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Abstract—In recent years, massive multiple-input multiple-
output (MIMO) has been regarded as a promising technique
in the fifth-generation (5G) communication systems. With the
ability of focusing transmission beams on users, massive MIMO
has a natural advantage in the field of physical layer security to
improve the system secrecy performance. However, in practical
mobile systems, the imperfect channel state information (CSI)
caused by the channel estimation error and the transmission
and processing delay will have a non-negligible impact on the
system performance. In this paper, we investigate secure com-
munications in a multi-user massive MIMO-enabled vehicular
communication networks. Considering the influence of imperfect
CSI on the secrecy performance, we derive a tight asymptotic
lower bound of the system secrecy capacity under both perfect
and imperfect CSI. Moreover, we further analyze the impact of
vehicle speed on the system secrecy performance and propose a
channel prediction scheme based on (Long Short-Term Memory)
LSTM model to compensate for the negative effects of imperfect
CSI, which can improve the system secrecy performance in high
mobility scenario. Simulation results show that the imperfect
CSI severely reduces the system secrecy capacity, but its negative
effects can be effectively alleviated through the designed LSTM-
based channel prediction and compensation scheme.

Index Terms—Massive MIMO, physical layer security, LSTM,
channel prediction.

I. INTRODUCTION

Most recently, massive MIMO has emerged as a promising
solution in the 5G communication systems. By increasing
the number of antennas, massive MIMO enables hundreds
of antennas to serve dozens of user terminals simultaneously
at the same frequency while retaining the advantages of
traditional MIMO, and greatly improves the system capacity
and energy efficiency through beam concentration and spatial
multiplexing [1]. In addition, the channels of different users in
massive MIMO system are nearly orthogonal, which reduces
the inter-channel interference, and the large-scale antennas
can also improve the robustness on the communication system
against interference and attack [2], [3].

In addition, with the rapid development of modern com-
munication systems, physical layer security, as a supplement
to traditional encryption methods, has aroused extensive re-
search interest in the field of information security in recent
years [4], [5]. As for massive MIMO that can focus the
energy beam on specific users, it has an advantage in terms
of physical layer security [6]. That is, the receiving power of

legitimate users is higher, while that of eavesdropping users
is lower, and thus the system secrecy performance can be
improved. Therefore, it is natural and critical to combine
these two technologies to enhance the secrecy of future
communication networks. However, it should be noted that
once the pilot sequences (PSs) used to estimate channels are
not orthogonal, pilot pollution will reduce the accuracy of
channel estimation and thus seriously affect the performance
of massive MIMO [7].

The Internet of vehicles (IoV) is an important technology
in the future of intelligent driving. Composed by vehicles and
basic communication units on the roadside, it is characterized
by flexible networking, coexistence of multiple communica-
tion modes, fast node movement, and predictable trajectory
[8]. While at the same time, the high-speed mobility of ve-
hicles leads to the channels’ fast time-varying characteristics,
which also makes the influence of imperfect CSI more serious
[9]. At present, studies on physical layer security in massive
MIMO technology mostly consider the case of perfect CSI,
but due to the large antenna scale, the imperfect CSI caused
by the channel estimation error and the transmission and
processing delay will have a more significant impact on
the secrecy performance of massive MIMO [6]. Recently,
deep learning methods have been successfully applied in the
field of wireless communications, and effective results have
been obtained in channel prediction schemes based on the
deep learning algorithms [10]. Among them, long short-term
memory (LSTM) is an efficient improved recurrent neural
network (RNN), which has a good effect in solving the long-
term dependence problems in general RNN and has been
widely used in time series processing and voice processing.

In this paper, we investigate the physical layer security
issue under imperfect CSI in a multi-user massive MIMO
system. Considering the influence of imperfect CSI on the
secrecy performance, we derive a tight asymptotic lower
bound of the system secrecy capacity under both perfect
and imperfect CSI. Moreover, we further analyze the impact
of vehicle speed on the system secrecy performance. In
order to compensate for the negative influence of imperfect
CSI, we then propose a channel prediction scheme based
on LSTM model, in which we exploit LSTM to extract
the time correlation characteristic of channels, improve the
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Fig. 1. The investigated massive MIMO system in vehicular networks.

accuracy of channel prediction, and thus enhance the system
secrecy performance. Simulation results show that imperfect
CSI severely reduces the system secrecy capacity, especially
in high-speed environment, while our proposed channel pre-
diction scheme effectively alleviates its negative influence.
The remainder of this paper is organized as follows. Section
II describes the investigated system model and problem
formulation. In Section III, we derive the ergodic secrecy ca-
pacity under perfect and imperfect CSI. Section IV specially
analyzes the effect of vehicle speed and proposes a channel
prediction scheme based on LSTM to compensate for the
negative influence of imperfect CSI. In Section V, simulation
results demonstrates the system secrecy performance under
perfect and imperfect CSI, and the effectiveness of our
channel prediction scheme. Section VI gives the conclusions.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Scenario

As shown in Fig. 1, in the system model, a base station,
K legitimate vehicles, and a malicious eavesdropper coexist.
The BS aims to transmit signals to legitimate vehicles, equip-
ping with N, antennas. There is only one antenna on each
legitimate vehicle. N, antennas are equipped by the passive
eavesdropper to wiretap the channels between the BS and the
legitimate vehicles without launching any pilot contamination
attacks. In our investigated scenario, /V; is much larger than
N, and K, i.e., Ny > max {N,, K}.

Quasi-static channels are assumed between the BS and dif-
ferent terminals, which means during one time slot the chan-
nel gains remain the same, while vary in different time slots.
The channel matrix between the BS and different vehicles
can be represented by H = [h{’, hf ... ,hg]H € CEXNe,
where its row vector hf denotes the channel between the
BS and vehicle k. Also, we use G € CNe*Nt to denote
the channel gains between the BS and the eavesdropper. In
our investigated channel model, uncorrelated Rayleigh fading
is adopted. Therefore, we have that the vector h;, € C'*™M¢
and matrix G are independent identically distributed complex
Gaussian variables with zero mean and unit variance.

Lets(t) = [s1(t), s2(t), - - , sk (t)] € CE*! denote the re-
quired data symbols of K vehicles, where s(t) ~ CN (0, I).

Under linear precoding, the transmit signals can be repre-

sented by
x(t) = [ 2 (0s(0) M)

where matrix F(t) = [f7(¢),£11(t), --- £ ()| € CExNe
represents the precoding matrix, and maps the required data
symbols, i.e., s(t), to N; transmit antennas. Note that & =
E [tr {FFF}]| and Pg denote the power constraints of the
precoding matrix and the BS transmit power, respectively.

Based on the definitions above, the resulting received signal
at the k-th vehicle is given by:

yr(t) = hy(t)x(t) + nx(t)

72 [ 000+ 3 (O (@350
J#k
+ ni(t)

2
where the first term represents the desired signal, the second
term represents the multi-user interference, and ng(t) ~
CN(0,02) represents the additive Gaussian white noise with
zero mean and o2 variance.

Similarly, the intercepted signal at the eavesdropper is
denoted by

Ye(t) = G()x(t) + ne(t) = \/P?BG(t)FH(t)S(t) + ne(t)

3)
where n.(t) ~ CN(0,021y,) is the additive Gaussian white
noise at the eavesdropper.

B. Imperfect CSI

The influence of imperfect CSI on the system security
performance is mainly composed of the following two factors:
channel estimation error and outdated CSI.

In a practical communication system, the BS utilizes PSs
received from vehicles to estimate the corresponding CSI,
and then conducts channel precoding and transmit through
N; antennas using the estimated CSI [7]. We use ® =
(01,05 ,0k] € CT*K to represent the PS matrix transmit-
ted by the vehicles, where 8;, € C™*! denotes vehicle k’s PS,
and 7 denotes the length of every PS. We use W (t) € C™*Nt
to denote the additive Gaussian white noise during the channel
estimation process, note that each of its entries has zero mean
and variance o2,

We denote the PSs received by the BS as

Y(t) = ©H(t) + W(t) 4

based on the definitions above.
The BS multiplies @ to (4) to distinguish PSs sent from
different vehicles, i.e., for the PS of the k-th vehicle

zi.(t) = hi(t) + 0 W (t) 5)
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For the whole system, we have
Z(t) = 0"y (t) = H(t) + ©TW(t) (6)

With minimum mean square error(MMSE) channel estima-
tion method, we can use (7) to represent the real CSI

hy(t) = hy(t) 4 ngomse (1)
=(1+ ai)_lzk(t) + 1 mmsk(t) )

where ny mmse (¢) represents the channel estimation error and
independent of hy(t). Note that hy(t) ~ CN (O,ai) and

ni muse () ~ CN (0,02 ), where
or=(1+07)" ®)
and
e = (14 02) 02 ©)

To discuss about the outdated CSI, we first define T as the
delay between the outdated channel and the real-time channel,
which means that the time interval between when the BS
receives the PSs and when it completes the channel estimation
and starts transmitting data is Ty. We have defined H(t) as a
complex Gaussian process with unit variance and zero mean,
therefore, the autocorrelation function of the channel can be
used to characterize the time variation of the channel [11].
Based on Jake’s model [9], we have

pr, = Jo 27 fpTy) (10)

where Jy (-) denotes the zeroth-order Bessel function of the
first kind. Also,

fo= Efc (11)
C

is the maximum Doppler spread, where v denotes the velocity
of the vehicles, ¢ = 3 x 10® m/s is the speed of light, and f,
denotes the carrier frequency. We know that the decrease of
pt, will cause the correlation between the outdated channel
and the real-time channel to reduce. That is, when pr, = 1,
the outdated channel effect will be eliminated.

According to the definition of factor pr,, we can use

H(t+To) = pr,H(H+\/1- 03, B+ T0)  (12)

to denote the correlation between the outdated channel H(t)
and the real-time channel H(¢t + T,), where E(t + T}) is
a random variable independent identically distributed with
H(t).

Hence, we can represent the real-time channel of the k-th
user at time t + Ty by

hy(t +Ty) = pr,hyg(t)+4/1 — pQTdek(t +Ty)

= pr, by (t) + &(t)
based on (7) and (12), where €x(t) = pr,ngmmse(t) +
\/ 1= pFen(t + Ty), satisfies &, ~ CN (0,021y,), 0% =

-1
p%dUZNINISE + <1 - p%“d) =1- p2Td(1+0'120) .

III. ANALYSIS OF ERGODIC SECRECY CAPACITY

In this section, we will give a performance analysis of
ergodic secrecy capacity in the investigated multi-user mas-
sive MIMO scenario under certain linear precoding scheme,
i.e., zero-forcing (ZF), which can achieve a better secrecy
performance than the MF precoder [12].

According to (2), the ergodic secrecy capacity of vehicle
k can be represented by

Cr=E

1og2<1+ 7 b (¢ 4+ To) £ (1) )]
€4S [ (t+ To) £ (1)) L

where v = U—Pz denoted the transmit SNR. On the other
hand, according to (3), the ergodic secrecy capacity of the
eavesdropper can be represented by

C.=E [log2 <det (INE + ZGFHFGH>>] (15)

Firstly, in order to summarize some general results which
will be used in the proof of the following section, we give
Lemma 1.

Lemma 1. Consider two random vectors a,a € C'*™, which
satisfy a € CN(0,021,) and b € CN(0,071,). Then we
have the following four equations:

o E[aa® :nag,

e K abHizo,

o var [aall| = nol,

o var abh% =no2o}.

Proof: Considering that based on the statistical charac-
teristics of Rayleigh distributed vectors, we can easily prove
these four equations, we omit the proof here. |

A. Secrecy Capacity under Perfect CSI

In ZF precoding scheme, the precoding matrix can be

represented by:
1

F=(HH") H (16)

The interference between different vehicles can be eliminated

wonderfully through such precoder, i.e., hkfjH = 0 is always
satisfied when k # j.

Under perfect CSI, the transmit power constraint of the

precoding matrix can be given as £ = WIEK, the SINR
of vehicle k can be represented by SINR, = w
Therefore the ergodic capacity of vehicle k is
N, — K
Cy, = log, <1+7( - )> (17)

On the other hand, we consider that the channel capacity
of eavesdropper is given by

C.=FE {10g2 [det (INC + %GHH (HH?) ™ HGHﬂ }
(18)
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Using lemma 1, we get HHY ~ N1,.. Therefore, the channel
capacity of eavesdropper can be represented by

v (Ny — K)
Ce ~E {10g2 {det (INC + WGHHHGH

Given that the value of N, is greatly larger than K,
ie., Ny > K, in the massive MIMO system, thus we get
%}(K) = 1:’[52\[;{ = N 7z~ Then we can rewrite the channel
capacity of eavesdropper as

C.~E {log2 [det (INU + 2l

N K
Therefore, an asymptotic lower bound of the ergodic sys-
tem secrecy capacity can be represented by (21) where LS ()

is the generalized Laguerre polynomial of order n and given
by [13]:

GHHHGH)} } (20)

1 qm N n m

« _ T~ e Ty a n—m
L" (l‘) - ae z d.’E" 2_: Cn+a ml
(22)

B. Secrecy Capacity under Imperfect CSI
Under imperfect CSI, the SINR of vehicle %k can be denoted
by
PB |hlc fH (t)|
PTB Z#k by (t)EF t)\ +02
2
7 [l (¢ + Ta) £ ()|

SINR.™ =

= e (23)
E+72 5k |hk(t)fj ()]
For the numerator part,
2 2
[ (¢ + Ta) 61 (1) = | () + &(1)) €17 (1)|
~ 2
= p* + e (OF (1)] (24)
For the denominator part,
2
B (OF O]}, = \(phm +au0) £ 0]
= |ex(t ] (25)
- SN A —1
Given that EFY — EHY (HHH) ~ , we get

that [&, (DE (1)]” = 22,
of vehicle k£ under imperfect CSI can be represented by
y (pQNto'}% + aé)

K (1+~02)

. Therefore, the channel capacity

Cr >logy [ 1+

(26)

Note that the channel capacity of eavesdropper is not
effected by imperfect CSI, we have (27).

IV. ERGODIC SECRECY CAPACITY UNDER HIGH-SPEED
ENVIRONMENT AND CHANNEL PREDICTION

In this section we will consider the effects of the speed
on the secrecy capacity of system, and propose a channel
prediction scheme based on LSTM algorithm in order to
improve the system performance of ergodic secrecy capacity.

A. Influence of Increasing Speed

The high-speed mobility of vehicles leads to the fast time-
varying characteristics of channels, which also brings great
challenges to channel estimation and prediction [9], [11].
According to (27), the parameter
T3z (2r sT) (28)

pro; i I+o
can well characterize the 1nﬂuence of imperfect CSI on the
physical layer security performance of the system. Specifi-
cally, speed is the most critical factor, which determines the
correlation between the real channel and the outdated channel.
The faster the speed, the more obvious the doppler effect,
the lower the channel correlation, and the lower the channel
capacity of legitimate vehicles.

In the physical layer security scenario, as we have men-
tioned in Section III, if the eavesdropper is stationary, the
imperfect CSI will has no effect on the information the
eavesdropper can wiretap. Then, when the speed reaches a
certain level, p2T02 ~ 0, the influence of imperfect CSI on
the system is so serious that normal communication is almost
impossible. In the presence of eavesdroppers, it becomes more
difficult to achieve secure communication.

Therefore, we hope to explore a new channel prediction
scheme to overcome the negative impact of speed on channel
security performance by improving the accuracy of channel
prediction at high speed, so as to adapt to the high-speed
moving characteristics of internet of vehicles scenarios.

B. Channel Prediction Based on LSTM

The BS sends data to the vehicles at the time of ¢ + Tj.
However, due to delays during transmission and processing,
and the influence of channel estimation errors, the CSI used
by the BS in the process of coding and transmission is
imperfect. We define 7' as the length of a frame, then we can
store CSI in multiple frames to utilize the time-dependent
characteristics of massive MIMO, thus predict the CSI of
t+ Ty.

Considering LSTM’s good performance in processing time
sequences, we design a channel prediction scheme based
on LSTM algorithm. LSTM is a classical improved RNN
algorithm. Different from RNN, which is only sensitive to
short-term input, LSTM has an excellent learning result on
both long-term and short-term inputs by adding structure
including cell states.

As shown in Fig. 2, suppose we use CSI of the previous
L time slots to train the network, that is, the input of the
network can be expressed as

HY) (1) = [H(t),H(t —T),--- ,H(t — (L — 1)T)] € CExNexL
(29)
We define the weight matrix of the network as
W = [wo, Wi, ..., wp_q] € CN*E (30)

And the output of the network is H (¢ + T;), which represent
the predicted value of H (¢ 4 T}).
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C,2 {Klog2 {1 + W} - <m10g2 (%) +log, (m!) + log, {Lgm (-f) }) }+ 21)

+
- V(p7, 02Ny + 0F) v _ K
Cs p % K10g2 1 + W — mlog2 (E) =+ 10g2 (m') + 10g2 L:ln m —7 (27)
) e He-T) s |HlE=\=D)1) i order autoregressive model (AR(1)) [?], thus to guarantee the
e ‘ o channel correlation between different time slots. Repeating
: I I | the procedure:
LG
gy | e e SN g (L )T) =prH(s — (L (i 1)]T)
%) I +4/1=p2E(t— (L—9)T) (31)
': {r: ) "’{“"‘ZJ outpud layer

W, (1+7,)
1

b (r+7,)

Fig. 2. Overall architecture of the LSTM. The input layer includes L CSI
matrixes, each of which are split into K vectors before inputting into the
LSTM network. The output is a matrix of CSI in time slot t 4 T}.

It is worth noting that although we only use one simple
matrix W to represent the weights inside the network, in
fact, the calculation of the parameters inside the LSTM is
very complex.

LSTM uses two doors to control the content of cell states:
forget gate, which determines how much of the cell state of
the previous moment can be retained to the current moment,
and input gate, which determines the how much of the current
input is saved to the cell state. Also, LSTM uses output
gate to control how much of the cell state can be output
to current output value. In the training process, there are 8
groups of parameters that LSTM needs to learn, which are:
weight matrix and bias item of forget gate, input gate, output
gate, and cell state calculation [14].

As for the formula calculation of the forward propagation
and training algorithm of LSTM network, previous researches
have been detailed and comprehensive [15], and thus in this
paper we will not repeat it.

V. SIMULATION RESULTS

In this section, we will evaluate the influence of several
factors on the ergodic secrecy capacity through simulation and
test the performance of our channel prediction scheme at the
same time. An isolated system including a BS, K vehicles and
an eavesdropper is assumed. The channel correlation between
different time slots is depicted by Jake’s model [9]. We set
the vehicles’ average speed as v, the duration of a time slot
as T = 0.01s, and the centre carrier frequency as f.=2GHZ.
Also, we only consider the small-scale fading in our model
and define the path-loss gain as 1 for convenience.

We use {H(t),H(t—T),--- H(t— (L—1)T)} to de-
note the vehicles’ real CSI sequence at different time
slots. We first generate H (¢t — (L — 1)7T") and then generate
H(t— (L —2)T) based on the recursion formula of 1st

then we can obtain the sequence of channels. For convenience,
Ty = T is assumed. Thus, by using the recursion formula,
we can also obtain the real channel at time ¢ + 7.
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Fig. 3.  Ergodic system secrecy capacity vs. number of vehicles K.
Parameters: SNR = 10dB, Ny = 128, No = 8, L = 20, 02 = 1,
v =10m/s.

A. Ergodic capacity vs. K

In Fig. 3, we aim at analyzing the relationship between the
ergodic capacities and the number of the legitimate vehicles,
i.e., K. As K increases, the secrecy capacity first increases.
However, when K increases to a certain level, the capacity
increases more and more slowly. For a multi-user massive
MIMO system, given that different channels are orthogonal,
an increasing number of users can serve more users and
better exploit the advantages of massive MIMO to increase the
system capacity. However, another phenomenon is that as K
increases, the interference between different users becomes
increasingly worse at the same time, and that is why the
growing speed of channel capacity decreases.

B. Ergodic capacity vs. SNR

As shown in Fig. 4, when SNR increases, the ergodic
system secrecy capacity first increases. When SNR reaches a
certain value, as it continues to increase, the system secrecy
capacity starts to decrease, until it finally reduces to O.
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It can be seen from (26) that, for each user, when SNR
increases, not only its receiving power increases, but also
the inter-user interference increases, which limits the growth
of user capacity. When SNR grows to a certain value, the
user capacity will converge to a constant value. However,
for eavesdroppers, the increase of SNR will always bring the
increase of eavesdropper capacity.

C. Ergodic capacity vs. v

In Fig. 5, we compare the relationship between ergodic
secrecy capacity and speed respectively under perfect CSI,
imperfect CSI and our channel prediction scheme based on
LSTM.

In fact, in the figures of the previous two sections, we can
also see that under the channel prediction scheme, the system
security performance is greatly improved compared with im-
perfect CSI, but still weaker than perfect CSI. In addition, we
also noticed that as the speed increased, the performance of
the predicted solution decreased. When the speed is increased
to a certain value, the channel prediction scheme still cannot
solve the problem of low channel correlation, which is also
worth further exploration in future research.

VI. CONCLUSIONS

In this paper, we investigated secure communications in
a multi-user massive MIMO system. We considered the

influence of imperfect CSI on the achieved seccrecy perfor-
mance and derived a tight asymptotic lower bound for the
system secrecy capacity under both perfect and imperfect
CSI. Moreover, we analyzed the impact of vehicle speed on
the secrecy performance of massive MIMO and proposed a
channel prediction scheme based on LSTM to compensate
for the negative effects of imperfect CSI. Simulation results
showed that the imperfect CSI severely reduces the system
secrecy capacity, but its negative effect can be effectively
alleviated through the designed channel prediction scheme.
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