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Abstract—Most recently, vehicular fog computing (VFC) has
been regarded as a novel and promising architecture to effectively
reduce the computation time of various vehicular application
tasks in Internet of vehicles (IoV). However, the high mobility of
vehicles makes the topology of vehicular networks change fast,
and thus it is a big challenge to coordinate vehicles for VFC
in such a highly mobile scenario. In this paper, we investigate
the joint task assignment and resource allocation optimization
problem by taking the mobility effect into consideration in
vehicular fog computing. Specifically, we formulate the joint
optimization problem from a Min-Max perspective in order to
reduce the overall task latency. Then we decompose the non-
convex problem into two sub-problems, i.e., one to one matching
and bandwidth resource allocation, respectively. In addition,
considering the relatively stable moving patterns of a vehicle
in a short period, we further introduce the mobility prediction
to design a mobility prediction-based scheme to obtain a better
solution. Simulation results verify the efficiency of our proposed
mobility prediction-based scheme in reducing the overall task
completion latency in VFC.

Index Terms—VFC, task assignment, resource allocation, mo-
bility prediction

I. INTRODUCTION

With the rapid development of network and computing tech-
nology, intelligent transportation systems (ITS) come to prac-
tical application from theory gradually. Meanwhile, emerging
5G vehicular network applications such as self-driving, object
detection, object recognition with complicated data processing
and constraint delay, promote the growing demand for more
powerful computing capacity, higher transmission rate and
lower time delay [1]. This poses challenges to the conventional
cloud computing paradigm, which cannot guarantee real-time
feedback. In contrast, fog computing extends both computing
and caching abilities to network edges, forming the ability
of local decision-making and quick response, which are key
factors in the vehicular network.

Many recently body of research concerns introducing Fog
computing paradigm to vehicular network [2]-[4]. Most of
their proposals consider the resources of vehicles as part of
the fog computing infrastructures [5]. Different from Vehicu-
lar Cloud Computing (VCC), the VFC framework processes
vehicles’ tasks locally as much as possible instead of sending
computation requests to cloud servers. As a significant com-
ponent of ITS, vehicular fog computing can support complex
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vehicular services by collaborative vehicle scheduling. The
quality of services (QoS) and quality of experience (QoE)
can achieve great improvements based on better utilization of
each vehicle’s communication and computational resources.
However, due to the mobility of vehicles, the task assignment
and resource allocation (TARA) problem becomes more chal-
lenging to solve.

As one important characteristic that we pay more atten-
tion to, mobility support has been studied from different
perspectives. Due to vehicles’ mobility, the relative positions
of vehicles change rapidly, leading to rapid changes in the
network topology. Hence, the influence of mobility cannot be
neglected in VFC. Relationships among the communication
capability, connectivity, and mobility of vehicles were unveiled
in [5], the results indicate that the faster a vehicle moves,
the fewer vehicles it can successfully connect with, leading
to poorer communication capacity. In [6], to provide efficient
and reliable service to users in VFC, vehicles are divided into
three sub-networks based on their turning directions. It is a
good solution to formulate vehicular network clusters. The
connections between client vehicles and mobile fog nodes
may not last until the assigned tasks completed due to the
mobility, so task migration can be triggered based on the
mobility information [7], [8], or the fog vehicle that cannot
provide service to the end should be excluded [9]. Although
mobility is taken into account in the above works, they do
not involve mobility in their optimization problems, i.e., the
mobility feature is more like a trigger condition.

Therefore, in this paper, we take full consideration of the
mobility effect and investigate the joint task assignment and re-
source allocation optimization problem in terms of overall task
latency in vehicular fog computing. Specifically, we formulate
the joint optimization problem from a Min-Max perspective,
which can better choose and coordinate appropriate vehicles
as fog nodes to offload computation tasks. Then, we propose
a two-stage scheme to efficiently solve the formulated non-
convex problem. In addition, considering the relatively stable
moving patterns of a vehicle in a short period, we further
introduce the mobility prediction into the proposed scheme to
obtain a better task assignment and resource allocation solu-
tion. Simulation results verify the efficiency of our proposed
mobility prediction-based scheme in reducing the overall task
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Fig. 1: VFC architecture combined with VANETSs

completion latency in VFC.

The remainder of this paper is organized as follows. Section
IT describes the investigated system model. In Section III, the
latency minimization problem is formulated by utilizing the
proposed basic frameworks and mobility prediction model.
The solution to the nonconvex problem is presented in section
IV. The numerical results and conclusions are drawn in Section
V and Section VI, respectively.

II. SYSTEM MODEL
A. VFC framework

Vehicles are considered as both providers and users of fog
service in VFC framework [5], that means a vehicle can
request services when it cannot process task by itself, and
can also act as a fog node to provide communication and
computational resources to other vehicles when it is idle.
The former is defined as client vehicle and the latter as fog
vehicle. Fig. 1 illustrates the system framework of Vehicular
Fog Computing and it consists of the following entities:

e RSUs: Roadside Units (RSUs) are base infrastructures
that have wide communication ranges and powerful com-
puting ability to form them the coordinators of the VFC
networks. RSUs execute TARA algorithm according to
information such as task size and complexity, velocity,
network topology, utilization of vehicles’ resources, etc.

e Moving vehicles: Vehicles in the VFC framework can
flexibly change their identities between fog service re-
questor and provider, so every vehicle is assumed to
carry on an on-board computer for tasks processing, and
onboard dedicated short-range communication (DSRC) to
ensure the ability to communicate with other vehicles and
RSUs. The vehicles which need computation offloading
are defined as client vehicles, and the vehicles work as
fog nodes are defined as fog vehicles.

e Gateway: Gateway can realize the connection of RSUs
and cloud servers, and realize the interconnection of
RSUs to ensure the sharing of some information such
as vehicles’ locations.

e Head vehicles: Head vehicles are responsible for coordi-
nating communication between RSUs and other vehicles.

Due to the vehicle mobility, it is unrealistic and inefficient

to let all vehicles directly connect to RSUs, so we introduce
VANETs to the VFC framework. Vehicles are connected to-
gether to form a Vehicular ad-hoc network (VANET) according

to speed, direction, distance, and some other factors. Each
VANET has a head vehicle responsible for coordinating intra-
group V2V communications, i.e., head vehicle is responsible
for maintaining a VANET. Only the head vehicle needs to be
connected to the RSU through V2I communication while other
vehicles in the same VANET connect with each other by V2V
communication. Vehicles are interconnected to form a stable
combination, even if vehicles are entering/leaving VANETS
continuously. This network topology is the physical guarantee
of low latency.

B. Description of the TARA optimization

Based on the VFC framework above, we introduce the task
assignment and resource allocation problem. In a VANET,
when a vehicle generates a task hard to process by itself, it
will send task offloading request to the RSU via the head
vehicle and the RSU will do the TARA optimization to get an
optimal TARA strategy that can minimize the overall latency,
and then the RSU will send the strategy back to client vehicles
for practical application.

Assuming that, there are N vehicles in a VANET, and the
generated task is partitioned into N parts, every vehicle is
assigned a sub-task. Because each sub-task has a different
file size and computation size, the task assignment strategy
and resource allocation strategy should be jointly optimized
to minimize the latency.

III. PROBLEM FORMULATION OF LATENCY OPTIMIZATION
BASED ON MOBILITY PREDICTION

In this section, we formulate the latency minimization
problem by introducing mobility prediction.

The objective is the overall time delay including commu-
nication delay and computing delay, our task is to find an
optimal task assignment and resource allocation scheme to
achieve the minimum total time delay. The number of vehicles
in a VANET is denoted as NNV, denote the set of vehicles as
N, so we have the definition of tasks I' and fog vehicles V,
letus denote I' = [['y, T, ..., T ]T and V = [V, Va, ..., Vi) 7T
Some basic models and assumptions are given in the following
sections.

A. Task Formulation, Partitioning, and Assignment

Tasks generated by vehicles vary according to their compu-
tation size Q, file size A, and result size 5. The computation
size Q is not positively related to file size A, for example,
considering the same picture, the computation size of basic
image processing such as image binaryzation is far less than
some complex algorithm, for instance, object detection. In
addition, the result size A is also not positively related to
the original file size A. Therefore, we independently generate
these variable values in simulations conducted in section IV.
Since the computation tasks generated by vehicles are varied,
the partition of the task is a very complex process with multi-
ple factors, so we cannot simply partition it equally. As some
sub-tasks cannot be partitioned anymore, so it’s unrealistic
to partition a task into N equal parts. For simplification, we
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Fig. 2: Communication link routing

define that the task is partitioned into N parts, and they will
be assigned to N vehicles, namely, one to one matching. Each
part may differ in the size of file and computation, so the client
vehicle’s sub-tasks computation size set is given as

q=lg, a2 an]" Y 4= Q.
neN

Similarly, the sub-tasks file size set and results size set are
given as

neN
5= 51,60 dn]T, S Gu = A
neN
Therefore, the original task I, is now
partitioned into I, = [Fnl,an,..;,I‘nN]T =

[(Q71,17 677,17 671,1)7 (QnZa 5n2, 5n2)7 (X3} (Q71,N7 571,N7 5nN)]Ta n €
N.

The task assignment strategy is defined as a N x N matrix
H, whose elements are binary distribution. Each row of the
matrix represents the corresponding vehicle’s strategy, and it
means the corresponding sub-task is offloaded to this vehicle
or not. Since it is one to one matching, there can only be
one element equals to 1 in each row. The client vehicle’s task
assignment result .S is given as

S=Hnxn - Vnxi- 9]

B. Communication Link Routing

In our system model, multi-hop communication is adopted
to expand the range of VFC service. When the target fog
vehicle exceeds the client vehicle’s communication radius,
multi-hop communication will be triggered. As showed in Fig.
2, there could be multiple communication links between two
vehicles in general. We define v = [ry,79,...,rn]7 as the
routing strategy, and 7, is set to be O when the sub-task doesn’t
need multi-hop communication. Each r,, is calculated by

) 1)
r* = arg min + ,
gr (eabB loga(1 +var)  e€apBlogy(1+ 'Yrb))
2

where r stands for the label number of relay vehicles, a is
the label number of the client vehicle and b refers to the label
number of the fog vehicle. e, is the bandwidth percentage
allocated to the link from a to b, and we assume that the first
hop and the second hop has the same bandwidth since the V2V
communication is defined as half-duplex Communication.

While the allocated percentage of bandwidth is unknown
before resource allocation, so the communication link routing
is a sub-optimization problem integrated to the overall opti-
mization problem. According to the actual situation and the
purpose of simplifying the problem, we assume the maximum
number of hops is 2.

C. Communication Model

The max transmission rate Cy;, of V2V channel between
vehicle a and b associated with Shanon formula can be
expressed as

Cab = Wab : IOgQ(l + ’Yab)7 (3)

where W,;, denotes the bandwidth of the channel. ~,;, is the
received signal to noise ratio (SNR), and it is given by [9]
pdyy hay

No
where p denotes the transmission power, dg; is the transmis-
sion distance from a to b, h,;, denotes the Rayleigh channel
coefficient following a complex Gaussian distribution. N is
the power of additive white Gaussian noise (AWGN). « is the
path-loss exponent.

Hence, the transmission time delay of client vehicle offload-
ing sub-tasks to other fog vehicles can be obtained as

5ab
Cab .

Yab = (4)

Tay = &)

D. Computing Model

Vehicles vary according to their remaining computing capa-
bility P, while the computing capability of the same vehicle
also varies at different times depending on its current task
load. As a common sense, the more powerful the computing
capability is, the less computation time will be spent for the
same task. Therefore, the computation time 7 is given by

T.=—=. (6)

We use MIPS, short for Million Instructions Per Second,
to measure the computing capacity, accordingly, MI, short
for Million Instructions, is used to measure task computa-
tion size. Fog vehicle’s computing capability is defined as
P = [B1, B2, ..., Bn]T, so each fog vehicle’s computation time
is given by

Tm:;—z,ne/\ﬂ (7)

E. Vehicle Mobility Prediction

High mobility challenges low latency and real-time per-
formance of VFC, to solve this issue, we introduce the
vehicle mobility prediction. As shown in Fig. 3, the VANET’s
topology can change a lot after each fog vehicle completes the
computation, while that time’s topology will affect the results’
backhaul. We can get the topology of that time by adopting
Vehicle Mobility Prediction. By doing so, we can predict the
network condition information at that time to promote optimal
strategy.
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Fig. 3: Vehicle mobility prediction

We need to assess the time from sub-tasks’ dissemination
to computation completed, which is the key factor for pre-
diction. The time is composed of dissemination part tp; and
computation part tp., given as

tp = 0 (tpa + tpe)

5 Q. (®)

:9 —a )
Blog,(1 + %) P

where 0 is a constant coefficient, §, is the sum of file size,
B is the total bandwidth, d, represents the average distance,
Qs and P, are the sum of computation size and computing
capacity, respectively. This formula is used to measure the
approximate completion time of each task.

The mobility model we used is the model of motion with
constant acceleration. With the prediction time, combined with
the mobility model, we can get the network topology after tp
seconds as shown in Fig. 3.

F. Formulation of the latency minimization problem based on
TARA optimization

In this section, we formulate the latency minimization
problem based on TARA optimization by utilizing the models
and assumptions proposed above.

The communication link for transmitting nth sub-task is
defined as I5°"%"°°. We define E(-) as the bandwidth al-
located percentage vector, and e(l,) indicates the band-
width percentage that allocated to the I, link, E(.Z) in-
dicates the overall bandwidth allocation vector, E(.Z) =
[e(l1),e(la), ...,e(In)]T. And it meets the following constraint:

D elln) = 1,e(lne) =0, ©)
neN
where nc is the label number of the client vehicle, and
e(lne) = 0 means the percentage of bandwidth that allocated
to the client vehicle is 0, because local processing don’t need
transmissions.

With the bandwidth allocation vector and aforementioned
models, we can formulate the total time delay 7, of each sub-
task. 7, consists of three parts: transmission delay of sending
data, computation time and transmission delay of sending back
results, and it is given as

Tn _ TTsLend + Tﬁcﬂlp + T:l‘ec, ne ./\/'7 (10)
with
Qn
Tcomp — %M 11
n TR N, (11)
prend —_On__ oy (12)
S e

pdge, h?
e(15"%) Blog, <1+S“ ) Ty =0,

C(ym?) = No
1/ (1/C(lncr) + 1/C(lr8)) ) rn # 0,
(13)
pd; *  h?
where C(lner) = e(l5%)Blog, (1 + 05 ), and

—a 2
Cllns) = e(lzrm!)Blog, ( 1+ “eagtn™ ) H, s the nth
row of H matrix, d is the vector stored distances from client
vehicle to fog vehicles. v+ and 7,; are the SNR of the
first hop and second hop of the chosen link, respectively.
d(ne,r,) indicates the distance from V.. to V;. , so the same
of d(y, s(n))- The expression of T, is similar to T,fe”d, SO
we don’t write it in detail.
Then the optimization problem is formulated as

1 : mi T,
€1 oy T
S.t.

Ty 8.4 (2)

Z e(l;s‘lend/rec) =1,

neN
e(l;s’lind/rec) _ 07
[Hally = [Hmlly =1, hnm € {0,1},Vn,m € N.

Where A £ {H, E(£*"?), B(£7°°),r%"? 17} is the set
of optimization variables, r°¢"% and r"°® are the set of relay
vehicles label numbers, respectively. H,, and H,, are the nth
row and mth column of matrix H, respectively.

(14)

IV. SOLUTION OF THE LATENCY MINIMIZATION PROBLEM

Since the original problem (£1) is nonconvex and hard to
solve, we try to decompose it into several subproblems and
solve them. We deploy a two-stage solution for this problem.

A. Stage 1: Solution of Task Assignment Subproblem

By constructing each sub-task’s preference list based on pre-
dicted mobility information, we formulate the task assignment
sub-problem as a matching problem. The preference of Task,
towards V,,, is calculated by

Tsen dm TCOm n
Pnm = d'N<>+ p'N<Q>+

Tsu'm 5" TS’U/m B'fﬂ (15)
Trec

dtm,
N —=
T’sum ( 5n > ’

Where N(-) represents the normalized process to uniform
dimension. T, is the assessed approximate completion time
of all the three parts.

Because the total time delay is determined by 9, 5 and Q,
so we construct a new variable O to represent the complexity
of sub-tasks. O,, is given as

N (b))

(16)

After the above construction, we can assign tasks one by one
according to task complexity and corresponding preference

T’I”EC

sum

TSSTL
0, = ~Send

Tcom
7 N(0n) + 7= - N(Qn) +

sum
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list, and easily get the task assignment result by executing
Algorithm 1.

Algorithm 1 Solution of Task Assignment subproblem

Input: Computing capacity: P, Computation size: (), File
size: A\, results size: A
1: Initialize: vehicle position @, velocity: v, acceleration: a
Output: Task Assignment strategy: T'A
2: initial Vn,TA(n) = 0;
3: Compute complexity O of sub-task according to (16);
4: repeat
5 Find the most complex task n*, n* = argmin O(n);

n
6: Compute n* sub-task’s preference list pl*** according
to (15);
7: for i =1 ton do
8: it = argiminpém;
o: if 3n € N,TA(n) =1i* then
10: Delete plist from p'ist
11: else
12: TA(TL*) ="
13: end if
14: end for

15: Delete O(n*) from O;
16: until Yn € N',TA(n) #0

B. Stage 2: Solution of the Resource Allocation Subproblem

After getting the strategy T'A, we could solve the routing
sub-problem according to (2) by setting e, = B/N, where B
is the overall bandwidth. After that, the original optimization
problem is transformed into

£2: min maxT,
Esend Erec ne N

S.t.

Z E:;end =1,

neN

S Ee—t,

neN
Esnd > 0,n e N,
Erec > 0,n € N.

a7

The problem (£2) is still nonconvex due to the min-max

formulation. This is easy to handle by introducing a slack

variable ¢ , and let max T, = (. Then the problem (£2) is
ne

transformed as

£3: min
Esend’Erec’C

S.t.
T, <,

>t

neN

S Ee -,
neN

Esnd > 0,ne N,
B> 0,n €N

Now, the problem (£2) has been transformed into a standard
convex optimization problem (£3), which can be solved in
polynominal time using standard CVX tools such as SeDuMi.
After that, the TARA strategy is completely generated, and
RSU will send it back to the client vehicle.

(18)

V. SIMULATION RESULTS

In order to evaluate the performance of the proposed latency
optimization scheme, we conduct the simulations in compari-
son with other schemes in the urban vehicular scenario. The
mobility of vehicles doesn’t change dramatically usually, so
we deploy the same motion model in the simulation as used
in mobility prediction. The simulation parameters are showed
in Table I.

TABLE I: Simulation Parameters

Parameters Value
Number of Vehicles 5-25
Transmission power of vehicles 30dBm
Noise power -114dBm
Bandwidth 30 MHz
Path loss exponent « 3

Velocity 3-25 m/s
Acceleration -3-3 m/s?
Radius of vehicles’ communication coverage | 200 m

FNG coverage 400 m
Computation size 100-500 MI
Computing capacity of each vehicle 10-25 MIPS
Data size of tasks 100-500 Mb
Data size of results 100-500 Mb

The schemes are described as follows:

1) Locally processing: As the name suggests, tasks are not
offloaded to other fog vehicles, but are handled locally.

2) Random Task Assignment: The task assignment matrix
is generated randomly, so the results can be either good or
bad.

3) Task Assignment Only based on Computation size: This
scheme means that the larger the computation size of the
sub-task is, the more powerful the computing capacity of fog
vehicle allocated to the sub-task is.

4) Task Assignment Without Mobility Prediction: The only
difference of this scheme from the proposed one is that it does
not use mobility prediction information to assign tasks, but
use the information the RSU get before executing Algorithm
1, just as shown in the left figure of Fig. 3.

All the above schemes except locally processing use the
same resource allocation solution as the proposed scheme.
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Fig. 4: Time delay of four schemes

In Fig. 4, we compare the latency performance of the
proposed scheme with the other three schemes. In each sub-
figure, the data size (both tasks size and results size) is fixed,
and the computation size is set from 100MI to 500 ML
Because position, velocity and most of the other parameters
are all randomly generated, so each latency result is obtained
by averaging 100 times of simulation, this can truly reveal
the actual performance of each scheme. From Fig. 4, we can
find that compared with the other three schemes, the proposed
scheme has no significant performance improvement when
the file size is small, but when the file size increases, the
performance improves greatly. For scheme 4, although it is
not much different from the proposed scheme, but because it
utilizes the original position information instead of predicted
information, it is counterproductive on the latency performance
since the network topology changes rapidly, that’s the reason
why scheme 4 is the worst in the simulation.

In Fig. 5(a), when the computation size is fixed, the perfor-
mance of the proposed scheme becomes more significant with
the increase of file size.

In Fig. 5(b), we show the effect of the number of vehicles
on the latency performance. With the total bandwidth fixed,
the increase of the number of vehicles reduces the bandwidth
allocated to each link, and the proposed scheme can better
provision resources to maximize performance compared with
other three schemes.

VI. CONCLUSIONS

In this paper, we proposed a scheme for task assignment
and resource allocation optimization in VFC based on mobility
prediction. By integrating predicted mobility information into
the latency minimization problem, we formulated the joint
optimization to realize the optimal task assignment and re-
source allocation strategy. We employed a two-stage solution
to solve the problem, simulation results verified that compared

Q=300 MI
20 16
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Fig. 5: Time delay versus file size and number of vehicles

with other schemes, our proposed strategy based on mobility
prediction can effectively reduce the delay, which is a key
factor in VFC.
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