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Abstract

Chordal graphs are a widely studied graph class, with ap-
plications in several areas of computer science, including
structural learning of Bayesian networks. Many problems
that are hard on general graphs become solvable on chordal
graphs. The random generation of instances of chordal graphs
for testing these algorithms is often required. Nevertheless,
there are only few known algorithms that generate random
chordal graphs, and, as far as we know, none of them gener-
ate chordal graphs uniformly at random (where each chordal
graph appears with equal probability). In this paper we pro-
pose a Markov chain Monte Carlo (MCMC) method to sam-
ple connected chordal graphs uniformly at random. Addi-
tionally, we propose a Markov chain that generates con-
nected chordal graphs with a bounded treewidth uniformly
at random. Bounding the treewidth parameter (which bounds
the largest clique) has direct implications on the running
time of various algorithms on chordal graphs. For each of
the proposed Markov chains we prove that they are ergodic
and therefore converge to the uniform distribution. Finally,
as initial evidence that the Markov chains have the poten-
tial to mix rapidly, we prove that the chain on graphs with
bounded treewidth mixes rapidly for trees (chordal graphs
with treewidth bound of one).

Introduction

Chordal graphs arise in practical applications from a wide
variety of fields, such as database management, computer
vision, and Bayesian networks. Counting Markov equivalent
DAGs in chordal graphs plays an important role in struc-
tural learning of Bayesian networks (Ghassami et al. 2019;
Talvitie and Koivisto 2019). Generating chordal graphs uni-
formly at random is necessary for testing the performance
of those algorithms. To the best of our knowledge, exist-
ing algorithms generating chordal graphs sample chordal
graph instances far from the uniform distribution (Marken-
zon, Vernet, and Araujo 2008). This means that testing an
algorithm’s performance on such samples might give a false
sense of security, since it is performed only on graph in-
stances that are likely to be generated. In this paper, we ad-
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dress this weakness by proposing techniques that generate
connected chordal graphs uniformly at random.

Chordal graphs are a very important concept in graphi-
cal models, and the running times of many learning and in-
ference algorithms depend directly on the treewidth. Hence,
instead of sampling all chordal graphs, one might want
to sample only those with bounded treewidth. Therefore,
we also focus on generating, uniformly at random, chordal
graphs with a fixed treewidth bound. Previously known al-
gorithms can be modified to generate chordal graphs with
node and edge bounds, but not a treewidth bound. Of inde-
pendent interest is also the relation of this problem to the
well-studied problems of sampling spanning trees of a given
graph (Broder 1989) and of sampling triangulations of a con-
vex polygon (McShine and Tetali 1999) — these problems
sample special chordal graphs of treewidth one and two, re-
spectively, but use different Markov chains.

Brief Preliminaries

A graph is said to be chordal if each of its cycles of length
four and greater has a chord, i.e., all induced cycles are of
length three. Let €2,, be the set of connected chordal graphs
with n vertices. A vertex v is called simplicial if all its neigh-
bors form a clique. The removal of a simplicial vertex will
result in a graph in ,,_;. Our MCMC method aims to con-
struct a Markov chain whose stationary distribution 7(G) is
|2,| 7! for all G € €,. Achieving a desired distribution is
typically done by the Metropolis-Hasting algorithm; in our
case the distribution is uniform and, therefore, it suffices if
our Markov chain is symmetric. The tricky part is to ensure
that the Markov chain connects the state space, that is, that
one can transform any state of the Markov chain into any
other state using the steps of the chain. The mixing time of
a Markov chain is defined as the number of steps the chain
needs to take to get “close” to its stationary distribution.

Results

Efficient algorithms exist for deciding whether a graph is
chordal. Therefore, a Markov chain for all chordal graphs
can work as follow: Choose a random pair of vertices. If
there is an edge between them, remove it if it keeps the graph
chordal. If there is not an edge between them, add the edge



to the graph, if it is still chordal. This Markov chain con-
nects the state space since one can use the theory of chordal
graphs to find edges to remove, one by one, to get to a tree,
and then design a mechanism how to convert one tree into
another tree. This procedure is reminiscent to what we de-
scribe below for chordal graphs of bounded treewidth, hence
we focus on the bounded treewidth case in this paper.

From now on, we will assume that we have a constant
r bounding the treewidth, and, slightly abusing the nota-
tion, we denote by (2, all connected chordal graphs with
treewidth bounded by r. We aim to design a Markov chain
that samples graphs from €2,, uniformly at random.

Algorithm 1 One step transition of the Markov chain

1: Pick a vertex v uniformly at random (u.a.r.).
2: if u is simplicial then
3: Pick a set W of r vertices other than « u.a.r.
Choose a random nonempty subset W' of W.
if W’ forms a clique then
Deattach u from its current neighbors.
Attach u to W',
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Every step of this chain happens with the same probabil-
ity, hence the Markov chain is symmetric. It can convert the
current chordal graph into a tree by always choosing W' of
size 1. Hence, to prove the connectivity of the chain, it re-
mains to show how it can convert one tree into another tree.

Therefore, we focus on r = 1 (sampling random (labeled)
trees with n vertices uniformly at random), where we can not
only formally prove the connectivity, but we can also give a
polynomial mixing time bound.

Along the lines of the decomposition technique for
bounding mixing times, we will decompose our state space
into sets 0¥ containing chordal graphs on n vertices with
exactly k simplicial vertices (and treewidth bound r).

We show that the above Markov chain, when restricted
to only states in QF (that is, any state not in Q¥ will be re-
jected), connects the state space and mixes rapidly, as long
as k # 2 (for k = 2 every such chordal graph is a path) and
k # n — 1 (star graphs).

We will use the following notation. For G € Qﬁ let SC
be the set of its simplicial vertices and let S§ C S be the
simplicial vertices whose neighbor is of degree 2. Whenever
clear from the context, we will omit the superscript G.

Lemma 1. The Markov chain over Qﬁ for3 <k<n-2
connects the state space, which has diameter O(n?).

Proof. (Sketch.) Let the vertex set be {v1, ..., v, }. We will
show that the chain can convert every graph in G € QF into
the canonical graph, which has v as its “root” and contains
edges (v1,v;) for2 < j < k+1and (vj41,v;) fork+1 <
7 < n. This graph is a special case of a comet graph, which
consists of a star graph with k vertices, and a path of n — k
vertices from the center of the star.

We will first show that any graph in QF can be trans-
formed, using steps of the Markov chain, to a comet graph
with vy at the center of the star. We will first achieve that
vy € S.Ifv; € S, and there is a u € Sy, we just reconnect

u to v; (notice that the number of simplicial vertices did not
change, since u was in Sy). If there is no such u, then sup-
pose we root the tree at v; and u be the leaf furthest from
v1. This leaf has siblings (since it is not in Sy), we reconnect
each of the siblings to an arbitrary vertex in G — S. Now we
have u € Sy and we proceed as before.

Let ¢ be a simplicial vertex. We will process the current
simplicial vertices one by one. For a simplicial vertex u #
t,if u € Sy, reconnect u to t and let t := wu; otherwise
reconnect u to v;. Both changes will keep the number of
simplicial vertices unchanged. The final step is to transform
the current “comet” graph into the canonical form. We omit
the details due to the space constraints. O

Lemma 2. The mixing time of the Markov chain on QF for
3<k<n—2isO(knlogn).

Proof. (Sketch.) We use the path coupling technique (Bub-
ley and Dyer 1997). We say that two trees X;,Y; € QF are
adjacent if they differ by exactly one Markov chain step. Let
u be that different vertex, v, be the parent of v in X, v, be
the parent of u in Y;. The coupling chooses the same pair of
vertices v/, w’ in both X; and Y;: v’ will be deattached from
its current neighbor and attached to w’.

There are two possible cases. The first is u € Sy, then
the removal of u will make v;,v, simplicial. So, in this
case the good steps (when the distance between X;,; and
Yi+1 decreases) are when X; removes (u, v, ), Y; removes
(u,vy), and both add (u, w) and w € S. Another possibility
isu € S — .Sy, in which case the good steps are when X re-
moves (u, vy ), Yz removes (u, vy ), and both add (u, w) and
w ¢ S. It can be shown by induction that the number of good
steps is strictly larger than the number of bad steps. O
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