

In the above, the mean pressure p and deviatoric (von Mises) stress q can be defined as:

p =
∂ψ

∂ϵv
≡

1
3

tr(σ ), q =
∂ψ

∂ϵs
≡

√
3
2
∥s∥, (42)

where s is the deviatoric part of the Cauchy stress tensor. Thus, the Cauchy stress tensor can be expressed by the
stress invariants as:

σ = p1 +

√
2
3

q n̂, (43)

where n̂ = ee/
ee
 =

√
2/3ee/ϵe

s . (44)

The hyperelastic energy functional allows full coupling between the elastic volumetric and deviatoric responses
nd is described as:

ψ (ϵv, ϵs) = −p0cr exp
(
ϵv0 − ϵv

)
−

3
cµ p0 exp

(
ϵv0 − ϵv

)
(ϵs)

2 , (45)

κ 2 κ
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Fig. 7. Comparison of L2 and H1 norm training performance for a hyperelastic energy functional used for the Modified Cam-Clay plasticity
model [87].

where ϵv0 is the initial volumetric strain, p0 is the initial mean pressure when ϵv = ϵv0, κ > 0 is the elastic
ompressibility index, and cµ > 0 is a constant. The hyperelastic energy functional is designed to describe an
lastic compression law where the equivalent elastic bulk modulus and the equivalent shear modulus vary linearly
ith −p, while the mean pressure p varies exponentially with the change of the volumetric strain ∆ϵv = ϵv0 − ϵv .
he specifics and the utility of this hyperelastic law is outside the scope of this current work and will be omitted.
he numerical parameters of this model were chosen as ϵv0 = 0, p0 = −100 kPa, cµ = 5.4, and κ = 0.018. By

taking the partial derivatives of the energy functional with respect to the strain invariants, the stress invariants are
derived as:

p =
∂ψ

∂ϵv
= p0

(
1 +

3cµ
2κ

(ϵs)
2
)

exp
(
ϵv0 − ϵv

κ

)
, (46)

q =
∂ψ

∂ϵs
= −3cµ p0 exp

(
ϵv0 − ϵv

κ

)
ϵs . (47)

To compare the performance of the Sobolev training method a two-layer feed-forward neural network is trained
on synthetic data generated for the above hyperelastic law. The training data set includes 225 data points, sampled
as shown in Fig. 7, 25 of which are randomly selected to be used as a validation set during training. The testing is
performed on 1000 data points. The inputs of the neural network are the two strain invariants ϵv , ϵs and the output
is the predicted energy ψ . The network has two hidden Dense layers (100 neurons each) with ELU activation
functions and an output Dense layer with a linear activation function. The training experiment is performed with an
L2 norm loss function (constraining only the predicted ψ values) and with an H1 norm loss function (constraining
the predicted ψ , p, and q values).

The results of the two training experiments are shown in Figs. 7 and 8. Both training algorithms seem to be able
to capture the energy functional ψ values well with the H1 trained model demonstrating slightly higher accuracy.
However, closer examination in the results shown in Fig. 8 reveals that the neural network trained with a H1 norm
perform better both in predicting the energy functional and the first derivative that leads to the stress invariants p
and q . In particular, the neural network trained with the L2 norm generates a mean pressure and deviatoric stress
response that oscillates spuriously with respect to the strain whereas the H1 counterpart produces results that exhibit
no oscillation. Such oscillation is not desirable particularly if the neural network predictions were to be incorporated

into an implicit finite element model.
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Fig. 8. Comparison of L2 and H1 predictions for the energy functional ψ , the stress invariant p, and stress invariant q.

7.2. Numerical experiment 2: Training an anisotropic hyperelastic model for polycrystals with non-Euclidean data

To determine whether the incorporation of graph data improves the accuracy and robustness of the forward
prediction, we conduct both the hybrid learning and the classical supervised machine learning. The latter is used as
a control experiment. The ability to capture the elastic stored energy functional of a single polycrystal is initially
tested on that MLP model. A two-hidden-layer feed-forward neural network is trained and tested on 200 sample
points — 200 different, randomly generated deformation tensors with their equivalent elastic stored energy and
stress measures for only one of the generated microstructures. A Sobolev trained model as described in Section 4
(model type MH1

mlp) was utilized. This architecture will also constitute the multilayer perceptron branch of the
hybrid network described previously in Fig. 4. To eliminate as much as possible any objectivity on the dataset
of the experiment, the network’s capability is tested with a K-fold cross-validation algorithm (cf. [88]). The 200
sample points are separated into 10 different groups — folds of 20 sample points each and, recursively, a fold is
selected as a testing set and the rest are selected as a training set for the network.

The K-Fold testing results can be seen in Fig. 9 where the model can predict the data for a single RVE formation
adequately, as well as interpolate smoothly between the data points to generate the response surface estimations for
the energy and the stress field (Fig. 10). A good performance for both training and testing on a single polycrystal
structure was expected as no additional input is necessary, other than the strain tensor. Any additional input –
i.e. structural information – would be redundant in the training since it would be constant for the specific RVE.

In this current work, we generalize the learning problem by introducing the polycrystal weighted connectivity
graph as the additional input data. This connectivity graph is inferred directly from the micro-structure by assigning
each grain in the poly-crystal as a vertex (node) and assigning an edge on each grain contact pair. As discussed in
Section 2.1, the nodes of the graphs can have weights carrying information about the crystals they represent in the
form of a feature matrix X . The available node features in the data set are described in Appendix C. A model of
type MH1

hybrid is tested and trained on 150 polycrystals – 100 RVEs in the training set and 50 RVEs in the testing
set – with different sets of features to evaluate the effect of the node features to the model’s performance. Four
combinations of data were tested: a model M1

hybrid with the crystal volume as the only features, a model M4
hybrid

with the crystal volume and the crystal Euler angles as features, a model M8 that utilizes the crystal volumes,
hybrid
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Fig. 9. Correlation plot for true vs. predicted K-fold testing results for the energy functional ψ (left) and the first component of the 2nd
Piola–Kirchhoff stress tensor (right) by a surrogate neural network model MH1

mlp trained on data for a single RVE.

Fig. 10. Estimated ψ energy functional surface (left) and the first component of the 2nd Piola–Kirchhoff stress tensor (right) generated by
a surrogate neural network model (MH1

mlp) trained on data for a single RVE.

Table 2
Abbreviations of hybrid model names with different number of node weight features.

Model Node weight features

M1
hybrid Crystal volume

M4
hybrid Crystal volume and three Euler angles

M8
hybrid Crystal volume, three Euler angles, equivalent diameter, number of faces, total area of faces, and number of neighbors

M11
hybrid Crystal volume, three Euler angles, equivalent diameter, number of faces, total area of faces, number of neighbors,

and centroid position vector

the Euler angles, the equivalent diameter, the number of faces, the total area of the faces, the number of neighbors,
and, finally, a model M11

hybrid that utilizes all the available features. The abbreviations of the model names are also
described in Table 2. The results of the training experiment are demonstrated in Fig. 11. Increasing the available
node features during training seems to generally increase the model’s performance in training and testing. The model
that uses the crystal volumes as node features demonstrates the lowest performance. The largest improvement in
performance is observed when the crystal Euler angles are included in the feature matrix.

As it was previously mentioned in Section 3.3, the hybrid architecture proposed can be prone to overfitting. To
avoid that, we utilize additional Dropout layers in the geometric learning branch of the network as a regularization
method during the training. The models representing the hybrid architecture without and with regularization are
of the type MH1

hybrid and MH1
reg respectively. To demonstrate that, the two models are tested and trained on 150

polycrystals — 100 RVEs in the training set and 50 RVEs in the testing set. The comparison results are shown in
Fig. 12. While MH1

hybrid appears to be prone to overfitting — the training error is lower than the blind prediction
error. This issue can be alleviated with regularization techniques that promote the model’s robustness in blind
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Fig. 11. Comparison of the model’s performance for different number of node weight features (M1
hybrid , M4

hybrid , M8
hybrid , and M11

hybrid )
or the second Piola–Kirchhoff stress S tensor principal values (scaled MSE) and direction predictions (φEu). The abbreviations of the model
ames are described in Table 2.

Fig. 12. Scaled mean squared error comparison for the second Piola–Kirchhoff stress S tensor principal value and φEu error for the S
direction predictions for the models MH1

hybrid and MH1
reg .

predictions. This can be qualitatively seen on the scaled MSE vs. eCDF plot for the MH1
reg model — the distance

between training and testing curves closes for the regularized model. Since the MH1
reg model appears to procure

superior results in blind prediction accuracy compared to the not regularized model MH1
hybrid , from this point on,

e will be working and comparing with the MH1
reg and omitting the MH1

hybrid for simplicity reasons.
The ability of the hybrid architecture proposed in Fig. 4 to leverage the information from a weighted connectivity

raph to expand learning over multiple polycrystals in comparison with the classical multilayer perceptron methods
s tested in the following experiment. A K-fold validation algorithm is performed on 100 generated polycrystal
VEs. The 100 RVEs are separated into 5 folds of 20 RVEs each. In doing so, every polycrystal RVE will be
onsidered as blind data for the model at least once. The K-fold cross-validation algorithm is repeated for the
odel architectures and training algorithms ML2

mlp, MH1
mlp, and MH1

reg . The results are presented in Fig. 13 as scaled
SE vs. eCDF curves for the energy functional ψ and second Piola–Kirchhoff stress S tensor principal values and

s φEu vs. eCDF for the principal direction predictions. It can be seen that using the Sobolev training method greatly
educes the blind prediction errors — both the ML2

mlp energy and stress prediction errors are higher than those of
he MH1

mlp and MH1
reg models. The MH1

reg model demonstrates superior predictive results than the MH1
mlp model, as it

an distinguish between different RVE behaviors.
In addition to the performance measured by this quantitative metric, enabling the weighted graph as an additional
nput for the hybrid network also provides the opportunity to further generalize the learning process. In Fig. 14,
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Fig. 13. Scaled MSE vs. eCDF curves for ψ energy functional (top left), scaled MSE vs. eCDF second Piola–Kirchhoff stress S tensor
rincipal values (top right), and φEu vs. eCDF second Piola–Kirchhoff stress S tensor principal direction predictions (bottom) for the models

L2
mlp , MH1

mlp , and MH1
reg . The models’ performance is tested with a K-fold algorithm on a dataset of 100 RVEs — only the blind prediction

esults are shown.

Fig. 14. Without any additional input (other than the strain tensor), the neural network cannot differentiate between these two polycrystals.
he two anisotropic behaviors can be distinguished when the weighted connectivity graph is also provided as input. Through the unsupervised
ncoding branch of the hybrid architecture, each polycrystal is mapped on an encoded feature vector. The feature vector is fed to the multilayer
erceptron branch and procures a unique energy prediction.

he energy potential surface estimations are shown for the simple multilayer perceptron and the hybrid architecture
or two different polycrystals. Without the graph as input, the network cannot distinguish behaviors, while the
ybrid architecture estimates two distinctive elastic stored energy surfaces. The weighted connectivity graph of
ach polycrystal is encoded in a perceivably different feature vector that aids the downstream multilayer perceptron
o identify and interpolate among different behaviors for the RVEs. Furthermore, this hybrid strategy, if trained
uccessfully and carefully validated, is also potentially more efficient than a black-box surrogate model, as the hybrid
odel does not require a new training process when encountering a new RVE that can be sufficiently described by
weighted graph.
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Fig. 15. Estimated ψ and S11 responses for 5 unseen RVEs homogenized at Euler angles (0◦, 0◦, 0◦) (top) and at (45◦, 45◦, 45◦) (bottom)
of crystal orientations in Bunge notation under uniaxial unconfined tensile loading.

7.3. Numerical experiment 3: Verification tests on unseen data

To ensure that the constitutive response predicted by the trained neural network is consistent with the known
mechanics principles, we introduce numerical experiments to verify our ML model and assess the accuracy and
robustness of the predictions made by the graph-based model. The predictive capacity of the neural network is tested
for blind predictions against homogeneous RVE simulations and new FFT simulations performed on microstructures
within and out of the range of the training dataset. The hybrid architecture is also tested on whether it can satisfy
the isomorphism condition of the graph inputs and on whether it produces convex energy functionals.

7.3.1. Verification test 1: Responses of unseen homogeneous anisotropic RVEs
In this blind verification, our goal is to check whether the machine learning model predicts the right anisotropic

responses of a homogeneous RVE. We use the model trained with the training data described in Appendix C to
make a forward prediction on 5 RVEs with all grains of the same crystalline orientation. Since there is no cohesive
zone model used in the grain boundary, setting the crystal orientation identical to all the grains essentially makes
the RVEs homogeneous.

The ML model then takes the weighted graph that represents the topology of the microstructures as additional
input and is used to predict the constitutive responses of these 5 extra microstructures unseen during the training.
The results of uniaxial unconfined tensile tests performed on the 5 RVEs of two different orientations (0◦, 0◦, 0◦)
and (45◦, 45◦, 45◦) are compared with the benchmark solution as shown in 15. Meanwhile, we also applied pure
shear loading on all three pairs of orthogonal planes of these 5 RVES with (0◦, 0◦, 0◦) orientation. The comparison

ith the benchmark solution is shown in 16.

.3.2. Verification test 2: Blind test of RVEs with unseen FFT simulations
In this verification test, we test the model’s blind prediction capabilities against unseen data generated by FFT

imulations. The hybrid architecture model is tested against uniaxial unconfined tension tests and pure shear tests

onducted using the FFT solver. The hybrid architecture used in this test was trained on data from 100 RVEs. It
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Fig. 16. Estimated S12, S23, and S13 responses for 5 unseen RVEs homogenized at Euler angles (0◦, 0◦, 0◦) of crystal orientations in Bunge
otation under pure shear loading for 3 directions.

s noted that the model was trained solely on randomly generated deformation gradients and, thus, the strain paths
rescribed for these tests are unseen. The results of these tests for three RVEs sampled from the training dataset
an be seen in Fig. 17, while the results for three unseen microstructures sampled from the testing dataset can bee
een in Fig. 18.

.3.3. Verification test 3: Test of graph isomorphism responses
In this test, we check whether the trained geometric learning models procure the same predictions for isomorphic

raphs. The definition of graph isomorphism is provided in Appendix A. With the original graph structure of the
nput known, we can generate any number of isomorphic graphs by applying the same random permutation to the
ows and the columns of the original normalized Laplacian matrix of the graph. The same random permutation is
pplied to the rows of the feature matrix of the input as well. The permuted isomorphic graphs and the equivalent
eature matrices carry the same information for the microstructure and the predictions of the hybrid architecture
hould be consistent under any permutation of the graph input. To test this hypothesis, 10 iterations of permutations
ere performed on the graph Laplacian matrix and feature matrix of a microstructure to produce isomorphic graph

epresentations of that graph microstructure. These isomorphic graph inputs were then used to make predictions
gainst unseen FFT simulation data. The results of this experiment can be seen in Fig. 19 where the isomorphic
raph inputs procure consistent responses.

.3.4. Verification test 4: Convexity check
To check the convexity for the trained hybrid models, a numerical check was conducted on the trained hybrid

rchitecture models. The models were tested for the check described in Eq. (28). The Cα and Cβ were chosen
o be right Cauchy deformation tensors sampled from the training and testing sets of deformations. The input

was checked for all the 150 RVEs the hybrid architecture was trained and tested on. For every graph input,
he approximated energy functional must be convex. Thus, to verify that for all the poly-crystal formations, the

onvexity check is repeated for every RVE in the dataset. It is noted that, while these checks describe a necessary
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Fig. 17. Comparison of hybrid model predictions with FFT simulation data for 3 RVEs from the training data set. The tests conducted are
uniaxial unconfined tension (left and middle columns) and pure shear (right column).

condition for convexity, they do not describe a sufficient condition and more robust methods of checking convexity
will be considered in the future. For a specific polycrystal – graph input, the network has six independent variables
– deformation tensor C components. To check the convexity, for every RVE in the dataset, deformation tensors C
are sampled in a grid and are checked pairwise (approximately 265,000 combinations of points/checks per RVE)
and are found to satisfy the inequality (28). In Fig. 20, a sub-sample of 100 convexity checks for three RVEs is
demonstrated.

7.4. Numerical experiment 4: Parametric studies on anisotropic responses of polycrystals in phase-field fracture

The anisotropic elastic responses predicted using the hybrid neural network trained by both non-Euclidean
descriptors and FFT simulations performed on polycrystals are further examined in the phase-field fracture
simulations in which the stored energy functional generated from the hybrid learning model is degraded according
to a driving force. In this series of parametric studies, the Kalthoff–Winkler experiment is numerically simulated via
a phase-field model in which the elasticity is predicted by the hybrid neural network [89,90]. We adopt the effective
stress theory [91] is valid such that the stored energy can be written in terms of the product of a degradation function
and the stored elastic energy. The degradation function and the driving force are both pre-defined in this study. The
training of an incremental functional for the path-dependent constitutive responses will be considered in the second
part of this series of work.

In the first numerical experiment, we conduct a parametric study by varying the orientation of the RVE to analyze

how the elastic anisotropy predicted by the graph-dependent energy functional affects the nucleation and propagation
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Fig. 18. Comparison of hybrid model predictions with FFT simulation data for 3 RVEs from the testing data set. The tests conducted are
uniaxial unconfined tension (left and middle columns) and pure shear (right column).

of cracks. In the second numerical experiment, the hybrid neural network is given new microstructures. Forward
predictions of the elasticity of the two new RVEs are made by the hybrid neural network without further calibration.
We then compare the crack patterns for the two RVEs and compare the predictions made without the graph input
to analyze the impact of the incorporation of non-Euclidean descriptors on the quality of the predictions of crack
growths.

While previous work, such as Kochmann et al. [92], has utilized FFT simulations to generate incremental consti-
tutive updates, the efficiency of the FFT–FEM model may highly depend on the complexity of the microstructures
and the existence of a sharp gradient of material properties of the RVEs. In this work, the FFT simulations are not
performed during the multiscale simulations. Instead, they are used as the training and validation data to generate
a ML surrogate model following the treatment in [52] and [35].

For brevity, we omit the detailed description of the phase-field model for brittle fracture. Interested readers please
refer to, for instance, Bourdin et al. [93] and Borden et al. [94]. In this work, we adopt the viscous regularized
version of phase-field brittle fracture model in Miehe et al. [95] in which the degradation function and the critical
energy release rate are pre-defined. The equations solved are the balance of linear momentum and the rate-dependent
phase-field governing equation:

∇
X

· P + B = ρÜ, (48)

gc (d − l2
0∇

X
· [∂∇dγ ]) + ηḋ = 2(1 − d)H, (49)
l0
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Fig. 19. Hybrid model prediction for isomorphic graph inputs. The mean value and the range of the predictions are compared to the FFT
simulation benchmark results for an unconfined uniaxial tension test (top row) and pure shear test (bottom row).

Fig. 20. Approximated energy functional convexity check results for three different polycrystals. Each point represents a convexity check
and must be above the [LHS − RHS = 0] line so that the inequality (28) is satisfied.

where γ is the crack density function that represents the diffusive fracture, i.e.,

γ (d,∇d) =
1

2l0
d2

+
l0

2
|∇d|

2. (50)

The problem is solved following a standard staggered time discretization [94] such that the balance of linear
momentum and the phase-field governing equations are updated sequentially. In the above Eq. (48), P is the first
Piola–Kirchhoff stress tensor, B is the body force and Ü is the second time derivative of the displacement U . In
Eq. (49), following, Miehe et al. [95], d refers to the phase-field variable, with d = 0 signifying the undamaged
and d = 1 the fully damaged material. The variable l0 refers to the length scale parameter used to approximate the

sharp crack topology as a diffusive crack profile, such that as l0 → 0 the sharp crack is recovered. The parameter
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gc is the critical energy release rate from the Griffith crack theory. The parameter η refers to an artificial viscosity
erm used to regularize the crack propagation by giving it a viscous resistance. The term H is the force driving the
rack propagation and, in order to have an irreversible crack propagation in tension, it is defined as the maximum
ensile (“positive”) elastic energy that a material point has experienced up to the current time step tn , formulated
s:

H(Ftn ,G) = max
tn≥t

ψ+(Ftn ,G). (51)

The degradation of the energy due to fracture should take place only under tension and can be linked to that of
he undamaged elastic solid as:

ψ(F, d,G) = (g(d) + r )ψ+(F,G) + ψ−(F,G). (52)

The parameter r refers to a residual energy remaining even in the full damaged material and it is set r ≈ 0
or these experiments. For these numerical experiments, the degradation function that was used was the commonly
sed quadratic [95]:

g(d) = (1 − d)2 with g(0) = 1 and g(1) = 0. (53)

In order to perform a tensile–compressive split, the deformation gradient is split into a volumetric and an isochoric
art. The energy and the stress response of the material should not be degraded under compression. The split of
he deformation gradient, following [96], is performed as follows:

F = Fiso Fvol = Fvol Fiso, (54)

here the volumetric component of F is defined as

Fvol = (det F)1/3 I, (55)

nd the volume-preserving isochoric component as

Fiso = (det F)−1/3 F. (56)

he strain energy is, thus, split in a “tensile” and “compressive” part, such that:

ψ+
=

{
ψ(F,G) J ≥ 1
ψ(F,G) − ψ(Fvol,G) J < 1, (57)

ψ−
=

{
0 J ≥ 1
ψ(Fvol,G) J < 1. (58)

here J = det(F). In these examples, the energy values are calculated using the hybrid architecture neural network
odel, whose derivatives with respect to the strain input will be the stress. Since the model’s input is in terms of

he right Cauchy–Green deformation tensor, the degraded stress is calculated as:

P(F, d,G) = 2F

[
g(d)

∂ψ̂+(C,G)
∂C

+
∂ψ̂−(C,G)

∂C

]
. (59)

The experiment in question studies the crack propagation due to the high velocity impact of a projectile. The
eometry and boundary conditions of the domain, as well as the configuration of the pre-existing crack, is shown
n Fig. 21. It is noted that, while only half of the domain of the problem is studied in this work, the rest of the
omain would not necessarily demonstrate a symmetric response due to the material’s anisotropic behavior. In this
reliminary study, it was deemed that the half domain would be adequate to illustrate and compare the different
nisotropic responses of the model in question. Kalthoff and Winkler [89] and Kalthoff [90] have observed the
rack to propagate at 70◦ for an isotropic material, results that have previously been reproduced with numerical
imulations in other studies [72,94,97,98]. The experiment is conducted for two impact velocities (v0 = 16.5 m/s
nd v0 = 33.0 m/s) to test the crack branching phenomenon expected for higher impact velocities.

The experiment lasts for 80 µs and the prescribed velocity is applied progressively following the scheme below
or t0 = 1 µs:

v =

{ t
t0
v0 t ≤ t0 (60)
v0 t > t0.
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Fig. 21. The geometry and boundary conditions of the domain for the dynamic shear loading experiment. The velocity is prescribed
progressively at the bottom left corner of the domain. The mesh is designed to have a pre-existing crack of 50.0 mm.

The domain is meshed uniformly with 20,000 triangular elements and the length scale is chosen to be l0 =

1.2 × 10−3 m. While this mesh is rather coarse compared to previous studies of the same problem, it was deemed
adequate to simulate the problem at hand with acceptable accuracy to qualitatively demonstrate the anisotropic
model behavior. The time-step used for the explicit method was chosen to be ∆t = 5 × 10−8 s to provide stable
results. Changing the time step of the explicit method did not appear to affect the phase-field solution, as long as
the explicit solver for the momentum equation was stable.

For the first numerical example, the experiment is initially conducted on an isotropic material with parameters
commonly used in the literature (E = 190 GPa, ν = 0.3, l0 = 1.2 × 10−3 m) to verify the formulation and
compare with the anisotropic results. It can be seen that with the current formulation, the isotropic model can
recover the approximately 70◦ angle previously reported in the experiments and numerical simulations. Following
that, the behavior of a single polycrystal was tested. In other words, the graph input of the hybrid architecture
material model remained constant for all the simulations. The material model is a trained neural network of type
MH1

reg with the graph input set constant. All the neural networks used in this section were trained on a dataset of
100 RVEs with 200 sample points each. The purpose of this experiment is to show that by rotating the highly
anisotropic RVE, under the same boundary conditions, different wave propagation and crack nucleation patterns
can be observed. This experiment could be paralleled to rotating a transversely isotropic material — different fiber
orientations should procure different results under identical boundary conditions. In Fig. 22, it is demonstrated that
the neural network material model is indeed anisotropic, showing varying behaviors while rotating the RVE for 0◦,
30◦, and 60◦. The nature of the anisotropy becomes more apparent when the impact velocity is doubled and the
crack branching is more prevalent.

Dynamic simulations can be prone to numerical instabilities that may affect the predicted crack propagation
patterns [99]. To ensure the crack propagation patterns demonstrated in this experiment are not prone to numerical
instabilities depending on the mesh, the simulations were repeated on different meshes and different levels of mesh
refinement. The simulation shown in Fig. 22(d) (v = 33.0 m/s, φ = 0◦) was repeated on a mesh with 11,450
quadrilateral elements, as well as a mesh with 80,000 triangular elements. For the quadrilateral elements and the
refined triangular meshes, the simulation time step were chosen to be ∆t = 5 × 10−8 s and ∆t = 2.5 × 10−8 s
respectively. The simulation shown in Fig. 22(h) (v = 33.0 m/s, φ = 60◦) was also repeated on a mesh with 80,000
triangular elements to investigate whether the mesh would affect the crack propagation patterns of the RVEs under
rotation. The comparison of the crack patterns is demonstrated in Figs. 23 and 24. Neither the selection of element
shape nor the level of refinement seem to be greatly affecting the propagated cracks. The main cracks for all the
simulations at different levels of refinement appear to be close to identical. There are secondary cracks in Fig. 23(h)
as well as Fig. 23(b) appear to be more defined, which is expected due to the higher resolution of the mesh.

For the second numerical experiment, the material response was tested for different polycrystals (model type
MH1

reg) as well as for a model without any graph inputs (type MH1
mlp). The aim of this experiment was to verify that

the hybrid architecture and the graph input can capture the anisotropy of the polycrystal material that is originating

from the interactions between crystals, as expressed by the connectivity graph. The above experiment was repeated
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Fig. 22. Crack patterns at 65 µs for the dynamic shear loading experiment for the isotropic material and the anisotropic material for a
constant graph, rotated at various angles. The left column shows the experiments for v = 16.5 m/s and the right column for v = 33.0 m/s.

or different graph inputs and the results are demonstrated in Fig. 25. In the absence of a graph input, while there
s crack propagation, the results look noisy and the direction of the propagation is not similar to that of specific
VEs, something that could be potentially attributed to the model being trained on multiple polycrystal behaviors.
or the model with the graph input, the difference in behaviors appears to become more apparent in the areas
here branching is more prevalent, with the polycrystal affecting the crack branching phenomena. No additional

nisotropy measures or crack branching criteria were utilized for these simulations. The sole additional information
n the input of the material model would be the weighted connectivity graph.

. Conclusion

We introduce a machine learning method that incorporates geometric learning to extract low-dimensional
escriptors from microstructures represented by weighted graphs and use these descriptors to enhance the su-
ervised learning procedure such that it may generate a family of stored elastic energy functionals for arbitrary
icrostructures via Sobolev training. By utilizing non-Euclidean data structures, we introduce these weighted graphs

s new descriptors for geometric learning such that the hybrid deep learning can produce an energy functional
hat leverages the rich micro-structural information not describable by the classical Euclidean descriptors, such
s porosity and density. To overcome the potential spurious oscillations of the learned functions due to lack of
onstraints on their derivatives, we adopt the Sobolev training and the resultant hyperelastic energy functional is
ore accurate and smoother, compared to classical machine learning techniques. This work also laid the foundation

or several new potential research directions. For instance, the energy functional approach can be extended to a
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Fig. 23. Crack patterns at 65 µs (left column) and 85 µs (middle column) (v = 33.0 m/s) for the dynamic shear loading experiment on three
ifferent meshes: 11,450 quadrilateral elements (top row), 20,000 triangular elements (middle row), and 80,000 triangular elements (bottom
ow). The area around the branching at 85 µs is zoomed in to demonstrate the mesh resolution (right column).

ariational constitutive update framework where discrete Lagrangian can be constructed incrementally to predict
ath-dependent behaviors. Furthermore, more sophisticated geometric learning methods that involve directed graphs
for representing hierarchical information), edge-weighted graphs (for representing attributes of grain contacts),
nd the evolution of the graphs (for path-dependent behaviors) will provide us a fuller picture to examine the
elationships between topology of microstructures and the resultant macroscopic responses.
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ppendix A. Graph theory terminologies and definitions

In this section, a brief review of several terms of graph theory is provided to facilitate the illustration of the
oncepts in this current work. More elaborate descriptions can be found in [100–102]:

efinition 1. A graph is a two-tuple G = (V,E) where V = {v1, . . . , vN } is a non-empty vertex set (also referred
o as nodes) and E ⊆ V×V is an edge set. To define a graph, there exists a relation that associates each edge with
wo vertices (not necessarily distinct). These two vertices are called the edge’s endpoints. The pair of endpoints
an either be unordered or ordered (see Fig. 26).

efinition 2. An undirected graph is a graph whose edge set E ⊆ V × V connects unordered pairs of vertices
together.

Definition 3. A loop is an edge whose endpoint vertices are the same. When all the nodes in the graph are in a
loop with themselves, the graph is referred to as allowing self-loops.

Definition 4. Multiple edges are edges having the same pair of endpoint vertices.

Definition 5. A simple graph is a graph that does not have loops or multiple edges.

Definition 6. Two vertices that are connected by an edge are referred to as adjacent or as neighbors.

Definition 7. The term weighted graph traditionally refers to graph that consists of edges that associate with
edge-weight function wi j : E → Rn with (i, j) ∈ E that maps all edges in E onto a set of real numbers. n is the
total number of edge weights and each set of edge weights can be represented by a matrix W with components
wi j .

In this current work, unless otherwise stated, we will be referring to weighted graphs as graphs weighted at the
vertices — each node carries information as a set of weights that quantify features of microstructures. All vertices
are associated with a vertex-weight function fv : V → RD with v ∈ V that maps all vertices in V onto a set of
real numbers, where D is the number of weights — features. The node weights can be represented by a N × D
matrix X with components xik , where the index i ∈ [1, . . . , N ] represents the node and the index k ∈ [1, . . . , D]
represents the type of node weight — feature.

Definition 8. A graph whose edges are unweighted (wϵ = 1 ∀ϵ ∈ E) can be called a binary graph.

To facilitate the description of graph structures, several terms for representing graphs are introduced:

Definition 9. The adjacency matrix A of a graph G is the N × N matrix whose entry αi j is the number of edges
in G with endpoints {vi , v j }, as shown in Eq. (3).



32 N.N. Vlassis, R. Ma and W. Sun / Computer Methods in Applied Mechanics and Engineering 371 (2020) 113299

a
i

(

D

Fig. 24. Crack patterns at 70 µs (v = 33.0 m/s) for the dynamic shear loading experiment for the RVE rotated at φ = 60◦ on two different
meshes: 20,000 triangular elements (left), and 80,000 triangular elements (right).

Fig. 25. Crack patterns at 30 µs, 50 µs, 65 µs, 85 µs for the dynamic shear loading experiment with an impact velocity of v = 33.0 m/s for
model without a graph input (a, b, c, d) and two different polycrystals (e, f, g, h and i, j, k, l). It is noted that all the parameters are

dentical for all the simulations but the graph input.

Fig. 26. Different types of graphs. (a) Undirected (simple) binary graph (b) Directed binary graph (c) Edge-weighted undirected graph
d) Node-weighted undirected graph.

efinition 10. If the vertex v is an endpoint of edge ϵ, then v and ϵ are incident. The degree d of a vertex v
is the number of incident edges. The degree matrix D of a graph G is the N × N diagonal matrix with diagonal

entries di equal to the degree of vertex vi , as shown in Eq. (4).
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efinition 11. An isomorphism from a graph G to another graph H is a bijection m that maps V(G) to V(H) and
(G) to E(H) such that each edge of G with endpoints u and v is mapped to an edge with endpoints m(u) and
(v). Applying the same permutation to both the rows and the columns of the adjacency matrix of graph G results

o the adjacency matrix of an isomorphic graph H.

efinition 12. The unnormalized Laplacian operator ∆ is defined such that:

(∆ f )i =

∑
j :(i, j)∈E

wi j ( fi − f j ) (61)

= fi

∑
j :(i, j)∈E

wi j −

∑
j :(i, j)∈E

wi j f j . (62)

By writing the equation above in matrix form, the unnormalized Laplacian matrix ∆ of a graph G is the N × N
positive semi-definite matrix defined as ∆ = D − W .

In this current work, binary graphs will be used, thus, the equivalent expression is used for the unnormalized
Laplacian matrix L, defined as L = D − A with the entries li j calculated as:

li j =

⎧⎨⎩di , i = j
−1, i ̸= j and vi is adjacent to v j

0, otherwise.
(63)

Definition 13. For binary graphs, the symmetric normalized Laplacian matrix Lsym of a graph G is the N × N
matrix defined as:

Lsym
= D−

1
2 L D−

1
2 = I − D−

1
2 AD−

1
2 . (64)

The entries lsym
i j of the matrix Lsym are shown in Eq. (5).

ppendix B. Sample problem of graph representation of polycrystal microstructures

To demonstrate how graphs used to represent a polycrystalline assemble are generated, we introduce a simple
xample where an assembly consists of 5 crystals shown in Fig. 2(a) is converted into a node-weighted graph. Each
ode of the graph represents a crystal. An edge is defined between two nodes if they are connected/share a surface.
he graph is undirected meaning that there is no direction specified for the edges. The vertex set V and edge set
for this specific graph are V = {v1, v2, v3, v4, v5} and E = {e12, e23, e34, e35, e45} respectively.
An undirected graph can be represented by an adjacency matrix A (cf. Definition 9) that holds information for

the connectivity of the nodes. The entries of the adjacency matrix A, in this case, are binary — each entry of the
matrix is 0 if an edge does not exist between two nodes and 1 if it does. Thus, for the example in Fig. 2, crystals
1 and 2 are connected so the entries (1, 2) and (2, 1) of the matrix A would be 1, while crystals 1 and 3 are not so
the entries (1, 3) and (3, 1) will be 0 and so on. If the graph allows self-loops, then the entries in the diagonal of the
matrix are equal to 1 and the adjacency matrix with self-loops is defined as Â = A + I . The complete symmetric
matrices A and Â for this example will be:

A =

⎡⎢⎢⎢⎢⎣
0 1 0 0 0

0 1 0 0
0 1 1

0 1
sym. 0

⎤⎥⎥⎥⎥⎦ , Â = A + I =

⎡⎢⎢⎢⎢⎣
1 1 0 0 0

1 1 0 0
1 1 1

1 1
sym. 1

⎤⎥⎥⎥⎥⎦ . (65)

A diagonal degree matrix D can also be useful to describe a graph representation. The degree matrix D only
has diagonal terms that equal the number of neighbors of the node represented in that row. The diagonal terms
can simply be calculated by summing all the entries in each row of the adjacency matrix. It is noted that, when

self-loops are allowed, a node is a neighbor of itself, thus it must be added to the number of total neighbors for
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each node. The degree matrix D for the example graph in Fig. 2 would be:

D =

⎡⎢⎢⎢⎢⎣
1 0 0 0 0
0 2 0 0 0
0 0 3 0 0
0 0 0 2 0
0 0 0 0 2

⎤⎥⎥⎥⎥⎦ . (66)

The polycrystal connectivity graph can be represented by its graph Laplacian matrix L — defined as L = D− A,
as well as the normalized symmetric graph Laplacian matrix Lsym

= D−
1
2 L D−

1
2 . The two matrices for the example

of Fig. 2 are calculated below:

L =

⎡⎢⎢⎢⎢⎣
1 −1 0 0 0

2 −1 0 0
3 −1 −1

2 −1
sym. 2

⎤⎥⎥⎥⎥⎦ , Lsym
=

⎡⎢⎢⎢⎢⎢⎣
1 −

√
2

2 0 0 0
1 −

√
6

6 0 0
1 −

√
6

6 −

√
6

6
1 −

1
2

sym. 1

⎤⎥⎥⎥⎥⎥⎦ . (67)

Assume that, for the example in Fig. 2, there is information available for two features A and B for each crystal
in the graph that will be used as node weights — this could be the volume of each crystal, the orientations, and so
on. The node weights for each crystal represented by a vertex vi can be described as a vector, f i = ( f A, fB), such
that each component of the vector corresponds to a feature of the i th node. The node features can all be represented
in a feature matrix X where each row corresponds to a node and each column corresponds to a feature. For the
example in question, the feature matrix would be:

X =

⎡⎢⎢⎢⎢⎣
f A1 fB1
f A2 fB2
f A3 fB3
f A4 fB4
f A5 fB5

⎤⎥⎥⎥⎥⎦ . (68)

Appendix C. Database statistics

This section describes the statistics for the generated microstructures that were used for training the geometric
learning based neural network model. The database consists of 150 polycrystal RVEs generated as described in
Section 6.3. For every polycrystal in the database, the grain connectivity information is available in the form of
adjacency matrices. For every crystal in a polycrystal RVE, there is available information on the crystal features
that will be used as weights for the undirected graph input. The available node features in the data set contain
information on the volume, the three Euler angles (in Bunge notation), the equivalent diameter (the diameter of
the sphere with the equivalent volume as the crystal), the number of faces, the total area of the faces, the number
of neighbors, and the centroid position vector of each crystal. More elaborate descriptions of the crystal features
can be found in the documentation of the open-source software NEPER [47]. The distribution of the polycrystal
features, separated into 100 training and 50 testing cases, is demonstrated in Fig. 27.

Appendix D. Encoded feature vector dimension

The hyperparameter space of a complex architecture is rather large to conduct a comprehensive hyperparameter
search and provide a confident explanation of how the dimensions of the hybrid architecture affect the model’s
performance. The number of neurons of the encoded feature vector layer was one of these tuned hyperparameters.
To provide an insight into how the encoded feature vector layer dimension choice was made, we are providing the
results from three training experiments that we conducted while testing various architectures for the neural network
through trial and error. We noticed that, in iterations of the network with lower dimensions than 9 neurons, the
predictions were less accurate. For feature dimensions much higher than 9 neurons, the performance seemed to not
drastically improve and, thus, they were not chosen to reduce the training time of the network. In Fig. 28, we are
showing the performance results of training the hybrid neural network architecture with an encoded feature vector
dimension of 1, 9, and 32 neurons.
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Fig. 27. Feature distributions for the 150 polycrystals in the database, separated into 100 polycrystals used for training and 50 polycrystals
used for testing.
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Fig. 28. Comparison of hybrid neural network performance for architectures with encoded feature vector dimensions of 1, 9, and 32 neurons.
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