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Abstract—Future exascale systems are expected to be charac-
terized by more frequent failures than current petascale systems.
This places increased importance on the application to minimize
the amount of time wasted due to recompution when recovering
from a checkpoint. Typically HPC applications checkpoint at
iteration boundaries; however, for applications that have a high
per-iteration cost, checkpointing inside the iteration limits the
amount of re-computation. This paper analyzes the performance
and accuracy of using lossy compressed checkpointing in the com-
putational chemistry application NWChem. Our results indicate
that lossy compression is an effective tool for reducing the sub-
iteration checkpoint size. Moreover, compression error tolerances
that yield acceptable deviation in accuracy and iteration count
are quantified.

Index Terms—lossy data compression, checkpoint-restart,
NWChem, coupled-cluster singles and doubles

I. INTRODUCTION

Large-scale high-performance computing (HPC) applica-
tions are facing a performance challenge of low I/O bandwidth
and coupled with large volumes of data that needs to be
stored for scientific analysis and visualization.Future HPC
systems are expected to experience failures more frequently
than current systems [1]. Checkpoint-restart is a well known
technique of saving computational progress at a fixed interval
to later recover the application state in case of unplanned
failures [2]. In order to recover from the more frequent failures,
applications will need to rely increasingly on checkpoint-
restart [3]. Increased reliance on checkpoint-restart places ad-
ditional strain on the system and increasing the computational
cost for running applications especially for simulations with a
high-level of computation between checkpoints.

To reduce the volume of data stored and increase the
effective memory bandwidth, researchers and practitioners
have begun integrating lossless and lossy data compression
into HPC applications [4], [5]. Recent work shows that lossy
compression is able to reduce data volumes by order-of-
magnitudes more than lossless compression [6]. Lossy com-
pression achieves large reductions in data volume by allowing
a user controllable level of inaccuracy into the data when
compressing.

Although lossy compression is an attractive solution to this
problem, establishing performance models and methodologies

on how best to integrate lossy compression into HPC appli-
cations remains an area of active study [4], [7], [8]. Data
compression has shown only modest progress for scientific
data as floating point numbers make efficient use of the
available bits ultimately causing much lower compression
rates [9].

There are various HPC applications that have been used to
test the effectiveness of lossy compression by varying different
parameters of the application and the compressors. For this
work, we explore checkpointing of NWChem [10], an open-
source HPC computational chemistry code with extensive
capabilities for large scale simulations. Unlike prior work,
that focuses on checkpointing at the iteration boundary [11],
we checkpoint at the sub-iteration level. NWChem iteratively
converges to a solution and therefore makes a good candidate
to determine the impact of restarting from a lossy compressed
checkpoint. Data compression is done by SZ [6], a state-of-
the-art HPC lossy compressor with user controlled error bound
type and error bound.

This paper makes the following contributions:

• implements checkpoint restart at the sub-iteration level of
the NWChem application;

• evaluates results from experimental runs to find a bal-
ance between user induced error and lossy compression
performance; and

• quantifies the performance of sub-iteration level lossy
compressed checkpoint restart for NWChem.

The rest of the paper is as follows: Section II discusses
data compression and the NWChem application. Section III
describes the how we instrument NWChem with lossy data
compression. Section IV presents the performance results we
obtain. Finally, Section VI states our conclusions and our
future work.

II. BACKGROUND

A. Compression for HPC Data

Data compression techniques are classified into two cate-
gories such as lossless and lossy. Lossless compression [12]–
[15] reduces data size without loss in data fidelity. However,
for numerical HPC data, the compression ratios vary between



1-4×. Lossy compression achieves higher compression ratios
compared to lossless compression, by an order-of-magnitude,
by allowing inaccuracies into the data when compressing.
Modern HPC lossy compressors such as SZ [6] and ZFP [16]
allow the user to bound the type and magnitude of error
introduced into the data. The error bounding metrics can
either apply to each value point-wise or be a property over
the full data set. Key to successful use of lossy compression
algorithms is setting the compressor’s error bound [4], [17].
Determining the error bound and error bounding type for
various applications remains an open question.

B. NWChem

NWChem [10] is a computational chemistry software pack-
age that provides a comprehensive range of methods used to
address molecular simulation problems. NWChem develop-
ment is focused on providing highly scalable algorithms that
can efficiently utilize high-performance distributed-memory
supercomputers. The methods implemented in NWChem rep-
resent tradeoffs between computational cost and accuracy,
where the most demanding methods can easily saturate the
computational throughput and memory bandwidth of today’s
petascale systems for relatively small molecular systems.

In this work, we focus on a many-body method called
coupled-cluster singles and doubles (CCSD) [18]. CCSD is a
widely used iterative method that serves as a precursor to the
”gold standard” method of computational chemistry, CCSD(T)
[19]. Specifically, this work targets a variation of the CCSD
algorithm that was implemented with the Tensor Contraction
Engine (TCE) [20], [21]. The TCE is an automatic code gen-
eration module that takes equations expressed in a high-level
domain specific language as input, and produces corresponding
high-performance parallel FORTRAN code. The TCE has been
successfully used to implement dozens of many-body methods,
and today approximately 2/3 of the lines of code in NWChem
are machine-generated.

The majority of the runtime for the CCSD method is
attributed to the iteratively solving of a set of tensors called
T̂1 and T̂2 cluster amplitudes that encode singly and doubly
excited terms within a many-body coupled-cluster wavefunc-
tion. [We limit the scope of this work to T̂2 amplitudes,
as they’re more computationally demanding to compute and
consume more storage than the T̂1 cluster amplitudes.] The
cluster amplitudes are generally converged within 10-30 CCSD
iterations.

The CCSD method formally scales as O(n6) with respect
to the molecular system size, so iteration times can quickly
become intractable for even moderately sized systems. Users
typically scale their problem size to target iteration times on
the order of minutes to hours. To guard against system and
software faults, NWChem provides infrastructure for check-
pointing CCSD computations by storing cluster amplitudes
upon the completion of a given CCSD iteration. But especially
for an exascale class system, losing minutes or hours of
computation time due to a fault will waste an excessive amount
of computer resources. In this work, we attempt to mitigate

against this loss by checkpointing at the sub-iteration level.
The TCE implementation of the T̂2 amplitude equation is
composed of an operation tree with approximately 20 interme-
diate terms, with each term representing a tensor contraction
between a set of 2 and 4-dimensional tensors [21]. We have
implemented a framework for checkpointing application state
at the boundaries of the intermediate term computations. Sec-
ondly, we have investigated the potential of lossy compression
of the intermediate terms to reduce checkpointing overhead.
While a previous work investigated compression for fully-
computed T̂2 cluster amplitudes within NWChem CCSD [11],
only lossless compressors were used. Motivated by recent
progress in reduced and mixed-precision iterative refinement
within CCSD and other many-body methods [22], we extend
the previous work to assess the impact of lossy compression
on the accuracy of converged T̂2 amplitudes, and to investigate
how restarting from a lossy checkpoint state affects the number
of iterations required for convergence. cat

III. SUB-ITERATION CHECKPOINTING OF NWCHEM

NWChem is a long running HPC application which requires
multiple iterations to converge to a solution. Previous work on
checkpointing NWChem focus on the coupled-cluster singles
and doubles (CCSD) computation and checkpoints at a per-
iteration granularity [11]. However the per-iteration time can
be significant; sometimes consuming hours or even days. The
high per-iteration cost makes iteration level checkpoint-restart
expensive and inefficient because the the potentially large
overhead when restarting.

To address this large overhead when restarting, this work
elects to checkpoint at a finer granularity. We target check-
pointing at a sub-iteration level. The iteration computes the
T̂2 tensor. This tensor’s construction in broken into the cal-
culation of 24 intermediate sub-tensors. We modify the code
of NWChem to checkpoint each sub-tensor individually. Thus,
we are able to recover at a sub-tensor granularity. When check-
pointing each sub-tense we employ the SZ lossy compressor to
reduce the size of each sub-tensor. This configuration allows
us to select individual error bounds and error bounding types
for each sub-tensor.

IV. EXPERIMENTAL RESULTS

All of our experiments are run on the Bebop Cluster oper-
ated by the Laboratory Computing Resource Center (LCRC)
at Argonne National Laboratory. Bebop nodes consist of Intel
Xeon E5-2695V4 CPUs with 128GB DDR4 RAM. We test
with the 6.8.1 release of NWChem and the 2.1.5 version of
the SZ lossy compressor. We evaluate lossy checkpointing of
the sub-iterations of NWChem using a simulation of water
molecules that converges in 17 iterations. We simulate a restart
from a lossy compressed checkpoint at iteration 10.

During each run of NWChem we record the compression
time, decompression time, compression ratio, energy devia-
tion from a lossless simulation, and number of iterations to
converge. Any runs whose energy deviation differs from the
lossless reference simulation greater than 1e−5 is considered
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Fig. 1: Average compression ratio of compressing sub-tensors of T2
individually.

an unusable result due to violating conservation of energy [23].
We explore compressing sub-tensors individually and all to-
gether.

A. Lossy Checkpointing Individual Sub-Tensors

We first explore the impact of each sub-tensor to the
computation. The size of each of the sub-tensors ranges from
100 to 10,000 elements. For our experiments, we use two
types of error bounding with SZ which are absolute (ABS)
and relative (REL) with various error bounds ranging from
1e−1 to 1e−10.

Figure 1 shows the average compression ratio for com-
pressing the sub-tensors. In the figure, we see significantly
higher compression ratios for absolute error bounds than for
relative error bounds for equivalent error bounds. Compression
ratios for relative error bounding remain near 1-2× across
all the error bounds. As we demand more accurate data
from the compressor the compression ratio tends toward 1
indicating that the data does not compress. From Figure 1,
we see that absolute error bounds of 1e−5 reduces the data
set size efficiently all other configurations yield little if any
compression.

Figure 2 shows the average compression bandwidth for
different error bounds for both absolute and relative error
bounding types for the sub-tensors. In this figure, we see the
compression bandwidth for all configurations that use absolute
error bounding yield higher compression bandwidth compared
to the equivalent configuration using relative error bounding.
Moreover, as the error bound increases, the compression
bandwidth increases for both error bounding types. As the
error bounds enforce more accurate data, the compression
bandwidth approaches zero indicating that compression yields
unacceptable performance.

Figure 3 plots the average decompression bandwidth for
both error bounds. As with Figure 2, we average across sub-
tensors with a corresponding error bound and error bounding
type. From Figure 3, we see similar behaviour to compression
bandwidth. The major difference is that the decompression
bandwidth is lower than the compression bandwidth for similar
high error bounds. As the error bound better preserves the data,
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Fig. 2: Average compression bandwidth of compressing sub-tensors
of T2 individually.
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Fig. 3: Average decompression bandwidth of compressing sub-tensors
of T2 individually.

the decompression bandwidth approaches zero which can lead
to increased overhead for NWChem simulations with large
quantifies of data.

Figure 4 shows the average deviation in energy between a
run of NWChem that does not restart from a lossy compressed
checkpoint and one that does. From the figure, we see that the
deviation in energy is very minor (approximately 1e−9 for
all configurations and is well below the level of acceptability
of 1e−5). Therefore, each simulation proceeds valid data for
the computational scientist — i.e., conversation of energy
between the simulations. Thus, we are able to lossy compress
checkpoints each sub-tensor of T̂2 and successfully restart.

Even if the simulation does not deviate from the expected
energy value, the number of iterations required to achieve the
computational result may increase. Investigating the number
of extra iterations reveals that at most one extra iteration is
required for all experiments that restart from a single sub-
tensor. On average we require 0.66 extra iterations. Thus, we
are able to restart NWChem from lossy checkpoints with little
impact to the total number of iterations.

B. Lossy Checkpointing Multiple Sub-Tensors

We now focus on the impact of compressing multiple sub-
tensors at the same time. To highlight the worst case scenario,
we restart from a checkpoint in which all the sub-tensors
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Fig. 4: Average energy deviation of compressing sub-tensors of T2
individually.
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Fig. 5: Energy Deviation for compressing all sub-tensors simultane-
ously.

are lossy compressed. We do not show plots for compress
bandwidth, decompression bandwidth, and compression ratio
as they are equivalent to those shown in Section IV-A. This
is due to how we checkpoint each sub-tensor individually.

In Figure 5 we plot the energy deviation for various absolute
and relative error bounds ranging from 1e−1 to 1e−10. Com-
paring to Figure 4, we see that the deviation is slightly higher
indicating that there is more deviations in the simulation. This
increase is due to be restarting from a lossy checkpoint all
the sub-tensors lossy compressed. Even though the magnitude
of the deviation is larger, the magnitude is well within our
simulation accuracy bound of 1e−5. This shows that sub-
iteration checkpointing is feasible to enable restarting when
failure strikes and not impact the accuracy of an NWChem
simulation.

V. RELATED WORK

Previous works on integrating lossy checkpointing into
HPC applications have shown reductions in the I/O frac-
tion of HPC application [4], required compression levels to
improve performance [8], and have modeled checkpointing
when extra iterations are required to restore convergence [7].
The integration of lossy compression in HPC workflows and
applications requires specific selection of error bounds to
get minimum errors in simulation results. Trial and error is

an effective way to establish the correct lossy compression
parameters for checkpoint-restart or in-line computation [24]–
[26]. Incorporating domain knowledge allows for establishing
methodologies and heuristics for using lossy compressed data
for analytics [17], [27], [28]. Different error bounding metrics
have an impact on floating-point truncation error [29] as well
as the distribution of compression error [30]. Other researchers
have worked to find methodologies for selecting error toler-
ances for lossy checkpoint-restart on HPC simulations [4], [7].
This work reduces NWChem’s checkpointing size by using
differenced checkpoint and cutoff techniques to increase the
effectiveness of Lempel-Liv (gzip) [9]. This has dramatically
increased the compression ratios than standard compression
techniques.

VI. CONCLUSION AND FUTURE WORK

Checkpointing scientific application becomes more impor-
tant as the failure rate on large scale systems increase. The
NWChem application’s per iteration time can be hours or
days. In this paper, we explore lossy checkpointing of sub-
iterations of NWChem. We explore the applicability of lossy
checkpointing at this granularity by evaluating the compres-
sion bandwidth, decompression bandwidth and compression
ratio for number of sub-tensors. Our results show that absolute
error yields better performance than relative error for error
bounds on the range 1e−1 to 1e−5. For all the experiments,
the number of extra iterations increased by at most 1 compared
to lossless run. The energy deviations were remarkably lower
making the sub-tensor level lossy checkpointing acceptable in
NWChem application.

Future work focus on studying the impact of restarting mul-
tiple times from lossy compressed checkpoints and evaluating
the resultant energy deviation and increase in number of itera-
tions. In addition, we plan to derive and verify a performance
model for lossy checkpointing NWChem to understand the
trade-off between the number of extra iterations upon restart
and time saved by lossy compressed checkpointing.
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