
Analyzing the Impact of Lossy Compressor
Variability on Checkpointing Scientific Simulations

Pavlo Triantafyllides
Holcombe Department of Electrical

and Computer Engineering
Clemson University

Clemson, South Carolina 29634
Email: ptriant@clemson.edu

Tasmia Reza
Holcombe Department of Electrical

and Computer Engineering
Clemson University

Clemson, South Carolina 29634
Email: treza@clemson.edu

Jon C. Calhoun
Holcombe Department of Electrical

and Computer Engineering
Clemson University

Clemson, South Carolina 29634
Email: jonccal@clemson.edu

Abstract—Lossy compression algorithms are effective tools to
reduce the size of high-performance computing data sets. As es-
tablished lossy compressors such as SZ and ZFP evolve, they seek
to improve the compression/decompression bandwidth and the
compression ratio. Algorithm improvements may alter the spatial
distribution of errors in the compressed data even when using the
same error bound and error bound type. If HPC applications are
to compute on lossy compressed data, application users require an
understanding of how the performance and spatial distribution
of error changes. We explore how spatial distributions of error,
compression/decompression bandwidth, and compression ratio
change for HPC data sets from the applications PlasComCM and
Nek5000 between various versions of SZ and ZFP. In addition, we
explore how the spatial distribution of error impacts application
correctness when restarting from lossy compressed checkpoints.
We verify that known approaches to selecting error tolerances
for lossy compressed checkpointing are robust to compressor
selection and in the face of changes in the distribution of error.

I. INTRODUCTION

High-performance computing (HPC) systems and applica-
tions have become central to rapid advancement in many fields
of computational science and engineering, and can generate
terabytes of data. Due to limitations on the available storage
and I/O bandwidth on HPC systems, data reduction tech-
niques — e.g., compression and decimation — are effective
at reducing the volume of data written to the parallel file
system. However, lossless compression approaches such as
FPC [1], fp-zip [2], Gzip [3], and Zstd [4] cannot sufficiently
reduce this volume for HPC use cases. On the other hand,
lossy compression algorithms trade inaccuracies in the data
for larger reductions in data size [5], [6].

Exascale systems will put further pressure on the memory
system by increasing the total memory size of the system.
In addition, these systems are expected to be characterized
by lower mean-time between failures (MTBF) [7]. This puts
extra pressure on the file system to handle more frequent
checkpointing [8]. Current approaches to checkpoint-restart
effectively utilize the complex memory hierarchy [9]–[12].
Nonetheless, employing data compression reduces checkpoint
size and checkpointing time on all levels — i.e., local in-

memory, neighbor, burst buffer, and parallel file system.
Using lossy compression for checkpoint-restart poses

unique challenges for correctness. When a failure occurs
that necessitates recovery from a checkpoint, error exists in
the state variables that are used to advance the simulation.
Therefore, the magnitude and distribution of error in these
variables determines whether the restarted simulation advances
correctly. Prior approaches use trial-and-error to determine
what data can be lossy compressed and the acceptable error
bounds [13]–[15] or establishes bounds based on the simula-
tion’s numerical accuracy [16], [17].

As development on lossy compression algorithms pro-
gresses, developers seek to improve the compression band-
width, decompression bandwidth, and compression ratio of
their compressors. In pursuit of these goals, the magnitude
and distribution of error introduced in lossy compressed data
can change. Understanding how lossy compressors change
over time allows application users to understand how best
to validate results when restarting from lossy compressed
checkpoints (LCCs). If newer versions of a compressor yield
compression errors that are identical to the prior versions, then
little work is required to use the new version. However, if there
are noticeable differences in the added compression errors,
then revalidation of the lossy compression scheme may be
required.

This paper investigates how variability of lossy compression
algorithms impacts the ability to use lossy compression for
checkpoint-restart. Our contributions are:

• validation of the robustness of prior work [16] that estab-
lishes bounds on acceptable compression error tolerances
when considering changes in the compressor and different
versions of the same lossy compressor;

• exploration of the variability of lossy compression algo-
rithms across several generations with respect to perfor-
mance and distribution of compression error;

• and analysis of the deviation in HPC data when restarting
from lossy compressed checkpoints.

II. MOTIVATION

Prior work [16] establishes a region of valid error tolerances
to be used in lossy compressed checkpoint-restart (LCCR),978-1-7281-4734-5/19/$31.00 c©2019 IEEE

1.0 0.5 0.0 0.5 1.0
Compression Error 1e 7

0.0

0.2

0.4

0.6

0.8

1.0
Pe

rc
en

ta
ge

(a) SZ-1.3

1.0 0.5 0.0 0.5 1.0
Compression Error 1e 7

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Pe
rc

en
ta

ge

(b) SZ-1.4.11

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Compression Error 1e 7

0

1

2

3

4

Pe
rc

en
ta

ge

(c) SZ-2.0

1.0 0.5 0.0 0.5 1.0
Compression Error 1e 7

0.0

0.5

1.0

1.5

2.0

Pe
rc

en
ta

ge

(d) ZFP-0.5.4

Fig. 1: Error distribution in x-component of momenta after evolving PlasComCM simulation for 20,540 time-steps after lossy restart.

Checkpoint Error
Application Problem Size Bound

PlasComCM [18] 2D homogeneous Euler flow past a fixed cylinder with non-periodic boundaries 4 MB 1e−6
Nek5000 [19] Laminar 3D Navier-Stokes channel flow with periodic boundaries 16 MB 1e−7

Isabel [20] Data set from Hurricane simulation 95 MB 1e−6

TABLE I: Test Applications

that upon restart do not yield error above the simulation’s
accuracy level dictated by the spatial discretization and choice
of numerical method. The work claims the methodology is
valid for any lossy compressor with absolute error bounding,
but only presents results using SZ-1.3. Testing with addi-
tional compressors is required to verify its generality. Prior
work [21] looks at error distribution produced by different
lossy compressors after LCCR, but does not consider how the
error distribution changes through successive iterations after
recovery from a LCC.

Fig. 1 shows the distribution of compression errors in the
x-component of momenta from PlasComCM [18] (see Sec-
tion IV) at time-step 35,540. This figure shows that different
versions of the same compressor can vary wildly in error
distribution, indicating that generalizations made for an old
version of a lossy compressor do not necessarily apply to
newer versions. This error variation between versions of a
single compressor requires additional analysis.

We validate the assertion made in [16] by testing the
error propagation and attenuation for different versions of
SZ and ZFP. We expand on [16] and [21] by considering
how the error distribution changes after with each time-step
after recovering two production applications used in prior
work [16], PlasComCM [18] and Nek5000 [19], from LCCRs
using each version of SZ and ZFP. In addition, we identify how
the performance of each compressor improves and degrades
across successive versions when compressing data from data
sets of increasing size (see Table I).

III. LOSSY COMPRESSION ALGORITHMS

We test several versions of SZ and ZFP. We use SZ-1.3
because it is the last version of SZ that uses the original
algorithm [5]; SZ-1.4.9b because it uses a new algorithm that
compresses using multidimensional analysis [22]; SZ-1.4.11
because it includes an increase to the number of allowable
data points; and SZ-2.0 because it uses a new algorithm that

combines ideas from the previous algorithms [23]. We test
with ZFP-0.4.1 because it is the oldest version of ZFP that
obeys the current ZFP API and also works for 3D arrays
that are not multiples of four; ZFP-0.5.1 because it adds an
optimization to encode blocks with values of zero or values
with magnitudes less than the specified tolerance using a single
bit; and ZFP-0.5.4 because it is the latest and contains slight
improvements for previously introduced features [24].

IV. EXPERIMENTAL RESULTS

A. Testing Methodology

All experiments are run on Clemson’s Palmetto Cluster [25]
with nodes comprising: two Intel Xeon Gold 6148 CPUs at
2.4 GHz and 372 GB DDR4 RAM. GCC 4.8.1 compiles all
lossy compressors and test applications in Table I. We use the
Isabel data only to show impact of large data size. We select
these test applications because they highlight error dissipation
in PlasComCM and error retention with Nek5000 [16].

B. Impact on Compressor Performance

Newer releases of lossy compression algorithms add new
features and improve performance. Users need to know how
the newer versions perform in relation to the previous versions
with respect to the compression ratio, compression bandwidth,
and decompression bandwidth for effective integration.

Previous work [16] validates a compression error toler-
ance selection methodology using SZ-1.3 but argues that the
methodology extends to any lossy compressor able to respect
and absolute error bound. We provide further validation of
this work by using SZ-1.3 and ZFP-0.4.1 as baselines to
show how newer versions of SZ and ZFP perform on our
test applications (see Table I). Thus, we explore the impact
of the compressors on small, medium, and large data sets.
To analyze how newer versions function as replacements for
already validated workflows, we set up our configuration files
as similarly as possible to the baseline.

PlasComCM Nek5000 Isabel
Data Set

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

R
el

at
iv

e
C

om
pr

es
si

on
 R

at
io

3.
9

1.
8

1.
8

1.
8

1.
4

1.
4

1.
4

6.
1 6.

6
6.

7
5.

9 1.
7

1.
7

1.
6

10
3

12
4

10
8

12
6

31 38 38

SZ-1.3
SZ-1.4.9-beta
SZ-1.4.11.0

SZ-2.0.2.1
ZFP-0.4.1

ZFP-0.5.1
ZFP-0.5.4

(a) Compression Ratio.

PlasComCM Nek5000 Isabel
Data Set

0

1

2

3

4

5

R
el

at
iv

e
C

om
pr

es
si

on
 B

W

28
1.

4
0.

3
1.

2
51 50 51 46

3 54
6

52
1

44
1

14
7

14
8

15
9

6.
8

25 26
27

16
4 17

5
17

7

SZ-1.3
SZ-1.4.9-beta
SZ-1.4.11.0

SZ-2.0.2.1
ZFP-0.4.1

ZFP-0.5.1
ZFP-0.5.4

(b) Compression Bandwidth (MB/s).

PlasComCM Nek5000 Isabel
Data Set

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

R
el

at
iv

e
D

ec
om

pr
es

si
on

 B
W

21
5

39
1.

4
15

10
7

10
4

10
7

17
15

99
4

87
2

56
2

45
1

45
8 49

2

15
0

80 81
98

26
6

29
4

29
6

SZ-1.3
SZ-1.4.9-beta
SZ-1.4.11.0

SZ-2.0.2.1
ZFP-0.4.1

ZFP-0.5.1
ZFP-0.5.4

(c) Decompression Bandwidth (MB/s).

Fig. 2: Relative performance of newer versions of SZ and ZFP to their baseline. Raw averages shown above lines bars.

In order to determine how performance metrics such as
compression ratio and compression and decompression band-
width change across versions, we collect data across 2550
time-steps from PlascomCM, 300 time-steps from Nek5000,
and one time-step of the hurricane Isabel data set. We com-
press and decompress the time-step data using each compres-
sor with an absolute error bound. When compressing the data
sets in Table I, we use established bounds from literature [16],
[20]. Averaging each metric across all variables for each
compressor version results in each version having a single
value for each metric at each time-step. Normalizing at each
time-step against the corresponding metric and time-step from
the baseline compressor, then averaging across all time-steps
determines if performance improves with newer versions of
each compressor. We compute the averages in this way because
the compression ratios for the PlascomCM and Isabel data sets
vary by orders of magnitude between variables.

Fig. 2 shows that as the data size increases, newer versions
of SZ and ZFP show an increase in performance over their
baselines, except for the decompression bandwidth for newer
versions of SZ. Although the decompression bandwidth for
newer versions of SZ is no better than the baseline in our tests,
its performance relative to the baseline does slightly improve
across successive versions. The newer ZFP versions perform
consistently for the PlascomCM and Nek5000 data sets and
show slight improvements in relative performance as the data
size increases. Decompression bandwidth benefits the most for
new versions of ZFP.

SZ is more sensitive to changes in data size, where as
ZFP shows more stable performance across data sizes. For
small data sets, the newer SZ versions perform worse than the
baseline and should not be used in those circumstances. Newer
versions of SZ are better suited to large data sets than previous
versions. This highlights SZ’s design focus on targeting large
data volumes that bottleneck large-scale systems, as seen in
the recent algorithm changes. The algorithm underlying ZFP
has been more stable, as indicated by more consistent perfor-
mance. Newer versions that better compress special cases —
e.g., such as blocks of all zeros — help ZFP perform better
on larger data sets that leverage more of these optimizations.

While the newer versions of SZ show lower decompression
bandwidth, they provide better compression and significantly

better compression bandwidth for large data sets than the
baseline. This indicates that these versions are much better
for checkpointing or storing for analysis/archiving large data
sets. Because the decompression bandwidth is lower than the
SZ-1.3 baseline, recovery from a lossy compressed checkpoint
is a greater burden with newer versions of SZ. ZFP’s consistent
compression and decompression bandwidth irrespective of file
size combined with its amenability to hardware implementa-
tion [6] indicate that it is well suited for memory compression
and network communication compression.

We conclude that ZFP offers more stability that SZ. How-
ever, as the algorithm in SZ stabilizes, performance variation
should stabilize as well.

C. Impact on HPC Data

Prior work [16] verifies correctness by computing the max-
norm between the state variables and ensuring it is less than
the simulation’s level of accuracy. This analysis shows that
there are differences in how the simulation responds to the
compression error upon restart. However, the max-norm is
only a point-wise measure of deviation in the state variables
and does not account for how common this deviation is.
Investigating deviation in more detail offers insight as to
how statistical properties of the simulation may change when
restarting from an LCC.

1) PlasComCM

Fig. 3(a) shows the evolution of mean error for the x-
component of momenta in PlasComCM (other variables ex-
hibit similar behavior). There is no deviation in the state
variables before restart at time-step 15,000. Over time, as
erroneous flow leaves the domain due to non-periodic bound-
ary conditions, the mean errors move toward zero. Until
this occurs, statistics computed with this data are perturbed.
Restarting from the second LCC at time 30,000 causes similar
mean errors that reduce over time. The magnitude of error in
all the variables is always less than the simulation’s accuracy
of 1.8e−5. Thus, yielding numerically equivalent runs to a
simulation using lossless compression [16].

Investigating the standard deviation in the mean error shows
noticeable differences between SZ and ZFP and between
different version of SZ. For example, SZ-1.3 produces the

0 10000 20000 30000 40000
Simulation Time

1.5

1.0

0.5

0.0

0.5

1.0

1.5
M

ea
n

Er
ro

r
1e 7

SZ-1.3
SZ-1.4.9
SZ-1.4.11
SZ-2.0
ZFP-0.5.4

(a) PlasComCM: x-momenta.

0 5000 1000015000200002500030000
Simulation Time

1.0

0.5

0.0

0.5

M
ea

n
Er

ro
r

1e 7
SZ-1.3
SZ-1.4.9
SZ-1.4.11
SZ-2.0
ZFP-0.5.4

(b) Nek5000: x-velocity.

Fig. 3: Mean error in select variables from between PlasComCM and
Nek5000 simulations restarting from lossy compressed checkpoints
compared to simulations restarting from normal checkpoints. The
shaded region about the mean indicates the standard deviation.

largest spread in distribution of compression error. Newer
versions of SZ greatly improve on this spread. Over time, the
standard deviation in the compression error for newer versions
of SZ reduces while SZ-1.3’s standard deviation increases.
The best SZ version with respect to mean error and standard
deviation is SZ-1.4.9. ZFP behaves most similarly to SZ-1.3
as the standard deviation in mean error grows over time.

2) Nek5000

Fig. 3(b) shows the evolution of the average error for the
x-component of velocity for Nek5000. As with PlasComCM,
there is no deviation in the state variables before the first restart
at time-step 1,500. At this point the mean error deviates from
zero and remains there for the remainder of the simulation.
After the second restart at time-step 11,500, the mean error
deviates further, and is most evident in SZ-1.4.11. Comparing
the mean error for the other SZ versions to SZ-1.3, SZ-1.4.9
performs the best. Because the magnitude of error in the
simulation checkpointed using ZFP is noticeably lower than
that in the simulations checkpointed using versions of SZ, ZFP
outperforms SZ. For all variables, the magnitude of error is
always less than the simulation’s accuracy of 1e−5. Thus,
yielding numerically equivalent runs to a simulation using
lossless compression [16].

Examining the standard deviation of mean error in Fig. 3
highlights notable physical properties of the simulation,
namely periodic boundary conditions and direction of flow.
For all state variables and compressors, the standard deviation
increases with successive restarts and remains nearly constant
as the simulation evolves. This indicates that the error does
not leaving the domain due to the selection of periodic
boundary conditions. For this simulation, the fluid flows in
the x direction. Because this variable has a large range, it
has a unique distribution of error. The y and z-components
(not shown) of velocity have similar distributions of values
and therefore have similar distributions of error. The pressure
variable’s values (not shown) are fairly uniform which leads
to a low standard deviation in the mean error.

D. Discussion

Comparing the distribution of errors in the PlasComCM
and Nek5000 simulations highlight the importance of physical

properties on the attenuation and propagation of compression
error. When using LCCR with simulations using periodic
boundary conditions, simulations must ensure that persistent
deviations do not impact accuracy with repeated restarts.

Although not required in these simulations, conservation
laws would not be persevered as the mean error for all the
state variables differs from zero. This conveys the need for
further exploration of how statistical properties change when
advancing the simulation with lossy compressed data.

V. RELATED WORK

Recent work explores the error distribution of various
lossy compression algorithms when compressing HPC data
and shows that the distribution of compression errors no-
ticeably changes between compressors [21]. Our work ex-
plores how the variability in the error distribution changes
between different versions of the same compressor and how
this change impacts correctness of simulations that use lossy
compressed checkpoint-restart. Analyzing the performance of
lossy compression algorithms helps create performance mod-
els and define use cases [16], [26]–[28]. Prior approaches
explore trial-and-error approaches for selecting the compres-
sor’s error bound for checkpoint-restart [13], [14], in-line
computation [15], or data analytics [29]–[31]. Other work
explores how different error bounding metrics impact floating-
point truncation error [32] and the resulting distribution of
compression error [21] and how to define error tolerance
selection methodologies for checkpointing [16], [17].

VI. CONCLUSION

Prior work [16] details an error tolerance selection method-
ology, claiming that it is robust to selection of any lossy
compressor with absolute error bounding. We further explore
its validity, by restarting PlascomCM [18] and Nek5000 [19]
from LCCs generated by several versions of SZ and ZFP, and
analyzing how the error distribution changes across time steps.
When considering the distribution of errors, newer versions of
SZ improve over SZ-1.3 by having a lower standard deviation
in the mean error of the state variables. ZFP yields almost
identical distribution of errors, which allows for easy transition
to newer versions without workflow revalidation. Because
the error stays well within tolerance for all time-steps, we
conclude that the methodology is robust to selection of lossy
compressor. In addition, our experimental results show that
new versions of the SZ compressor yield better performance on
larger data sets, sacrificing performance on smaller data sets.
New versions of ZFP generally perform better than previous
versions in all metrics when compressing data sets of any size.

ACKNOWLEDGEMENTS

Hurricane Isabel data produced by the Weather Research
and Forecast (WRF) model, courtesy of NCAR, and the U.S.
National Science Foundation (NSF). This material is based
upon work supported by the National Science Foundation
under Grant No. SHF-1910197.

REFERENCES

[1] M. Burtscher and P. Ratanaworabhan, “High throughput compression of
double-precision floating-point data,” in Data Compression Conference,
2007. DCC ’07, March 2007, pp. 293–302.

[2] P. Lindstrom and M. Isenburg, “Fast and efficient compression
of floating-point data,” Visualization and Computer Graphics, IEEE
Transactions on, vol. 12, no. 5, pp. 1245–1250, 2006. [Online].
Available: http://dx.doi.org/10.1109/tvcg.2006.143

[3] P. Deutsch, “Gzip file format specification version 4.3,” United States,
Tech. Rep., 1996.

[4] Y. Collet and M. Kucherawy, “Zstandard Compression and the
application/zstd Media Type,” RFC 8478, Oct. 2018. [Online].
Available: https://rfc-editor.org/rfc/rfc8478.txt

[5] S. Di and F. Cappello, “Fast error-bounded lossy HPC data
compression with SZ,” in 2016 IEEE International Parallel and
Distributed Processing Symposium, IPDPS 2016, Chicago, IL,
USA, May 23-27, 2016, 2016, pp. 730–739. [Online]. Available:
https://doi.org/10.1109/IPDPS.2016.11

[6] P. Lindstrom, “Fixed-rate compressed floating-point arrays,” IEEE
Transactions on Visualization and Computer Graphics, vol. 20, no. 12,
pp. 2674–2683, Dec 2014.

[7] M. Snir, R. W. Wisniewski, J. A. Abraham, S. V. Adve, S. Bagchi,
P. Balaji, J. Belak, P. Bose, F. Cappello, B. Carlson, A. A. Chien,
P. Coteus, N. A. DeBardeleben, P. C. Diniz, C. Engelmann, M. Erez,
S. Fazzari, A. Geist, R. Gupta, F. Johnson, S. Krishnamoorthy, S. Leyf-
fer, D. Liberty, S. Mitra, T. Munson, R. Schreiber, J. Stearley, and E. V.
Hensbergen, “Addressing failures in exascale computing,” International
Journal of High Performance Computing Applications, vol. 28, no. 2,
pp. 127 – 171, May 2014.

[8] F. Cappello, A. Geist, B. Gropp, L. Kale, B. Kramer, and M. Snir,
“Toward exascale resilience,” Int. J. High Perform. Comput. Appl.,
vol. 23, no. 4, pp. 374–388, Nov. 2009. [Online]. Available:
http://dx.doi.org/10.1177/1094342009347767

[9] L. Bautista-Gomez, S. Tsuboi, D. Komatitsch, F. Cappello,
N. Maruyama, and S. Matsuoka, “FTI: high performance fault tolerance
interface for hybrid systems,” in Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage and
Analysis, ser. SC ’11. New York, NY, USA: ACM, 2011, pp. 32:1–
32:32. [Online]. Available: http://doi.acm.org/10.1145/2063384.2063427

[10] A. Moody, G. Bronevetsky, K. Mohror, and B. R. d. Supinski, “Design,
modeling, and evaluation of a scalable multi-level checkpointing
system,” in Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing, Networking, Storage
and Analysis, ser. SC ’10. Washington, DC, USA: IEEE Computer
Society, 2010, pp. 1–11. [Online]. Available: http://dx.doi.org/10.1109/
SC.2010.18

[11] “Very-low overhead checkpointing system,” https://github.com/ecp-
veloc/veloc, accessed: July 25, 2018.

[12] N. Liu, J. Cope, P. H. Carns, C. D. Carothers, R. B. Ross, G. Grider,
A. Crume, and C. Maltzahn, “On the role of burst buffers in
leadership-class storage systems,” in IEEE 28th Symposium on Mass
Storage Systems and Technologies, MSST 2012, April 16-20, 2012,
Asilomar Conference Grounds, Pacific Grove, CA, USA, 2012, pp. 1–11.
[Online]. Available: http://dx.doi.org/10.1109/MSST.2012.6232369

[13] X. Ni, T. Islam, K. Mohror, A. Moody, and L. V. Kale, “Lossy
compression for checkpointing: Fallible or feasible?” in Poster Session
of the 2014 ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’14. Washington,
DC, USA: IEEE Computer Society, 2014.

[14] N. Sasaki, K. Sato, T. Endo, and S. Matsuoka, “Exploration
of lossy compression for application-level checkpoint/restart,” in
Proceedings of the 2015 IEEE International Parallel and Distributed
Processing Symposium, ser. IPDPS ’15. Washington, DC, USA:
IEEE Computer Society, 2015, pp. 914–922. [Online]. Available:
http://dx.doi.org/10.1109/IPDPS.2015.67

[15] D. Laney, S. Langer, C. Weber, P. Lindstrom, and A. Wegener,
“Assessing the effects of data compression in simulations using
physically motivated metrics,” in Proceedings of the International
Conference on High Performance Computing, Networking, Storage and
Analysis, ser. SC ’13. New York, NY, USA: ACM, 2013, pp. 76:1–
76:12. [Online]. Available: http://doi.acm.org/10.1145/2503210.2503283

[16] J. Calhoun, F. Cappello, L. N. Olson, M. Snir, and W. D.
Gropp, “Exploring the feasibility of lossy compression for pde

simulations,” The International Journal of High Performance Computing
Applications, vol. 33, no. 2, pp. 397–410, 2019. [Online]. Available:
https://doi.org/10.1177/1094342018762036

[17] D. Tao, S. Di, X. Liang, Z. Chen, and F. Cappello, “Improving
performance of iterative methods by lossy checkponting,” in Proceedings
of the 27th International Symposium on High-Performance Parallel
and Distributed Computing, ser. HPDC ’18. New York, NY, USA:
ACM, 2018, pp. 52–65. [Online]. Available: http://doi.acm.org/10.1145/
3208040.3208050

[18] “Plascomcm,” https://bitbucket.org/xpacc-dev/plascomcm.
[19] J. W. L. Paul F. Fischer and S. G. Kerkemeier, “nek5000 Web page,”

2019, http://nek5000.mcs.anl.gov.
[20] “Ieee visualization 2004 contest: Data set,” http://vis.computer.org/

vis2004contest/data.html, accessed: May 22, 2019.
[21] P. Lindstrom, “Error distributions of lossy floating-point compressors,”

Joint Statistical Meetings 2017, pp. 2574–2589, October 2017.
[22] D. Tao, S. Di, Z. Chen, and F. Cappello, “Significantly improving lossy

compression for scientific data sets based on multidimensional prediction
and error-controlled quantization,” in 2017 IEEE International Parallel
and Distributed Processing Symposium, IPDPS 2017, Orlando, FL,
USA, May 29 - June 2, 2017, 2017, pp. 1129–1139. [Online]. Available:
https://doi.org/10.1109/IPDPS.2017.115

[23] X. Liang, S. Di, D. Tao, S. Li, S. Li, H. Guo, Z. Chen, and
F. Cappello, “Error-controlled lossy compression optimized for high
compression ratios of scientific datasets,” in IEEE International
Conference on Big Data, Big Data 2018, Seattle, WA, USA,
December 10-13, 2018, 2018, pp. 438–447. [Online]. Available:
https://doi.org/10.1109/BigData.2018.8622520

[24] “zfp versions | computation,” https://computation.llnl.gov/projects/
floating-point-compression/zfp-versions.

[25] “Palmetto cluster documentation,” https://www.palmetto.clemson.edu/
palmetto/userguide palmetto overview.html.

[26] D. Ibtesham, K. B. Ferreira, and D. C. Arnold, “A checkpoint
compression study for high-performance computing systems,” IJHPCA,
vol. 29, no. 4, pp. 387–402, 2015. [Online]. Available: http:
//dx.doi.org/10.1177/1094342015570921

[27] S. W. Son, Z. Chen, W. Hendrix, A. Agrawal, W. keng Liao, and
A. Choudhary, “Data compression for the exascale computing era -
survey,” Supercomputing frontiers and innovations, vol. 1, no. 2, 2014.
[Online]. Available: http://superfri.org/superfri/article/view/13

[28] T. Lu, Q. Liu, X. He, H. Luo, E. Suchyta, J. Choi, N. Podhorszki,
S. Klasky, M. Wolf, T. Liu, and Z. Qiao, “Understanding and modeling
lossy compression schemes on HPC scientific data,” in IPDPS. IEEE
Computer Society, 2018, pp. 348–357.

[29] A. H. Baker, H. Xu, J. M. Dennis, M. N. Levy, D. Nychka,
S. A. Mickelson, J. Edwards, M. Vertenstein, and A. Wegener, “A
methodology for evaluating the impact of data compression on climate
simulation data,” in Proceedings of the 23rd International Symposium
on High-performance Parallel and Distributed Computing, ser. HPDC
’14. New York, NY, USA: ACM, 2014, pp. 203–214. [Online].
Available: http://doi.acm.org/10.1145/2600212.2600217

[30] I. Foster, M. Ainsworth, B. Allen, J. Bessac, F. Cappello, J. Y. Choi,
E. Constantinescu, P. E. Davis, S. Di, W. Di, H. Guo, S. Klasky, K. K.
Van Dam, T. Kurc, Q. Liu, A. Malik, K. Mehta, K. Mueller, T. Munson,
G. Ostouchov, M. Parashar, T. Peterka, L. Pouchard, D. Tao, O. Tugluk,
S. Wild, M. Wolf, J. M. Wozniak, W. Xu, and S. Yoo, “Computing just
what you need: Online data analysis and reduction at extreme scales,”
in Euro-Par 2017: Parallel Processing, F. F. Rivera, T. F. Pena, and
J. C. Cabaleiro, Eds. Cham: Springer International Publishing, 2017,
pp. 3–19.

[31] J. Nardi, N. Feldman, A. Poppick, A. Baker, and D. Hammerling,
“Statistical analysis of compressed climate data,” NCAR, Tech. Rep.,
2018.

[32] J. Diffenderfer, A. Fox, J. Hittinger, G. Sanders, and P. Lindstrom, “Error
analysis of zfp compression for floating-point data,” SIAM Journal on
Scientific Computing, 02 2019.

