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Abstract. Electron captures on nuclei play an essential role for the dynamics of
several astrophysical objects, including core-collapse and thermonuclear supernovae,
the crust of accreting neutron stars in binary systems and the final core evolution of
intermediate mass stars. In these astrophysical objects, the capture occurs at finite
temperatures and at densities at which the electrons form a degenerate relativistic
electron gas.

The capture rates can be derived in perturbation theory where allowed nuclear
transitions (Gamow-Teller transitions) dominate, except at the higher temperatures
achieved in core-collapse supernovae where also forbidden transitions contribute
significantly to the rates. There has been decisive progress in recent years in measuring
Gamow-Teller (GT) strength distributions using novel experimental techniques based
on charge-exchange reactions. These measurements provide not only data for the GT
distributions of ground states for many relevant nuclei, but also serve as valuable
constraints for nuclear models which are needed to derive the capture rates for the
many nuclei, for which no data exist yet. In particular models are needed to evaluate
the stellar capture rates at finite temperatures, where the capture can also occur on
excited nuclear states.

There has also been significant progress in recent years in the modelling of stellar
capture rates. This has been made possible by advances in nuclear many-body models
as well as in computer soft- and hardware. Specifically to derive reliable capture
rates for core-collapse supernovae a dedicated strategy has been developed based
on a hierarchy of nuclear models specifically adapted to the abundant nuclei and
astrophysically conditions present at the various collapse conditions. In particular
at the challenging conditions where the electron chemical potential and the nuclear @
values are of the same order, large-scale diagonalization shell model calculations have
been proven as an appropriate tool to derive stellar capture rates, often validated by
experimental data. Such situations are relevant in the early stage of the core collapse
of massive stars, for the nucleosynthesis of thermonuclear supernovae as well for the
final evolution of the core of intermediate-mass stars, involving nuclei in the mass range

A ~ 20 — 65.
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This manuscript reviews the experimental and theoretical progress achieved

recently in deriving stellar electron capture rates. It also discusses the impact these
improved rates have on the various astrophysical objects.
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1. Introduction

Electron capture is one of the fundamental nuclear processes mediated by the weak
interaction. In this reaction, a free proton or one bound inside a nucleus is transformed
into a neutron by capture of an electron producing an electron neutrino. Electron
captures on nuclei play an important role in various dense astrophysical environments
and all three properties which characterize this process (change of the nuclear charge,
reduction of the number of electrons and energy release by neutrinos) have important
consequences in these astrophysical environments [1]. Stellar electron captures, however,
differ significantly from those which can be studied in the laboratory. In the latter,
the decay occurs within an atom (or ion) by capturing an electron from the atomic
cloud where electrons in tightly bound orbitals are strongly preferred due to their larger
probability density at the nucleus. However, in the high-density, high-temperature
environments of stars the atoms are strongly (like in our Sun) or completely ionized
(in advanced stellar burning stages or supernovae). Hence stellar capture rates differ
from laboratory rates and are, unfortunately, yet not directly experimentally accessible
and have to be modelled.

Supernovae are arguably the most important astrophysical sites in which electron
captures on nuclei play a decisive role. This includes the core collapse of massive stars
2, 3, 4], the final evolution of the ONeMg cores in intermediate-mass stars [5, 6], the
crust evolution of neutron stars in binaries [7, 8] as well as the nucleosynthesis occurring
in thermonuclear (Type 1a) supernovae [9, 10]. In all scenarios the densities at which
electron captures play a role are in excess of about 10° g cm ™ and at finite temperatures
which range from 10% K in electron-capture supernovae to above 10'° K which are
encountered in the advanced core collapse of massive stars. Under these conditions
electrons are characterized by a relativistic Fermi gas with Fermi energies of MeV to
tens of MeV. As a consequence, electron captures can occur under these conditions also
on nuclei which, under laboratory conditions, are stable [2].

At the relatively low electron energies the capture is dominated by allowed
Gamow-Teller (GT) transitions, with forbidden transitions contributing at the higher
densities/temperatures or in exceptional cases [2, 3, 11, 12, 13]. This observation
has been the basis to recognize the importance of electron captures in core-collapse
supernova, but also of the decisive progress that has been achieved in recent years to
derive reliable stellar capture rates. The pioneering work of Bethe, Brown, Applegate,
and Lattimer [2] derived capture rates on the basis of a single GT transition transforming
an f7/, proton into an f5/, neutron. This assumption was motivated by the Independent
Particle Model (IPM) structure of 5®Fe which is quite abundant during the early collapse
phase. The important insight into the collapse dynamics drawn in their pioneering work
was that electron capture is a very efficient cooling mechanism and that the entropy
stays low during the entire collapse. As a consequence the composition of the core is
predominantly made by heavy nuclei rather than being dissociated into free nucleons.
The challenge of deriving an improved set of stellar capture rates was taken up by Fuller,
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Fowler and Newman who, in a series of papers, outlined the formalism to determine
stellar capture rates and applied it to calculate rate tables for nuclei in the mass range
A = 21—-60 at appropriate temperature and density conditions in the core [14, 3, 15, 16].
These derivations were based again on the IPM, but considered experimental data
wherever available. Fuller noticed that, within the IPM, GT transitions from pf proton
orbitals are Pauli blocked for nuclei with N > 40 for which the pf shell for neutrons is
completely filled [17]. Based on this observation Bruenn derived a parametric description
for stellar electron capture rates which assumed vanishing capture rates for all nuclei
with neutron numbers N > 40 [18]. Although Cooperstein and Wambach pointed
out that the Pauli blocking could be overcome at high temperatures and by forbidden
transitions [11], the Bruenn prescription has been the default for electron captures
in supernova simulations until the early 2000s (e.g. [1]). On this basis, simulations
predicted that during the advanced collapse phase for densities in excess of 10*° g cm ™3
electron capture proceeds on free protons rather than on nuclei. As free protons are
significantly less abundant than nuclei during the collapse, electron capture and the
associated core cooling was drastically throttled once capture on nuclei was blocked.

During the last two decades the role played by electron captures for the supernova
dynamics has been decisively revised. This was made possible by new theoretical
insights, improved models and not the least by the development of novel experimental
techniques to determine nuclear GT strength distributions. This breakthrough was
made possible by the observation that strongly forward-peaked cross sections in charge-
exchange reactions, mediated by the strong interaction, are dominated by the spin-
isospin operator needed to derive weak-interaction GT transitions [19, 20]. The
pioneering GT measurements were performed at TRIUMF using the (n,p) charge-
exchange reaction [21, 22, 23]. Despite of its moderate energy resolution of about
an MeV, these measurements clearly showed that the nuclear GT strength is significantly
more fragmented and also reduced in total strength compared to the predictions of the
IPM. These findings were subsequently confirmed by measurements performed at KVI,
Groningen using the (d,?He) [24, 25, 26] and at NSCL, Michigan State University by
exploiting (¢,3He) charge-exchange reactions, respectively [27]. With both techniques,
experimenters were successful to measure GT strength distributions for many pf shell
nuclei with an energy resolution nearly an order of magnitude better than being possible
in the pioneering TRIUMF experiments. These measurements became an indispensable
constraint for nuclear models, which were developed in parallel to the experimental
progress.

Due to the strong energy dependence of phase space electron capture rates are
quite sensitive to the detailed fragmentation of the GT strength if the Fermi energies
of the electron reservoir and the nuclear @) value are of the same magnitude [12, 28].
This is the case during hydrostatic silicon burning and at the onset of the collapse

at core densities up to about 10 g cm™3.

Under these conditions the core consists
mainly of nuclei in the Fe-Ni mass range, while sd shell nuclei are also present during

silicon burning [29]. The method of choice to describe the properties of these nuclei
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is the interacting shell model [30]. Due to advances in computational capabilities and
progress in software and an improved understanding of the decisive ingredients of the
residual interaction, diagonalization shell model calculations became possible for the
complete sd shell and for pf shell nuclei at a truncation level that guaranteed sufficiently
converged results for the nuclear quantities needed to derive reliable electron capture
rates. This in particular includes detailed description of the GT strength distributions
which, except for a slightly shell-dependent constant factor, reproduced the total GT
strength and its fragmentation quite well [31, 32]. This success was first used by Oda
and collaborators to derive shell model electron capture rates for sd shell nuclei [33].
This was followed by the calculation of individual capture rates for nuclei in the mass
range A = 45-65 based on GT strength distributions derived in large-scale shell model
calculations [12, 34]. Due to the finite temperature of the astrophysical environment the
shell model calculations also include GT transitions occurring from thermally excited
nuclear states. The shell model rates became the new standards in supernova simulations
for intermediate-mass nuclei. It turned out to be quite relevant that the shell model
rates for pf shell nuclei are systematically and significantly smaller compared to the
prior rates based on the IPM [12]. As a consequence, simulations with the shell-model
rates showed a noticeably slower deleptonization and resulted in different Fe-core masses
at the end of the presupernova phase when the collapse sets in [29, 35].

The Pauli blocking of the GT strength at the N = 40 shell closure exists in the
IPM [17], but can be overcome by correlations which move protons or neutrons into the
next major shell (the sdg shell) [36]. To describe such cross-shell correlations within the
diagonalization shell model requires usually model spaces with dimensions which are not
feasible with today’s computers. However, such studies exist for "®Se (the intermediate
nucleus in the double-beta decay of "*Ge) showing that its GT strength is small, but
non-vanishing, even for the ground state [37]. This finding is in good agreement with
the experimental determination of the GT strength by the (d,?He) technique [38]. As
a consequence the stellar electron capture rate on “°Se is sizable, showing that the
assumption of neglecting the capture on nuclei with N > 40 is not justified. To derive
at the stellar capture rate for such nuclei a hybrid model had already been proposed
and applied prior to the shell model studies of "*Se. This model is based on two steps
[36, 39]: At first, the crucial cross-shell correlations are studied using the Shell Model
Monte Carlo approach [40, 41], which is a stochastical approach to the shell model
allowing to calculate nuclear properties at finite temperature considering correlations in
unprecedentedly large model spaces. These calculations have been applied to determine
partial occupation numbers for protons and neutrons in the combined pf-sdg shells and
at finite temperature. In the second step, these partial occupation numbers served
as input in RPA calculations of the GT and forbidden strength distributions and
subsequently the stellar capture rates. The use of the RPA for these nuclei is justified as
they dominate the core abundance only at higher densities and temperatures where the
Fermi energy of the electron gas is noticeable larger than the () value of the respective
nuclei requiring only a reasonable reproduction of the total strength and its centroid for
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a reasonable estimate of the rate. The hybrid model has been applied to about 200 nuclei
in the mass range A = 65 — 110 [28]. The studies clearly implied that Pauli blocking
of the GT strength is overcome by cross-shell correlations at the temperature/density
conditions at which these nuclei are abundant [28, 42]. The SMMC calculations also yield
rather smooth trends in the partial occupation numbers at the relevant temperature of
about 1 MeV. Based on observation a simple parametrization of the occupation numbers
has been derived which was the basis of RPA calculations of stellar capture rates for
another 2700 nuclei [13].

On the basis of the shell model calculations for sd and pf shell nuclei, of the hybrid
model for cross-shell N = 40 nuclei and the parametric study for the heavier nuclei
an electron capture rate table has been derived for core-collapse conditions [13]. The
nuclear composition of the core has been assumed to be in nuclear statistical equilibrium
(NSE) [43]. When incorporated into supernova simulations these rates had significant
consequences for the collapse dynamics. In particular, the simulations show that capture
on nuclei dominate over capture on free protons during the entire collapse. Furthermore,
the dominating capture on nuclei leads to a stronger deleptonization of the core and to
smaller temperatures and entropies, in comparison to the previous belief that capture
on nuclei would vanish due to Pauli blocking [28, 42].

As an alternative to the hybrid model, the temperature-dependent Quasiparticle
RPA model has been developed and applied to stellar electron capture for selected
nuclei by Dzhioev and coworkers [44]. This approach formally improves the hybrid
model as it describes correlations and strength function calculations consistently within
the same framework. In contrast to the hybrid model it restricts correlations to the 2p-
2h level which due to the diagonalization shell model studies is not completely sufficient
to recover all cross-shell correlations. This shortcoming is relevant for ground state
strength functions, but gets diminished with increasing temperatures. Satisfyingly both
quite different approaches yield similar capture rates in the density/temperature regimes
where nuclei with neutron gaps at N =40 and N = 50 matter during the collapse [45].

Electron capture also plays a role for the final fate of the O-Ne-Mg cores of
intermediate-mass stars [46, 47] and for the nucleosynthesis occurring behind the burning
flame during a thermonuclear supernova [48, 49]. In these scenarios only sd- and pf-
shell nuclei are relevant and hence the respective diagonalization shell model rates can
be applied. For the dynamics of the O-Ne-Mg cores, however, also beta decays are quite
decisive for selected nuclei. The relevant rates can also be calculated quite reliable within
the shell model (e.g. [33, 50]. It has been pointed out that the electron capture on *°Ne
constitutes a very unusual case as its rate is dominated by a second-forbidden ground-
state-ground-state transition in the relevant density/temperature regime [51]. As an
experimental milestone this transition has very recently been experimentally determined
with quite considerable consequences for the fate of intermediate-mass stars [52].

Electron captures on selected nuclei play also a role during hydrostatic stellar
burning or during s-process nucleosynthesis. In these environments, ions are not
completely stripped from electrons so that the capture predominantly occurs from bound
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(K-shell) electrons (however, modified by screening from the surrounding plasma), but
also from ‘free’ electrons out of the plasma. The description of these capture processes
requires a different treatment as described here. We will not review these capture
processes in this manuscript, but list a few relevant references for the interested readers.
An important example for capture during hydrostatic burning is the one on "Be which
is a source of high-energy solar neutrinos. The respective solar rate is derived in
(53, 54, 55, 56, 57]. Electron capture on "Be is also important in evolved stars as it affects
the abundance of “Li in red giant branch and asymptotic giant branch stars [58]. During
s-process nucleosynthesis certain pairs of nuclei (like '8"Rh-'¥7Os, 20°T1-29Pb) serve as
potential cosmochronometers [59]. These pairs are characterized by very small @) values
against electron captures so that, in the inverse direction, § decay with an electron bound
in the ionic K-shell (or higher shells) becomes possible and even dominates the decay.
Such bound-state g decay strongly depends on the degree of ionization and of corrections
due to plasma screening, while the competing electron capture process is often modified
by contributions due to thermally excited nuclear levels. The formalism to describe the
relevant electron capture, § and bound-state 5-decay rates for the appropriate s-process
temperature and density conditions is derived in [60]; detailed rate tables can be found
in [61]. Application of these rates in s-process simulations are discussed in [62]. For
reviews of s-process nucleosynthesis the reader is referred to [63, 64].

In this review we will summarize the theoretical and experimental progress achieved
during the last two decades in describing stellar electron captures on nuclei. Section 2 is
devoted to the experimental advances describing the various techniques to measure
Gamow-Teller strength distributions. Section 3 starts with some general remarks
defining the strategy how to derive the rates at the relevant conditions, followed by some
brief discussions of the adopted models and the rates derived within these approaches.In
Section 4 we summarize the consequences of modern electron capture rates in core-
collapse supernovae, for the fate of O-Ne-Mg cores in intermediate-mass stars and for
the nucleosynthesis in thermonuclear supernovae.

2. Experimental techniques and progress

To accurately estimate electron-capture rates on nuclei present in stellar environments,
it is key to have accurate Gamow-Teller strength distributions from which the
electron-capture rates can be derived. Direct information about the Gamow-Teller
strength distribution can in principle be obtained from S-decay and electron-capture
measurements, but this provides only information about transition strengths between
ground states and a limited number of final states. Moreover, since in most astrophysical
phenomena electron captures near the valley of stability and/or on neutron-rich isotopes
are most important, the @ value for S7/EC decay is often negative and direct
information is available only on the Gamow-Teller transition strength from the ground
state of the mother to the ground state of the daughter that is derived from [~ decay
in the inverse direction, and only if the ground-state to ground-state decay is associated
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with a Gamow-Teller transition. Therefore, an indirect method is needed to gain
information about Gamow-Teller strength distributions and to benchmark and guide
the development of theoretical models for Gamow-Teller strengths. Charge-exchange
reactions [20, 65, 66, 67, 26] at intermediate beam energies (£, 2 100 MeV) have
served as that indirect method, as it is possible to extract the Gamow-Teller strength
distribution up to sufficiently high excitation energies to perform detailed assessments of
the validity of the theoretical models employed. The remarkable feature of this method
is that detailed information about transitions mediated by the weak nuclear force can
be extracted from reactions with hadronic probes mediated by the strong nuclear force.
The methods and associated experimental techniques are described in this section.

It is important to note that only a limited number of charge-exchange experiments
can be carried out and that these experiments only provide data on transitions from the
ground state of the mother nucleus. Since in many astrophysical scenarios a relatively
large number of nuclei play a significant role and, if the stellar environment is at high
temperature, transitions from excited states also play a role, it is rarely possible to rely
on experimental data of Gamow-Teller strength distributions only. To make accurate
estimates for electron-capture rates in stars, theoretical nuclear models are necessary,
which can be tested against charge-exchange data where available. Another important
consideration is that electron captures in stars take place on stable and unstable nuclei.
Hence, the obtain information about the latter, charge-exchange experiments with
unstable nuclei are needed. As described below, such experiments are challenging and
relevant techniques for performing charge-exchange experiments in inverse kinematics
are still in development, although good progress have been made over the past decade.

For the purpose of extracting Gamow-Teller strength distribution of relevance for
electron captures in stars, charge-exchange experiments in the % /FEC direction or (n, p)
direction are necessary and the primary focus in this section. These experiments probe
proton-hole, neutron-particle excitations. However, charge-exchange data in the [~
or (p,n) direction (neutron-hole, proton-particle excitations) are important as well.
Firstly, the development of the techniques to extract Gamow-Teller strengths has been
primarily developed by using charge-exchange reaction in the 5~ direction, starting with
the pioneering work by [68]. Many detailed studies have been performed by using the
(®He,t) reaction. benefiting in part from the fact that for mirror nuclei the 8% decay
of the neutron-deficient nucleus and the (p, n)-type reaction on the mirror neutron-rich
nucleus populate states with the same isospin. This allows for detailed comparisons of
Gamow-Teller strengths through 5 decay and charge-exchange reactions [69].

Secondly, for certain astrophysical phenomena, detailed information about the
Gamow-Teller strengths in the 5~ direction are needed. Thirdly, by assuming isospin-
symmetry, information about Gamow-Teller strengths in the g*/FEC direction can
sometimes be derived from data in the g~ direction. Finally, the theoretical models
used to calculate Gamow-Teller strength distributions in the % direction usually
rely on the same parameters of the nuclear interaction as those calculated in the
[~ direction. Hence, by comparing the results of models against data from charge-
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exchange experiments in the S~ direction, additional information about the strengths
and weaknesses of those models is obtained. The summed Gamow-Teller strengths in

the ST and B~ directions are connected through a sumrule, first developed by Ikeda,
Fujii and Fujita [70]:

Sp-(GT) — S5 (GT) = 3(N — Z) (1)

Although experimentally, only about 50-60% of the sum-rule strength is observed in the
Gamow-Teller resonance at excitation energies below ~ 20 MeV [71, 72], referred to as
the “quenching” phenomenon [20], it allows one to obtain information about the strength
in the 1 /EC direction from the measurement in the S~ direction. However, as the
electron-capture rates that are derived from the Gamow-Teller strength strongly depends
on the strength distribution and not just the magnitude of the strength, measurement of
the strength in the 5~ direction is of limited use for detailed evaluations of the strength
distribution. This is especially true for nuclei with increasing neutron number for fixed
atomic number as Sg- becomes increasingly larger than Sz+. On the other hand, the
Ikeda sum rule is a very useful constraint for the total GT strength for the cross section
calculation of charged-current (v.,e~) reactions for neutron-rich nuclei [73, 74].

2.1. The extraction of Gamow-Teller strengths from charge-exchange data

The extraction of the Gamow-Teller strength distribution from charge-exchange reaction
data at intermediate beam energies is based on the proportionality between the Gamow-
Teller transition strength B(GT) for small linear momentum transfer, ¢ ~ 0, expressed
through the following relationship [68]:

)| - FawesE) 2)

in which j—g(q,w) is the measured differential cross section for a transition associated
with energy transfer w = Q45 — E, and linear momentum transfer q. )45 is the ground-
state reaction @) value that is negative for a transition that requires energy. FE, is the
excitation energy of the final nucleus. B(GT) is the Gamow-Teller transition strength
and represents the same matrix elements as probed in # and EC decay transitions
between the same initial and final states. The condition that ¢ = 0 requires that the
cross section is extracted at or close to a center-of-mass scattering angle of zero degrees
and that an extrapolation is required based on a calculation to correct for the finite
reaction ) value. This extrapolation is represented by the factor F'(¢,w). The factor &
is the so-called unit cross section, which depends on the reaction kinematics, the nuclei
involved in the interaction and the properties of the nucleon-nucleon (N N) interaction.

In the Eikonal approximation [68], these components are factorized:
6 =KNI|JZ|. (3)
In this factorization, K is a calculable kinematic factor, N is a distortion factor,

and J,, is the volume integral of the spin-transfer, isospin-transfer o7 component
of the NN interaction [75]. The distortion factor accounts for the distortion of the
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incoming (outgoing) particle by the mean-field of the target (residual) nucleus and can
be estimated by taking the ratio of a distorted-wave impulse or Born approximation
calculation to a plane-wave calculation [68]. The strength of the method to extract
Gamow-Teller distributions from charge-exchange data is that the details of the
components that make up the unit cross section do not need to be known since the
unit cross section is conveniently calibrated by using transitions for which the B(GT)
is known from (-decay experiments. Once established for one or a few transitions
for given nucleus and charge-exchange reaction, the proportionality can be applied to
all transitions identified as being associated with AL = 0 and AS = 1, except for
the extrapolation to ¢ = 0 through the factor F'(¢,w) of Eq. 2. This extrapolation
carries a relatively small uncertainty. Calibrations against known transitions from
B decay are not always possible. Therefore, mass-dependent parametrizations of
the unit cross sections have been successfully developed for the (p,n)/(n,p) [76] and
(®He, t)/(t,3He) [77, 78] reactions, which provide a convenient way to extract Gamow-
Teller strength distributions for such cases.

In order to use Eq. 2 and extract the Gamow-Teller strength distribution from
measured differential cross sections, one must first identify the contributions to the
experimental spectra that are associated with monopole (AL = 0) and spin-transfer
(AS = 1). This is performed by investigating the differential cross sections as a
function of scattering angle, since excitations that are associated with increasing units
of angular momentum transfers have angular distributions that peak at larger scattering
angle. Therefore, through a process called multipole decomposition analysis (MDA) [79],
in which the measured differential cross sections of a particular peak or data in an
excitation-energy bin is fitted by a linear combination of calculated angular distributions
for different units of AL, the AL = 0 contribution to the cross section is extracted. An
example for the 6Ti(¢,3He) reaction is shown in Fig. 1. Since the AL = 0, AS = 0
contribution is almost completely associated with the excitation of the isobaric analog
state, it does not contribute to the AL = 0 yield for (n, p)-type reactions for nuclei with
N > Z, as the isospin of states in the final nucleus always exceed that of the target.
The Fermi sum rule of S_ — S, = (N — Z) is nearly fully exhausted by the excitation
of the isobaric analog state in the 5~ (p,n) direction.

For (n,p)-type reactions, at excitation energies 2> 10 MeV, contributions to the
AL = 0 yield arise from the excitation of the isovector giant monopole resonances
(IVGMR) and isovector spin giant monopole resonance (IVSGMR) [65]. In charge-
exchange reactions with beam energies of 2 100 MeV, the IVSGMR dominates. Since
the angular distribution of the IVSGMR is very similar to that of Gamow-Teller
excitations, the two are not easily separable experimentally. Only through a comparison
between (n,p) and (¢,%He) data it is possible to disentangle the two contributions [81].
Since the transition density for the IV(S)GMR has a node near the nuclear surface,
a cancellation occurs for the (n,p) probe that penetrates relatively deeply into the
nuclear interior, whereas such a cancellation does not occur for the peripheral (¢, *He)
reaction [82, 83]. Hence, the excitation of the IV(S)GMR is enhanced for the latter
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Figure 1. An example of the MDA for the “6Ti(¢,3He) reaction at 115 MeV /u. On
the left-hand side, differential cross sections at 4 scattering angles are shown. On
the right-hand side, the MDA analyses for two excitation energy bins (at 3.1 MeV
and 10 MeV) in “°Sc are shown. At 3.1 MeV (10.0 MeV), the AL = 0 (AL = 1)
contribution is strongest. The stacked colored histogram on the left-hand side indicate
the contributions from the different angular momentum transfers based on the MDA.
(from Ref. [80]).

probe. As this comparison between probes is generally not available, the extraction of
Gamow-Teller strengths for the purpose of estimating electron-capture rates and bench
marking the theory is usually limited to excitation energies up to about 10 MeV.

Since the extracted Gamow-Teller strengths from the charge-exchange data are
calibrated against known weak transitions strengths, the uncertainties introduced by the
need to extract absolute cross sections through careful beam intensity normalizations
and target thickness measurements are absent. If phenomenological relationships
between the unit cross section and mass number are utilized [77] to determine the
unit cross section, usually a measurement with a target for which the unit cross section
has been well established is included in an experiment, so that a relative normalization
can be performed, rather than relying on an absolute cross section measurement that is
usually more uncertain. This helps to reduce experimental systematic uncertainties to

about 10% [77].
The main remaining uncertainties in the extraction of Gamow-Teller strengths arise
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from effects that perturb the proportionality of Eq. 3. It has been shown [27, 84] that
the leading cause for the perturbation of the proportionality is due to the interference
between AL = 0, AS =1 and AL = 2, AS = 1 amplitudes that both contribute to
AJ = 1 transitions in which the parity does not change. This interference is mediated
by the tensor-r component of the NN force [75, 20]. The uncertainty introduced by
this effect depends on the magnitude of the Gamow-Teller transition strength and was
estimated [27] to be ~ 0.03 — 0.035In(B(GT)), which amounts to an uncertainty of
about 20% for B(GT)=0.01. The results of this study are shown in Fig. 2. A B(GT) of
0.01 is close to the detection limit in charge-exchange experiments. It has been shown
that this uncertainty estimate is not strongly dependent on the nucleus studied [84]. It
is also clear that the systematic deviation fluctuates around 0, and after integrating over
many states, the uncertainty in the summed or average transitions strength is small.
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Figure 2. Results from a theoretical study to estimate the magnitude of the
uncertainty in the proportionality between Gamow-Teller strength and differential
cross sections for the 26Mg(3He, t) reaction at 140 MeV/u due to the effects of the
tensor-r component of the NN interaction. Transitions to final states in 26Al with
isospin T' = 0,1, and 2 are included. The uncertainty increases with decreasing B(GT).
The detection limit of 0.01 is indicated. (from Ref. [27]).

2.2. Probes

The extraction of Gamow-Teller strengths from charge-exchange reactions in the 7
direction for the purpose of constraining electron-capture rates has primarily been
performed with three probes: the (n,p), (d,?He), and (¢,°He) reactions. In this
subsection, a brief overview of these three probes and experimental methods will be
provided.
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2.2.1. (n,p) reaction Although (n,p) charge-exchange reactions have been performed
at a variety of facilities, the pioneering work at TRIUMF has been particularly
impactful for the purpose of testing theoretical models used to estimate electron-
capture rates for astrophysical simulations. The nucleon charge-exchange facility at
TRIUMF [85, 86] utilized the (p,n) reaction on a Li target to produce neutrons of
about 200 MeV associated with transitions to the ground and first excited state of
"Be that were subsequently impinged on the reaction target of interest. The setup
used a segmented target chamber, which allowed for the insertion of several targets
simultaneously. Events induced by reactions on different targets were disentangled
through the analysis of hitpatterns in multi-wire proportional chambers placed in-
between the targets. Usually, one of the targets was a CHy target, so that the well-known
"H(n, p) reaction could be utilized to perform absolute normalizations of the neutron
beam intensity. Protons produced in the (n,p) reaction were momentum analyzed in
the medium-resolution spectrometer (MRS). Measurements at different scattering angles
were utilized to determine the differential cross sections as a function of center-of-mass
angles, facilitating the multipole decomposition analysis and extraction of Gamow-
Teller strength from the proportionality between strength and differential cross section
discussed above. A wide variety of experiments were performed for the purpose of
extracting Gamow-Teller strengths for astrophysical purposes, primarily on stable nuclei
in the pf shell (see e.g. [87, 88, 89, 90, 91, 92, 93]). The excitation energy resolutions
achieved varied between 750 keV and 2 MeV, depending on the experiment. In Fig. 3,
three examples of the extracted AL = 0 contributions for the ®264Ni(n, p) reactions are
shown, displaying a concentration of Gamow-Teller strength at low excitation energies,
with a long tail up to higher excitation energies.

2.2.2. (d,*He) reaction The (d,?He) reaction has become one of the most powerful
probes to study the Gamow-Teller strengths in the 8 direction. This probe was first
developed for the purpose of extracting Gamow-Teller strengths at RIKEN by using
a 260 MeV deuteron beam [94], followed by the development of this probe at Texas
A&M [95] by using a 125 MeV deuteron beam. In these experiments, a resolution of 500—
700 keV could be achieved, and the beam intensities were limited due to the background
from deuteron break-up reactions. The method was perfected in experiments with
the Big-Bite Spectrometer at KVI in combination with the EuroSuperNovae (ESN)
detector [96] and using deuteron beams of ~ 170 MeV. Owing to the use of data signal
processing, two-proton coincidence events could be selected online, strongly reducing the
background from deuteron break-up reactions and making it feasible to run at higher
incident beam rates. In addition, the excitation energy resolution was improved to
values of typically 150 keV. A recent overview of the (d,?He) program at KVI can be
found in Ref. [26].

The use of the (d, 2He) probe requires that the momentum vectors of the two protons
from the unbound ?He must be measured with high accuracy in order to reconstruct
the momentum of the ?He particle created in the (d,?He) reaction, as well as the
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Figure 3. (a) Differential cross sections associated with AL = 0 for the 6%:62:64Ni(n, p)
reaction at 198 MeV (from Ref. [93]). (b) Differential cross sections at forward
scattering angles for the ®1V(d,2He) reaction at 170 MeV. Owing to the high-resolution,
individual transitions are well resolved (from Ref. [97]). (c) left: ~ energy versus
excitation energy for the “6Ti(¢,>He+4~) reaction (see also Fig. 1). right: by gating
on the 40Sc excitation-energy range around 0.991 MeV, the decay by a very weak 17
state can be identified, sufficient for estimating the Gamow-Teller transition strength
to this state (from Ref. [80]). (d) Extracted Gamow-Teller strength distribution from
the °Ni(p,n) reaction at 110 MeV /u, performed in inverse kinematics. Two sets of
shell model-calculations with different interactions are super imposed (from Ref. [98]).
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relative energy e between the two protons. On the other hand, the determination of
the relative energy makes it possible to enhance the spin-transfer nature of the probe.
As the incident deuterons are primarily in the 35, state, a spin-transfer AS of 1 is
ensured if the outgoing protons couple to the 'S state, which can be accomplished
by reconstructing the relative energy between the protons and selecting events that
have small relative energies (typically smaller than 1 MeV). This removes transitions
associated with AS = 0 from the spectra and makes it easier to isolate the AS = 1
Gamow-Teller transitions.

A variety of (d,?He) experiments were performed at KVI with the goal to extract
Gamow-Teller strengths for testing theoretical models used to estimate electron-capture
rates of interest for astrophysical simulations, see e.g. Refs. [99, 97, 100, 101, 102,
103, 104]. Because of the high resolution achieved, detailed studies of the Gamow-Teller
strength distribution could be performed, including for nuclei for which it was difficult to
obtain the targets, such as 551V [97, 100], as shown in Fig. 3(b). Clearly, the excellent
resolution achieved makes it possible to extract very detailed information about the
Gamow-Teller strength distribution.

2.2.3. (t,%He) reaction The use of the (¢,%He) reaction has the disadvantage that
it is complicated to generate tritium beams. Although tritium has been used to
produce primary beams (see e.g. Ref. [105]), experiments performed for the purpose
of extracting Gamow-Teller strength distributions for astrophysical purposes utilized
secondary tritium beams. These experiments are performed at NSCL with the S800
Spectrometer [106]. A primary 90 beam is impinged on a thick Beryllium production
target to produce a secondary tritium beam of 345 MeV [84]. Because the momentum
spread of the secondary beam is large (typically 0.5%), the dispersion-matching
technique [107] is utilized to achieve excitation-energy resolutions ranging from 200 — 350
keV. At present, the beam intensities are limited to about 107 particles per second, but
with the completion of the Facility for Rare Isotope Beam (FRIB), the beam intensities
will increase significantly.

In addition to the good excitation-energy resolution that can be achieved with the
(t,He) reaction, it has the advantage that the inverse (*He, t) reaction is studied in great
detail and with excellent resolution at comparable beam energies [67, 78, 26]. This makes
it possible to utilize the dependence of unit cross section on mass number determined
from (*He,t) data for extracting Gamow-Teller strengths from (¢,*He) experiments
(27, 77, 78].

As for the (n, p) and (d,*He) reactions, the (¢,3He) reaction has been used to study
a variety of nuclei to test theoretical models used in the estimation of electron-capture
rates in astrophysical scenario, e.g. Refs. [108, 109, 110, 111, 112, 80, 113, 114]. Since
the electron-capture rate is very sensitive to the transitions to the lowest-lying final
states in the daughter nucleus, especially at low stellar densities, the (¢,3He) probe
was combined with the high-resolution detection of «-rays in the Gamma-Ray Energy
Tracking In-beam Nuclear Array (GRETINA) [115]. This has made it possible to extract
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Gamow-Teller transition strengths of as low as 0.01 [80], as shown in Fig. 3c for the
16Ti(t, *He + ) reaction, for which the B(GT) for the transition to the first 1 state at
0.991 MeV could only be determined due to the measurement of the decay v rays.

In recent years, the focus of the experiments has shifted from nuclei in the pf-shell
to nuclei near N = 50 [108, 109, 110] given their relevance for electron capture rates
during the collapse of massive stars (see section 4.1).

2.2.4. (p,n) reaction and isospin symmetry For nuclei with N > Z, the Gamow-Teller
transition strength in the 5% direction can also be extracted from (p, n) reactions under
the reasonable assumption that isospin-symmetry breaking effects are small. Hence,
states with isospin Ty+1 populated from a (n, p)-type reaction for a nucleus with ground-
state isospin of Ty, have analogs in the (p,n)-type reaction on that same nucleus. By
measuring the (p, n)-type reaction and identifying the Ty + 1 states in the spectrum, the
Gamow-Teller transition strengths of relevance for estimating electron-capture rates can
be extracted. Unfortunately the excitation of states with higher isospin is suppressed
compared to states with lower isospin [116], and the Ty 4+ 1 states sit on a strong
background of states with isospin 7y — 1 and Tj, which are also excited in a (p,n)-
type reaction on a nucleus with isospin 7j. Still for nuclei near N = Z Gamow-Teller
strengths have been extracted from (p,n) data for the purpose of testing theoretical
models used to estimate electron-capture rates in nuclei [117, 118].

For nuclei with N = Z and assuming isospin symmetry, the Gamow-Teller strength
distribution in the % and 8~ directions are identical and a (p,n)-type measurements
can be used to directly obtain the Gamow-Teller strength distribution of relevance for
the electron-capture rates. This feature was used to extract the Gamow-Teller strength
distribution from *Ni. By using a novel method to perform a (p, n) experiment in inverse
kinematics [98, 119], the Gamow-Teller strength distribution in **Cu was extracted (see
Fig. 3(d), which is the same as the Gamow-Teller strength distribution from °Ni to
%6(Co. In this experiment, the excitation-energy spectrum in **Cu was reconstructed by
measuring the recoil neutron from the (p, n) reaction when the °Ni beam was impinged
on a liquid hydrogen target. Since it is important to measure the reactions at small
linear momentum transfer to main the proportionality of Eq. 2, the relevant recoil
neutrons have very low energies and were detected in a neutron-detector array developed
especially for that purpose [120]. With this method, it became possible to measure (p, n)
reaction in inverse kinematics on any unstable nucleus and it was recently used to study
1328n [121].

2.83. (n,p)-type charge-exchange reactions on unstable isotopes

Since many of the nuclei that undergo electron captures in stellar environments are
unstable, it is important to develop experimental techniques to perform (n,p)-type
charge-exchange experiments in inverse kinematics. This poses a significant challenge.
A neutron target is not available and all candidate reactions have a light low-energy
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charged particle as the recoil, which is not (easily) detectable as it interacts with
the target material. Therefore, unlike in the (p,n) reaction, the recoil particle is not
readily available for the precise reconstruction of the excitation energy and scattering
angle of the reaction. If the excitation-energy of the residual nucleus after the charge-
exchange reaction is below the nucleon separation energy, a precise measurement of
the momentum and scattering angle of the residual can be sufficient to reconstruct the
event kinematics. This method was used to extract the low-lying 8+ Gamow-Teller
strength distributions from unstable nuclei B and 3*Si through the ("Li, "Be) reaction
in inverse kinematics [122, 123]. Unfortunately, this probe is very difficult to use for
studying Gamow-Teller strength distributions in unstable nuclei heavier than 34Si. If the
excitation energy of the residual exceeds the nucleon separation energy, it is necessary
to measure the decay nucleon in addition to measuring the residual and achieving the
necessary energy and angular resolutions to reconstruct the event kinematics becomes
challenging because of the strong forward kinematic boost of the laboratory reference
frame [122].

Most recently, efforts have been initiated to utilize the (d,?He) reaction in inverse
kinematics to study (n, p)-type charge-exchange reactions on unstable isotopes. In such
experiments, the rare-isotope beam is impinged on an active-target time projection
chamber in which deuteron gas serves both as the target and the detector medium [124].
The tracks from the two protons originating from the unbound ?He particle can be used
to reconstruct the momentum of the 2He particle, from which the excitation energy and
scattering angle of the charge-exchange reaction can be determined. The unique two-
proton event signature is also very helpful to separate the (d,?He) reaction from other
types of reactions that occur in the time projection chamber and that have much higher
cross sections. If successful, the method will be equally powerful for the extraction of
Gamow-Teller strengths in the ST direction as the (p,n) reaction in inverse kinematics
is for the extraction of Gamow-Teller strengths in the 5~ direction.

3. Strategy and model to calculate stellar electron capture rates

During their long lasting lives stars balance gravitational contraction thanks to the
energy gained from nuclear fusion reactions in their interior. Massive stars develop
a sequence of core burning stages (started by hydrogen burning via the CNO cycle,
then followed by helium, carbon, neon, oxygen and the finally silicon burning). During
this evolution the density p and temperature 7" in the core increases gradually and has
reached values in excess of 10° g cm™3 and 10° K, respectively, at the end of silicon
core burning. At these high temperatures nuclear reactions mediated by the strong and
electromagnetic force are in equilibrium with their inverse reactions. This situation is
called Nuclear Statistical Equilibrium (NSE) and determines the nuclear composition for
given values of temperature, density and the proton-to-neutron ratio (usually defined by
the proton-to-nucleon ratio Y,). Once NSE is reached the star cannot generate energy
from nuclear fusion reactions anymore. Hence the core looses an important source of



Electron capture in stars 18

pressure against gravitational contraction. This situation is reached in the core produced
by silicon burning. This core is usually called Fe core because it is made of nuclei in the
Fe-Ni mass range which are favored under the core density and temperature conditions
and for a Y, value only slightly smaller than 0.5. However, the electrons, present in the
core to balance the charges of protons, form a highly degenerate relativistic gas and can
balance the gravitational contraction of a stellar mass up to the famous Chandrasekhar
limit Mgy, = 1.44(Y.)>?M, with the solar mass denoted by M. Once this limiting
mass is exceeded to continued silicon burning or, as we will see below, due to electron
captures, the electron gas cannot stabilize the core anymore. The core collapses under
its own gravity.
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Figure 4. Various energy scales related to electron captures on nuclei and protons as
function of density during the collapse. Shown are the temperature, T, the chemical
potential of electrons, u., the @ value for electron capture on protons (constant) and
the average ) value for electron capture on nuclei approximated as the difference in
chemical potential of neutrons and protons (adapted from [25]).

It is important to note that Y, can be modified by charge-changing reactions which,
however, can only be mediated by the weak interaction. Such reactions (electron capture,
beta decay) are not in equilibrium under the early collapse conditions (as for example
the neutrinos produced by the processes can leave the star and hence are not available
to initiate inverse reactions) and can change the nuclear composition. It is also very
important to note that under core-collapse supernova conditions, i.e. at sufficiently high
densities, electron capture and beta decay do not balance each other. The reason for
this unbalance lies in the fact that the electron Fermi energy, which scales like p'/3,
grows noticeably faster than the @ values of the nuclei present in the core (see Fig. 4).
As a consequence, the electron capture rates are accelerated, while beta decays on the
opposite are throttled due to Pauli blocking of the final electron states. Hence electron
captures win over beta decays with three very important consequences. First, electron
captures reduce the number of electrons and hence the degeneracy pressure which the
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electron gas can stem against the gravitational collapse. Second, the neutrinos produced
in the capture process can leave the star nearly unhindered during the early phase of the
collapse. They carry energy away which serves as an effective cooling mechanism and
keeps the core temperature and entropy low. As consequence of the low entropy heavy
nuclei exist during the entire collapse phase. The situation changes when the collapse
reaches densities of order 10*? g cm™ where the diffusion time scale due to coherent
scattering on nuclei becomes longer than the collapse time of the core. Neutrinos are
then effectively trapped in the core which until bounce collapses as a homologous unit.
Third, electron capture reduces Y, and makes the core composition more neutron-rich.
The NSE composition is driven to heavier nuclei with larger neutron excess (see Fig.
5). This effect is the reason why nuclei with valence protons and neutrons in different
major shells become relevant for electron captures, introducing the Pauli unblocking as

mentioned above.
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Figure 5. Mass fraction of nuclei in Nuclear Statistical Equilibrium at conditions
which resemble the presupernova stage (top) and the neutrino trapping phase (bottom)
of core-collapse simulations (courtesy of W.R. Hix).

Electron capture plays an important role for the dynamics of the core collapse of
massive stars for core densities between 10° g ecm™3 and 102 g cm™3. Fig. 4 shows the
evolution of crucial energy scales for this density regime. The strongest growing quantity
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is the electron chemical potential p. which increases from 6 MeV to about 40 MeV.
As nuclei get increasingly more neutron rich due to continuous electron captures, the
average electron capture ()) value of the nuclear composition present at the various
stages of collapse grows too, but this increase is noticeably smaller from about 4 MeV
to 12 MeV. At all stages the average nuclear (Q)) value is larger than for free protons
(1.29 MeV). Finally the temperature in the core also grows during the collapse, from
about 7' = 0.8 MeV to T' = 2.0 MeV. The comparison of these different energy scales
allows us to derive a strategy how to determine electron capture rates at the various
stages of collapse.
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Figure 6. Sketch of electron capture conditions at different conditions: a) in the
laboratory (left) where the electron is captured from an atomic orbital, b) in the
early collapse phase (middle) where the electron is captured from a Fermi-Dirac (FD)
distribution with an electron chemical potential of order the nuclear @) value, and
¢) later in the collapse at higher densities where the electron is captured from a FD
distribution with a chemical potential which are noticeably larger than the nuclear
Q@ values. It is important that, with increasing core density, the electron chemical
potential grows faster than the average nuclear () value. Electron captures in the star
(middle and left) can also proceed from thermally excited states where the temperature,
respectively average nuclear excitation energy, is increasing during the collapse.

Fig. 6 depicts the consequences which the different behavior of the energy scales
has for the electron capture process. We schematically compare the situation in the
laboratory with the one in the early stage of the collapse where p. ~ (@) and at an
advanced stage with p. > (@). In the laboratory the daughter nucleus must be more
bound than the decaying nucleus (@ < 0). In our schematic sketch of the GT strength
distribution we indicate that the strongest GT transitions at a few MeV excitation
energies are not accessible in laboratory electron captures. The situation changes
completely in the stellar interior, as the capture occurs from a degenerate electron
gas. In the early collapse phase (middle diagram) electron Fermi energy and nuclear
Q value are similar (for example the @Q value of the abundant *°Fe is 4.20 MeV) which
makes the calculation of the rate quite sensitive to the reproduction of the low-lying
GT strength distribution. An additional complication arises from the fact that the
stellar environment has a finite temperature. Hence the capture can also occur from
thermally excited nuclear states which can have different GT strength distributions than
the ground state. The nuclear composition at this stage of the collapse is dominated by
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nuclei of the Fe-Ni range. This is a fortunate situation as diagonalization shell model
calculations for pf shell nuclei are now feasible and have been proven to reproduce GT
strength distributions and energy levels quite well. Thus, diagonalization shell model is
the method of choice to determine the capture rates for pf shell (and sd shell) nuclei.
Due to continuous electron captures the nuclei abundant in the core composition
become more neutron rich and heavier. The right panel of Fig. 5 shows the NSE
distribution for the conditions reached around the onset of neutrino trapping. The
most abundant nuclei correspond to nuclei with valence protons in the pf shell, while
the valence neutrons occupy orbitals in the sdg shell. Hence the description of cross-
shell correlations is the challenge to determine capture rates for these nuclei. We also
note that at the higher densities more nuclei contribute to the NSE abundances. This
is an effect of the slight increase of core entropy as neutrino-trapping sets in and of the
decrease of the relative differences of nuclear binding energies as the composition moves
to heavier neutron-rich nuclei. The right part of Fig. 6 describes the energy situation
encountered at higher densities in the collapse (a few 101 g cm™ and above). At first,
the electron chemical potential is now significantly larger than the average nuclear Q-
value. For example, the neutron-rich nuclei ®Fe (with N = 40) and 3?Ge (N = 50) have
Q-values of 13.8 MeV and 13.0 MeV, respectively. Furthermore the temperature has
grown to about T' = 1 MeV. At such temperatures the average nuclear excitation energy,
estimated in the Fermi gas model as E* = AT?/8 is 8.3 MeV for %Fe and 10.2 MeV for
82Ge and the capture, on average, occurs from excited states, making it even easier for
electron capture to overcome the () value. Under these conditions calculations of stellar
capture rates for the abundant nuclei on the basis of the diagonalization shell model are
not appropriate nor possible. At first, diagonalization shell model studies of nuclear GT
strength distributions for the relevant cross-shell nuclei is not feasible due to model space
restrictions yet. Moreover, there are simply too many thermally excited nuclear states in
the mother nucleus which can contribute to the capture process. However, the detailed
reproduction of the GT strength distribution — as required at lower densities where pf
shell nuclei dominate — is not needed at the advanced conditions of the collapse. At first,
the fact that the electron Fermi energy and the average nuclear excitation energy are
together noticeably larger than the average nuclear () value makes the capture rate less
sensitive to the detailed reproduction of the GT strength distribution. Thus it suffices
if the total GT strength and its centroid are well described. This is possible within the
Random Phase approximation (RPA). Second, due to the exponential increase of the
level density with excitation energy, there will be many states which contribute to the
capture so that some averaging is expected over the GT strength functions. However,
there are two further demands which have to be considered. The Pauli unblocking of the
GT strength requires the consideration of multi-particle-multi-hole correlations. These
correlations are not expected to be the same at the higher excitation energies than for the
ground state. A many-body method which accounts for both of these effects is the Shell
Model Monte Carlo approach which allows the calculation of average nuclear properties
at finite temperature considering all many-body correlations in unprecedentedly large
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model spaces [41]. Hence a hybrid model has been proposed to calculate stellar electron
capture rates for heavy nuclei: In the first step partial proton and neutron occupation
numbers are determined within the SMMC, which, in the second step, become the input
of RPA calculations of the GT and forbidden strength distributions from which finally
the capture rates are evaluated [39]. An alternative method to the hybrid model is
the temperature-dependent Quasiparticle RPA approach which treats the ground state
and thermally excited states consistently on the level of 2p-2h correlations [44]. This
approach has also been used to describe astrophysically important neutrino-nucleus
reactions at finite temperatures [125, 126] (for a review on this subject see [74]).

3.1. Capture rates for nuclei with A < 65

The method of choice to determine electron capture and beta decay rates for medium
mass nuclei is the diagonalization shell model. As the shell model allows for the
description of individual states and their properties, within the chosen model space,
the stellar electron capture rate can be determined on the basis of the state-by-state
formalism from states in the parent nucleus at energy E; to final states in the daughter
nucleus at Fy. This formalism explicitly considers that the stellar interior has finite
temperature 7" Thus beta decays and electron captures can occur from excited nuclear
levels, where the thermal nuclear ensemble is described by a Boltzmann distribution.
Beta-decay Ag and electron capture rates .. can be derived in perturbation theory
and the respective formulas and derivations are presented in [14, 34]. Analytical
approximations are provided in [51]. In the derivation of the weak-interaction rates
only Gamow-Teller transitions are included (with an important exception for *°Ne, as
discussed below).

3.1.1. pf shell nuclei The first derivation of stellar weak interaction rates for the pf-
shell nuclei relevant for core-collapse supernovae has been presented in Ref. [12]. The
calculations are based on diagonalization shell model calculations considering either all
correlations in the complete pf shell or at a truncation level which basically guaranteed
convergence of the low-energy spectra and the GT strength distributions which are
the essential quantities to calculate electron capture and beta decay rates. The GT
strength functions were determined using the Lanczos method. Hence it represents the
strength for individual states at low energies, while at moderate excitation energies
the GT strength is not completely converged and gives the average value for a rather
small energy interval. We note that the shell model gives in general a good account of
nuclear properties in the pf shell if appropriate residual interactions including monopole
corrections are used (see Ref. [30] and references therein). Ref. [32] presented detailed
studies of the GT strength distributions and validated the method by comparison to
the charge-exchange data available at that time. In fact, good agreement with data was
found, if the shell model GT distributions were reduced by a constant factor (0.74)?
([127, 128]). The origin of this renormalization (often called quenching of GT strength)
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is caused by the fact that shell model calculations performed within a single shell
miss short-range correlations which shift GT strength to significantly higher energies
(129, 130]. Modern many-body techniques which are able to account for these short-
range correlations recover indeed most of the GT renormalization [131].
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Figure 7. Comparison of experimental and shell model GT strength distributions
for several pf shell nuclei. The data are derived from (n,p) charge-exchange
experiments [91, 92, 89]. The shell model results are given as histograms and folded
with the experimental energy resolution. The energies at which the FFN evaluation
placed the GT strengths are shown as arrows.

Fig. 7 compares the shell model GT, strength distributions with the experimental
data derived from (n, p) charge-exchange reactions and the energy position at which the
FFN rates assumed the total GT, strength to reside. The fragmentation of the GT
strength is quite obvious. It is even more visible in high-resolution data determined
by the (d,?He) and (¢,%He) techniques, e.g. see the data for ®'V(d,?He) in panel b of
fig. 3. The data for nickel isotopes showed that the KB3 residual interaction, used in
Refs. [32, 12], had some shortcomings in describing low-energy details of the GT strength
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function [132]. These are better reproduced using an alternative residual interaction
(GXPF1J [133]) (see panel d of Fig. 3).
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Figure 8. Comparison of electron capture rates for pf shell nuclei calculated from
GT distributions derived experimentally and from shell model calculations with two
different residual interactions and within the QRPA approach. The astrophysical
conditions represent a situation at which pf shell nuclei dominate the core composition.
The rates presented are originally from [118] and used existing data from (d,2He),
(t,%He), and (p,n) experiments, as discussed in Section 2. For the purpose of this
review, they are supplemented with later results from the (¢,%He) reactions on #°Sc
[111], 45T [80], and %Fe [112].

Fig. 8 compares electron capture rates calculated for all pf shell nuclei, for which
experimental GT distributions have been measured, with the predictions from the shell
model on the basis of two residual interactions (KB3G [134] and GXFP1a [135]). The
chosen astrophysical conditions correspond to the presupernova stage of the collapse
at which the pf shell nuclei dominate the abundance distribution. The GXPF1a rates
giving a nearly perfect reproduction, except for 4°Sc. The KB3G rates are slightly
worse than those based on the GXPF1a interaction, but still very good, except for **Sc
and %Zn. On the other hand, the rates based on the QRPA calculations, with their
restricted account of correlations, can deviate from the data and shell model rates by
up to a factor of 10 for light pf nuclei, although for the heavier pf shell nuclei the rates
based on the QRPA calculations do well at this stellar density.

The rates presented in Fig. 8 have been calculated solely from the ground state
GT distribution. This assumes that the GT distributions of excited mother states is
the same as for the ground state, shifted only by the respective excitation energy. This
assumption often is called Brink-Axel hypothesis [136, 137] It cannot be strictly valid
as it does not allow for deexcitations. As we will see below it is also not appropriate
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for nuclei at shell closures. Ref. [138] discusses the validation of this hypothesis. A
modification of the Brink-Axel hypothesis for high temperatures is proposed in [139]. A
novel method to calculate electron capture rates for excited nuclear states based on the
Projected Shell Model has been proposed in [140].

Ref. [12] calculated stellar beta decay and electron capture rates for more than 100
pf shell nuclei in the mass range A = 45-64. These calculations approximated the state-
by-state formalism discussed above by considering the low-energy states and their GT
distributions explicitly. These contributions were supplemented by the considerations
of ‘back-resonances’. These are GT transitions calculated for the inverse reaction and
then inverted by detailed balance [3, 15]. The calculated energies and GT transition
strengths had been replaced by experimental data whenever available. A detailed table
of the weak interaction rates for the individual nuclei and for a fine grid of astrophysical
conditions at which pf shell nuclei are relevant have been published in [34]. The rate
table is publicly available and is incorporated in several leading supernova codes. A
procedure how to interpolate between the grid points in temperature, density and Y,
value is discussed in [34], based on the work of [16].

Fig. 9 compares the shell model and FFN electron capture rates for several nuclei.
The chosen nuclei represent the most abundant even-even, odd-A and odd-odd nuclei
for electron captures as been identified by simulations on the basis of the FFN rates at
the respective astrophysical conditions during early collapse (presupernova phase). The
shell model rates are systematically smaller than the FFN rates with quite significant
consequences for the presupernova evolution, as discussed below. The reasons for these
differences is mainly due to the treatment of nuclear pairing which had been empirically
considered in the FFN calculations. This leads in particular to the drastic changes
observed for odd-odd nuclei. The shell model rates also considered experimental data
which were not available at the time when the FFN rates were derived. The differences
between the FFN and shell model beta decay rates are smaller than for electron capture
and do not show a systematic trend [142, 12].

3.1.2.  sd shell nuclei Beta decays and electron capture on sd shell nuclei (mass
numbers A = 17-39) can occur during silicon burning in massive stars [29]. The
processes are, however, of essential importance for the fate of the O-Ne-Mg core which
develops at the end of hydrostatic burning in intermediate mass stars. This was the
motivation for Oda et al. [33] to derive at stellar beta decay and electron capture rates for
sd shell nuclei covering the relevant astrophysical conditions (temperatures 105-10° K
and densities 108-10'° g cm™3). The rate evaluations used the state-by-state formalism
defined above. The spectra of the nuclei and the respective Gamow-Teller strength
distributions for ground states and excited states were determined by diagonalization in
the sd shell using the Brown-Wildenthal USD residual interaction which had been proven
before to give a quite reliable account of nuclear properties for sd shell nuclei. Like for
the nuclei in the pf shell the Gamow-Teller strength distributions were renormalized
by a constant factor. The rates have been made available in table form for a grid of
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relevant to the capture process in simulations which used the FFN rates. The triangles
refer to shell model estimates derived on the basis of rather strong truncations [141].

temperature-density-Y, points.

More recently, an updated rate table has been published by Suzuki which is based on
the USDB residual interaction (a modified version of the USD interaction) and additional
experimental information [50]. These modern shell model rates differ not too much from
those of Ref. [33]. However, they are given on a finer mesh of temperature and density.

This finer grid is particularly required for the study of the core evolution of stars in the
mass regime 8-10 M. Of particular importance are the URCA pairs (**Ne->*Na, *°Na-
Mg and potentially 2"Mg-2"Al) which have Q values against electron captures which

are reached during core contraction at densities around 10° g cm™3. As the environment
also has a finite temperature of order 103-10° K, which smears the electron chemical
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Figure 10. (left) Cumulative GT strength for Mg calculated in sd shell model
studies with two different interactions.  The ground state strength is known
experimentally. (right) Beta decay and electron capture rates for the URCA pair
25Na and 2°Mg as function of density and a specific temperature. The curve labelled
'product’ is given by the sum of the two rates and identifies the density at which the
URCA pair operates most efficiently. The rates are given with and without screening
corrections. (from [50])

potential and implies the presence of thermally excited states, it is possible that both
electron captures and beta decays occur between the pairs of nuclei. The neutrinos
produced in both processes carry energy away making the URCA pairs an efficient
cooling mechanism. The operation of URCA pairs is restricted to a relatively narrow
density range requiring the knowledge of weak interaction rates on a rather fine density-
temperature grids. Such rates have been provided in [143, 50]. Fig. 10 compares the
GT, strength for the Mg ground state as calculated with the USD [33] and USDB [50]
interactions. The transition to the 2 Na ground state is known experimentally. We note
the rather close agreement between the two calculations. 10 shows the beta decay and
electron capture rates calculated on the basis of the sd shell model. With increasing
density, the electron chemical potential grows which reduces the beta decay rates due to
Pauli final state blocking and increases the electron capture rates. At the URCA density
log(pYe.) = 8.81 both rates match. The product of beta decay and electron capture rates
indicates the density range at which the URCA pair operates. Screening effects induced
by the astrophysical environment shift the URCA density to slightly larger values (see
below).

While the URCA pairs cool the core, electron capture on the two abundant nuclei
Mg (Q = 6.03 MeV) and ?°Ne (Q = 7.54 MeV) heat it. (The third abundant nucleus
160 has such a high Q-value that electron capture does not occur at the densities
achieved during the evolution of the ONeMg core). Electron captures on these nuclei set
in once the core density is large enough for the electron chemical potential to overcome
the respective @ value. (Due to its lower @ value this occurs first on ?Mg.) At these
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densities the electron captures on the daughter nuclei 2*Na and 2°F, respectively, occurs
then instantaneously with noticeably larger capture rates, as the odd-odd daughter
nuclei have significantly smaller ()-values against electron capture due to pairing effects.
As p. > @, the capture often leads to excited states in the final nuclei ?*Ne and 2°O
which de-excite via gamma emission heating the environment.
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Figure 11. Electron capture rate for 2°Ne as function of density and for a specific
temperature. The rate labelled "Takahara et al’” was evaluated from GT distributions
calculated within the shell model [47]. The rate is broken down into the individual
state-by-state contributions where the energies and transition strengths are all taken
from experiment. The label ‘0T — 27’ identifies the contribution from the second
forbidden ground-state-to-ground-state transition whose strength has been measured
by Kirsebom et al.. [52]. This transition dominates the capture rate at the densities
most relevant for the core evolution of intermediate-mass stars. (from [52]).

The electron capture rates for 2°Ne and **Mg and their daughters have been
determined on the basis of shell model calculations by Takahara et al. [47] and Oda
et al. [33]. These rates have been the default values until recently in studies of the
core evolution of intermediate mass stars. The Mg capture rate has been updated in
Ref. [51] using experimental data which became available in the meantime leading to
rather small modifications. This is different for the electron capture rate on **Ne which
can be considered a milestone and an exception. At first, Ref. [51] showed that all
relevant Gamow-Teller contributions to the rate could be derived from experiment using
data from (p,n) charge-exchange measurements [144] (applying isospin symmetry) and
from beta decays of 2°F (see Fig. 11). Furthermore, the authors noticed that, due to the
relatively low temperatures of a few 10® K, the, at the time unknown, 2Ne-?°F ground-
state-to-ground-state might contribute to the capture rate just at the relevant densities,
despite that it is highly suppressed due to angular momentum mismatch. The strength of
this second forbidden transition has recently been measured in a dedicated experiment at
the IGISOL facility in Jyvéaskyla [52, 145] and it was found large enough to increase the
20Ne capture rate by several orders of magnitude as is shown in Fig. 11. We emphasize
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that the electron capture rate on 2°Ne in the temperature-density range important for
intermediate mass stars is now completely determined by experiment. This is quite
an achievements and shows the great opportunities offered by modern Radioactive Ion
Beam (RIB) facilities. That a second forbidden transition essentially contributes to an
astrophysical electron capture rate is exceptional and due to the low temperature of
the environment and the peculiar structure of 2?Ne. In core-collapse supernovae the
temperatures are an order of magnitude higher at the same densities making allowed
Gamow-Teller transitions the dominating contributor to electron capture rates.

In the astrophysical environment the weak interaction processes are modified due
to screening effects. The screening corrections for electron capture have been developed
in [13], the extension to beta decays is given in [51]. There are two important effects
induced by the astrophysical environment. At first, screening enlarges (reduces) the
energy threshold for electron captures (beta decays). Second, it reduces the electron
chemical potential. Both effects together reduce the electron capture rates, while they
enhance beta decay rates. Rate modifications due to screening are are relatively mild
of order a factor of 2. The effects for the URCA pair ??Na-2*Mg are shown in Fig. 10.
Modifications of the electron capture rates during the collapse of a massive star are
discussed in [13] and exemplified in their Fig. 10. Many tabulations of electron capture
rates (e.g. Refs. [14, 3, 15, 16, 34, 33, 146, 147] do not include screening corrections. Ref.
[13] presents a formalism how these rates can be approximately corrected for screening
effects.

Weak-interaction rates based on diagonalization shell model exist for nuclei in the
mass range A = 17-65, with the exception of A = 39-44. Studies of these nuclei
require the inclusion of correlations across the Z, N = 20 shell closures and hence large
model spaces enabling allowed Gamow-Teller and also forbidden transitions. Steps in
performing such demanding calculations have been taken so that a shell model evaluation
also for this mass range appears to be in reach. Weak-interaction rates for A = 39—
44 were provided by Fuller et al in their seminal work based on the IPM, but also by
Nabi and Klapdor-Kleingrothaus within the framework of the QRPA [146]. The latter
reference gives electron capture rates for a wider range of nuclei.

3.2. Electron capture on nuclei with A > 65

Shell model studies of nuclei with mass numbers A > 65 require an accurate description
of cross-shell correlations. The associated model spaces make diagonalization shell
model calculations in general unfeasible. It is fortunate that by the time nuclei with
A > 65 dominate the core composition the density, and accordingly the electron chemical
potential, has grown sufficiently that the capture rates are mainly sensitive to the total
GT strength and its centroid. For these nuclei a hybrid model [36, 39] has been proposed
to evaluate the stellar capture rates. In this model the rates are calculated within an
RPA approach in appropriately large model spaces using partial occupation numbers.
These occupation numbers are calculated within the Shell Model Monte Carlo (SMMC)
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method [40, 41] and hence consider the relevant multi-particle-multi-hole configurations
required to properly describe the cross-shell correlations which are relevant for nuclei
in this mass range. Moreover, the SMMC determines the nuclear properties at finite
temperature as is appropriate for the astrophysical environment. The RPA approach
is known to reproduce the strength and centroids of collective excitations. It does,
however, usually not give a full account of the fragmentation of the strength which,
as explained above, might not be needed at the astrophysical conditions at which the
heavy nuclei studied by the hybrid model appear during the collapse.

The SMMC calculations of the partial occupation numbers have been performed
in large model spaces (pf-sdg for nuclei with neutron numbers N < 61 and pf5/o-sdg-
hi1/2 for even heavier nuclei) using adjusted pairing+quadrupole interaction to avoid
the infamous sign problem [41]. The hybrid model has been validated in [13] and applied
to about 250 nuclei in the mass range A = 66-120 [39, 13].
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Figure 12. Comparison of experimental GT strength distribution for "5Se (shown
as running sum) with results obtained by shell model diagonalization using the RG
residual interaction and different levels of truncations (from [148]).

In this context, a special nucleus is "®Se with Z = 34 and N = 42. Thus,
its GT strength vanishes in the Independent Particle Model (and in the Bruenn
parametrization used in supernova simulations prior to 2003 [18]). The GT strength
has been experimentally determined using the (d,?He) charge-exchange technique at
Groningen [38] proving that cross-shell correlations indeed unblock the GT strength (see
Fig. 12). Diagonalization shell model calculations, performed in different model spaces
and with different residual interactions, are able to describe the low-energy spectra of
Ge and "Se and also the GT strength (Fig. 12). These shell model calculations
showed that cross-shell correlations are a relatively slowly converging process requiring
the inclusion of multi-particle-multi-hole configurations. For example, the consideration
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of only 2p-2h configurations does not suffix to pull enough GT strength to low energies
(Fig. 12).

1077777 10000_,.,.,.,.,.,.,.,2.,.,
[ K ] [ Exp.(d,"H
s p=10"gcm®Ye =045 ———S)ltllp-lfls ®)
,,,,,, ] -----SM-RG

T - --—- SM-JUN45
- s ---=- SMMC+RPA

@ 10§ {1 e
g F e Exp.(d,’He) 1 o
< I --- SM-NS 1 <
I I SM-RG 1
Lo —-=--8SM-JUN45 1000 .
---=--SMMC+RPA | i . s ]
p=10 gcm~ Ye=0.45
1 L 1 " 1 " 1 " 1 " 1 " 1 " 1 " i | Y [T I I [T T I I |
4 6 8 10 12 14 16 18 20 6 8 10 12 14 16 18 20 22 24
Temperature (GK) Temperature (GK)
Figure 13. Electron capture rates on "%Se at p = 10 g ecm™3 (left) and

p=10" g cm™3 (right) as function of temperatures. The rates have been calculated
from the experimental ground state data [38] and within diagonalization shell model
approaches using different residual interactions. The results labelled ‘SMMC+RPA’
have been obtained within the hybrid model. (from [148]).

We note that Se, being an odd-odd nucleus, is never very abundant during
core collapse. Nevertheless, Fig. 13 compares the electron capture es calculated from
the experimental and diagonalization shell model (for different interactions and model
spaces) GT distributions with those obtained in the hybrid model for two different
core densities and for various temperatures [148|. The lower density corresponds to
presupernova conditions, where electron capture is dominated by pf shell nuclei. The
rates calculated from the data and the shell model GT strength distributions agree quite
well. The hybrid model rates agree with the other rates within a factor of 3 for the range
of temperatures given, but they show a distinct different T-dependence. This is related
to the fact that the hybrid model does not resolve the fragmentation of the GT strength,
which is particularly important at low temperatures and densities. In fact, at the higher
density, the agreement between all rates is quite satisfactory. Under these conditions
the electron chemical potential is noticeable larger than the capture ()-value, making
the rate less sensitive to details of the G'T distribution. The hybrid model calculation
considers also forbidden multipoles whose contributions increase with temperature, but
are relatively small [148]. We note that the shell model and experimental rates are solely
determined from the ground state GT distribution, while the hybrid model considers
finite temperature effects in the calculation of the occupation numbers. These turn out
to be not so relevant as the N = 40 gap is already strongly overcome by correlations in
the ground state. This will be different for the N = 50 gap, discussed below.

The Thermal Quasiparticle RPA (TQRPA) model [149] is an alternative approach
proposed to calculate electron capture (and neutrino-nucleus reaction) rates at finite
temperatures [44, 150]. Like the SMMC, also the TQRPA is based on an equilibrium
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statistical formalism and treats the many-nucleon system in a heat bath and a
particle reservoir in the grand canonical ensemble. The method can be understood
as a proton-neutron QRPA approach extended to finite temperatures and allows to
determine temperature-dependent spectral functions which are the basis to evaluate
weak-interaction rates within this model [44]. Further extensions allow to use
Skyrme [151, 150] and relativistic functionals [152] to describe the thermal state and its
excitation considering 2p-2h correlations.

Compared to the hybrid model, the TQRPA has the advantage to be formally
consistent in treating the many-body problem. In contrast, the two parts of the
hybrid model have a different complexity in dealing with the many-body states. It
turns, however, to be important that the SMMC considers multi-particle-multi-hole
correlations as will be discussed below.
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Figure 14. Comparison of electron capture rates for "57889Ge for different densities
pY. and as function of temperature, calculated within the TQRPA and hybrid model
(HM). (from [44]).

The TQRPA approach has been used to calculate electron capture at finite
temperatures for selected Fe and Ge isotopes [44] and for nuclei at the N = 50 shell
closure [150, 45]. The differences between the two models become illustrative in Fig. 14
which compares the electron capture rates calculated in both approaches for various
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neutron-rich Ge isotopes at different densities and temperatures. In general, as the
electron chemical potential grows with density and temperature, the rates increase as
well where the sensitivity is larger to density than to temperature. The rates decrease
with increasing neutron numbers. This has two reasons. Foremost, the () value increases,
but also the occupation of the gg/, neutron orbital grows decreasing the unblocking of
pf shell neutron orbitals. Neutron-rich Ge isotopes appear in the core composition at
temperatures > 1 MeV and densities pY, > 10! g ecm ™ and both models predict quite
sizable capture rates for these conditions. There are, however, differences between the
two models. In general, the hybrid model capture rates are larger than those obtained in
the TQRPA, most evidently at lower densities. Furthermore, the TQRPA model shows
a steeper rise of the capture rates with temperature than the hybrid model. These facts
are foremost related to the increased unblocking probabilities in the hybrid model due to
many-body correlations which result in larger GT strength at lower excitation energies.
The differences in the rates become smaller with increasing density and temperature.
This is mainly due to the growing electron chemical potential which makes the rate less
sensitive to the details of the GT strength distribution. Secondly, forbidden transitions
contribute increasingly with growing density and temperature. These contributions are
not subject to blocking effects.

We have seen that many-body correlations overcome the N = 40 shell closure
already in the ground state and unblock the GT contribution to the capture rate.
But what happens at the magic number N = 507 In fact, measurements of the GT
distribution for 8Kr (Z = 36 and N = 50) [109] and for %¥Sr (Z = 38, N = 50) shows
only very little strength, mainly located at excitation energies between 8-10 MeV [110].
This points to a rather strong blocking of GT transitions at N = 50. Electron capture
rates, calculated from the experimental ground state data, are indeed significantly lower
than expected from systematics [110]. The results for ¥Kr and ®Sr are surprising,
given that a significant amount of GT strength (~ 0.7 units) was observed for *Zr [153]
even though, based on transfer reaction experiments [154], the proton 0gg/2 occupation
number for #Sr and “°Zr are comparable: 0.7 and 1.0, respectively. A high-resolution
experiment for *°Zr will be necessary to better understand these results.

In the collapsing core, N = 50 nuclei (e.g. *2Ge and "™Ni with Y, values of 0.39 and
0.34, respectively) are very abundant at densities in excess of about 10" g cm™ [4, 155]
and at temperatures T > 1 MeV. At these high temperatures the average nuclear
excitation energy is about (E) = 10 MeV, which is larger than the Z = 28 proton gap
and the NV = 50 neutron gap. This implies that the capture at the stellar temperatures
occurs on average on states with important many-body correlations across the two gaps,
in this way unblocking the G'T contribution to the capture rate. This is indeed born
out in TQRPA calculations performed for N = 50 nuclei between "®Ni and %8Sr. The
obtained capture rates are shown in Fig. 15. Satisfyingly the TQRPA calculations finds
no GT strength in the ®¢Kr and %¥Sr ground states at low energies, in agreement with
observation. In fact the TQRPA capture rates, calculated solely from the T'= 0 GT
distributions, agree with those obtained from the experimental GT distributions for
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Figure 15. TQRPA electron capture rates for selected N = 50 nuclei calculated at
T =0 and at T = 1 MeV and as function of density. The upper axis shows the
corresponding electron chemical potential. The calculations have been performed for
two Skyrme interactions: SkM* (blue lines) and SkO’ (red lines). The calculated
total capture rates include also contributions from forbidden transitions; the GT
contribution is presented individually. The shaded area is the rate obtained from the
experimental ground state GT distribution (taken from [110]. The thick line labelled
‘Approximation’ represents the ’single state approximation’ adopted from [39]. (from
45)).

both nuclei (see Fig. 15). The TQRPA calculation shows, however, a strong thermal
unblocking of the GT strength as protons are moved into the gg/o orbital and neutrons
out of the pf shell. This leads to a strong increase in the capture rate for all nuclei
(see Fig. 15). Thermal unblocking of the GT strength has the largest effect at small
electron chemical potentials u. (low densities), while its relative importance decreases
with growing p.. With increasing density contributions from forbidden transitions
become more important and dominate the rate for densities of order pY, > 10! g cm ™3,

hence at the conditions where N = 50 nuclei are abundant in the collapse. The capture
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rates also increase with increasing proton numbers, i.e. from ®Ni to ®8Sr. This has
two reasons: the growing () value with neutron excess and the increased promotion of
protons into the gg/o orbital.

In summary, GT measurements for nuclei which become relevant in the high
density /temperature environment during supernova collapse are indispensable to
constrain nuclear models and to create trust in them. However, they cannot directly
been used to determine the stellar capture rate as thermal unblocking effects modify
the rates under such conditions noticeably. This is in particular true at shell closures,
i.,e. for N = 50 nuclei. For these nuclei forbidden transitions might be as relevant as
GT transitions and should be experimentally constrained as well.

Fig. 15 also shows the rate estimated by a parametrization put forward in Ref. [39].
This simple parametrization assumes that the capture proceeds through a single
transition from an excited state in the parent nucleus at E; to a state in the daughter
nucleus at £y with AE = E; — E; (single-state approximation). Then the capture rate
can be written as [16]

m@2)B/( T \°
A= 2002 (T2) [R) + 2 + X Fa)] (@)
where x = (Q+AE)/T, n= (. —Q — AFE)/T, K = 6146 s and B represents a typical

(Gamow-Teller plus forbidden) matrix element. The quantities Fj, are the relativistic

Fermi integrals of order k. @ is the ground state ground state ()-value that is positive for
capture in protons and neutron-rich nuclei. This approximation was used in Refs. [39, 42]
to estimate the rates of the many heavy nuclei which are abundant at larger densities
and for which no rates existed at that time. The two parameters (energy position and
GT strength) were fitted to the rates of about 200 nuclei for which individual pf shell
model and hybrid model rates were available. Fig. 16 compares the shell model rates
with the single-state approximation (4) using B = 4.6 and AE = 2.5 MeV. We note
that the approximation does not consider nuclear structure effects (or a dependence on
the average excitation energy) which result in quite a significant scatter of the shell
model rates with respect to the single-state rate. For the reasons discussed above, the
fluctuations get noticeably reduced with increasing density. It is worth noting that there
is no systematic difference between the approximation and the shell model rates so that
differences might at least partially cancel out. At the intermediate density the single-
state approximation shows some tendency to overestimate the rate. In conclusion, the
approximation in its simple form (4) should not be used at low densities say below a
few 10'° g cm™3. In this density regime the nuclear composition is largely dominated by
nuclei for which shell model rates exist. The general trend seen in Fig. 16 is also borne
out in Fig. 15 where the approximation badly fails at low densities, but gives reasonable
agreement at pY, > 10" g cm™3. Ref. [155] compares the shell model and single-state
rates at slightly different astrophysical conditions.

The single-state parametrization has been adopted for heavy nuclei in supernova
simulations which systematically studied the influence of nuclear ingredients (electron
capture rates, Equation of State, mass models) on the collapse dynamics [155, 156] (see
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Figure 16. Electron capture rates on nuclei, for which individual shell model rates
exist, as function of @ value for 3 different stellar conditions. Temperatures are
measured in MeV, density in 10'! g cm™2. The solid lines represent the rates obtained
from the single-state approximation 4. (from [39]).

below), where Ref. [156] used the improved single-state parametrization of [157] (see
below).

3.3. Rate Tables

Most supernova codes now use the rate table as provided by Juodagalvis et al. [13].
This table defines electron capture rates on a grid of the three important parameters
characterizing the astrophysical conditions during collapse: temperature, density, Y,
value. The rate evaluation assumes the core composition to be given by nuclear
statistical equilibrium, hence it does not provide rates for individual nuclei.

The rate table is based on the hierarchical strategy defined above. For the nuclei
with A < 65 the shell model rates of Oda et al. [33] (sd shell) and of Langanke and
Martinez-Pinedo [34] (pf shell) have been adopted. This guarantees a reliable and
detailed reproduction of the GT strengths for the important nuclei at collapse conditions
where p, ~ ). The rates for nuclei in the range A = 39 — 44 have been taken from
Fuller, Fowler and Newman [3]. For the heavier nuclei the table adopts the rates from
hybrid model calculations. For about 200 nuclei in the mass range A = 65 — 110 these
were calculated by using SMMC partial occupation numbers in RPA calculations. For
a few nuclei in this mass regime and for even heavier nuclei, in total about 2700 nuclei,
the rates were evaluated on the basis of a parametrization of the occupation numbers,
derived in accordance with the SMMC studies, and RPA response calculations. In
this way the most relevant nuclear structure input, like shell gaps, are accounted for.
Screening corrections due to the astrophysical environment have been incorporated into
the rates.
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Weak-interaction rates for sd shell nuclei are important for the core evolution
of intermediate mass stars. Rates for individual nuclei for the relevant density and
temperature regime are given in [33] and updated in [50].

Nuclei in the mass range A = 45-65 are essential for the early phase of core collapse
supernovae and for the nucleosynthesis in thermonuclear (Type Ia) supernovae. The
weak-interaction rates for these pf shell nuclei are individually given in [34]. The rates
are not corrected for screening, which, however can be accounted for using the formalism
developed in [13].

We note that at specific astrophysical conditions (e.g. during silicon burning), at
which the sd and pf shell nuclei are relevant, the temperature is in general not high
enough to establish an NSE composition. Hence the knowledge of individual rates is
essential.

To make it easier to incorporate complete sets of electron-capture rates in
astrophysical simulations, a library of rates was created [155, 158, 159] based on the rate
tables for specific mass regions described above and on the single-state approximation
for nuclei where rates based on microscopic calculations are not available. This library
is incorporated in the weak-rate library NuLib [160].

4. Electron captures in astrophysical applications

4.1. Core-collapse supernovae

Simulations of the evolution of massive stars distinguish two distinct phases motivated
by their specific needs and requirements. 1) During hydrostatic burning energy released
by nuclear reactions in the star’s interior are essential to balance gravity. The densities
are low enough that neutrinos, produced in weak interactions, can leave the star
unhindered transporting energy away. This loss has to be considered in the energy
balance, but a detailed treatment of neutrino transport is not required. However, the
simulations have to incorporate a detailed network of nuclear reactions to follow the
nuclear energy production and the change in composition. This stellar evolution period
lasts to the so-called presupernova phase when the core density has reached values of
about 10'° g cm ™ and the inner part of the iron core collapses with velocities in excess
of 1000 km s~ [161, 29].

The final models obtained by the stellar evolution codes become the input for
the supernova codes in which the gravitational collapse of the iron core and the
explosion are simulated. The astrophysical conditions relevant during these simulation
lead to two important changes compared to stellar evolution. The temperatures
are sufficiently high (7" > a few GK) so that the nuclear composition can be well
approximated by an NSE distribution, without the need to follow a complicated network
of nuclear reactions. On the other hand, the involved densities require a detailed
bookkeeping of neutrinos. This is achieved by Boltzmann transport. An additional
complication arises from the fact that the assumption of spherical symmetry, which
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holds approximately during hydrostatic stellar evolution, is not valid during the core
collapse and explosion. This requires multidimensional treatments which is extremely
challenging and computationally demanding. Reviews about the recent impressive
progress in supernova modelling can be found in [162, 163, 164, 165]. These codes
consider electron capture via the rates provided by [13].
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Figure 17. Comparison of the center values of Y, (left), the iron core sizes (middle)
and the central entropy (right) for 11 —40M, stars between the models using the FFN
rates (WW models [161]) and models which used the shell model weak interaction rates
(LMP [35]). The lower panels show the changes in the 3 quantities between the WW
and LMP models.

Heger et al. have investigated which effect the diagonalization shell model rates
have on the presupernova evolution for stars in the mass range M = 13-40 M, [29, 35].
To this end they repeated calculations of Weaver and Woosley [161], keeping the stellar
physics as much as possible, but replacing the weak interaction rates for pf shell nuclei
by those of Ref. [34] (LMP rates). Fig. 17 summarizes which consequences the shell
model rates have on three quantities which are relevant for the following collapse. The
central Y, value is larger by AY, = 0.01-0.015 at the onset of collapse. This has two
reasons. First, the shell model rates are noticeably smaller than the FFN rates (Fig. 9),
hence reducing leptonization. Second, during silicon burning  decays can compete with
electron captures. Although this does not occur by specific URCA pairs, but rather by
an ensemble of nuclei, the effect is the same: the star is additional cooled, while the Y,
is kept constant. The study confirmed that 3 decays become increasingly Pauli blocked
with growing density and can be safely neglected during collapse. Fig. 17 also indicates
that the iron core masses are generally smaller with the LMP rates. However, this is
not a continuous effect and shows variations among the models with different stellar
masses. Finally, the LMP rates lead to presupernova models with lower core entropy for
stars with M < 20 M. For the more massive stars, the effect is not unique; stars with
M = 3040 Mg show an increased core entropy. We mention that lower (larger) core
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entropy implies less (more) free protons in the nuclear composition, which, however, is
overwhelmingly dominated by nuclei.

The continuous electron capture drives the NSE composition of the core more
neutron-rich and towards heavier nuclei. At densities in access of a few 10° g cm™3
the composition is dominated by nuclei with Z < 40 and N > 40 for which, for a long
time, it was assumed that electron captures vanish (e.g. [18]) due to Pauli blocking of
the GT strength. As a consequence the capture process at the later of the collapse
continued solely on free protons, which are, however, less abundant than heavy nuclei
by orders of magnitude. As we have discussed above, the GT strength at the N = 40
shell gap is unblocked by multi-nucleon correlations. Furthermore, the blocking at the
N = 50 shell closure, which results in a strong reduction in the experimental ground
state GT strength, is overcome at the finite-temperature core conditions by thermal
excitations.

Arguable the most important result reported in Refs. [39, 42] is the fact that
electron capture proceeds on nuclei rather than on free protons during the entire collapse,
in contrast to previous belief (e.g. [1]. These findings are based on supernova simulations
performed independently by the Garching and Oak Ridge groups which both adopted
the hybrid model capture rates for more than 100 nuclei in the mass range A = 65-110,
supplemented by the shell model rates for pf shell nuclei. For the heavy nuclei, the
capture rates were estimated by the single-state approximation. The capture rate on
free protons was taken from [18].
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Figure 18. Comparison of a supernova simulation for a 15 Mg star using the
shell model weak interaction rates from Ref. [28] (labelled LMSH) and the Bruenn
parametrization which neglects capture on nuclei for N > 40 [18] (labelled Bruenn).
The figure shows the central core values for Y, and Yjep (electrons plus neutrinos)
(left), the entropy and temperature (middle) and the neutrino emission rate (right) as
function of core density. The insert in the right figure shows the average energy of the
emitted neutrinos (courtesy of Hans-Thomas Janka).



Electron capture in stars 40

Fig. 18 compares some important quantities obtained in the simulations of refs.
[39, 42] with previous studies which neglected electron captures on heavy nuclei.
Obviously the capture on nuclei is an additional source of deleptonization, adding to
the capture on free protons. This results in significantly lower values for Y, at neutrino
trapping at densities around 102 g cm™. At higher densities the total lepton fraction
Yiep becomes constant, while the electron fraction Y, still decreases. This is related
to neutrino tapping and the formation of the homologous core [1]. In this regime,
continuous electron captures reduce the electron abundance, but the neutrinos generated
by this process interact with matter mainly by coherent scattering on nuclei with a rate
large enough that their diffusion time scale is longer than the core collapse time scale.
Neutrinos are trapped and add to the total lepton fraction in the core. But before
trapping, the neutrinos can still leave the star and are an additional cooling mechanism
leading to smaller core entropies than obtained in previous calculations. Lower entropies
reduce the abundance of free protons in the NSE composition, which increases the
importance of capture on nuclei due to their increased abundances. Neutrinos produced
by capture on nuclei have smaller average energies due to the higher ()-value than
neutrinos produced by capture on free protons. Hence the luminosity of electron
neutrinos is increased due to more captures, but their average energies are shifted to
lower values. We stress that the rate for capture on individual nuclei is noticeably
smaller than the capture rate on free protons. The dominance of capture on nuclei
results for the overwhelmingly higher abundance of nuclei compared to free protons and
are a result of the low entropy, i.e. of the capture process.

The fact that electron capture on nuclei proceeds until neutrino trapping is reached
reflects itself also in the core dynamics and profiles. In the simulations with the improved
rates, as shown in Fig. 19 the shock forms with significantly less mass included (smaller
‘homologous core’ size) and a smaller velocity difference across the shock. Despite this
mass reduction, the radius from which the shock is launched is actually slightly pushed
outwards due to changes in the density profile. Despite these significant alterations
also one-dimensional supernova models employing the new electron capture rates fail
to explode. No noticeable differences in the simulations are observed if the rate set
of Juodagalvis et al. [13] is used which replaces the rates for nuclei, for which in [42]
the single-state approximation was used, by rates estimated in the spirit of the hybrid
model. Multidimensional supernova simulations describe electron capture now by the
rates of Ref. [13]. However, no dedicated investigation of the role of electron capture
(i.e. in comparison to the case where capture on heavy nuclei is neglected) has been
performed.

In a recent supernova simulation [166] electron capture on nuclei has been identified
as the dominating weak-interaction process and the main source of electron neutrinos
during collapse. However, it was shown that pair-deexcitation of thermally excited
nuclear states is an important source of the other neutrino types (electron anti-neutrinos,
muon and tau neutrinos and their antiparticles).

The contribution of a particular nucleus to the reduction of Y, during collapse,
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Figure 19. Comparison of Y, (upper), entropy (middle) and velocity profiles (lower
panel) at bounce obtained in supernova simulations with the shell model rates for nuclei
in the mass range A = 45-110 ([34, 39], thick line) and the Bruenn rate parametrization
([18], thin line). (from [42]).

depends on the product of its abundance and of its capture rate. Both quantities are
time-dependent and have to be integrated over the duration of the collapse. This study
has been performed by Sullivan et al. [155] using rates calculated based on microscopic
nuclear models where available. For the heavy nuclei, for which such rates are not
individually available, they adopted the single-state approximation of Eq. (4).

Fig. 20 shows in the upper panel which nuclear ranges contribute to the change
of Y, with time, Y,. The top axis shows the time until bounce. The corresponding
densities are 1.41 x 10'%, 4.06 x 10, 1.42 x 10?2 g cm™2 at t — ¢, = —20, —10, —5 ms,
respectively. We note that Y, grows with time during collapse and reaches its maximum
after trapping has already set in. The increase reflects the fact that the electron chemical
potential grows faster than other scales, in particular the average nuclear () value of the
composition,resulting in strong increases of the capture rates. The change in the capture
rate is mainly driven by nuclei in the mass range A = 65-105. Rates calculated within
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Figure 20. upper panel (a): The contribution of nuclear electron capture to the
change of Y, as function of Y, which continuously reduces with time. As reference the
upper axis vindicates the time until bounce. lower panel (b) The top 500 nuclei which
contribute strongest to electron capture. (from [155]).
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the hybrid model exist for about 200 nuclei in this range, which, however, does not cover
all nuclei which contribute. The pf shell nuclei, for which accurate diagonalization shell
model rates exist, dominate in the early collapse. Here capture rates are, however,
smaller due to the smaller electron chemical potentials involved. Nuclei heavier than
A = 105 contribute or dominate just before and during trapping.

The lower panel of Fig. 20 identifies how individual nuclei contribute to Y,
determined by integrating the respective contributions during collapse until trapping
occurs. Due to this study, the relevant nuclei are those around the N = 50 shell closure
centred in this range from "®Ni to %2Ge.

Sullivan et al. [155] also investigated which effect a systematic modification of the
electron capture rates has on the supernova dynamics. When scaling the capture rates
for all nuclei by factors between 0.1 and 10, they observed significant modifications.
A systematic reduction of the rates throttles the effects which captures on nuclei have
during collapse, as outlined above, driving the results back towards those where capture
on nuclei were neglected. A systematic rate reduction by a factor 10 indeed increases the
enclosed mass at bounce by about 16%, which is a similar effect as reported in Ref. [42].
Sullivan et al. [158] and Pascal et al. [156] argue that the single-state approximation
might overestimate the rates for nuclei close to the N = 50 shell gap. A similar
conclusion was drawn from the measurements of Gamow-Teller distributions for the
ground states of the N = 50 nuclei ®Kr [109] and ®¥Sr [110]. As discussed above,
the single-state approximation in fact does not consider nuclear structure effects which
should be quite relevant in particular at shell closures. We note that structure effects
are considered in the shell model rates used in Ref. [13] to set up a rate table for
electron capture under collapse conditions, assuming, however, NSE for the nuclear
composition. It has been shown that the use of alternative and improved Equations of
State has rather small effects on the supernova dynamics [155, 156]. The dependence
of the core composition on different equation of states and its indirect impact on stellar
electron capture rates has been investigated in Refs. [167, 168]. An improved version
of the single-state approximation is presented in [157]. The impact of a reduction of
the N = 50 shell gap has been explored on ref. [169]. We also mention again that the
TQRPA calculations and the hybrid model indicate that the blocking of the GT strength
around N = 50 is largely overcome at stellar conditions due to thermal unblocking.
Furthermore, both models predict sizable contributions from forbidden transitions at
the astrophysical conditions at which N = 50 nuclei are abundant during the collapse.

4.2. Nucleosynthesis in thermonuclear supernovae

Thermonuclear, or Type la, supernovae are a class of supernovae which are distinct from
the core-collapse version by their explosion mechanism and also due to their spectral
composition (Type Ia spectra do no exhibit hydrogen lines, in contrast to spectra of core-
collapse or Type II supernovae). In the currently favored model Type Ia supernovae
correspond to the explosion of a White Dwarf in a binary star system triggered by mass
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accretion from its companion star when this enters the Red Giant phase, White Dwarfs
are a compact object produced as the final fate of intermediate mass stars. They are
mainly composed of N = Z nuclei, i.e. 2C, 160, ?°Ne. The accretion adds to the White
Dwarf mass bringing it towards the Chandrasekhar limit and increases the density in its
interior to the point where carbon burning can be ignited. As the burning occurs in a
highly degenerate environment, the energy set free cannot lead to expansion, but rather
heats the surrounding. This results in a self-reinforcing acceleration of the burning
until degeneracy can be lifted and the entire White Dwarfs is disrupted. The explosion
mechanism - complete disruption of a White Dwarf in a thermonuclear runaway - leads
to similarity among Type Ia events. For example, the observed peak magnitude and
width of the lightcurves obey a simple scaling law (Philipps relation [170]) which makes
Type Ia supernovae to standard candles for cosmological distances. This fact has been
exploited to deduce the current acceleration of our Universe.
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Figure 21. Influence of electron capture rates on type Ia nucleosynthesis. The two left
panels show yields calculated for the WS15 progenitor model of Ref. [171] calculated
with the FFN (left) and LMP (middle) electron capture rates (courtesy of F. Brachwitz,
from [28]). The right panel shows the yields calculated for the W7 progenitor model of
Ref. [171] replacing the LMP rates with improved shell model rates for selected nuclei
in the Ni-Fe region (from [172]). All yields are relative to the solar abundances. The
ordinate is normalized to 5Fe).

After the burning flame has moved through the matter, the inner material behind
the front, with a mass of about 1 My, has reached temperatures sufficiently high to
drive the nuclear composition into nuclear statistical equilibrium. As the White Dwarf
was composed of N = Z nuclei, mainly °°Ni is produced. Deviations towards nuclei
with neutron excess occur due to electron captures in the hot and dense matter behind
the front. The impact of these captures depend, besides the astrophysical conditions
of density (about 10 g cm™ and temperature (T' ~ 10 K), on the speed of the flame
(i.e. the time for electron captures before the star is disrupted) and obviously on the
rates themselves. As discussed above, the diagonalization shell model (LMP) rates
are systematically lower than the FFN rates for pf shell nuclei, in particular for the
nuclei in the Ni-Fe mass range which are of importance for captures behind the type
Ia burning front. Brachwitz et al. have performed nucleosynthesis studies in a one-
dimensional supernova simulation based on the well known W15 progenitor model of
Ref. [171] which starts from a 1.38 M, C-O White Dwarf [10, 173]. The faster FFN
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rates lead to a stronger deleptonization in the innermost 0.1 M core mass, reaching
values down to Y, = 0.44 in the center, while the slower LMP rates produce Y, = 0.45
as the minimum value. As a consequence, the FFN rates predict an appreciable amount
of neutron-rich nuclei like **Ti or 52Cr, which are strongly overproduced compared
to the solar abundances (left panel of Fig. 21). This overproduction constituted a
serious problem [9] as roughly half of the *Fe content of the solar abundances are
synthesized in type la supernovae and hence all nuclides, produced in type Ia, should
not have overproduction factors larger than 2 as otherwise their relative abundances
are in conflict with observation. As is shown in the middle panel of Fig. 21, the
overproduction is removed when the slower LMP shell model rates are used. Suzuki
has recently confirmed this finding in a study which replaced the LMP shell model
rates for selected nuclei in the Ni-Fe mass range by those obtained with the GXPF1
residual interaction which gives better agreement with the measured GT strength in Ni
isotopes [172]. Suzuki used a different progenitor model than Ref. [173] (the W7 model
of [171]). But also his study shows that the overproduction of neutron-rich nuclei is
removed if modern diagonalization shell model capture rates are used rather than the
FFN rates (right panel in Fig. 21). Satisfyingly Suzuki only observes a small difference
of 4% in the calculated abundances based on his shell model rates and on the LMP
rates. Detailed studies of the sensitivity of nucleosynthesis in type Ia supernova can be
found in refs [48, 49].

Electron captures and beta-decays, operating via URCA pairs (see section 3.1.2),
are also important during the accretion and simmering phases of the evolution of CO
WDs before the type la supernova explosion as they determine the neutron excess and
the density at which the thermal runaway occurs [174]. Particularly important during
these phases is the ¥N(e™, 1,)!3C rate whose value is determined by beta-decay and
charge-exchange data [175].

4.8. Accreting neutron stars and mergers

An old isolated neutron star can be described in beta equilibrium. However, such an
equilibrium is broken in the crust if the star accretes mass from the interstellar medium
(ISM) or from a binary star. For an old neutron star traversing the ISM, a mass of
order 1071 M, per year will be accreted as a layer on the neutron star surface. The
temperature of the layer is low and is usually approximated as 7' = 0 [176]. In a
binary system the mass flow can be higher leading to repeating burning of a surface
layer with characteristic emission of X-rays with typical durations up to ~ 100 s (X-ray
burster [177, 178]). Due to the re-occurrence of the break-outs, with typical periods of
order a year, the ashes of previous events are pushed to higher densities and temperatures
of order a few 108 K can be reached. These binary systems can also exhibit rare day-
long X-ray bursts (so-called superbursts). Here carbon flashes, triggered by the fusion
of two 2C nuclei, heat the neutron star envelope so that hydrogen and helium burning
becomes stable, suppressing the usual shorter x-ray bursts. These can only occur after
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the envelope has sufficiently cooled [179]. Electron captures play interesting roles in
both accretion scenarios.

The ISM matter which an old isolated neutron star accretes is mainly hydrogen. At
sufficiently high densities hydrogen can start a sequence of nuclear reactions. However,
in contrast to stellar hydrostatic burning this is not initiated by temperature, but by
density fluctuations triggering so-called pycnonuclear reactions [180, 181]. The nuclear
reaction sequence includes hydrogen and helium burning, producing nuclides up to
28Gi. Particular challenging is the evaluation of the pycnonuclear triple-alpha reaction
rate as neither the ®Be intermediate state nor the Hole state in >C can be thermally
reached [182, 183, 184]. The fresh material produced by pycnonuclear reactions rests on
original neutron star crust material, i.e %°Fe or %2Ni.

Electron captures can occur once the density reaches a value at which the electron
chemical potential can overcome the nuclear @ value. For '°O, which is the main product
produced by pycnonuclear helium reactions, this happens at p ~ 3 x 10! g cm™3. As
beta decay of the daughter nucleus '°N is prohibited due to complete filling of the
electron phase space at T' = 0, the daughter nucleus immediately undergoes a second
electron capture to C as the required density is less than for *O. At the density
required for the double electron capture on O the underlying material of *Fe and
92Ni has already undergone double electron captures to °Cr, followed to °°Ti, and **Fe,
respectively (see below). As shown in Ref. [176] this leads to several unstable situations
where a denser layer (i.e. '°C) rests on less denser layers (i.e. ®Ti or ®?Fe), resulting in
an overturn of the unstable interfaces. This scenario had been proposed as a possible
explanation for gamma-ray bursts before these were identified as extra-galactical events
with luminosities larger than observed for supernovae.

Double electron captures are expected also to occur in the crust of an accreting
neutron star in a binary system. When accretion pushes the original surface layer,
made mainly of 5°Fe, to higher densities, electron captures will transform Fe to *°Cr

once p > 1.5 x 10° g em™3.

Haensel and Zdunik have studied the consequences for
the accreted neutron star crust, build on a single-nucleus (°°Fe) approach [7] (see
also [185, 186]. Upon pushing the matter to even higher densities, further double
electron captures proceed (°°Cr — °Ti at p = 1.1 x 10'° g em™2, %°Ti — *6Ca at
p=8x 10" g em™3, %Ca — 5Ar at p = 2.5 x 10!* g cm™3), before the density is

reached at which neutrons are emitted from the nucleus (p = 4.1 x 10! g cm™3

, heutron
drip). Thus, the double electron capture of *Ar is accompanied by the emission of free
neutrons, *®Ar — 52S + 4n. The successive electron captures lowers the charge of the
nuclei so that pycnonuclear fusion reactions, induced by zero-point motion fluctuations
in the Coulomb lattice become possible. The double electron captures, but in particular
pycnonuclear fusion reactions are considerable heat source, as is discussed in [7, 187].
The crust composition, containing other nuclei than *Fe, complicates the situation.
This is also true for the ashes of X-ray burst events which, due to repeating outbursts,
are also successively pushed to higher densities and run through a similar sequence,

to the one described above, of double electron captures, neutron deliberation and
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Figure 22. Depth at which URCA pairs of mass number A operate in neutron stars.
The size of the data points corresponds to the neutrino luminosity of the pair, setting
its mass fraction to X = 1. (The top 5 are colored in red.) The grey band indicates
constraints for superburst ignition assuming an ignition at a column depth between
0.5-3 x 10'2 g cm~2. (from [188]).

pycnonuclear fusion reactions [189]. As pointed out by Schatz et al. [8] the ashes
of former burst events have finite temperatures (a few 10® K) which, although small
compared to typical electron capture () values, open up a small energy window at which
beta decays of electron capture daughters can occur. For such an URCA process to
occur the electron capture process has to satisfy two conditions: it must be mediated
by an allowed transition to a state at excitation energies £, < T and the beta-decaying
nucleus must no have a strong electron capture branch. On general grounds even-even
nuclei, which are the most abundant nuclei in the crust, do not form URCA pairs but
rather perform double electron captures [188]. On the other hand, nearly all odd-A
nuclei can form URCA pairs. The authors of Ref. [188] have identified about 85 URCA
pairs. Fig. 22 shows the neutrino luminosities of these pairs (setting the mass fraction
of the nucleus on which an electron is captured to X = 1) and at which depth in the
neutron star they operate. As pointed out in [8] cooling by URCA pairs in the crust
reduces the heat transport from the crust into the region of the x-ray burst or superburst
ashes which reside at less dense regions (this region is often called the ocean). This
lowers the steady-state temperature in the ocean. This puts constrains on the ignition
of the 2C + 2C fusion reaction to start the next burst cycle. This ignition has now
to occur at higher densities [188]. URCA pairs can also directly operate in the ocean.
However, due to the lower densities nuclei are less neutron-rich with smaller () values
for electron captures than those in the crust. As the neutrino luminosity scales with
Q?, This strongly reduces the effectiveness of URCA pairs in the ocean [188].

Due to the simultaneous observation of the gravitational wave and the
electromagnetic signal from GW170817, the merger of two neutron stars in a binary
system has been identified as one of the astrophysical sites, see e.g. [190], where
the r-process [191, 192, 193, 194] operates. Particularly important to determine
nucleosynthesis in mergers is the Y, value of the ejected material that is determined
by weak processes. The initial Y, profile of the neutron stars can be determined from
beta-equilibrium. However, as the neutron stars approach each other and finally merge
the temperature increases and neutrino emission becomes very important. An accurate
prediction of the neutrino luminosities requires a description of high density neutrino-
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matter interactions [195] and its implementation in neutrino radiation transport as is
currently done in core-collapse supernova [196]. The absorption of both v, and 7,
together with electron and positron captures leads to substantial changes on the Y, of
the ejected material particularly in the polar regions [197, 198, 199, 200]. These processes
occur when the material is hot and constitutes mainly of neutrons and protons.

Another important source of material is the so-called secular ejecta originating
from the accretion disk that surrounds the central remnant produced by the merger.
If this is a long-lived neutron star, the neutrino luminosities are large enough to
affect the neutron-to-proton ratio of the ejected material [201]. If the central object
is a black-hole, the neutron-to-proton ratio is determined by a dynamical beta-
equilibrium [202] between electron, positron captures and beta-decays operating in the
accretion disk [203, 204, 205] on hot material that mainly is made of neutrons and
protons. Due to the current understanding, electron capture on nuclei does not play an
important role for r-process nucleosynthesis in neutron-star merger events.

4.4. Fate of intermediate-mass stars

The final fate of stars depend on their masses at birth. Stars with masses less than
about 8 M, advance through hydrogen and helium burning. As they suffer significant
mass losses by stellar winds their masses at the end of helium burning is not sufficient
to ignite further burning stages. They end their lives as White Dwarfs, which are
compact objects with a mass limit of 1.44 My (Chandrasekhar mass), stabilized by
electron degeneracy pressure. Stars with masses in excess of about 11 My develop a
core at the end of each burning phase which exceeds the Chandrasekhar mass. As a
consequence they can ignite the full cycle of hydrostatic burning and end their lives as
core-collapse supernovae, leaving either neutron stars or black holes as remnants. The
fate of intermediate-mass stars (8-11 M) balances on a knife edge between collapsing
into a neutron star or ending in a thermonuclear runaway which disrupts most of the
core [206]. Simulations of such stars are quite sensitive to astrophysical uncertainties
like convective mixing or mass loss rates [206]. On the other hand the major nuclear
uncertainty, related to electron capture on 2°Ne, has recently been removed as this rate,
as we have described above, is now known experimentally at the relevant astrophysical
conditions. We briefly summarize the consequences which this nuclear milestone has for
the fate of intermediate mass stars.

Intermediate mass stars go through hydrostatic hydrogen, helium and core carbon
burning, but are not massive enough to ignite further advanced burning stages. In
the center of the star a core develops which mainly consists of O and ?°Ne, with
smaller amounts of 22Na and ?#?°Mg. Due to its position on the Hertzsprung-Russell
diagram stars with such an ONe core are referred to as Super Asymptotic Giant Branch
(AGB) stars. It is important to note that cores of Super-AGB stars are more dense
than their counterparts after helium burning in more massive stars. As nuclear burning
has ceased in the ONe core its gravitational collapse is counteracted by the electron



Electron capture in stars 49

1.0 With forbidden

—— No forbidden
0.8t

M=10""Mg yr!

Figure 23. Temperature-density evolution of the ONeMg core of an intermediate
mass star. The labels indicate at which densities the URCA pairs and the electron
captures on **Mg and 2°Ne operate. The red (blue) lines show the evolution with
(without) inclusion of the forbidden ground-state-to-ground-state contribution to the
20Ne electron capture rate.The calculation assumes that the ONe core accretes a mass
of 10~ Mg, per year from ongoing hydrostatic burning. (from [52]).

degeneracy pressure. However, the densities achieved in the core result in electron
chemical potentials large enough to initiate electron capture reactions, which reduce
the pressure against collapse. Here two distinct processes play the essential role for the
development of the core. This is shown in Fig. 23 which displays the final temperature-
density evolution of the core center. First, several URCA pairs (*Mg-*Na, 2Na-23Ne,
%Na-?’Ne) operate at various phases of this final evolution. These pairs are efficient
cooling mechanism. Second, electron captures also occur on the abundant a-nuclei
24Mg and 2°Ne once the electron chemical potentials overcome the capture ) values
(the Q value of 'O is too high for electron captures at these densities). But for these
N = Z nuclei, the electron capture daughters (**Na and *°F) also capture electron
which due to their smaller () values than in the first captures occur significantly faster
than competing [-decays. Furthermore the second capture proceeds often to excited
states in their daughters which then decay by v emission to the ground states and heat
the environment (see Fig. 23). Due to its lower initial @)-value the double electron
capture on Mg proceeds at lower densities than the one on 2°Ne. Recognizing the low
temperature at the onset of electron capture on 2°Ne (about 300 keV), basically due to
the efficient URCA cooling [207], the authors of Ref. [51] pointed out that the transition
from the 2°Ne 0" ground state to the 2°F 2% ground state, although second forbidden,
could dominate the rate at core conditions as all other transitions were exponentially
suppressed by either the tail of the electron distribution or a Boltzmann factor due to
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Figure 24. Temperature (blue) and density (red) profiles of an ONe core at ignition of
oxygen fusion, calculated with (solid lines) and without (dashed lines) consideration of
the forbidden ground-state-to-ground-state transition in the 2°Ne electron capture rate.
The calculations were performed using the spherical MESA code [208] and assuming

that the ONe core accretes a mass of 1077 My per year from ongoing hydrostatic
burning. (from [52]).

The inclusion of the ‘forbidden’ ground-state-to-ground-state transition in the
electron capture rate on ?°Ne shifts the onset of this capture to lower densities before
the last epoch of URCA cooling by the ?*Na-?Ne pair (see Fig. 23). This shift in density
has, however, important impact on the fate of the star ending either as gravitational
collapse or thermonuclear explosion. This fate is determined by the competition between
electron capture and nuclear energy generation by oxygen fusion [206]. If the ignition
of oxygen (requiring temperatures in excess of 10° K) occurs at low enough densities,
the fusion generates sufficient energy to reverse the collapse and to disrupt the star in
a thermonuclear explosion. At higher densities, the deleptonization behind the burning
front is so rapid that the loss of pressure cannot be recovered by nuclear burning. In this
case the core continues to collapse, ending as a neutron star. The increase of the 2°Ne

electron capture rate due to the contribution of the forbidden transition seems to shift
the fate towards thermonuclear explosions [52]. This is demonstrated in Fig. 24 which
is based on a spherical simulation of the core evolution. In the calculation, performed
without the inclusion of the forbidden contribution to the rate, oxygen is ignited in the
center, while in the case using the experimental ?°Ne capture rate with inclusion of the
forbidden transition, the star develops an isothermal core with temperatures below the
ignition value. In this inner core double electron capture on ?°Ne continues generating
heating which leads to an off-center ignition of oxygen burning (at a radius of 58 km for
the case shown in Fig. 24). We also note that, without the forbidden contribution, the
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core reaches a higher density at ignition.

To determine the fate of the star requires to study the propagation of the burning
front, which needs a 3D hydrodynamical treatment to resolve the relevant length scales.
Such studies have been reported in [52] and all simulations, matched to the parameters
of the spherical MESA results ended in thermonuclear explosions producing an ONeFe
White Dwarf remnant. This has significant implications for the total nucleosynthesis
yields of intermediate mass stars as thermonuclear explosions eject about 0.01 Mg
more mass than gravitational collapse and intermediate mass stars are much more
abundant than heavier stars. A first exploration shows that the ejecta of thermonuclear
explosions are particularly rich in certain neutron-rich Ca, Ti, Cr isotopes and in trans-
iron elements Zn, Se and Kr [52]. This might have interesting implications for the
understanding of the early chemical evolution of our galaxy [209].

4.5. Helium flashes in accreting Helium White Dwarfs

Subluminous B stars are core-helium burning stars with thin hydrogen envelopes and
masses of about 0.5 Mg [210]. Often these stars exist in tight binaries with White
Dwarfs [211]. When the White Dwarf accretes matter from the unburned outer layers
of its companion star, also some amount of *N is present depending on the initial
metallicity of the donor star. Electron capture on N is then a decisive factor for the
fate of the accreted material.

Due to its low @ value of 0.667 MeV, electrons are captured on N once the
density of the accreted matter on the WD surface exceeds a threshold value of about
1.156 x 105 g cm™3 [212]. As the respective temperatures are rather low (T less than
a few 10® K), the capture solely proceeds by the allowed transition between the N
and “C ground states. The respective transition matrix element is known from the **C
beta decay. Coulomb corrections due to environment effects are relatively minor, but
are considered in recent astrophysical applications [212].

For the temperatures involved and for densities larger than about 10° g cm™3,
the electron capture rate is larger than the competing 5 decay and, in the helium-rich
environment, the electron capture is followed by an « capture on 4C [213]. The energy
generation by this so-called NCO reaction (*N(e™,v.)"*C(a,v)'®0) [214] — despite
some uncertainties in the a-capture rate on *C [215] — is larger than by the triple-
alpha reaction in the relevant temperature-density range. Thus, it is the NCO reaction
which triggers a rather steep rise of the temperature in the environment so that as
a second step also the triple-alpha reaction will be ignited. This finally leads to a
thermonuclear instability which is observed as helium flashes.

The evolution of these flashes depend crucially on the accretion mass flow [213].
If the mass flow is large (107® My yr™'), the energy released from the gravitational
contraction leads to heating of the environment enabling the *C nucleus to capture an
« particle fast. The electron capture process controls the NCO reaction sequence and
no significant amount of 1*C is being built up. For smaller mass flows (1079 My yr™!)
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the energy released by contraction can be radiated away, keeping the temperature in
the core low. Hence, when the core density exceeds the value for electron capture the
temperature is too low to ignite o captures on 4C. This occurs at conditions with higher
densities and after 1*N has been completely converted to “C. Simulations also show that
for smaller accretion rates, the core becomes convectively unstable. The time scale on
which the flashes develop depend also on the accretion rate and are significantly shorter
for smaller rates (a few 107 yr for 1072 Mg, yr™!)

5. Summary

In his authoritative review on core-collapse supernovae, Hans Bethe stated in 1990 [1]:
“The theory of electron capture has gone a full circle and a half.” He was referring to
the fact that in early models, capture was assumed to occur on free protons. This was
put into question by BBAL [2] who noted that the concentration of free protons during
collapse is very low and that the capture takes place on nuclei with mass numbers
A = 60-80, changing a proton in the f7/, shell to a neutron in the f5/, orbital by
allowed Gamow-Teller transition. Following Bethe, the third semi-circle is due to Fuller’s
observation that the neutron fs/, orbitals are occupied at neutron number N = 38 [17],
blocking Gamow-Teller transitions within the pf shell. Hence at the time when Bethe
wrote his famous article, electron capture in supernovae was assumed to occur on free
protons and capture on nuclei was switched off for nuclei with N > 38 [18].

As we have summarized in this manuscript, the experimental and theoretical work
of the last two decades implies that this picture is too simple. Experimental techniques
to measure Gamow-Teller strength distributions based on charge-exchange reactions
with progressively better energy resolutions — advancing from the pioneering (n,p)
reactions to much more refined (d,?He) and (¢,%He) reactions — give clear evidence
that nuclear correlations play a decisive role in the total strength, and even more, for
the fragmentation of the GT distribution, thus invalidating the Independent Particle
Model on which the early electron capture work, which was discussed and reviewed by
Bethe in 1990 [1], were based. In parallel, many-body models became available which
were capable to account for the relevant nuclear correlations and which describe the
experimental GT data quite well. Importantly, these models, and also experimental
data, imply that the GT strength is not blocked at the shell gap between the pf and
gos2 orbitals caused by strong nuclear cross-shell correlations. As a major consequence,
electron capture takes place on nuclei during the entire collapse. With this result, the
theory of electron capture has gone now two complete circles.

The evaluation of stellar electron capture for core-collapse supernovae rests on
the fact that, with progressing core density, the electron chemical potential grows
significantly faster than the average () value which dominate the core composition.
As a consequence, detailed description of the nuclear strength functions (i.e. Gamow-
Teller) are only needed for nuclei in the Fe-Ni mass range (A = 45-65), which are
most abundant during the early collapse phase, while for the neutron-rich, heavy nuclei,
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which dominate later in the collapse at higher densities, a more overall reproduction of
the strength functions (now, however, including forbidden transitions) suffice. This is a
quite fortunate situation.

For those nuclei, for which the calculation of stellar capture rates requires detailed
descriptions of the allowed strength functions (pf- and sd-shell nuclei, where the latter
occur in burning stages prior to collapse), diagonalization shell model calculations can
be performed which in general reproduce the measured GT strength functions quite well.
In fact, if the capture rates are calculated solely from the ground state distributions,
the rates obtained from data and from shell model agree within better than a factor of
2 at the relevant astrophysical conditions. The theoretical capture rates (i.e. [34, 13])
consider from excited states also from shell model calculations, accounting for the fact
that each nuclear state has its own individual strength distribution. There are no
indications that the shell model results for excited states might be less reliable than for
the ground states. However, there is concern that the procedure applied in [34] might
slightly underestimate the partition function at higher temperatures [139].

The fact that cross-shell correlations unblock Gamow-Teller transitions even in
the ground states of nuclei with proton numbers Z < 40) and neutron numbers
N > 40 has been experimentally proven by experimental data for Gamow-Teller strength
distributions and also from spectroscopic information obtained from transfer reactions.
Thus, the assumption that GT transitions are Pauli blocked for nuclei with N > 38 has
been disproven by experiment. Modern many-body models like the diagonalization shell
model (for selected nuclei) and the Shell Model Monte Carlo approach can reproduce
such cross-shell correlations. The latter approach has been adopted to determine partial
occupation numbers in large model spaces including the shell gaps at N = 40 and 50.
The capture rates were then calculated within a ‘hybrid model’ from these occupation
numbers within the framework of the Random Phase Approximation, exploiting the
fact that these heavier nuclei become abundant during the collapse at sufficiently
high densities requiring only the overall, but not the detailed reproduction of the
GT strength functions. Contributions from forbidden transitions were included, which
become progressively important with increasing density. The hybrid model indicates
that the gaps at N = 40 and 50 lead to some reduction of the capture rates, but the
rares are clearly large enough so that captures on nuclei dominate the one on free protons
during the entire collapse. This is clearly borne out in modern supernova simulations,
thus closing the second circle as referred to by Hans Bethe.

The unblocking of the GT strength at the neutron numbers N = 40 and 50 has
also been confirmed by calculations performed within the Thermal Quasiparticle RPA
approach, which consistently considers correlations up to the 2p-2h level. As cross-shell
correlations require in general correlations higher than 2p-2h, GT strength, in particular
at low excitation energies, can be missed. This translates into the observation that at
modest temperatures and densities capture rates obtained within the Thermal QRPA
are somewhat smaller than in the hybrid model. At higher temperatures and densities
the two models give very similar results, including the neutron-rich nuclei with N = 50,
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which significantly contribute to the capture process at these astrophysical conditions.
Both theoretical approaches imply that at the respective temperatures of order 7' = 1
MeV, configurations from higher shells, which are strongly reduced in the ground state,
are present in the thermally excited nuclear states and significantly unblock the GT
strength. This observation is quite important as the ground state GT distribution for
such nuclei has been experimentally observed to have nearly vanishing strength and
the electron capture rate would nearly be blocked if calculated from the ground state
distribution. While the unblocking appears to be quite solid on theoretical ground,
experimental verification is desirable.

Although core-collapse supernovae are arguably the most important astrophysical
application, electron captures play also a role in other astrophysical environments.
In thermonuclear supernovae the rate of electron captures on nuclei determine the
production yield of neutron-rich nuclei. As the relevant nuclei are those in the
Fe-Ni mass range, the experimental and theoretical (by diagonalization shell model
calculations) progress have constrained the relevant capture rates significantly up to a
degree that improved description of details of the GT strength distribution changed the
nucleosynthesis yields by only a few percent. The description of capture rates for sd-shell
nuclei, again based on shell model calculations and data, has reached a similar degree
of accuracy which appears to be sufficient for the simulation of this process for the core
evolution of intermediate mass stars. However, attention has been drawn recently to
the fact that in the low-temperature-low-density environment of such stellar cores only
a few transitions dominate the capture rates and that in exceptional situations also a
forbidden transition can noticeably contribute to the rate. Such a situation happens for
the capture on ?°Ne where the second forbidden transition from the 2°Ne ground-state
to the 2°F ground state enhances the capture rate just at the most crucial conditions
for the core evolution. The transition strength has now been measured so that the
entire electron capture rate on ?°Ne is now experimentally determined in the relevant
temperature-density regime.

Double electron captures, initiated on abundant even-even nuclei, are relevant for
the crust evolution of accreting neutron stars. The process is triggered once the electron
chemical potential (i.e. the core density) is high enough for electrons to overcome the @
value between the even-even mother nucleus and the odd-odd daughter. As the @) value
of the second capture step on the odd-odd nucleus is smaller due to nuclear pairing, this
energy gain can be transferred into crust heating. For simulations of the crust evolution,
generally one is not so much interested in the capture rate (which is often fasted than
competing time scales), but in the portion of the energy gain which is translated into
heat. As this can involve quite exotic neutron-rich nuclei a detailed determination of
this energy portion is a formidable nuclear structure challenge and current models are
likely too uncertain.

Despite the progress which has been achieved in recent years in the determination
of stellar electron capture rates, further improvements are certainly desirable and, in
specific cases, needed. Additional precision measurements of Gamow-Teller strength
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distributions for sd- and pf-shell nuclei will lead to further improvements and to
refinements of the shell model calculations, however, it is not expected that these
improvements will have significant impact on supernova dynamics or nucleosynthesis.
It is, however, desirable that the gap of nuclei (with mass numbers A = 38-45), for
which no shell model electron capture rates exist, should be filled. Such calculations
are challenging as they require an accurate description of cross-shell correlations. They
would certainly benefit from some detailed experimental GT distribution measurements.
A particularly interesting and important case is *Ar, which serves as material for
neutrino detectors like ICARUS [216, 217, 218], which holds potential for the detection
of supernova neutrinos. Detailed GT_ data from (p,n) [219] and (*He,t¢) charge-
exchange data [220] and M1 data from (7,') photon scattering reactions [221] can
serve as experimental constraints for the determination of charged-current (v, e~) and
neutral-current (v, 1) cross sections on “°Ar. However, GT, data, which are relevant
for electron capture and charged-current (,,e™) cross sections do not exist yet. In
principle, forbidden transitions, not considered in the shell model electron capture rates
for sd and pf-shell nuclei, can contribute to the rates. But such contributions will
only be relevant in core-collapse supernovae at higher temperatures than those at which
these nuclei dominate the core composition. The case of ?°Ne, for which a second
forbidden transition dominates the capture rate at the relevant conditions during the
core evolution of intermediate mass stars, shows, however, that such exceptional cases
can occur in cases of rather low temperatures where only a few transitions contribute to
the capture rate. No other case has yet been identified, however, caution is asked for.
The shell gaps at neutron numbers N = 40 and 50 do not block electron capture
on nuclei in current supernova models. In both cases, this is based on modern many-
body models which at N = 40 overcome the gap by nucleon correlations, while for
N = 50 thermal excitations are the main unblocking mechanism (plus contributions
from other multipoles than Gamow-Teller). For N = 40, the finding is supported
by experimental data, although yet quite limited. It would be desirable if the data
pool could be enlarged. It is particularly tempting that recent developments open
up the measurements of GT distributions for unstable neutron-rich nuclei, based on
charge-exchange reactions performed in inverse kinematics. Such additional data would
certainly be welcome to further constrain models. At N = 50, theoretical models
imply that cross-shell correlations induced by thermal excitation render ground state GT
distributions not applicable for the calculation of capture rates at the finite temperatures
which exist in the astrophysical environment when these heavier and very neutron-rich
nuclei dominate the capture process. Although the two models which have been applied
to N = 50 nuclei agree rather well in their rate predictions, improvements of the models
are conceivable. On one hand, the finite-temperature QRPA model should be extended
to non-spherical nuclei and, in the midterm, also to include higher correlations like in
second QRPA approach. On the other hand, the Shell Model Monte Carlo approach
is uniquely suited to study nuclear properties at the finite temperatures of relevance.
It might be interesting to calculate the GT strength function at those temperatures
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directly within the SMMC approach. This presupposes the handling of a numerically
ill-defined inverse Laplace transformation. First steps in this direction have been taken
in Ref. [222].

Of course, it is always conceivable that observations or astrophysical simulations
of supernovae or other astrophysical objects point to the need of particular electron
capture rates which then require specific experimental and theoretical attention.

In summary, the description of stellar electron capture has come a long and winding
way. The experimental and theoretical progress of recent years has probably firmly
established that electron capture proceeds on nuclei during core-collapse supernovae.
The circle, as attributed to by Hans Bethe, might have come to an end.
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