
Proc. Computer Algebra in Scientific Computing (CASC) 2020
F. Boulier, M. England, T. Sadykov, E. Vorozhtsov (eds.)
Springer Lecture Notes in Computer Science

Hermite Rational Function Interpolation with

Error Correction⋆

Erich L. Kaltofen1,2, Clément Pernet3, and Zhi-Hong Yang1,2

1 Department of Mathematics, North Carolina State University,
Raleigh, North Carolina 27695-8205, USA

{kaltofen,zyang28}@ncsu.edu
2 Department of Computer Science, Duke University,

Durham, North Carolina 27708-0129, USA
{kaltofen,zy99}@cs.duke.edu

https://users.cs.duke.edu/~elk27
3 Laboratoire Jean Kuntzmann, Univ. Grenoble Alpes, CNRS,

38058 Grenoble Cedex 09, France
clement.pernet@univ-grenoble-alpes.fr

http://ljk.imag.fr/membres/Clement.Pernet/

Abstract. We generalize Hermite interpolation with error correction,
which is the methodology for multiplicity algebraic error correction codes,
to Hermite interpolation of a rational function over a field K from func-
tion and function derivative values.

We present an interpolation algorithm that can locate and correct ≤ E
errors at distinct arguments ξ ∈ K where at least one of the values or
values of a derivative is incorrect. The upper bound E for the number
of such ξ is input. Our algorithm sufficiently oversamples the rational
function to guarantee a unique interpolant. We sample (f/g)(j)(ξi) for
0 ≤ j ≤ ℓi, 1 ≤ i ≤ n, ξi distinct, where (f/g)(j) is the j-th derivative
of the rational function f/g, f, g ∈ K[x], GCD(f, g) = 1, g 6= 0, and
where N =

∑n

i=1(ℓi + 1) ≥ Df + Dg + 1 + 2E + 2
∑E

k=1 ℓk; Df is an
upper bound for deg(f) and Dg an upper bound for deg(g), which are
input to our algorithm. The arguments ξi can be poles, which is truly or
falsely indicated by a function value ∞ with the corresponding ℓi = 0.
Our results remain valid for fields K of characteristic ≥ 1+maxi ℓi. Our
algorithm has the same asymptotic arithmetic complexity as that for
classical Hermite interpolation, namely N(logN)O(1).

For polynomials, that is, g = 1, and a uniform derivative profile ℓ1 =
· · · = ℓn, our algorithm specializes to the univariate multiplicity code
decoder that is based on the 1986 Welch-Berlekamp algorithm.

Keywords: Hermite interpolation · Cauchy interpolation · Error correction
codes · Multiplicity codes · List decoding

⋆ This research was supported by the National Science Foundation under Grant CCF-
1717100 (Kaltofen and Yang).

1

2 E. Kaltofen et al.

1 Introduction

Algebraic error correction codes are based on interpolating a polynomial f from
its values ai = f(ξi) at distinct argument scalars ξi, when some of the inputs âλ
for the evaluations are incorrect, namely âλ 6= aλ. The coefficients of f are from
a field K, as are the arguments ξi and the list of correct and incorrect evaluations
âi. The 1960 algorithm by Irving Reed and Gustave Solomon [16] reconstructs
a polynomial f of degree ≤ D from n = D + 1 + 2E values âi when ≤ E of the
values are incorrect, namely |{λ | âλ 6= f(ξλ)}| ≤ E. The number of evaluations
is optimal: for n = D + 2E there may exist two polynomials that interpolate
with ≤ E errors. The Reed-Solomon decoder generalizes to rational functions
f/g ∈ K(x) with n = Df + Dg + 1 + 2E, where Df ≥ deg(f), Dg ≥ deg(g)
[1]. Decoding can be performed by the extended Euclidean Algorithm [19,21] or
by solving a linear system [7]. Lemma 3.2 in [7] shows that for Df = deg(f),
Dg = deg(g), n− 1 evaluations are always insufficient to correct E errors.

Multiplicity codes [17,15,4,5,11,13,3] generalize the Reed-Solomon problem
to the Hermite interpolation problem with error correction. In classical (error-
free) Hermite interpolation one reconstructs a polynomial (or rational function)
from the values of the polynomial and its derivatives. The classical algorithm
of divided differences can reconstruct f from ai,j = f (j)(ξi), where ξ1, . . . , ξn ∈
K are distinct scalars, f (j) is the j-th derivative of f , and 0 ≤ j ≤ ℓi with
(ℓ1 + 1) + · · · + (ℓn + 1) = D + 1. We shall assume that the characteristic of
the field K is either 0 or ≥ 1 + max ℓi. For the case that n = 1, one has f(x) =∑

0≤j≤ℓ1
f (j)(ξ1)/j! (x − ξ1)

j . As in the Reed-Solomon decoding problem, one

assumes that some inputs âi,j 6= f (j)(ξi). It is clear that not all evaluation profiles
(ℓ1, . . . , ℓn) with

∑n
i=1(ℓi + 1) = D + 1+ 2E are decodable when there are ≤ E

errors. For example, if n = 1 the oversampled derivatives cannot reveal all errors,
since f (j)(x) = 0 for j ≥ deg(f) + 1. Furthermore, if all âi,0 are erroneous, the
constant coefficient of f is unrecoverable. Example 1 below shows that if one has
D = deg(f), n = D+ 2E and ℓ1 = · · · = ℓ2E = 1 and ℓ2E+1 = · · · = ℓD+2E = 0,
that is N = D + 4E, there may be a second polynomial of degree ≤ D that fits
all but E evaluations.

The reason why, in the Hermite case, one may have to match every bad value
with more than one additional good value, in contrast to the Reed-Solomon de-
coder, is apparent from the Birkhoff generalization of the Hermite interpolation
problem. In Birkhoff interpolation one does not have all consecutive deriva-
tives at a scalar ξi. Schoenberg [18] uses a matrix Θ = [θi,j]1≤i≤n,0≤j≤D ∈
{0, 1}n×(D+1) with exactly (D + 1) 1-entries. If θi,j = 1 then the evaluation
ai,j = f (j)(ξi) is input. For K = R one asks for which Θ’s one always gets a
unique interpolant. The Pólya-Schoenberg Theorem states that for n = 2 there is
a unique interpolant if and only if ∀j, 0 ≤ j ≤ D−1:

∑
0≤µ≤j(θ1,µ+θ2,µ) ≥ j+1.

If those Pólya conditions are violated, then either there are more than one so-
lution or there is no solution. In the error correction setting, for example, in
erasure codes, the errors invalidate evaluations, that is, set θi,j = 0 whenever
âi,j is an error. Thus the remaining good points may constitute an (oversam-
pled) Birkhoff problem that does not have one unique solution. For example,

Hermite Rational Function Interpolation with Error Correction 3

for f(x) = (x2 − 12)(x2 − 72) we have f(x)′ = 4x(x2 − 52), so f(−1) = f(1) =
f(−7) = f(7) = 0, f ′(0) = f ′(−5) = f ′(5) = 0 is interpolated at 7 good values
by the polynomials 0 and f (see also Example 2). Multiplicity code decoders
also need to locate the erroneous locations. Our problem is more difficult: the
correct values are those of a rational function, not of a polynomial.

The algorithms for error-correcting Hermite interpolation of polynomials and
rational functions, in analogy to the Pólya conditions, interpolate a unique pol-
ynomial or rational function from its upper bounds for the degrees and the
number of errors by sufficient oversampling. Suppose the profile of derivatives
at each distinct argument ξi (1 ≤ i ≤ n) is sorted: ℓ1 ≥ · · · ≥ ℓn ≥ 0. Again,
we assume that the characteristic of K is either 0 or ≥ ℓ1 + 1. For a rational
function f/g ∈ K(x) we input Df ≥ deg(f), Dg ≥ deg(g), âi,j ∈ K for 1 ≤ i ≤ n
and 0 ≤ j ≤ ℓi, and E such that for ≤ E of all arguments ξi there is an error at
least at one j:

E ≥ | { i | 1 ≤ i ≤ n and ∃j, 0 ≤ j ≤ ℓi : âi,j 6= (f/g)(j)(ξi) } |,

where | . . . | is the number of elements in the set. We use the fresh symbol ∞ =
(f/g)(ξi) if g(ξi) = 0 and allow both false (non-pole) scalars âi,j ∈ K at such
poles, as well as false poles âi,j = ∞ when g(ξi) 6= 0. We shall assume that the
only âi,j =∞ are at evaluations j = 0 and that then no derivatives are present,
that is, ℓi = 0. If âi,j = ∞ 6= âi,k for some j 6= k then one of the values is
erroneous, unless the characteristic of K is positive and ≤ Dg. In that case, the
list of values âi,0, âi,1, . . . at ξi is pre-processed: see Remark 2. Note that without
errors, f/g cannot be interpolated at a single argument ξ1 when all derivative
values are ∞.

Our algorithm recovers f/g if the number of evaluations, N , at n distinct ξi
satisfies

N
def
=

n∑

i=1

(ℓi+1) = Df +Dg+1+2

E∑

i=1

(ℓi+1) = Df +Dg+1+2E+2

E∑

i=1

ℓi (1)

(see Theorem 1). The equation (1) implies 2E + 1 ≤ n (see (6)). Note that if
N < the right-side of (1), one needs to increase either n or ℓE+1, . . . , ℓn and
sample more values. If N > the right-side of (1), one can decrease ℓn, . . . , ℓE+1

and/or n. If equality in (1) is achieved, further reduction of oversampling may
be possible while preserving (1); see Remark 4. For polynomial interpolation
we can set Dg = 0. In relation to Example 1: with D = deg(f), g = 1, if
ℓ1 = · · · = ℓ2E+1 = 1 and ℓ2E+2 = · · · = ℓD+2E = 0 then f is recovered
uniquely from N = D + 4E + 1 evaluations with ≤ E errors. For ℓi = 0 for
all i, our algorithm specializes to rational function recovery with errors with
n = N = Df +Dg + 1 + 2E.

1.1 Comparison to Multiplicity Code Decoders

Multiplicity codes are based on Hermite polynomial interpolation with error
correction, that is, Df = D, Dg = 0. In [11] the following parameter settings

4 E. Kaltofen et al.

are used: n = q and the field of scalars is K = Fq, a finite field of q elements.
The number of derivatives is uniformly ℓ1 = · · · = ℓq = s− 1. There are ≤ E =
(sq −D − 1)/(2s) indices λκ where at least one of the s derivative values âλκ,j

(0 ≤ j ≤ s − 1) is an error. At each error index λκ, there can be as many as s
errors, for a total of (sq−D−1)/2 errors, the latter of which is the degree of the
error locator polynomial in [11, Section 3.1]. Multiplicity codes then recover the
code polynomial from the N = sq values âi,j for 1 ≤ i ≤ q and 0 ≤ j ≤ s − 1,
which agrees with the right-side of (1): D + 1 + 2Es = sq. Our decoders here
allow for unequal ℓi.

Our main contribution is the generalization to Hermite interpolation of ra-
tional functions from such partially erroneous values, including the handling of
arguments at roots of the denominator, that is, poles. An important idea behind
Algorithm 5.1 is from the algorithm in [20] (as cited in [6]) for Hermite ratio-
nal function interpolation, which in turn is based on Cauchy interpolation via
the extended Euclidean algorithm. Our algorithm essentially performs Warner’s
algorithm, now on an unreduced fraction of polynomials, where both numera-
tor and denominator are multiplied with the error locator polynomial, which the
Cauchy interpolation algorithm computes (see Lemma 1). The Welch-Berlekamp
decoder for Reed-Solomon codes [21] and its generalization to multiplicity code
decoders [11, Section 3.1.1] also has our interpretation of solving such a Cauchy
problem.

Because of derivatives, in the Hermite setting the roots of the error locator
polynomial have multiplicities. With our assumption that âi,j = ∞ only if j =
ℓi = 0, we can prove that the N values in (1) are sufficient for unique recovery
if there are ≤ E arguments ξi with some âi,j being an error (see Theorem 1).

The half-GCD algorithm [14] and fast Hermite interpolation algorithms [2]
then yield an arithmetic complexity of N(logN)O(1). We note that the unique-
ness of the interpolant for the error-free Hermite rational function problem im-
plies uniqueness with errors when oversampled at N points (1), which yields
a linear system for the coefficients of the unreduced numerator and denomina-
tor polynomials. Our approach computes a solution via the extended Euclidean
algorithm and additionally optimizes the required polynomial division: see Re-
mark 3. Our Algorithm 5.1 also diagnoses if no valid rational function interpolant
exists, which can be used to perform list-decoding: see Remark 6.

2 Polynomial Hermite Interpolation

Let n ≥ 1, ξi ∈ K for 1 ≤ i ≤ n be distinct values, ℓ1 ≥ ℓ2 ≥ · · · ≥ ℓn ≥ 0,
ai,j ∈ K for 1 ≤ i ≤ n and 0 ≤ j ≤ ℓi. Suppose that the characteristic of K is
either 0 or ≥ ℓ1 + 1. For d = (ℓ1 + 1) + · · ·+ (ℓn + 1) − 1 there exists a unique
f ∈ K[x] with deg(f) ≤ d such that ai,j = f (j)(ξi) for 1 ≤ i ≤ n and 0 ≤ j ≤ ℓi
where f (j)(x) is the j-th derivative of f(x) = cdx

d + · · ·+ c1x+ c0 defined by

f (j)(x) =
(d∑

δ=0

cδx
δ
)(j)

=

d∑

δ=j

cδ δ(δ − 1) · · · (δ − j + 1) xδ−j . (2)

Hermite Rational Function Interpolation with Error Correction 5

We note that if K has any characteristic, the rational function field K(x) is a
differential field with the derivative ′ being a function satisfying c′ = 0 for all
c ∈ K, x′ = 1 and (F+G)′ = F ′+G′ and (FG)′ = F ′G+FG′ for all F,G ∈ K(x),
which yields (2). See also Remark 2 below.

The algorithm of divided differences, which goes back to at least Guo Shou-
jing (1231–1316), computes the coefficients c̄i,j forming the decomposition of
f(x) in mixed-shifted-basis representation

f(x) =
n∑

ν=1

ℓν∑

µ=0

c̄ν−1,µ

(ν−1∏

κ=1

(x− ξκ)
ℓκ+1

)
(x− ξν)

µ.

For 1 ≤ i ≤ n and 0 ≤ j ≤ ℓi the interpolant

Hi,j(x) =

i∑

ν=1

ℓ′ν∑

µ=0

c̄ν−1,µ

(ν−1∏

κ=1

(x− ξκ)
ℓκ+1

)
(x− ξν)

µ

with ℓ′ν = ℓν for ν < i and ℓ′i = j,

fits the values aν,µ for 1 ≤ ν ≤ i and 0 ≤ µ ≤ ℓ′ν . We compute the next Hi,j+1

(j < ℓi) or Hi+1,0 (j = ℓi) to fit ai,j+1 or ai+1,0, respectively. For j < ℓi we have

Hi,j+1(x) = Hi,j(x) + c̄i−1,j+1Gi,j+1(x),

Gi,j+1(x) =
(i−1∏

κ=1

(x− ξκ)
ℓκ+1

)
(x− ξi)

j+1.

Note that G
(µ)
i,j+1(ξν) = 0 for 1 ≤ ν ≤ i and 0 ≤ µ ≤ ℓ′ν , so Hi,j+1(x) interpolates

all of Hi,j ’s values. Finally, G
(j+1)
i,j+1 (ξi) =

(∏i−1
κ=1(ξi − ξκ)

ℓκ+1
)
(j + 1)!, which is

6= 0 by our assumption that the characteristic of K is 0 or ≥ ℓ1 + 1. Therefore

H
(j+1)
i,j+1 (ξi) = ai,j+1 has a unique solution c̄i−1,j+1. The case Hi+1,0 is similar.

Algorithms for computing the Hermite interpolant f in soft-linear arithmetic
complexity go back to [2].

3 Rational Function Recovery

Our algorithms are a generalization of the Cauchy interpolation algorithm for
rational functions, which is based on the extended Euclidean algorithm. We now
state the key lemma, which goes back to Leopold Kronecker’s algorithm for
computing Padé approximants.

Lemma 1. Let d and e be non-negative integers, and let H(x) ∈ K[x], K an
arbitrary field, deg(H) ≤ d + e; furthermore, let ξi, 1 ≤ i ≤ d + e + 1, be not
necessarily distinct elements in K.
1. Define r0 =

∏d+e+1
i=1 (x − ξi) and r1(x) = H(x). Now let rρ(x), qρ(x) ∈ K[x]

be the ρ-th remainder and quotient respectively, in the Euclidean polynomial
remainder sequence

rρ−2(x) = qρ(x)rρ−1(x) + rρ(x), deg(rρ) < deg(rρ−1) for ρ ≥ 2.

6 E. Kaltofen et al.

In the exceptional case H = 0 the sequence is defined to be empty. Finally, let
sρ(x), tρ(x) ∈ K[x] be the multipliers in the extended Euclidean scheme sρr1 +
tρr0 = rρ, namely,

s0 = t1 = 0, t0 = s1 = 1,

sρ = sρ−2 − qρ sρ−1, tρ = tρ−2 − qρ tρ−1 for ρ ≥ 2.

Then there exists an index γ ≥ 1, such that deg(rγ) ≤ d < deg(rγ−1) and

rγ ≡ sγH (mod r0) and deg(sγ) ≤ e. (3)

2. Let R(x), S(x) ∈ K[x] be another solution of (3), namely

R ≡ S H (mod r0) d ≥ deg(R) and e ≥ deg(S). (4)

Then sγR = rγS. If furthermore GCD(R,S) = 1 then R = c rγ , S = c sγ for
some c ∈ K \ {0}.

Proof. See [8, Lemma 1].

4 Error-Correcting Hermite Interpolation

Let f(x) ∈ K[x] be a univariate polynomial and D be an upper bound of deg(f).
One is given a set of n distinct arguments ξ1, . . . , ξn ∈ K, and for each argument
ξi, one is given a row vector

Âi,∗ = [âi,0, . . . , âi,ℓi] ∈ K
1×(ℓi+1).

We call âi,j an error if âi,j 6= f (j)(ξi), and we call Âi,∗ error-free if âi,j = f (j)(ξi)
for all j = 0, . . . , ℓi. Let {λ1, . . . , λk} ⊂ {1, . . . , n} be the set of indices where

every row vector Âλ1,∗, . . . , Âλk,∗ has at least one error, and let E ≥ k (if all row

vectors Â1,∗, . . . , Ân,∗ are error-free, then let E = k = 0). As in Section 2 we
assume that K is a field of characteristic 0 or ≥ 1+maxi ℓi. To uniquely recover
f(x), a condition n ≥ 2E + 1 is necessary: if n = 2E, one can have for f ∈ K[x]
with E errors âi,0 = f(ξi) + 1 6= f(ξi) where 1 ≤ i ≤ E, and for f + 1 with E
errors âi,0 = f(ξi) 6= f(ξi) + 1 where E + 1 ≤ i ≤ 2E, that is both f and f + 1
are valid interpolants with E errors. Without loss of generality, we assume that
ℓ1 ≥ · · · ≥ ℓn ≥ 0, and let

Â =



Â1,∗

...

Ân,∗


 ∈

(
K
1×(ℓ1+1) ∪ · · · ∪ K

1×(ℓn+1)
)n

be the vector of those value row vectors. The total number of values in Â is
N =

∑n
i=1(ℓi + 1). We will show how to recover the polynomial f(x) from the

points ξ1, . . . , ξn and the values in Â by the extended Euclidean algorithm if

n+

n∑

i=E+1

ℓi = D + 1 + 2E +

E∑

i=1

ℓi. (5)

Hermite Rational Function Interpolation with Error Correction 7

Note that the equality (5) is equivalent to
∑n

i=1(ℓi+1) = D+1+2E+2
∑E

i=1 ℓi,

which means Â has N = D+1+2E+2
∑E

i=1 ℓi values. Furthermore, the equality
(5) implies that n ≥ 2E + 1, because recovery is unique and for n ≤ 2E we
would have the ambiguous solution above; more explicitly, for n ≤ 2E we have
the contradiction

n+

n∑

i=E+1

ℓi ≤ 2E + ℓE+1E < D + 1 + 2E +

E∑

i=1

ℓi. (6)

We remark that the condition (5) can be relaxed to n +
∑n

i=E+1 ℓi ≥ D +

1+ 2E +
∑E

i=1 ℓi, because in that case, one can decrease ℓn, ℓn−1, . . . , ℓE+1 suc-
cessively to achieve the equality (5). In fact, even if the equality is satisfied,
one may still be able to reduce the ℓi’s on both sides so that the algorithm can
recover f(x) with fewer values (see Remark 4).

4.1 Error-correcting polynomial Hermite interpolation

Input: ◮ A field K, nonnegative integers D,E ∈ Z≥0;
◮ A set of distinct points {ξ1, . . . , ξn} ⊆ K;
◮ A list of n row vectors Â = [Âi,∗]1≤i≤n where

◮ ℓ1 ≥ · · · ≥ ℓn ≥ 0; the characteristic of K is either 0 or ≥ ℓ1 + 1;
◮ Âi,∗ = [âi,0, . . . , âi,ℓi];
◮ n+

∑n
i=E+1 ℓi = D + 1 + 2E +

∑E
i=1 ℓi (=⇒ n ≥ 2E + 1).

Output: ◮ The interpolant f(x) ∈ K[x] and the error locator polynomial Λ(x) in
K[x] which satisfy

◮ deg(f) ≤ D;
◮ Λ(x) = 1 or Λ(x) =

∏k
κ=1(x−ξλκ

)δκ where ξλ1
, . . . , ξλk

are distinct
and k ≤ E;

◮ row vector Âi,∗ is error free if and only if i /∈ {λ1, . . . , λk};
◮ δκ = ℓλκ

+ 1−min{j | f (j)(ξλκ
) 6= âλκ,j}.

◮ Or a message indicating there is no such interpolant.

1. If âi,j = 0 for all i = 1, . . . , n and j = 0, . . . , ℓi, then return f = 0 and Λ = 1.
2. Compute the Hermite interpolant H(x) ∈ K[x] of the data set {(ξi; âi,0, . . . ,

âi,ℓi) | i = 1, . . . , n}, namely compute a polynomial H(x) ∈ K[x] such that
H(j)(ξi) = âi,j.
If E = 0 and deg(H) ≤ D, then return f = H and Λ = 1. If E = 0 and
deg(H) > D, then return a message indicating there is no such interpolant.

3. Let r0 = (x− ξ1)
ℓ1+1 · · · (x− ξn)

ℓn+1, r1 = H, s0 = 0, s1 = 1, and ρ = 2.

3a. Compute the ρ-th Euclidean polynomial remainder rρ and the multiplier
sρ in the extended Euclidean scheme sρr1 + tρr0 = rρ, namely

rρ(x) = rρ−2(x)− qρ(x)rρ−1(x), deg(rρ) < deg(rρ−1),

sρ(x) = sρ−2(x)− qρ(x)sρ−1(x).

8 E. Kaltofen et al.

3b. If deg(rρ) ≤ D + E +
∑E

i=1 ℓi, then let γ = ρ and go to Step 4.
3c. Otherwise, let ρ = ρ+ 1 and go to Step 3a.
By the half-GCD algorithm, Step 3 can be performed in soft-linear arithmetic
complexity.

4. If sγ divides rγ , then factorize sγ over K; if sγ has ≤ E distinct factors,
then go to Step 5. Otherwise return a message indicating there is no such
interpolant.

5. Compute f = rγ/sγ . If deg(f) ≤ D, then return f and Λ = sγ/lc(sγ), where
lc(sγ) is the leading coefficent of sγ . Otherwise return a message indicating
there is no such interpolant.
Step 3 computes (rγ , sγ) as in Lemma 1 with d = D + E +

∑E
i=1 ℓi and

e = E+
∑E

i=1 ℓi. We will prove that if there is an interpolant f(x) ∈ K[x] which
satisfies the output specifications, then rγ/sγ = (fΛ)/Λ = f (see Lemma 2)
and Λ = sγ/lc(sγ) (see Lemma 3). Here sγ 6= 0 because GCD(sγ , tγ) = 1 for
γ ≥ 2.
On the other hand, if the polynomial rγ/sγ computed in Step 5 has degree
≤ D, then it satisfies the output specifications, which we will prove as a
special case in Lemma 5. Therefore, we can check the validity of rγ/sγ without
computing all the values (rγ/sγ)

(j)(ξi) for i = 1, . . . , n and j = 0, . . . , ℓi.

Lemma 2. With the notation as in Algorithm 4.1, if there is a polynomial f ∈
K[x] which satisfies the output specifications, then

fΛ ≡ HΛ (mod r0). (7)

Moreover, rγ/sγ = (fΛ)/Λ = f , which implies the interpolant f is unique.

Proof. Recall that Λ(x) = (x− ξλ1
)δ1 · · · (x− ξλk

)δk is the error locator polyno-
mial where

(i) ξλ1
, . . . , ξλk

are the arguments with erroneous values, that is, for indices
λκ ∈ {λ1, . . . , λk}, there exists j ∈ {0, . . . , ℓλκ

} such that f (j)(ξλκ
) 6= âλκ,j ;

(ii) δκ = ℓλκ
+ 1−min{j | f (j)(ξλκ

) 6= âλκ,j}, κ = 1, . . . , k.

Since r0 = (x − ξ1)
ℓ1+1 · · · (x − ξn)

ℓn+1, proving the equality (7) is equivalent
to proving (x − ξi)

ℓi+1 divides (fΛ − HΛ) for all i = 1, . . . , n, which is again
equivalent to proving the following equality:

(fΛ)(j)(ξi) = (HΛ)(j)(ξi) for all i = 1, . . . , n and j = 0, . . . , ℓi. (8)

If i /∈ {λ1, . . . , λk} then f (j)(ξi) = âi,j = H(j)(ξi) for all j = 0, . . . , ℓi and (8)
follows immediately. For ξλκ

(1 ≤ κ ≤ k) and j = 0, . . . , ℓλκ
,

(fΛ)(j)(ξλκ
) =

j∑

τ=0

(
j

τ

)
f (j−τ)(ξλκ

)Λ(τ)(ξλκ
),

(HΛ)(j)(ξλκ
) =

j∑

τ=0

(
j

τ

)
H(j−τ)(ξλκ

)Λ(τ)(ξλκ
).

Hermite Rational Function Interpolation with Error Correction 9

Moreover,

Λ(τ)(ξλκ
) = 0 if τ < δκ, (9)

f (j−τ)(ξλκ
) = âλκ,j−τ = H(j−τ)(ξλκ

) if τ ≥ δκ. (10)

The equality (9) holds because Λ(x) has a factor (x − ξλκ
)δκ ; the equality (10)

follows from

j − τ ≤ ℓλκ
− τ < ℓλκ

+ 1− δκ = min{j | f (j)(ξλκ
) 6= âλκ,j}.

Therefore, f (j−τ)(ξλκ
)Λ(τ)(ξλκ

) = H(j−τ)(ξλκ
)Λ(τ)(ξλκ

) for all τ = 0, . . . , j, and
(8) is proved.

Let d = D + E +
∑E

i=1 ℓi, e = E +
∑E

i=1 ℓi, R = fΛ, and S = Λ. Then
deg(r0) = d+ e+1, deg(H) ≤ d+ e, deg(R) ≤ d, and deg(S) ≤ e. By Lemma 1,
rγ/sγ = R/S = fΛ/Λ = f .

Lemma 3. With the notation as in Algorithm 4.1, we have Λ = sγ/lc(sγ).

Proof. By Lemma 2, rγ = sγf . On the other hand, rγ ≡ sγH (mod r0). There-
fore

sγf ≡ sγH (mod r0). (11)

Let (x − ξλκ
)δκ be a factor of Λ and denote ǫκ = min{ j | f (j)(ξλκ

) 6= âλκ,j},
then

δκ + ǫκ = ℓλκ
+ 1.

Since (x − ξλκ
)ℓλκ+1 is a factor of r0, it follows from (11) that (x − ξλκ

)δκ+ǫκ

divides (f − H)sγ . In addition, ǫκ = min{ j | f (j)(ξλκ
) 6= âλκ,j = H(j)(ξλκ

)}
implies that

GCD((x− ξλκ
)δκ+ǫκ , f −H) = (x− ξλκ

)ǫκ .

Therefore (x− ξλκ
)δκ divides sγ , and so Λ divides sγ .

Assume that sγ = Λw for some w ∈ K[x], then rγ = sγf = fΛw, so the
extended Euclidean scheme sγr1 + tγr0 = rγ becomes

fΛw = HΛw + tγr0.

However, from Lemma 2, we know that fΛ ≡ HΛ (mod r0), which means there
is t̃ ∈ K[x] such that

fΛ = HΛ+ t̃ r0.

Therefore tγ = t̃ w, and this leads to w ∈ K because GCD(sγ , tγ) = 1. Since the
leading coefficient of Λ is 1, we have sγ = lc(sγ)Λ.

Note that Reed-Solomon decoding is a special case of our setting where ℓ1 =
· · · = ℓn = 0 and n = N = D+1+2E. When ℓ1 ≥ 1 and n ≤ D+2E, our method
requires N = D + 1 + 2E + 2

∑E
i=1 ℓi which is more than the values required

by Reed-Solomon decoding. However, in some cases, the number of values we
required is necessary for computing a unique interpolant f(x), that is, there can
be two valid interpolants if fewer values are given. We show this by the following
example.

10 E. Kaltofen et al.

Example 1. Let K = algclo(Q)∩R be the real algebraic closure of Q, and assume
that 2E ≤ D − 1. Let ξ2E+1, . . . , ξD+2E be D distinct points in K and

f(x) =
D+2E∏

i=2E+1

(x− ξi).

By Rolle’s theorem, f(x)′ has D − 1 distinct roots in K, which allows us to
choose 2E distinct points ξ1, . . . , ξ2E from these roots. Moreover, all the points
ξ1, . . . , ξ2E , ξ2E+1, . . . , ξD+2E are distinct. Now we have f ′(ξ1) = · · · = f ′(ξ2E) =
0 and f(ξ2E+1) = · · · = f(ξD+2E) = 0 Let ℓ1 = · · · = ℓ2E = 1, ℓ2E+1 = · · · =
ℓD+2E = 0 and n = D + 2E, then N =

∑n
i=1(ℓi + 1) = D + 4E. Suppose the N

values are given as follows:

âi,0 = f(ξi) for i = 1, . . . , E,
âi,0 = 0 for i = E + 1, . . . , D + 2E,
âi,1 = 0 for i = 1, . . . , 2E.



 (12)

If the E errors are â1,0, . . . , âE,0, then 0 is a valid interpolant; if the E errors are
âE+1,0, . . . , â2E,0 then f is a valid interpolant. Thus for the points ξ1, . . . , ξD+2E

and the D + 4E values in (12), there are ≥ 2 valid interpolants. �

Example 2. As we have shown in Section 1, from Birkhoff problems with multi-
ple solutions one obtains Hermite interpolation problems with errors that have
multiple solutions. For instance, for the polynomial f(x) = (x2 − 12)3(x2 − 72)3

we have f (j)(ξ) = 0 for ξ = ±1, ξ = ±7 and j = 0, 1, 2, and f ′(ξ) = 0 for ξ = 0
and ξ = ±5. Therefore with those n = 7 arguments ξ and ℓi = 2 for 1 ≤ i ≤ 7,
one has both f and the zero polynomial as a solution with E = 3 errors at
N = 21 = deg(f) + 1 + 2E + 2 values. �

Example 3. If the field of scalars K has finite characteristic ≥ ℓ1 + 1, our count
(5) is optimal for higher derivatives. Let n = 2E + 1 and let ℓ1 = · · · = ℓ2E+1 =
p − 1 for a prime number p which is the characteristic of the field of scalars K,
whose cardinality is |K| ≥ 2E + 2, so that there exist n + 1 distinct elements
ξi in K. Let f(x) = (x − ξ1)

p. Then f(ξ1) = 0 and f (j)(ξi) = 0 for all 1 ≤
i ≤ n and 1 ≤ j ≤ ℓi. Therefore f and the zero polynomial interpolate all
(2E + 1)p − 2E zero values, and E errors cannot be unambiguously corrected
from N = (2E + 1) deg(f) values. If one adds an (N + 1)’st value f(ξn+1) then
N +1 = deg(f)+1+2E+2E(p−1) = (2E+1)p+1 (cf. (5)) and Algorithm 4.1
interpolates a unique polynomial with ≤ E erroneous values. �

Remark 1. Let Etot ≥ |{âi,j | f
(j)(ξi) 6= âi,j}| be a bound on the total number of

errors. If all ℓi ≤ 1, we can prove that N = 2D+2Etot is the optimal count in the
case that n ≥ 2Etot +1 which is necessary, and that 2Etot ≥ D− 1 and that the
characteristic of K is either 0 or ≥ D+1. For D = 0 we have N = n = 2Etot+1.
We first show that the zero polynomial is the only interpolant of evaluations
that yield 0 at any of N − 2Etot of the evaluations. If E0 ≤ 2Etot values f(ξi)
are removed, a non-zero polynomial of degree D can be zero at the remaining

Hermite Rational Function Interpolation with Error Correction 11

n−E0 values only if n−E0 ≤ D ⇐⇒ E0 ≥ n−D. There are N − n ≥ 0 values
of f ′, of which one removes 2Etot −E0 ≤ 2Etot − (n−D) values. There remain
≥ N−n−(2Etot−n+D) = D values of f ′ at distinct arguments, which are zero,
which means f ′ = 0 and, by our assumption on the characteristic, deg(f) = 0.
Because f(ξi) = 0 at one of the n ≥ 2Etot + 1 arguments ξi, f = 0.

If there are N = 2D + 2Etot − 1 values, we choose n = 2Etot +D. We know
from Example 1 that there exists a non-zero polynomial f and argument values
ξi for 1 ≤ i ≤ n = D+2Etot, such that f(ξi) = 0 for i = 2Etot+1, . . . , 2Etot+D
and f ′(ξi) = 0 for i = 1, . . . , D − 1 ≤ 2Etot.

The number N = 2D+2Etot of evaluations is < D+1+4Etot for 2Etot ≥ D.
By Example 3, there is no unique interpolant for scalar fields K of positive
characteristic ≤ D. We shall explain how to interpolate in characteristic 0 or
≥ D + 1. Let n′ = N − n be the number for values for first derivatives. If the
number of errors k0 for the values âi,0 satisfies k0 ≤ (n − D − 1)/2, then f
can be computed by Reed-Solomon decoding from all âi,0. If n ≤ D + 2k0 then
n′ = N − n ≥ D + 2(Etot − k0), where (n′ − D)/2 ≥ Etot − k0 ≥ the number
of errors in âi,1. One can Reed-Solomon decode f ′ from all âi,1 and from it, by
assumption on the characteristic of K, compute f +C for an unknown constant
C. A majority of the n ≥ 2Etot + 1 values (f + C)(ξi) must equal âi,0, which
determines the constant coefficient. �

5 The Rational Function Case

Let f(x), g(x) ∈ K[x], g 6= 0, deg(f) ≤ Df , deg(g) ≤ Dg, GCD(f, g) = 1. One
is given a set of n distinct arguments ξ1, . . . , ξn ∈ K, and for each argument ξi,
one is given a row vector

Âi,∗ = [âi,0, . . . , âi,ℓi] ∈ (K ∪ {∞})1×(ℓi+1).

We call âi,j an error if one of the two cases happens: ξi is not a pole of (f/g)(j) and
âi,j 6= (f/g)(j)(ξi), or, ξi is a pole of (f/g)(j) and âi,j 6= ∞. Let {λ1, . . . , λk} ⊂

{1, . . . , n} be the set of indices where every row vector Âλ1,∗, . . . , Âλk,∗ has at
least one error, and let E ≥ k (if all row vectors are error-free then let E = k = 0).

Let Â be the list of these row vectors:

Â =



Â1,∗

...

Ân,∗


 ∈

(
(K ∪ {∞})1×(ℓ1+1) ∪ · · · ∪ (K ∪ {∞})1×(ℓn+1)

)n
.

We assume that ℓ1 ≥ · · · ≥ ℓn ≥ 0, and the last n∞ (n∞ can be zero) rows of

Â only have one value ∞ and all other rows of Â have values in K, that is, we
have the input specifications:

◮ ℓ1 ≥ · · · ≥ ℓn−n∞
≥ 0; if the characteristic p of K is > 0, then p ≥ ℓ1 + 1 is

required.

12 E. Kaltofen et al.

◮ âi,j 6=∞ for all i = 1, . . . , n− n∞ and 0 ≤ j ≤ ℓi;
◮ âi,0 =∞ and ℓi = 0 for all i = n− n∞ + 1, . . . , n.

For an arbitrary Â, we process the inputs as is discussed in the following remark.

Remark 2. If for a location i one has âi,j =∞ for all j, then a pole is indicated
either truly or falsely. In this case we compress the list to a single value âi,0 =
∞ and reset ℓi = 0. For a true pole, and for characteristic of K either 0 or
≥ deg(g) + 1, all values are correct, but the additional âi,j =∞ for j ≥ 1 yield
no additional information. In fact, f(x) = 1/xD cannot be interpolated from the
values f (j)(0) =∞ for all 0 ≤ j ≤ D without errors. Our handling of poles is not
a restriction of our algorithm, but is in the nature of the Hermite interpolation
problem.

If for a location i, the list of values âi,0, âi,1, . . . is a mix of both elements ∈ K

and ∞’s, we remove or truncate the list depending on the characteristic of K.

1. For characteristic of K either 0 or ≥ Dg + 1, we have for g(x) = (x −
α1)

µ1 · · · (x− αν)
µν , αi distinct ∈ algclo(K), that

(f(x)
g(x)

)′

=
f(x)′

g(x)
−

f(x)g(x)′

g(x)2

=
f(x)′

∏
i(x− αi)− f(x)

∑
i µi

∏
j 6=i(x− αj)

g(x)
∏

i(x− αi)
, (13)

where the right-side of (13) is a reduced rational function because no αi is a
root of the numerator: f(αi) 6= 0 because f/g is reduced, and µi

∏
j 6=i(αi −

αj) 6= 0 in K for all i by our assumption on the characteristic of K. Therefore,
if the list âi,0, âi,1, . . . is a mix of both elements ∈ K and ∞’s, then some
values in the list must be errors, so we remove the argument ξi and the list
of values altogether. We also reduce the number of errors accordingly.
Note that our algorithms do not account for error distributions and assume
the worst case. For instance, if in a list of ℓi = 20 values there is a single ∞,
we do not treat ∞ as a likely error. If fact, if there is a burst of errors, that
∞ may be the correct value.

2. For positive characteristic p ≤ deg(g), a mix of ∞’s and field element values
may not indicate an error: for ξ1 = 0 and f/g = (cxp+1 + 1)/xp, (f/g)′ = c
and has no pole at 0. For such a field, if âi,0 6= ∞ and âi,j = ∞ for some
j ≥ 1, then either âi,0 or âi,j is an error, so we remove the argument ξi and
the list of values altogether and adjust the number of errors. Otherwise, we
truncate the list to a single value âi,0 =∞ and reset ℓi = 0. �

Now we show how to recover the rational function f/g by the extended
Euclidean algorithm with the following condition:

n+

n∑

i=E+1

ℓi = n+

n−n∞∑

i=E+1

ℓi = Df +Dg + 1 + 2E +

E∑

i=1

ℓi. (14)

Hermite Rational Function Interpolation with Error Correction 13

Let E∞ be the number of false poles, namely, E∞ = |{i | âi,0 = ∞, g(ξi) 6=
0}|. Note that n∞ ≤ Dg + E∞. The condition (14) implies that n − n∞ ≥
2(E − E∞) + 1, since otherwise we have the contradiction:

n∞ + (n− n∞) +

n−n∞∑

i=E+1

ℓi ≤ (Dg + E∞) + 2(E − E∞) + (E − 2E∞)ℓE+1

< Df +Dg + 1 + 2E +

E∑

i=1

ℓi.

The condition (14) can also be relaxed to n+
∑n−n∞

i=E+1 ℓi ≥ Df +Dg +1+2E +∑E
i=1 ℓi, because in that case, one can always adjust the ℓi’s to achieve (14) (see

Remark 4).

5.1 Error-correcting rational function Hermite interpolation

Input: ◮ A field K, nonnegative integers Df , Dg, E ∈ Z≥0;
◮ A set of distinct points {ξ1, . . . , ξn} ⊂ K.
◮ A list of n row vectors Â = [Âi,∗]1≤i≤n and n∞ ∈ Z≥0 where

◮ ℓ1 ≥ · · · ≥ ℓn−n∞
≥ 0, ℓn−n∞+1 = · · · = ℓn = 0;

◮ the characteristic of K is either 0 or ≥ ℓ1 + 1;
◮ Âi,∗ = [âi,0, . . . , âi,ℓi] and âi,j ∈ K for all i = 1, . . . , n− n∞ and

j = 0, . . . , ℓi;
◮ âi,0 =∞ for all i = n− n∞ + 1, . . . , n;
◮ n+

∑n−n∞

i=E+1 ℓi = Df +Dg + 1 + 2E +
∑E

i=1 ℓi.
Output: ◮ The rational function f/g ∈ K(x) such that

◮ f, g ∈ K[x], g 6= 0, GCD(f, g) = 1;
◮ deg(f) ≤ Df and deg(g) ≤ Dg;
◮ f/g produces errors in ≤ E row vectors of Â.

◮ Or a message indicating there is no such function.

1. If âi,j = 0 for all i = 1, . . . , n and j = 0, . . . , ℓi, then return f/g = 0.
2. Let I∞ = {n− n∞ + 1, . . . , n} and P∞(x) =

∏
i∈I∞

(x− ξi).
3. For i = 1, . . . , n− n∞ and j = 1, . . . , ℓi, compute

b̂i,j
def
=

j∑

τ=0

(
j

τ

)
âi,τP

(j−τ)
∞ (ξi).

4. Compute the polynomial Hermite interpolant H̄(x) of the data set {(ξi; b̂i,0, . . . ,

b̂i,ℓi) | i = 1, . . . , n− n∞} (namely H̄(j)(ξi) = b̂i,j, see Section 2). Let H(x) =
H̄(x)P∞(x).

5. Let r0(x) = P∞(x)
∏n−n∞

i=1 (x− ξi)
ℓi+1, r1 = H, s0 = 0, s1 = 1 and ρ = 2.

5a. Compute the ρ-th Euclidean polynomial remainder rρ and the multiplier
sρ in the extended Euclidean scheme sρr1 + tρr0 = rρ, namely

rρ(x) = rρ−2(x)− qρ(x)rρ−1(x), deg(rρ) < deg(rρ−1),

sρ(x) = sρ−2(x)− qρ(x)sρ−1(x).

14 E. Kaltofen et al.

5b. If deg(rρ) ≤ Df + n∞ + E +
∑E

i=1 ℓi, then let γ = ρ and go to step 6.

5c. Otherwise, let ρ = ρ+ 1 and go to Step 5a.

Step 5 computes (rγ , sγ) as in Lemma 1 with d = Df + E +
∑E

i=1 ℓi + n∞

and e = Dg +E +
∑E

i=1 ℓi − n∞. We will prove in Lemma 4 that if there are
f, g ∈ K[x] satisfy the output specifications, then rγ/(sγP

2
∞) = f/g. Here we

also have sγ 6= 0 because GCD(sγ , tγ) = 1 when γ ≥ 2 and s1 = 1.

6. Compute Γ = GCD(rγ , sγ) and f/g = rγ/(sγP
2
∞) with GCD(f, g) = 1.

6a. If deg(f) ≤ Df and deg(g) ≤ Dg, compute k1 =
∣∣{i | 1 ≤ i ≤ n− n∞,

Γ (ξi) = 0}
∣∣ and k2 =

∣∣{i | n− n∞+1 ≤ i ≤ n, g(ξi) 6= 0}
∣∣; if k1+k2 ≤ E

then return f/g.

6b. If deg(f) > Df , or deg(g) > Dg, or k1 + k2 > E, return a message
indicating there is no such function.

We will prove in Lemma 5 that the rational function f/g returned by Step 6a
satisfies the output specifications. Therefore, we can check the validity of f/g
without computing all the values f (j)(ξi) and g(j)(ξi) for i = 1, . . . , n and
j = 0, . . . , ℓi.

We will define the error locator polynomial Λ(x) in Lemma 4, and then based
on Lemma 6, we show how to compute f/g and Λ(x) more efficiently other
than reducing the fraction rγ/(sγP

2
∞) and evaluating Γ and g (see Remark 3).

Lemma 4. We use the notation of Algorithm 5.1 and assume there exists a ra-
tional function f/g ∈ K(x) which satisfies the output specifications. Let ξλ1

, . . . ,
ξλk

be the arguments with erroneous values, that is, for indices λκ ∈ {λ1, . . . , λk},
there exists j ∈ {0, . . . , ℓλκ

} such that âi,j is an error. For λκ /∈ I∞, let δκ =
ℓλκ

+ 1−min{j | âλκ,j is an error }. Let

Λ̄(x) =
∏

λκ∈{λ1,...,λk}\I∞

(x− ξλκ
)δκ ,

Λ∞(x) =
∏

λκ∈{λ1,...,λk}∩I∞

(x− ξλκ
),

g∞(x) =
∏

1≤ν≤n, ν∈I∞\{λ1,...,λk}

(x− ξν). (15)

Let Λ(x) = Λ̄(x)Λ∞(x) and ḡ = g/g∞. Then

fP∞Λ ≡ HḡΛ̄ (mod r0). (16)

Moreover, f/g = rγ/(sγP
2
∞), which implies the interpolant f/g is unique.

Proof. Note that P∞ = Λ∞g∞, we have HḡΛ̄ = H̄P∞ḡΛ̄ = H̄gΛ, hence (16) is
equivalent to

fP∞Λ ≡ H̄gΛ (mod r0). (17)

Hermite Rational Function Interpolation with Error Correction 15

By the same argument as in the proof of (7) in Lemma 2, proving (17) is equiv-
alent to proving the following two equalities:

(fP∞Λ)(ξi) = (H̄gΛ)(ξi) for i ∈ I∞, (18)

(fP∞Λ)(j)(ξi) = (H̄gΛ)(j)(ξi) for i /∈ I∞, j = 0, . . . , ℓi. (19)

Note that H̄gΛ = (H̄ḡΛ̄)P∞, therefore both sides of the equation in (18) are
equal to zero because P∞(ξi) = 0 for i ∈ I∞.

It remains to prove (19). For i /∈ I∞ and j = 0, . . . , ℓi,

(fP∞Λ)(j)(ξi) =

j∑

τ=0

(
j

τ

)
(fP∞)(j−τ)(ξi)Λ

(τ)(ξi)

(H̄gΛ)(j)(ξi) =

j∑

τ=0

(
j

τ

)
(H̄g)(j−τ)(ξi)Λ

(τ)(ξi),

we show that either Λ(τ)(ξi) = 0 or (fP∞)(j−τ)(ξi) = (H̄g)(j−τ)(ξi) by consid-
ering the following three cases.

Case 1. ξi /∈ {ξλ1
, . . . , ξλk

}, then for j = 0, . . . , ℓi,

(fP∞)(j)(ξi) =

j∑

σ=0

(
j

σ

)
f (σ)(ξi)P

(j−σ)
∞ (ξi) (20)

=

j∑

σ=0

(
j

σ

) σ∑

µ=0

(
σ

µ

)
âi,σ−µg

(µ)(ξi)P
(j−σ)
∞ (ξi) (21)

= (H̄g)(j)(ξi). (22)

The equality (21) follows from

f (σ) = ((f/g) g)(σ) =

σ∑

µ=0

(
σ
µ

)
(f/g)(σ−µ)g(µ).

Case 2. ξi = ξλκ
for some κ ∈ {1, . . . , k} and τ < δκ, then Λ(τ)(ξλκ

) = 0.
Case 3. ξi = ξλκ

for some κ ∈ {1, . . . , k} and τ ≥ δκ, then j − τ < min{j |
(f/g)(j)(ξλκ

) 6= âλκ,j}, and one can prove that (fP∞)(j−τ)(ξλκ
) =

(H̄g)(j−τ)(ξλκ
) as in (22).

Now (19) is proved, which completes the proof of (16). Let R = fP∞Λ and
S = ḡΛ̄, we rewrite (16) as

R ≡ SH (mod r0).

Let d = Df + E +
∑E

i=1 ℓi + n∞ and e = Dg + E +
∑E

i=1 ℓi − n∞ we have
deg(r0) = d + e + 1 by the input specifications of the Algorithm 5.1 (or the
condition (14)). Moreover, deg(H) ≤ d + e, deg(R) ≤ d and deg(S) ≤ e, by
Lemma 1, we have R/S = rγ/sγ . Thus f/g = R/(SP 2

∞) = rγ/(sγP
2
∞).

16 E. Kaltofen et al.

Lemma 5. Let Γ = GCD(rγ , sγ) and f/g = rγ/(sγP
2
∞) with GCD(f, g) = 1 be

as in Step 6 of Algorithm 5.1. If deg(f) ≤ Df , deg(g) ≤ Dg and k1 + k2 ≤ E,
then f/g satisfies the output specifications of Algorithm 5.1.

Proof. It is sufficient to prove that f/g produces errors in ≤ k1 row vectors of

the list [Â1,∗, . . . , Ân−n∞,∗]. By the extended Euclidean scheme sγr1+tγr0 = rγ ,

rγ ≡ sγH (mod P), (23)

where H = r1 and P = r0. Since fP 2
∞/g = rγ/sγ and Γ = GCD(rγ , sγ), (23)

leads to
fP 2

∞Γ ≡ gH Γ (mod P). (24)

By dividing P∞, we get

fP∞Γ ≡ gH̄ Γ (mod

n−n∞∏

i=1

(x− ξi)
ℓi+1). (25)

Therefore, if Γ (ξi) 6= 0, then (fP∞)(j)(ξi) = (gH̄)(j)(ξi) for all j = 0, . . . , ℓi, and
this equality expands to (20), (21), and (22). Because P∞(ξi) 6= 0 for all i =

1, . . . , n− n∞, it follows from (20) and (21) that f (j)(ξi) =
∑j

µ=0

(
j
µ

)
âi,j−µg

(µ)(ξi)

if i ∈ {1, . . . , n− n∞} and Γ (ξi) 6= 0. This means for f/g, the list [Â1,∗, . . . ,

Ân−n∞,∗] has at least n− n∞ − k1 error-free row vectors.

From Lemma 4 and Lemma 5, we conclude the correctness of the Algo-
rithm 5.1 in the following theorem.

Theorem 1. Let Df , Dg, E and ℓ1 ≥ · · · ≥ ℓn be nonnegative integers, and let K
be a field of characteristic ≥ ℓ1+1. For a set of n distinct points {ξ1, . . . , ξn} ⊂ K

and a list of n row vectors Â = [Âi,∗]1≤i≤n with Âi,∗ = [âi,0, . . . , âi,ℓi] ∈ (K ∪

{∞})1×(ℓi+1), if Â satisfies the input specifications of the Algorithm 5.1, then
either there is a unique rational function interpolant f/g satisfying the output
specifications and the Algorithm 5.1 will return it, or there is no such rational
function interpolant and the Algorithm 5.1 will report the nonexistence.

Lemma 6. With the notation as in Algorithm 5.1 and Lemma 4, we have

GCD(rγ , sγ) = Λ̄ ·GCD(ḡ, g∞),

and Λ2
∞ divides rγ .

Proof. We first prove that Λ̄ divides sγ and rγ . Since rγ ≡ sγH (mod r0), we
have

rγ ḡ ≡ sγHḡ = sγ(H̄g)Λ∞ (mod r0). (26)

On the other hand, let R = fP∞Λ and S = ḡΛ̄, as it is shown in the proof of
Lemma 4 that

rγS = sγR, (27)

Hermite Rational Function Interpolation with Error Correction 17

which is rγ(ḡΛ̄) = sγfP∞Λ. Because Λ̄ 6= 0, dividing Λ̄ on both sides results in

rγ ḡ ≡ sγ(fP∞)Λ∞ (mod r0). (28)

Combining (26) and (28) leads to

sγ(H̄g)Λ∞ ≡ sγ(fP∞)Λ∞ (mod r0). (29)

Since Λ̄ is a factor of r0 and GCD(Λ̄, Λ∞) = 1, Λ̄ divides sγ(H̄g − fP∞). Let
(x − ξλκ

)δκ be a factor of Λ̄, and let ǫκ = min{j | (f/g)(j)(ξλκ
) 6= âλκ,j}, using

the same argument as in the proof of Lemma 3, one can prove that (x− ξλκ
)δκ

divides sγ , and so Λ̄ divides sγ . Because rγ ≡ sγH (mod r0), Λ̄ also divides rγ .
Now assume that GCD(rγ , sγ) = Λ̄w for some w ∈ K[x]. Let v = GCD(ḡ, g∞),

then GCD(R,S) = Λ̄v. From (27), we have the reduced fractions:

rγ/(Λ̄w)

sγ/(Λ̄w)
=

R/(Λ̄v)

S/(Λ̄v)
, (30)

which implies that

rγ/w = c(R/v), sγ/w = c(S/v) for some c ∈ K \ {0}. (31)

Combining the Euclidean scheme sγr1 + tγr0 = rγ , we have

R− SH

v
=

rγ − sγH

cw
=

tγr0
cw

, (32)

and so (R− SH)/r0 = (tγv)/(cw). By Lemma 4, (R− SH)/r0 is a polynomial,
which implies that w divides (tγv). But GCD(tγ , w) = 1 because sγ and tγ are
relatively prime, therefore w divides v.

We now prove that v = w : suppose v = ww∗ with deg(w∗) ≥ 1. Since v
divides g∞, there exists a ξi, with 1 ≤ i ≤ n and i 6∈ {λ1, . . . , λk}, such that
g∞(ξi) = w∗(ξi) = 0. We have the following contradiction:

0 = rγ(ξi)−H(ξi)sγ(ξi) (33)

= cf(ξi)Λ(ξi)Λ∞(ξi)(g∞/w∗)(ξi) (34)

6= 0. (35)

The equation (33) follows from rγ = sγr1 + tγr0; (34) is a consequence of (31)
and P∞(ξi) = 0; since g∞ in (15) has single roots, (g∞/w∗)(ξi) 6= 0, which leads
to (35).

Finally, f/g = rγ/(sγP
2
∞) = rγ/(sγΛ

2
∞g2∞) and GCD(g, Λ∞) = 1, so Λ2

∞

must be a factor of the numerator rγ .

Remark 3. Instead of computing f/g by reducing the fraction rγ/(sγP
2
∞) as in

Step 6 of the Algorithm 5.1, we can compute Λ̄ and Λ∞ first, and then compute
f/g. In other words, for computing Λ and f/g, we can replace the Step 6 of the
Algorithm 5.1 with the following steps:

18 E. Kaltofen et al.

6a. Compute Γ = GCD(rγ , sγ), r̃ = rγ/Γ , and s̃ = sγ/Γ .
6b. Compute w = GCD(Γ, P∞), u = P∞/w and Λ̄ = Γ/w.
6c. Compute ũ = r̃/u, Λ∞ = GCD(ũ, P∞), f̃ = ũ/Λ∞, g∞ = P∞/Λ∞, and

g̃ = s̃ w g∞.
6d. Let k1 and k2 be the number of distinct factors of Λ̄ and Λ∞ respectively.

6d(i). If deg(f̃) ≤ Df , deg(g̃) ≤ Dg, and k1 + k2 ≤ E, return f̃/g̃, Λ̄, and
Λ∞.

6d(ii). Else, return a message indicating there are no f, g ∈ K[x] such that
deg(f) ≤ Df , deg(g) ≤ Dg and f/g produces errors in ≤ E row

vectors of Â.

Proof. By Lemma 6, Γ = Λ̄ · GCD(ḡ, g∞). Since g∞(ξλκ
) 6= 0 (see (15)) for all

λκ ∈ {λ1, . . . , λk}, we have GCD(Λ, g∞) = 1, thus GCD(Γ, P∞) = GCD(ḡ, g∞)
and Γ = Λ̄ w.
From (31), we have

r̃ = rγ/Γ = c(R/Γ) and s̃ = sγ/Γ = c(S/Γ) for some c ∈ K \ {0}.

Using the substitutions R = fΛP∞, S = ḡΛ̄, Γ = Λ̄ w, and u = P∞/w, one can
verify that ũ = cfΛ∞ and g̃ = cg. Because f and g are relatively prime, we have
GCD(f, g∞) = 1, so GCD(ũ, P∞) = Λ∞.

6 Further Remarks

Remark 4. As stated in the introduction, the sufficient conditions (1, 5, 14) for
an interpolation profile of orders of derivatives ℓ1 ≥ · · · ≥ ℓn at distinct argu-
ments may oversample, because the ℓi’s are on both sides and could be reduced
simultaneously while preserving the conditions. Therefore, one can add the fol-
lowing “pre-processing data” Step 0 at the beginning of the Algorithm 4.1, which
may reduce the number of values for recovering f and improve the efficiency of
the algorithm.

0. For every j = 0, 1, . . . , ℓ1, let mj = max{ i | âi,j is given as input} (the di-

mension of the j-th column of Â, the number of inputs for the j-th derivative).

Furthermore, let Mj =
∑j

µ=0 mµ, which is the number of inputs up to the j-th
derivative. Compute the minimal β such that Mβ ≥ D + 1 + 2(β + 1)E. Let

N [new] = D + 1 + 2(β + 1)E (36)

and

ℓ
[new]
i =





β for 1 ≤ i ≤ N [new] −Mβ−1,
β − 1 for N [new] −Mβ−1 + 1 ≤ i ≤ mβ,
ℓi for i > mβ.

(37)

Now m
[new]
β = N [new] −Mβ−1 and

∑n
i=1(ℓ

[new]
i + 1) = N [new].

Hermite Rational Function Interpolation with Error Correction 19

One can also add Step 0 at the beginning of Algorithm 5.1 by replacing D with
Df +Dg. Figure 1 shows how Step 0 removes redundant values. Recall we are
given n distinct points ξ1, . . . , ξn, and for each point ξi, we are given a row vector
of values: Âi,∗ = [âi,0, . . . , âi,ℓi] with ℓ1 ≥ · · · ≥ ℓn ≥ 0, and Â is the list of these
row vectors

Â =



Â1,∗

...

Ân,∗


 .

Â is shown as the “staircase” in Figure 1, which has D = 15, E = 2, n = 8,
ℓ1 = 11, ℓ2 = 10, ℓ3 = ℓ4 = 8, ℓ5 = ℓ6 = 7, ℓ7 = 3, ℓ8 = 0, N = 62, β = 5,

N [new] = 40, ℓ
[new]
1 = · · · = ℓ

[new]
5 = 5, ℓ

[new]
6 = 4. Intuitively, Step 0 cuts Â by

the red line and removes the right part, and the left part has N [new] values.

10

ℓ1 + 1

β

ξ1

ξ2

ℓ1

mβm1

m
[new]
β

ξn

Fig. 1. Truncation by β

Lemma 7. The β computed in the Step 0 above is no more than D.

Proof. By the minimality of β, we have Mβ−1 ≤ D + 2βE, and so

mβ = Mβ −Mβ−1 ≥ N [new] −Mβ−1 ≥ 2E + 1.

Moreover, m0 ≥ · · · ≥ mβ−1 ≥ mβ ≥ 2E + 1, thus

(2E + 1)β ≤

β−1∑

j=0

mj = Mβ−1 ≤ D + 2βE,

which concludes that β ≤ D.

20 E. Kaltofen et al.

Remark 5. If we are given an error rate 1/q (q ∈ Z≥3) instead of an upper bound
E on the number of errors, and we are also given bounds

(i) Df ≥ deg(f), Dg ≥ deg(g)
(ii) β = max{j | (f/g)(j) is available for evaluation},

then the Algorithm 5.1 can recover f/g for q−2(β+1) = η > 0 with n =
⌈

qδ
(β+1)η

⌉

distinct arguments and N = δ+2(β+1)
⌊
δ
η

⌋
values where δ = Df+Dg(β+1)+1.

Cf. [9, Remark 1.1] and [10, Remark 1.1].

Remark 6. In the input specifications of the Algorithm 5.1, the number of values
in Â is C = Df +Dg + 1 + 2

∑E
i=1(ℓi + 1) (see also (1)), which guarantees that

the Algorithm 5.1 either returns a unique valid interpolant f/g or determines

no such interpolant exists. If E ≥ 1 and Â has C − (ℓn + 1) values, we can use

Algorithm 5.1 on every n− 1 row vectors of Â and with input Df , Dg, E − 1, to
compute all possible rational functions f/g which satisfy:

◮ f, g ∈ K[x], g 6= 0, GCD(f, g) = 1;
◮ deg(f) ≤ Df and deg(g) ≤ Dg;
◮ f/g produces errors in ≤ E row vectors of Â.

This is because for every such rational function f/g, there is µ ∈ {1, . . . , n} for

which f/g produces errors in ≤ E−1 row vectors of the list Â−Âµ,∗
def
= [Â1,∗, . . . ,

Âµ−1,∗, Âµ+1,∗, . . . , Ân,∗] (if µ = 1 or n, consider Â0,∗ and Ân+1,∗ as empty row

vectors). Moreover, the list Â − Âµ,∗ has C − (ℓn + 1) − (ℓµ + 1) values which
are sufficient to recover f/g with the input bounds Df , Dg and E − 1, because
C − (ℓn + 1)− (ℓµ + 1) is equal to:





Df +Dg + 1 + 2
E∑

i=1,i 6=µ

(ℓi + 1) + (ℓµ − ℓn), if 1 ≤ µ ≤ E,

Df +Dg + 1 + 2

E−1∑

i=1

(ℓi + 1) + (2ℓE − ℓµ − ℓn), if E + 1 ≤ µ ≤ n.

This method can be generalized to situations where Â has C −
∑n−n0

i=n (ℓi + 1)
values and n0 is a small constant compared to E. For the polynomial case with
a uniform derivative profile, that is, Dg = 0 and ℓ1 = · · · = ℓn, [4] and [12] give
algorithms to list-decode derivative (or multiplicity) codes by solving differential
equations.

7 Conclusion

Interpolation algorithms go back to ancient Chinese mathematicians. Algorithms
that also can tolerate errors in the evaluations appeared as error correction alge-
braic codes in the early 1960s. Table 1 gives a brief history. Our paper completes

Hermite Rational Function Interpolation with Error Correction 21

Table 1. A brief history of univariate interpolation.

Polynomial Rational Function

at values Sun-Tsu/Lagrange, Cauchy
Guo Shoujing/Newton

at values Hermite, Padé/Kronecker,
of derivatives Birkhoff Warner 1974

at values Reed and Solomon [16] Beelen, Høholdt,
with errors Nielsen, Wu [1]

at values Multiplicity codes: Rosenbloom This paper
of derivatives with errors and Tsfasman [17]

the second column by giving an error correction interpolation algorithm of nearly
linear arithmetic complexity for a rational function from values at its derivatives.

Note added August 10, 2020: page 3, before first unnumbered displayed
formula “E ≥ . . . : ” “at one” ←→ “one”
page 3, after first unnumbered displayed formula “E ≥ . . . : ” added “where | . . . |
is the number of elements in the set”

Note added August 14, 2020: page 10, Remark 1: Etot ←→ E and added
first sentence. Also added the last paragraph on how to decode.

Note added September 15, 2020: Added Padé/Kronecker to Table 1.

References

1. Beelen, P., Høholdt, T., Nielsen, J.S.R., Wu, Y.: On rational interpolation-based
list-decoding and list-decoding binary Goppa codes. IEEE Trans. Inf. Theory it-

59(6), 3269–3281 (2013), URL: http://arxiv.org/abs/1211.0122
2. Chin, F.Y.: A generalized asymptotic upper bound for fast polynomial evaluation

and interpolation. SIAM J. Comput. 5(4), 682–690 (1976)
3. Coxon, N.: Fast systematic encoding of multiplicity codes. J. Symbolic Comput.

94, 234–254 (2019)
4. Guruswami, V., Wang, C.: Optimal rate list decoding via derivative codes. In: Gold-

berg, L.A., Jansen, K., Ravi, R., Rolim, J.D.P. (eds.) Approximation, Randomiza-
tion, and Combinatorial Optimization. Algorithms and Techniques, pp. 593–604.
Springer (2011)

5. Guruswami, V., Wang, C.: Linear-algebraic list decoding for variants of Reed-
Solomon codes. IEEE Transactions on Information Theory 59(6), 3257–3268
(2013), URL: https://sites.math.rutgers.edu/~sk1233/part2.pdf

6. Gustavson, F.G., Yun, D.Y.Y.: Fast computation of the rational Hermite inter-
polant and solving Toeplitz systems of equations via the extended Euclidean algo-
rithm. In: Ng, E.W. (ed.) Proceedings of the International Symposium on Symbolic
and Algebraic Computation. pp. 58–64. EUROSAM ’79, Springer, Berlin, Heidel-
berg (1979)

7. Kaltofen, E., Pernet, C., Storjohann, A., Waddell, C.A.: Early termination in para-
metric linear system solving and rational function vector recovery with error cor-
rection. In: Burr, M. (ed.) ISSAC ’17 Proc. 2017 ACM Internat. Symp. Symbolic

22 E. Kaltofen et al.

Algebraic Comput. pp. 237–244. Association for Computing Machinery, New York,
N. Y. (2017), URL: http://users.cs.duke.edu/~elk27/bibliography/17/KPSW17.
pdf

8. Kaltofen, E., Trager, B.M.: Computing with polynomials given by black boxes for
their evaluations: Greatest common divisors, factorization, separation of numera-
tors and denominators. J. Symbolic Comput. 9(3), 301–320 (1990), URL: http://
users.cs.duke.edu/~elk27/bibliography/90/KaTr90.pdf

9. Kaltofen, E., Yang, Z.: Sparse multivariate function recovery from values with noise
and outlier errors. In: Kauers, M. (ed.) ISSAC 2013 Proc. 38th Internat. Symp.
Symbolic Algebraic Comput. pp. 219–226. Association for Computing Machinery,
New York, N. Y. (2013), URL: http://users.cs.duke.edu/~elk27/bibliography/13/
KaYa13.pdf

10. Kaltofen, E., Yang, Z.: Sparse multivariate function recovery with a high error rate
in evaluations. In: Nabeshima, K. (ed.) ISSAC 2014 Proc. 39th Internat. Symp.
Symbolic Algebraic Comput. pp. 280–287. Association for Computing Machinery,
New York, N. Y. (2014), URL: http://users.cs.duke.edu/~elk27/bibliography/14/
KaYa14.pdf

11. Kopparty, S.: Some remarks on multiplicity codes. In: Barg, A., Musin, O.R. (eds.)
Discrete Geometry and Algebraic Combinatorics: AMS Spec. Session. Contempo-
rary Mathematics, vol. 625, pp. 155–176 (2014), uRL: https://sites.math.rutgers.
edu/~sk1233/multcode-survey.pdf

12. Kopparty, S.: List-decoding multiplicity codes. Theory of Computing 11(1), 149–
182 (2015), URL: https://sites.math.rutgers.edu/~sk1233/part2.pdf

13. Kopparty, S., Saraf, S., Yekhanin, S.: High-rate codes with sublinear-time decoding.
Journal of the ACM (JACM) 61(5), 1–20 (2014)

14. Moenck, R.T.: Fast computation of GCDs. In: Proc. 5th ACM Symp. Theory
Comp. pp. 142–151 (1973)

15. Nielsen, R.R.: List decoding of linear block codes. Ph.D. thesis, Technical Univer-
sity of Denmark (2001)

16. Reed, I.S., Solomon, G.: Polynomial codes over certain finite fields. Journal of the
Society for Industrial and Applied Mathematics 8(2), 300–304 (1960)

17. Rosenbloom, M.Y., Tsfasman, M.A.: Codes for the m-metric. Problemy Peredachi
Informatsii 33(1), 55–63 (1997)

18. Schoenberg, I.J.: On Hermite-Birkhoff interpolation. J. Math. Analysis and Applic.
16, 538–543 (1967), URL: https://doi.org/10.1016/0022-247X(66)90160-0

19. Sugiyama, Y., Kasahara, M., Hirasawa, S., Namekawa, T.: A method for solving
key equation for decoding Goppa codes. Information and Control 27(1), 87–99
(1975)

20. Warner, D.D.: Hermite interpolation with rational functions. Ph.D. thesis, Univer-
sity of California, San Diego (1974)

21. Welch, L.R., Berlekamp, E.R.: Error correction of algebraic block codes. US Patent
4,633,470 (1986), filed 1983; see http://patft.uspto.gov/

A Appendix

Notation (in alphabetic order):
âi,j the input value for the j-th derivative of f , or an error, at the i-th point

Âi,∗ = [âi,0, . . . , âi,ℓi], the row vector of values for the i-th point ξi

Hermite Rational Function Interpolation with Error Correction 23

Notation continued (in alphabetic order):

Â = [Â1,∗, . . . , Ân,∗]
T , the collection of all input values

b̂i,j =
∑j

τ=0

(
j
τ

)
âi,τP

(j−τ)
∞ (ξi)the value for the j-th derivative of H at the i-th

point
β the minimal integer such that there are ≥ D + 1 + 2E + 2βE values for

derivatives of order ≤ β
cj the coefficient of xj in f
D an upper bound of the degree of the polynomial interpolant
Df an upper bound of the degree of the numerator of the rational interpolant
Dg an upper bound of the degree of the denominator interpolant
δκ = ℓλκ

+ 1−min{ j | âλκ,j is an error}
E an upper bound on the number of errors in the input values to the algorithm
ξi the i-th interpolation point
ξλκ

1 ≤ κ ≤ k, are the points with erroneous values, namely, ∃j s.t. âλκ,j is an
error

ǫκ = min{ j | âλκ,j is an error} = ℓλκ
+ 1− δκ

f polynomial interpolant or numerator of the rational interpolant for the
correct values

g the denominator of the rational interpolant for the correct values
ḡ a factor of g indicating true non-poles
g∞ a factor of g indicating true poles
H the polynomial Hermite interpolant for all input values (including ≤ E

errors)
I∞ = {i | ∃j s.t. âi,j =∞}
k the actual number of points with erroneous input values
K a field
ℓi the highest derivative order at the i-th point
Λ the error locator polynomial
Λ̄ =

∏
κ∈{1,...,k},λκ /∈I∞

(x− ξλκ
)δκ

Λ∞ =
∏

κ∈{1,...,k},λκ∈I∞
(x− ξλκ

)

mj the number of input values for the j-th derivative of f
Mj the number of input values for up to the j-th derivative of f
n the number of distinct points
n∞ degree of P∞

N the number of the input values
P∞ =

∏
∃j s.t. âi,j=∞(x− ξi), the polynomial indicating all poles

r0 = (x− ξ1)
ℓ1+1 · · · (x− ξn)

ℓn+1

rγ the γ-th remainder of the Euclidean polynomial remainder sequence
r0, r1, . . .

sγ the Bézout coefficient of r1 in the γ-th extended Euclidean scheme: sγr1 +
tγr0 = rγ

tγ the Bézout coefficient of r0 in the γ-th extended Euclidean scheme: sγr1 +
tγr0 = rγ

