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Abstract—Most recently, vehicular fog computing (VFC) has
been regarded as a novel and promising architecture to effectively
reduce the computation time of various vehicular application
tasks in Internet of vehicles (IoV). However, the high mobility of
vehicles makes the topology of vehicular networks change fast,
and thus it is a big challenge to coordinate vehicles for VFC
in such a highly mobile scenario. In this paper, we investigate
the joint task assignment and resource allocation optimization
problem by taking the mobility effect into consideration in
vehicular fog computing. Specifically, we formulate the joint
optimization problem from a Min-Max perspective in order to
reduce the overall task latency. Then we decompose the non-
convex problem into two sub-problems, i.e., one to one matching
and bandwidth resource allocation, respectively. In addition,
considering the relatively stable moving patterns of a vehicle
in a short period, we further introduce the mobility prediction
to design a mobility prediction-based scheme to obtain a better
solution. Simulation results verify the efficiency of our proposed
mobility prediction-based scheme in reducing the overall task
completion latency in VFC.

Index Terms—VFC, task assignment, resource allocation, mo-
bility prediction

I. INTRODUCTION

With the rapid development of network and computing tech-

nology, intelligent transportation systems (ITS) come to prac-

tical application from theory gradually. Meanwhile, emerging

5G vehicular network applications such as self-driving, object

detection, object recognition with complicated data processing

and constraint delay, promote the growing demand for more

powerful computing capacity, higher transmission rate and

lower time delay [1]. This poses challenges to the conventional

cloud computing paradigm, which cannot guarantee real-time

feedback. In contrast, fog computing extends both computing

and caching abilities to network edges, forming the ability

of local decision-making and quick response, which are key

factors in the vehicular network.

Many recently body of research concerns introducing Fog

computing paradigm to vehicular network [2]–[4]. Most of

their proposals consider the resources of vehicles as part of

the fog computing infrastructures [5]. Different from Vehicu-

lar Cloud Computing (VCC), the VFC framework processes

vehicles’ tasks locally as much as possible instead of sending

computation requests to cloud servers. As a significant com-

ponent of ITS, vehicular fog computing can support complex

vehicular services by collaborative vehicle scheduling. The

quality of services (QoS) and quality of experience (QoE)

can achieve great improvements based on better utilization of

each vehicle’s communication and computational resources.

However, due to the mobility of vehicles, the task assignment

and resource allocation (TARA) problem becomes more chal-

lenging to solve.

As one important characteristic that we pay more atten-

tion to, mobility support has been studied from different

perspectives. Due to vehicles’ mobility, the relative positions

of vehicles change rapidly, leading to rapid changes in the

network topology. Hence, the influence of mobility cannot be

neglected in VFC. Relationships among the communication

capability, connectivity, and mobility of vehicles were unveiled

in [5], the results indicate that the faster a vehicle moves,

the fewer vehicles it can successfully connect with, leading

to poorer communication capacity. In [6], to provide efficient

and reliable service to users in VFC, vehicles are divided into

three sub-networks based on their turning directions. It is a

good solution to formulate vehicular network clusters. The

connections between client vehicles and mobile fog nodes

may not last until the assigned tasks completed due to the

mobility, so task migration can be triggered based on the

mobility information [7], [8], or the fog vehicle that cannot

provide service to the end should be excluded [9]. Although

mobility is taken into account in the above works, they do

not involve mobility in their optimization problems, i.e., the

mobility feature is more like a trigger condition.

Therefore, in this paper, we take full consideration of the

mobility effect and investigate the joint task assignment and re-

source allocation optimization problem in terms of overall task

latency in vehicular fog computing. Specifically, we formulate

the joint optimization problem from a Min-Max perspective,

which can better choose and coordinate appropriate vehicles

as fog nodes to offload computation tasks. Then, we propose

a two-stage scheme to efficiently solve the formulated non-

convex problem. In addition, considering the relatively stable

moving patterns of a vehicle in a short period, we further

introduce the mobility prediction into the proposed scheme to

obtain a better task assignment and resource allocation solu-

tion. Simulation results verify the efficiency of our proposed

mobility prediction-based scheme in reducing the overall task
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Fig. 1: VFC architecture combined with VANETs

completion latency in VFC.

The remainder of this paper is organized as follows. Section

II describes the investigated system model. In Section III, the

latency minimization problem is formulated by utilizing the

proposed basic frameworks and mobility prediction model.

The solution to the nonconvex problem is presented in section

IV. The numerical results and conclusions are drawn in Section

V and Section VI, respectively.

II. SYSTEM MODEL

A. VFC framework

Vehicles are considered as both providers and users of fog

service in VFC framework [5], that means a vehicle can

request services when it cannot process task by itself, and

can also act as a fog node to provide communication and

computational resources to other vehicles when it is idle.

The former is defined as client vehicle and the latter as fog

vehicle. Fig. 1 illustrates the system framework of Vehicular

Fog Computing and it consists of the following entities:

• RSUs: Roadside Units (RSUs) are base infrastructures

that have wide communication ranges and powerful com-

puting ability to form them the coordinators of the VFC

networks. RSUs execute TARA algorithm according to

information such as task size and complexity, velocity,

network topology, utilization of vehicles’ resources, etc.

• Moving vehicles: Vehicles in the VFC framework can

flexibly change their identities between fog service re-

questor and provider, so every vehicle is assumed to

carry on an on-board computer for tasks processing, and

onboard dedicated short-range communication (DSRC) to

ensure the ability to communicate with other vehicles and

RSUs. The vehicles which need computation offloading

are defined as client vehicles, and the vehicles work as

fog nodes are defined as fog vehicles.

• Gateway: Gateway can realize the connection of RSUs

and cloud servers, and realize the interconnection of

RSUs to ensure the sharing of some information such

as vehicles’ locations.

• Head vehicles: Head vehicles are responsible for coordi-

nating communication between RSUs and other vehicles.

Due to the vehicle mobility, it is unrealistic and inefficient

to let all vehicles directly connect to RSUs, so we introduce

VANETs to the VFC framework. Vehicles are connected to-

gether to form a Vehicular ad-hoc network (VANET) according

to speed, direction, distance, and some other factors. Each

VANET has a head vehicle responsible for coordinating intra-

group V2V communications, i.e., head vehicle is responsible

for maintaining a VANET. Only the head vehicle needs to be

connected to the RSU through V2I communication while other

vehicles in the same VANET connect with each other by V2V

communication. Vehicles are interconnected to form a stable

combination, even if vehicles are entering/leaving VANETs

continuously. This network topology is the physical guarantee

of low latency.

B. Description of the TARA optimization

Based on the VFC framework above, we introduce the task

assignment and resource allocation problem. In a VANET,

when a vehicle generates a task hard to process by itself, it

will send task offloading request to the RSU via the head

vehicle and the RSU will do the TARA optimization to get an

optimal TARA strategy that can minimize the overall latency,

and then the RSU will send the strategy back to client vehicles

for practical application.

Assuming that, there are N vehicles in a VANET, and the

generated task is partitioned into N parts, every vehicle is

assigned a sub-task. Because each sub-task has a different

file size and computation size, the task assignment strategy

and resource allocation strategy should be jointly optimized

to minimize the latency.

III. PROBLEM FORMULATION OF LATENCY OPTIMIZATION

BASED ON MOBILITY PREDICTION

In this section, we formulate the latency minimization

problem by introducing mobility prediction.

The objective is the overall time delay including commu-

nication delay and computing delay, our task is to find an

optimal task assignment and resource allocation scheme to

achieve the minimum total time delay. The number of vehicles

in a VANET is denoted as N , denote the set of vehicles as

N , so we have the definition of tasks Γ and fog vehicles V,

let us denote Γ = [Γ1,Γ2, ...,ΓN ]T and V = [V1, V2, ..., VN ]T .

Some basic models and assumptions are given in the following

sections.

A. Task Formulation, Partitioning, and Assignment

Tasks generated by vehicles vary according to their compu-

tation size Q, file size Δ, and result size δ̂. The computation

size Q is not positively related to file size Δ, for example,

considering the same picture, the computation size of basic

image processing such as image binaryzation is far less than

some complex algorithm, for instance, object detection. In

addition, the result size Δ̂ is also not positively related to

the original file size Δ. Therefore, we independently generate

these variable values in simulations conducted in section IV.

Since the computation tasks generated by vehicles are varied,

the partition of the task is a very complex process with multi-

ple factors, so we cannot simply partition it equally. As some

sub-tasks cannot be partitioned anymore, so it’s unrealistic

to partition a task into N equal parts. For simplification, we
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Fig. 2: Communication link routing

define that the task is partitioned into N parts, and they will

be assigned to N vehicles, namely, one to one matching. Each

part may differ in the size of file and computation, so the client

vehicle’s sub-tasks computation size set is given as

q = [q1, q2, ..., qN ]T ,
∑
n∈N

qn = Q.

Similarly, the sub-tasks file size set and results size set are

given as

δ = [δ1, δ2, ..., δN ]T ,
∑
n∈N

δn = Δ.

δ̂ = [δ̂1, δ̂2, ..., δ̂N ]T ,
∑
n∈N

δ̂n = Δ̂.

Therefore, the original task Γn is now

partitioned into Γn = [Γn1,Γn2, ...,ΓnN ]T =
[(qn1, δn1, δ̂n1), (qn2, δn2, δ̂n2), ..., (qnN , δnN , δ̂nN )]T , n ∈
N .

The task assignment strategy is defined as a N ×N matrix

H, whose elements are binary distribution. Each row of the

matrix represents the corresponding vehicle’s strategy, and it

means the corresponding sub-task is offloaded to this vehicle

or not. Since it is one to one matching, there can only be

one element equals to 1 in each row. The client vehicle’s task

assignment result S is given as

S = HN×N ·VN×1. (1)

B. Communication Link Routing

In our system model, multi-hop communication is adopted

to expand the range of VFC service. When the target fog

vehicle exceeds the client vehicle’s communication radius,

multi-hop communication will be triggered. As showed in Fig.

2, there could be multiple communication links between two

vehicles in general. We define r = [r1, r2, ..., rN ]T as the

routing strategy, and rn is set to be 0 when the sub-task doesn’t

need multi-hop communication. Each rn is calculated by

r∗ = argmin
r

(
δ

eabB log2(1 + γar)
+

δ

eabB log2(1 + γrb)

)
,

(2)

where r stands for the label number of relay vehicles, a is

the label number of the client vehicle and b refers to the label

number of the fog vehicle. eab is the bandwidth percentage

allocated to the link from a to b, and we assume that the first

hop and the second hop has the same bandwidth since the V2V

communication is defined as half-duplex Communication.

While the allocated percentage of bandwidth is unknown

before resource allocation, so the communication link routing

is a sub-optimization problem integrated to the overall opti-

mization problem. According to the actual situation and the

purpose of simplifying the problem, we assume the maximum

number of hops is 2.

C. Communication Model

The max transmission rate Cab of V2V channel between

vehicle a and b associated with Shanon formula can be

expressed as

Cab = Wab · log2(1 + γab), (3)

where Wab denotes the bandwidth of the channel. γab is the

received signal to noise ratio (SNR), and it is given by [9]

γab =
pd−α

ab h2
ab

N0
, (4)

where p denotes the transmission power, dab is the transmis-

sion distance from a to b, hab denotes the Rayleigh channel

coefficient following a complex Gaussian distribution. N0 is

the power of additive white Gaussian noise (AWGN). α is the

path-loss exponent.

Hence, the transmission time delay of client vehicle offload-

ing sub-tasks to other fog vehicles can be obtained as

Tab =
δab
Cab

. (5)

D. Computing Model

Vehicles vary according to their remaining computing capa-

bility P, while the computing capability of the same vehicle

also varies at different times depending on its current task

load. As a common sense, the more powerful the computing

capability is, the less computation time will be spent for the

same task. Therefore, the computation time Tc is given by

Tc =
Q

P
. (6)

We use MIPS, short for Million Instructions Per Second,

to measure the computing capacity, accordingly, MI, short

for Million Instructions, is used to measure task computa-

tion size. Fog vehicle’s computing capability is defined as

P = [β1, β2, ..., βn]
T , so each fog vehicle’s computation time

is given by

Tcn =
qn
βn

, n ∈ N . (7)

E. Vehicle Mobility Prediction

High mobility challenges low latency and real-time per-

formance of VFC, to solve this issue, we introduce the

vehicle mobility prediction. As shown in Fig. 3, the VANET’s

topology can change a lot after each fog vehicle completes the

computation, while that time’s topology will affect the results’

backhaul. We can get the topology of that time by adopting

Vehicle Mobility Prediction. By doing so, we can predict the

network condition information at that time to promote optimal

strategy.
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Fig. 3: Vehicle mobility prediction

We need to assess the time from sub-tasks’ dissemination

to computation completed, which is the key factor for pre-

diction. The time is composed of dissemination part tpd and

computation part tpc, given as

tp = θ (tpd + tpc) ,

= θ

⎛
⎝ δs

B log2(1 +
pd−α

a h2

N0
)
+

Qs

Ps

⎞
⎠ ,

(8)

where θ is a constant coefficient, δs is the sum of file size,

B is the total bandwidth, da represents the average distance,

Qs and Ps are the sum of computation size and computing

capacity, respectively. This formula is used to measure the

approximate completion time of each task.

The mobility model we used is the model of motion with

constant acceleration. With the prediction time, combined with

the mobility model, we can get the network topology after tp
seconds as shown in Fig. 3.

F. Formulation of the latency minimization problem based on
TARA optimization

In this section, we formulate the latency minimization

problem based on TARA optimization by utilizing the models

and assumptions proposed above.

The communication link for transmitting nth sub-task is

defined as l
send/rec
n . We define E(·) as the bandwidth al-

located percentage vector, and e(ln) indicates the band-

width percentage that allocated to the ln link, E(L ) in-

dicates the overall bandwidth allocation vector, E(L ) =
[e(l1), e(l2), ..., e(lN )]T . And it meets the following constraint:∑

n∈N
e(ln) = 1, e(lnc) = 0, (9)

where nc is the label number of the client vehicle, and

e(lnc) = 0 means the percentage of bandwidth that allocated

to the client vehicle is 0, because local processing don’t need

transmissions.

With the bandwidth allocation vector and aforementioned

models, we can formulate the total time delay Tn of each sub-

task. Tn consists of three parts: transmission delay of sending

data, computation time and transmission delay of sending back

results, and it is given as

Tn = T send
n + T comp

n + T rec
n , n ∈ N , (10)

with

T comp
n =

Qn

Hn · P , n ∈ N , (11)

T send
n =

δn
C(lsendn )

, n ∈ N , (12)

C(lsendn ) =

⎧⎪⎨
⎪⎩

e(lsendn )B log2

(
1 +

pd−α
S(n)h

2

N0

)
, rn = 0,

1/ (1/C(lncr) + 1/C(lrs)) , rn �= 0,
(13)

where C(lncr) = e(lsendn )B log2

(
1 +

pd−α
(nc,rn)

h2

N0
)

)
, and

C(lrs) = e(lsendn )B log2

(
1 +

pd−α
(rn,s(n))

h2

N0

)
. Hn is the nth

row of H matrix, d is the vector stored distances from client

vehicle to fog vehicles. γr∗1 and γr∗2 are the SNR of the

first hop and second hop of the chosen link, respectively.

d(nc,rn) indicates the distance from Vnc to Vrn , so the same

of d(rn,s(n)). The expression of T rec
n is similar to T send

n , so

we don’t write it in detail.

Then the optimization problem is formulated as

ξ1 : min
A

max
n∈N

Tn

s.t.

rn s.t. (2)∑
n∈N

e(lsend/recn ) = 1,

e(lsend/recnc ) = 0,

‖Hn‖1 = ‖Hm‖1 = 1, hnm ∈ {0, 1}, ∀n,m ∈ N .

(14)

Where A �
{
H, E(L send), E(L rec), rsend, rrec

}
is the set

of optimization variables, rsend and rrec are the set of relay

vehicles label numbers, respectively. Hn and Hm are the nth

row and mth column of matrix H, respectively.

IV. SOLUTION OF THE LATENCY MINIMIZATION PROBLEM

Since the original problem (ξ1) is nonconvex and hard to

solve, we try to decompose it into several subproblems and

solve them. We deploy a two-stage solution for this problem.

A. Stage 1: Solution of Task Assignment Subproblem

By constructing each sub-task’s preference list based on pre-

dicted mobility information, we formulate the task assignment

sub-problem as a matching problem. The preference of Taskn
towards Vm is calculated by

pn,m =
Tsend

Tsum
·N
(
dm
δn

)
+

Tcomp

Tsum
·N
(
Qn

βm

)
+

Trec

Tsum
·N
(
dtm

δ̂n

)
,

(15)

Where N(·) represents the normalized process to uniform

dimension. Tsum is the assessed approximate completion time

of all the three parts.

Because the total time delay is determined by δ, δ̂ and Q,

so we construct a new variable O to represent the complexity

of sub-tasks. On is given as

On =
Tsend

Tsum
·N(δn) +

Tcomp

Tsum
·N(Qn) +

Trec

Tsum
·N
(
δ̂n

)
.

(16)

After the above construction, we can assign tasks one by one

according to task complexity and corresponding preference
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list, and easily get the task assignment result by executing

Algorithm 1.

Algorithm 1 Solution of Task Assignment subproblem

Input: Computing capacity: P , Computation size: Q, File

size: Δ, results size: Δ̂
1: Initialize: vehicle position Φ, velocity: v, acceleration: a

Output: Task Assignment strategy: TA
2: initial ∀n, TA(n) = 0;

3: Compute complexity O of sub-task according to (16);

4: repeat
5: Find the most complex task n∗, n∗ = argmin

n
O(n);

6: Compute n∗ sub-task’s preference list plistn according

to (15);

7: for i = 1 to n do
8: i∗ = argmin

i
plisti ;

9: if ∃n ∈ N,TA(n) = i∗ then
10: Delete plisti∗ from plist

11: else
12: TA(n∗) = i∗

13: end if
14: end for
15: Delete O(n∗) from O;

16: until ∀n ∈ N , TA(n) �= 0

B. Stage 2: Solution of the Resource Allocation Subproblem

After getting the strategy TA, we could solve the routing

sub-problem according to (2) by setting eab = B/N , where B
is the overall bandwidth. After that, the original optimization

problem is transformed into

ξ2 : min
Esend,Erec

max
n∈N

Tn

s.t.

∑
n∈N

Esend
n = 1,

∑
n∈N

Erec
n = 1,

Esend
n > 0, n ∈ N ,

Erec
n > 0, n ∈ N .

(17)

The problem (ξ2) is still nonconvex due to the min-max

formulation. This is easy to handle by introducing a slack

variable ζ , and let max
n∈N

Tn = ζ. Then the problem (ξ2) is

transformed as

ξ3 : min
Esend,Erec,ζ

ζ

s.t.

Tn ≤ ζ,∑
n∈N

Esend
n = 1,

∑
n∈N

Erec
n = 1,

Esend
n > 0, n ∈ N ,

Erec
n > 0, n ∈ N .

(18)

Now, the problem (ξ2) has been transformed into a standard

convex optimization problem (ξ3), which can be solved in

polynominal time using standard CVX tools such as SeDuMi.

After that, the TARA strategy is completely generated, and

RSU will send it back to the client vehicle.

V. SIMULATION RESULTS

In order to evaluate the performance of the proposed latency

optimization scheme, we conduct the simulations in compari-

son with other schemes in the urban vehicular scenario. The

mobility of vehicles doesn’t change dramatically usually, so

we deploy the same motion model in the simulation as used

in mobility prediction. The simulation parameters are showed

in Table I.

TABLE I: Simulation Parameters

Parameters Value
Number of Vehicles 5-25
Transmission power of vehicles 30dBm
Noise power -114dBm
Bandwidth 30 MHz
Path loss exponent α 3
Velocity 3-25 m/s

Acceleration -3-3 m/s2

Radius of vehicles’ communication coverage 200 m
FNG coverage 400 m
Computation size 100-500 MI
Computing capacity of each vehicle 10-25 MIPS
Data size of tasks 100-500 Mb
Data size of results 100-500 Mb

The schemes are described as follows:

1) Locally processing: As the name suggests, tasks are not

offloaded to other fog vehicles, but are handled locally.

2) Random Task Assignment: The task assignment matrix

is generated randomly, so the results can be either good or

bad.

3) Task Assignment Only based on Computation size: This

scheme means that the larger the computation size of the

sub-task is, the more powerful the computing capacity of fog

vehicle allocated to the sub-task is.

4) Task Assignment Without Mobility Prediction: The only

difference of this scheme from the proposed one is that it does

not use mobility prediction information to assign tasks, but

use the information the RSU get before executing Algorithm

1, just as shown in the left figure of Fig. 3.

All the above schemes except locally processing use the

same resource allocation solution as the proposed scheme.

Authorized licensed use limited to: TONGJI UNIVERSITY. Downloaded on September 23,2020 at 04:42:42 UTC from IEEE Xplore.  Restrictions apply. 



100 200 300 400 500

Computation Size/MI

3

4

5

6

7

T
im

e 
de

la
y/

s

File size = 100 Mb

Scheme 4

Scheme 2

Scheme 3

Proposed

100 200 300 400 500

Computation Size/MI

5

6

7

8

9

10

T
im

e 
de

la
y/

s

File size = 200 Mb

Scheme 4

Scheme 2

Scheme 3

Proposed

100 200 300 400 500

Computation Size/MI

7

8

9

10

11

12

T
im

e 
de

la
y/

s

File size = 300 Mb

Scheme 4

Scheme 2

Scheme 3

Proposed

100 200 300 400 500

Computation Size/MI

10

11

12

13

14

15
T

im
e 

de
la

y/
s

File size = 400 Mb

Scheme 4

Scheme 2

Scheme 3

Proposed

Fig. 4: Time delay of four schemes

In Fig. 4, we compare the latency performance of the

proposed scheme with the other three schemes. In each sub-

figure, the data size (both tasks size and results size) is fixed,

and the computation size is set from 100MI to 500 MI.

Because position, velocity and most of the other parameters

are all randomly generated, so each latency result is obtained

by averaging 100 times of simulation, this can truly reveal

the actual performance of each scheme. From Fig. 4, we can

find that compared with the other three schemes, the proposed

scheme has no significant performance improvement when

the file size is small, but when the file size increases, the

performance improves greatly. For scheme 4, although it is

not much different from the proposed scheme, but because it

utilizes the original position information instead of predicted

information, it is counterproductive on the latency performance

since the network topology changes rapidly, that’s the reason

why scheme 4 is the worst in the simulation.

In Fig. 5(a), when the computation size is fixed, the perfor-

mance of the proposed scheme becomes more significant with

the increase of file size.

In Fig. 5(b), we show the effect of the number of vehicles

on the latency performance. With the total bandwidth fixed,

the increase of the number of vehicles reduces the bandwidth

allocated to each link, and the proposed scheme can better

provision resources to maximize performance compared with

other three schemes.

VI. CONCLUSIONS

In this paper, we proposed a scheme for task assignment

and resource allocation optimization in VFC based on mobility

prediction. By integrating predicted mobility information into

the latency minimization problem, we formulated the joint

optimization to realize the optimal task assignment and re-

source allocation strategy. We employed a two-stage solution

to solve the problem, simulation results verified that compared
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Fig. 5: Time delay versus file size and number of vehicles

with other schemes, our proposed strategy based on mobility

prediction can effectively reduce the delay, which is a key

factor in VFC.
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