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Sparse Interpolation With Errors in Chebyshev

Basis Beyond Redundant-Block Decoding
Erich L. Kaltofen and Zhi-Hong Yang

Abstract—We present sparse interpolation algorithms for re-
covering a polynomial with ≤ B terms from N evaluations at
distinct values for the variable when ≤ E of the evaluations
can be erroneous. Our algorithms perform exact arithmetic in
the field of scalars K and the terms can be standard powers
of the variable or Chebyshev polynomials, in which case the
characteristic of K is 6= 2. Our algorithms return a list of
valid sparse interpolants for the N support points and run
in polynomial-time. For standard power basis our algorithms
sample at N = ⌊4

3
E+2⌋B points, which are fewer points than

N = 2(E+1)B−1 given by Kaltofen and Pernet in 2014. For
Chebyshev basis our algorithms sample at N = ⌊3

2
E + 2⌋B

points, which are also fewer than the number of points required
by the algorithm given by Arnold and Kaltofen in 2015, which has
N = 74⌊ E

13
+1⌋ for B = 3 and E ≥ 222. Our method shows

how to correct 2 errors in a block of 4B points for standard
basis and how to correct 1 error in a block of 3B points for
Chebyshev Basis.

Index Terms—Sparse polynomial interpolation, error correc-
tion, black box polynomial, list-decoding.

I. INTRODUCTION

LET f(x) be a polynomial with coefficients from a field

K (of characteristic 6= 2),

f(x) =

t∑

j=1

cjTδj (x) ∈ K[x],

0 ≤ δ1 < δ2 < · · · < δt = deg(f), ∀j, 1 ≤ j ≤ t : cj 6= 0,
(1)

where Td(x) is the Chebyshev Polynomial of the First Kind

(of degree d for d ≥ 0), defined by the recurrence

[
Td(x)

Td+1(x)

]

=

[
0 1
−1 2x

]d [
1
x

]

for d ∈ Z. (2)

We say that f(x) is Chebyshev-1 t-sparse. We wish to compute

the term degrees δj and the coefficients cj from values of

ai = f(ζi) for i = 1, 2, . . ., where the distinct arguments

ζi ∈ K can be chosen by the algorithms; the latter is the setting

of Prony-like sparse interpolation methods. Our objective is to

interpolate with a number of points that is proportional to the
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sparsity t of f . The algorithms have as input an upper bound

B ≥ t for the sparsity, for otherwise the zero polynomial

(of sparsity 0) is indistinguishable from f(x) =
∏

i(x − ζi)
at ≤ deg(f) evaluation points ai = 0. The algorithms by

[1], [2], [3], based on Prony-like interpolation [4], [5], [6],

can interpolate f(x) (see (1)) from 2B values at points ζi =
Ti(β) = (ωi + 1/ωi)/2 for i = 0, 1, . . . , 2B − 1 where β =
(ω+1/ω)/2 with ω ∈ K such that ωδj 6= ωδk for all 1 ≤ j <
k ≤ t. Like Prony’s original algorithm, our algorithms utilize

an algorithm for computing roots in K of polynomials with

coefficients in K and logarithms to base ω. More precisely,

one utilizes an algorithm that on input ω and ωd for an integer

d ∈ Z computes d, possibly modulo the finite multiplicative

order η of ω (ωη = 1 minimally) [7]. We note that in [2]

we show that one may instead use the odd-indexed argument

T2i+1(β) for i = 0, 1, ..., 2B − 1, provided ω2δj+1 6= ω2δk+1

for all 1 ≤ j < k ≤ t.

Here we consider the case when the evaluations ai, which

we think of being computed by probing a black box that

evaluates f , can have sporadic errors. We write âi for the

black box values, which at some unknown indices ℓ can have

âℓ 6= aℓ. In the plot in Fig. 1 below, which is for the range

−1 ≤ x ≤ 1, the purple function is T15(x)− 2T11(x)+T2(x)
that fits 37 of the 40 values, while the red model is a

polynomial least squares fit of degree ≤ 19. The red function

captures 3 possible outliers, resulting in a model which has a

lower accuracy on the remaining 37 data points.

Fig. 1. Sparse Chebyshev-1 polynomial fit after removing 3 errors vs.
polynomial least squares fit

We shall assume that we have an upper bound E for the

number of errors on a batch of N evaluations. Therefore our

sequence of black box calls has a non-stochastic error rate

≤ E/N . We shall also assume that the black box for f
does not return stochastic errors, meaning that if â 6= f(ζ)
then a second evaluation of the black box at ζ produces the

same erroneous â. Furthermore, we perform list-interpolation

which produces a valid list of sparse interpolants for the

black box values with errors, analogously to list-decoding
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error correcting codes. We restrict to algorithms that run

in polynomial time in B and E (N is computed by the

algorithms), which limits the list length to polynomial in B
and E.

A simple sparse list-interpolation algorithm with errors

evaluates E + 1 blocks of 2B arguments, which produce

N = (E + 1)2B black box values âi,σ at the arguments

T1(β1), T3(β1), . . . , T4B−1(β1),
T1(β2), T3(β2), . . . , T4B−1(β2),
...

...
...

T1(βE+1), T3(βE+1), . . . , T4B−1(βE+1),







E + 1

(3)

where βσ = (ωσ + 1/ωσ)/2 and where the arguments in (3)

are selected distinct: T2i+1(βσ) 6= T2m+1(βτ ) for i 6= m and

σ 6= τ (⇐⇒ ω2i+1
σ 6= ω2m+1

τ ). If we have for all ωσ distinct

term values ω
δj
σ 6= ωδk

σ (j 6= k) then the algorithm in [2] can

recover f from those lines in (3) at which the black box does

not evaluate to an error, because we assume ≤ E errors there

is such a block of good arguments/values. Other blocks with

errors may lead to a different t-sparse Chebyshev-1 interpolant

with t ≤ B. The goal is to recover f (and possible other

sparse interpolants with ≤ E errors) from N < (E + 1)2B
evaluations.

In [2] we give algorithms for the following bounds B,E :

B = 1: ∀E ≥ 57:

N = 23⌊
E

14
+ 1⌋ < 2(E + 1) = 2B(E + 1);

23

14
≤ 1.65,

B = 2: ∀E ≥ 86:

N = 43⌊
E

12
+ 1⌋ < 4(E + 1) = 2B(E + 1);

43

12
≤ 3.59,

B = 3: ∀E ≥ 222:

N = 74⌊
E

13
+ 1⌋ < 6(E + 1) = 2B(E + 1);

74

13
≤ 5.70.

(4)

The evaluation counts (4) are derived by using the method

of [8]: subsampling at all subsequences x ← Tr+is(β) of

arguments whose indices are arithmetic progressions to locate

a subsequence without an error. The counts (4) are established

by explicitly computed lengths for the Erdős-Turán Problem

for arithmetic progressions of length 3B when B = 1, 2, 3.

For an arbitrary positive integer B, Gowers’s 2001 effective

estimates [9, Theorem 1.3] for Szemeredi’s proof of the Erdős-

Turán Conjecture allow us to compute a lower bound for E
when subsampling requires fewer than 2B(E + 1) values,

but the lower bound is quintuply exponential in B. Here we

give an algorithm that recovers f (and possible other sparse

interpolants) for all B ≥ 1, E ≥ 1 bounds from

N =

⌊
3

2
E + 2

⌋

B (5)

evaluations with ≤ E errors. Our new algorithm uses fewer

evaluations than (4). We show that one can list-interpolate

from 3B points correcting a single error, which with blocking

yields (5). We correct one error from 3B points by deriving

a non-trivial univariate polynomial for the value as a variable

in each possible position.

Our technique applies to Prony’s original problem of in-

terpolating a t-sparse polynomial with t ≤ B in power

basis 1, x, x2, . . . in the presence of erroneous points. In [8,

Lemma 2] it was shown that from (E + 1)2B − 1 points one

can correct ≤ E errors. Here we show that

N =

⌊
4

3
E + 2

⌋

B (6)

points suffice to correct ≤ E errors. The count (6) is achieved

by correcting ≤ 2 errors from 4B points and blocking. We

correct 2 errors at 4B points by deriving a bivariate Pham

system for variables in place of the values in all possible error

locations, which yields a bounded number of possible value

pairs among which are the actual values. We note that for

E = 2 the count 4B is smaller than the values n2B,2 in [8,

Table 1], which are the counts for having a clean arithmetic

progression of length 2B in the presence of 2 errors.

Our algorithms for interpolating sparse polynomials in

power basis (or Laurent polynomials) with errors, can tolerate

a higher error rate E/N than the existing algorithms in [10]

and [8]. For correcting E errors, the algorithm in [10] uses

redundant-block decoding which requires N = 2B(E + 1)
points, and the algorithm in [8] uses subsampling which is

shown by an explicit analysis of the arising Erdős-Turán

Problem to require no more than N = 2B(E + 1) − 1
points. That is the best we have been able to do for all

B and E using subsampling. We use a different technique.

We correct one error in a block of 3B points, or correct 2
errors in a block of 4B points, by replacing possible errors

with symbols, and then solve for the symbols to obtain the

actual values; next with redundant-block decoding, we can

correct E errors from N =
⌊
4
3E + 2

⌋
B points, for all B

and E. Since Chebyshev polynomials can be transformed into

Laurent polynomials (15), we first discuss our new algorithms

for Laurent polynomials in Section II, and then apply the same

technique for Chebyshev bases.

Finally we note that our sparse list-interpolation algorithms

are interpolation algorithms over the reals K = R if ωσ > 1 (or

ωσ > 0 when f is in power basis) and N ≥ 2B+2E, that is,

there will only be a single sparse interpolant computed by our

algorithms. Uniqueness is a consequence of Descartes’s Rule

of Signs and its generalization to polynomials in orthogonal

bases by Obrechkoff’s Theorem of 1918 [11] (see also Corol-

lary 2 in [8] and Corollary 2.4 in [2]). Over fields with roots

of unity, the sparse list-interpolation problem for the power

bases with < (2E+1)2B points can have more than a single

B-sparse solution [8, Theorem 3], which is also true for the

Chebyshev base as shown by Example 6.

II. SPARSE INTERPOLATION IN STANDARD POWER BASIS

WITH ERROR CORRECTION

A. Correcting One Error

Let K be a field of scalars. Let f(x) ∈ K[x, x−1] be a sparse

univariate Laurent polynomial represented by a black box and
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it is equal to:

f(x) =

t∑

j=1

cjx
δj , δ1 < δ2 < · · · < δt = deg(f),

∀j, 1 ≤ j ≤ t : cj 6= 0. (7)

We assume that the black box for f returns the same value

when probed multiple times at the same input. Let B be an

upper bound on the sparsity of f(x) and D ≥ |δj | for all

1 ≤ j ≤ t. Choose a point ω ∈ K \ {0} such that:

(1) ω has order ≥ 2D + 1, meaning that ∀η, 1 ≤ η ≤
2D : ωη 6= 1.

(2) ωi1 6= ωi2 for all 1 ≤ i1 < i2 ≤ 3B.

The first condition is an input specification of the Integer

Logarithm Algorithm (see Algorithm 1) that computes δj from

ωδj . The second condition guarantees that the inputs probed

at the black box are distinct so that we don’t get the same

error at different locations.

For i = 1, 2, . . . , 3B, let âi be the output of the black

box for f probed at input ωi. Assume there is at most

one error in the evaluations, that is, there exists ≤ 1 index

i ∈ {1, 2, . . . , 3B} such that âi 6= f(ωi). We present an

algorithm to compute a list of sparse polynomials which

contains f .

For r = 1, . . . , B, let Hr ∈ K
(B+1)×(B+1) be the following

Hankel matrix:

Hr =










âr âr+1 · · · âr+B−1 âr+B

âr+1 âr+2 · · · âr+B âr+B+1

...
...

...
...

...

âr+B−1 âr+B · · · âr+2B−2 âr+2B−1

âr+B âr+B+1 · · · âr+2B−1 âr+2B










(8)

Let ℓ be the error location, i.e., âℓ 6= f(ωℓ). There are three

cases to be considered:

Case 1: 1 ≤ ℓ ≤ B;

Case 2: B + 1 ≤ ℓ ≤ 2B;

Case 3: 2B + 1 ≤ ℓ ≤ 3B.

For Case 1 and Case 3, we can use Prony’s algorithm (see

Algorithm 2) to recover f(x) from a consecutive sequence of

length 2B: either (â1, â2, . . . , â2B) or (âB+1, âB+2, . . . , â3B).
To deal with Case 2, we replace the erroneous value âℓ
by a symbol α. Then the determinant the Hankel matrix

Hℓ−B (see (8)) is univariate polynomial of degree B + 1
in α. By Prony/Blahut/Ben-Or/Tiwari Theorem [4], [12], [5],

(f(ωi))i≥0 is a linearly generated sequence and its minimal

generator has degree ≤ B. Therefore f(ωℓ) is a solution of

the equation:

det(Hℓ−B) = 0. (9)

By solving the equation (9), we obtain a list of candidates

{ξ1, . . . , ξb} for the correct value f(ωℓ). For each candidate

ξk(1 ≤ k ≤ b), we substitute âℓ by ξk in the sequence

(âB+1, âB+2, . . . , â2B) and try Prony’s algorithm on the up-

dated sequence (â1, â2, . . . , â2B), which gives us a list of

sparse polynomials containing f(x). The process of correcting

one error from 3B evaluations is illustrated by the following

example.

Example 1 Assume that we are given B = 3. With 3B = 9
evaluations â1, â2, . . . , â9 obtained from the black box for f
at inputs ω, ω2, . . . , ω9, we have the following 6× 4 matrix:

H =











â1 â2 â3 â4
â2 â3 â4 â5
â3 â4 â5 â6
â4 â5 â6 â7
â5 â6 â7 â8
â6 â7 â8 â9











∈ K
6×4

For r = 1, 2, 3, the matrices Hr (see (8)) are 4×4 submatrices

of H:

H1 =







â1 â2 â3 â4
â2 â3 â4 â5
â3 â4 â5 â6
â4 â5 â6 â7






, H2 =







â2 â3 â4 â5
â3 â4 â5 â6
â4 â5 â6 â7
â5 â6 â7 â8






,

H3 =







â3 â4 â5 â6
â4 â5 â6 â7
â5 â6 â7 â8
â6 â7 â8 â9






.

Suppose there is one error âℓ 6= f(ωℓ) in these 3B evaluations.

We recover f(x) by the following steps.

Step 1: Try to recover f(x) from (â1, â2, . . . , â6) and

(â4, â5, . . . , â9) by Prony’s algorithm; f(x) will be re-

turned if ℓ ∈ {7, 8, 9} or ℓ ∈ {1, 2, 3}.
Step 2: For ℓ ∈ {4, 5, 6}, substitute âℓ by α, then det(Hℓ−3)

is a univariate polynomial of degree 4 in α and f(ωℓ)
is a root of det(Hℓ−3). Compute the roots {ξk}k≥1 of

det(Hℓ−3). For each root ξk, replace âℓ by ξk and check

if the matrix H has rank ≤ 3. If yes, then use Prony’s

algorithm (see Algorithm 2) on the updated sequence

(â1, â2, . . . , â6). As f(ωℓ) is equal to some ξk, this step

will recover f(x) in case that ℓ ∈ {4, 5, 6}.

For computing the term degrees δj of f , we need an integer

logarithm algorithm having the following input and output

specifications.

Algorithm 1 Integer Logarithm Algorithm

Input:

◮ An upper bound D ∈ Z>0.
◮ω ∈ K \ {0} and has order ≥ 2D + 1, meaning that ∀η ≥
1, ωη = 1 ⇒ η ≥ 2D + 1.

◮ ρ ∈ K \ {0}.

Output:

◮ Either δ ∈ Z with |δ| ≤ D and ωδ = ρ,
◮ or FAIL.

We describe the subroutine which we call Try Prony’s

algorithm. This subroutine will be frequently used in our main

algorithms.

Algorithm 2 Try Prony’s algorithm

Input:

◮ A position r and sequence (âr, . . . , âr+2B−1) in K where

K is a field of scalars.
◮ An upper bound D ∈ Z>0.
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◮ω ∈ K \ {0} and has order ≥ 2D + 1.
◮ Algorithm 1: Integer Logarithm Algorithm that takes

D,ω, ρ as input and outputs:

◮ either δ ∈ Z with |δ| ≤ D and ωδ = ρ,
◮ or FAIL.

Output:

◮ Either a sparse Laurent polynomial of sparsity t ≤ B and

has term degrees δj with |δj | ≤ D,
◮ or FAIL.

Step 1: Use Berlekamp/Massey algorithm to compute the min-

imal linear generator of the sequence (âr, . . . , âr+2B−1)
and denote it by Λ(z). If Λ(0) = 0 return FAIL.

Step 2: Compute all distinct roots ∈ K of Λ(z), denoted by

ρ1, . . . , ρt. If t < deg(Λ) then return FAIL.

Step 3: For j = 1, . . . , t, use the Algorithm 1: Integer Log-

arithm Algorithm to compute δj = logω ρj . If the Integer

Logarithm Algorithm returns FAIL, then return FAIL.

Step 4: Compute the coefficients c1, . . . , ct by solving the

following transposed generalized Vandermonde system









ρr1 ρr2 · · · ρrt
ρr+1
1 ρr+1

2 · · · ρr+1
t

...
...

...
...

ρr+t−1
1 ρr+t−1

2

... ρr+t−1
t
















c1
c2
...

ct







=








âr
âr+1

...

âr+t−1







.

Step 5: Return the polynomial
∑t

j=1 cjx
δj .

Now we give an algorithm for interpolating a black-box

polynomial with sparsity bounded by B. This algorithm can

correct one error in 3B evaluations. More specifically, if there

is at most one error in the 3B evaluations of a univariate black-

box polynomial f(x) of sparsity ≤ B, then the Algorithm 3

will compute a list of sparse interpolants containing f(x).
Moreover, f(x) is not distinguishable from other interpolants

(if there are any) in the list, because all interpolants returned

by the algorithm satisfy the output conditions and f(x) could

be any one of them. In fact, [8, Theorem 3] shows that for

K = C, one needs N ≥ 2B(2E + 1) points to guarantee a

unique interpolant where E ≥ the number of errors. However,

for K = R, by Descartes’s rule of signs, [8, Corollary 2]

shows that if we probe f(x) at N ≥ 2B+2E distinct positive

arguments with at most E errors in the output evaluations, then

f(x) is the only interpolant in R[x] which has sparsity ≤ B
and has ≤ E errors in the N evaluations. Therefore, in the

Algorithm 3, if K = R, ω > 0, 3B ≥ 2B + 2E = 2B + 2,

and the 3B evaluations contain at most one error, then f(x)
will be the only interpolant in the output. The Algorithm 3

will return FAIL if no sparse interpolants satisfy the output

conditions.

Algorithm 3 A list-interpolation algorithm for power-basis

sparse polynomials with evaluations containing at most one

error.

Input:

◮ A black box representation of a polynomial f ∈ K[x, x−1]
where K is a field of scalars. The black box for f returns

the same (erroneous) output when probed multiple times

at the same input.
◮ An upper bound B on the sparsity of f .
◮ An upper bound D ≥ maxj |δj |, where δj are term degrees

of f .
◮ω ∈ K \ {0} satisfying:

◮ω has order ≥ 2D + 1;
◮ωi1 6= ωi2 for all 1 ≤ i1 < i2 ≤ 3B.

◮ An algorithm that computes all roots ∈ K of a polynomial

∈ K[x].

Output:
◮ Either a list of sparse polynomials {f [1], . . . , f [M ]} with

each f [k] (1 ≤ k ≤M) satisfying:
◮ f [k] has sparsity ≤ B and has term degrees δj with

|δj | ≤ D;
◮ f [k] is represented by its term degrees and coefficients;
◮ there is at most one index i ∈ {1, 2, . . . , 3B} such that

f [k](ωi) 6= âi where âi is the output of the black box

probed at input ωi;
◮ f is contained in the list,

◮ or FAIL.

Step 1: For i = 1, 2, . . . , 3B, get the output âi of the black

box for f at input ωi. Let L be an empty list.

Step 2: Use Algorithm 2 on the sequence (â1, â2, . . . , â2B).
If the algorithm returns a sparse polynomial f̄ of sparsity

≤ B and has term degrees δj with |δj | ≤ D, and there is

at most one index i ∈ {1, 2, . . . , 3B} such that f̄(ωi) 6= âi,
then add f̄ to the list L.

If the error is in (â2B+1, â2B+2 . . . , â3B), then the se-

quence (â1, â2, . . . , â2B) is free of errors, so Algorithm 2

in Step 2 will return f , and f will be added to the list L.

Step 3: Use Algorithm 2 on the sequence (âB+1, âB+2, . . . ,
â3B). If the algorithm returns a sparse polynomial f̄ of

sparsity ≤ B and has term degrees δj with |δj | ≤ D, and

there is at most one index i ∈ {1, 2, . . . , 3B} such that

f̄(ωi) 6= âi, then add f̄ to the list L.

If the error is in (â1, . . . , âB), then the sequence

(âB+1, âB+2, . . . , â3B) is free of errors, so Algorithm 2

in Step 3 will return f , and f will be added into the list

L.

Step 4: For ℓ = B + 1, B + 2, . . . , 2B,

4(a): substitute âℓ by a symbol α in the matrix H̄ℓ−B (see

(8)); use the fraction free Berlekamp/Massey algorithm

[13], [14] to compute the determinant of H̄ℓ−B and

denote it by ∆ℓ(α);
Here ∆ℓ(α) is a univariate polynomial of the form

(−1)B+1αB+1 + ∆̃ℓ(α) with deg(∆̃ℓ(α)) < B + 1;

4(b): compute all solutions of the equation ∆ℓ(α) = 0 in

K; denote the solution set as {ξ1, . . . , ξb} ;

4(c): for k = 1, . . . , b,

4(c)i: substitute âℓ by ξk;

4(c)ii: use Berlekamp/Massey algorithm to compute the

the minimal linear generator of the new sequence

(â1, â2, . . . , â3B) and denote it by Λ(z);
4(c)iii: if deg(Λ(z)) ≤ B, repeat Step 2.

If âℓ 6= f(ωℓ) with ℓ ∈ {B + 1, B + 2, . . . , 2B}, then

we substitute âℓ by a symbol α and compute the roots
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{ξ1, . . . , ξb} of ∆ℓ(α) in K. The correct value f(ωℓ) is in

the set {ξ1, . . . , ξb}. Thus for every root ξk (k = 1, . . . , b),
we replace âℓ with ξk and use Berlekamp/Massey al-

gorithm to check if the new sequence (â1, â2, . . . , â3B)
is generated by some polynomial of degree ≤ B. If

so, then we apply Algorithm 2 on the updated sequence

(â1, â2, . . . , â2B). In the end, Step 4 will add f into the

list L in case that B + 1 ≤ ℓ ≤ 2B.

Step 5: If the list L is empty, then return FAIL, otherwise

return the list L.

Proposition 1 The output list of Algorithm 3 contains ≤ B2+
B + 2 polynomials.

Proof: The Step 2 in Algorithm 3 produces ≤ 1 pol-

ynomial and so is Step 3. In the Step 4 of Algorithm 3,

because ∆ℓ(α) has degree B + 1, the equation ∆ℓ(α) = 0
has ≤ B + 1 solutions in K, therefore this step produces

≤ B(B+1) polynomials. Thus the output list of Algorithm 3

contains ≤ 2 +B(B + 1) polynomials.

B. Correcting 2 Errors

In this section, we give a list-interpolation algorithm to

recover f(x) (see (7)) from 4B evaluations that contain 2

errors. Recall that B is an upper bound on the sparsity of

f(x) and D is an upper bound on the absolute values of the

term degrees of f(x). We will use Algorithm 3 as a subroutine.

Let ω ∈ K \ {0} such that: (1) ω has order ≥ 2D + 1, and

(2) ωi1 6= ωi2 for all 1 ≤ i1 < i2 ≤ 4B. For i = 1, 2, . . . , 4B,

let âi be the output of the black box probed at input ωi. Let

âℓ1 and âℓ2 be the 2 errors and ℓ1 < ℓ2. The problem can be

covered by the following four cases:

Case 1: 1 ≤ ℓ1 ≤ B;

Case 2: 3B + 1 ≤ ℓ2 ≤ 4B;

Case 3: B + 1 ≤ ℓ1 < ℓ2 ≤ 2B or 2B + 1 ≤ ℓ1 < ℓ2 ≤ 3B;

Case 4: B + 1 ≤ ℓ1 ≤ 2B and 2B + 1 ≤ ℓ2 ≤ 3B.

First, we try the Algorithm 3 on the sequences (â1,

â2, . . . , â3B) and (âB+1, âB+2, . . . , â4B), which can list in-

terpolate f(x) if either Case 2 or Case 1 happens. Next,

we use the Algorithm 2 on the sequences (â1, . . . , â2B) and

(â2B+1, . . . , â4B), which will return f(x) if Case 3 happens.

For Case 4, we substitute the two erroneous values âℓ1 and

âℓ2 by two symbols α1 and α2 respectively. Then the pair of

correct values (f(ωℓ1), f(ωℓ2)) is a solution of the following

Pham system (see Lemma 2 and Lemma 3):

det(Hℓ1−B) = 0, det(Hℓ2−B) = 0, (10)

where Hℓ1−B and Hℓ2−B are Hankel matrices defined as (8).

As the Pham system (10) is zero-dimensional (see Lemma 3),

we compute the solution set {(ξ1,1, ξ2,1), . . . , (ξ1,b, ξ2,b)} of

(10). Then, for k = 1, . . . , b, we substitute (âℓ1 , âℓ2) by

(ξ1,k, ξ2,k) and apply Algorithm 2 on the updated sequence

(â1, â2, . . . , â2B); this results in a list of candidates for f if

Case 4 happens.

The following Lemma shows that the determinants arising

in (10) have the Pham property, using diagonals in place of

anti-diagonals.

Lemma 2 Let A be an n × n matrix with the following

properties:

(1) for i = 1, . . . , n, A[i, i] = α1;

(2) for some fixed k ∈ {1, . . . , n−1} and for i = 1, . . . , n−k,

A[i, i+ k] = α2;

(3) all other entries of A elements are in the field of scalars

K.

Then det(A) = αn
1 + Q(α1, α2) where Q(α1, α2) is a

polynomial of total degree ≤ n− 1.

Proof: The matrix A is of the form:

A =












α1 · · · α2 ∗
. . .

. . .
. . .

. . .
. . . α2

∗
. . .

...

α1












.

We prove by induction on n. It is trivial if n = 1. Assume

that the conclusion holds for n − 1. By minor expansion on

the first column of A, we have

det(A) = α1(α
n−1
1 +Q1(α1, α2)) +Q2(α1, α2)

where Q2(α1, α2) has total degree ≤ n − 1. By induction

hypothesis, Q1(α1, α2) has total degree ≤ n − 2. Let Q =
α1 ·Q1 +Q2. The proof is complete.

Lemma 3 The Pham system

αn1

1 +Q1(α1, α2) = 0, deg(Q1) ≤ n1 − 1

αn2

2 +Q2(α1, α2) = 0, deg(Q2) ≤ n2 − 1
(11)

has at most n1n2 solutions, where Q1 and Q2 are two

polynomials in K[α1, α2].

Proof: See e.g. [15, Chapter 5, Section 3, Theorem 6].

Example 2 Let B = 3. With 4B = 12 evaluations

â1, â2, . . . , â12 obtained from the black box for f at inputs

ω, ω2, . . . , ω12, we have the following 9× 4 matrix:

H =

















â1 â2 â3 â4
â2 â3 â4 â5
â3 â4 â5 â6
â4 â5 â6 â7
â5 â6 â7 â8
â6 â7 â8 â9
â7 â8 â9 â10
â8 â9 â10 â11
â9 â10 â11 â12

















∈ K
9×4

Suppose there are two errors âℓ1 , âℓ2(ℓ1 < ℓ2) in the

evaluations. If ℓ1 ∈ {1, 2, 3}, then the Algorithm 3 can

recover f(x) from the last 3B evaluations (â4, â5, . . . , â12).
Similarly, f(x) can also be recovered from (â1, â2, . . . , â9) by

the Algorithm 3 if ℓ2 ∈ {10, 11, 12}. Next, if ℓ1, ℓ2 ∈ {4, 5, 6}
or ℓ1, ℓ2 ∈ {7, 8, 9}, then the Algorithm 2 can recover f(x)
from (â7, . . . , â12) or (â1, . . . , â6).

It remains to consider the case that ℓ1 ∈ {4, 5, 6} and ℓ2 ∈
{7, 8, 9}. We substitute âℓ1 , âℓ2 by α1, α2 respectively. Then
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the determinants of the matrices Hℓ1−3 and Hℓ2−3 can be

written as:

det(Hℓ1−3) = −α
4
1 +Q1(α1, α2), degQ1 ≤ 3

det(Hℓ2−3) = −α
4
2 +Q2(α1, α2), degQ2 ≤ 3

(12)

where Hℓ1−3, Hℓ2−3 are Hankel matrices defined as (8) and

where Q1 and Q2 are bivariate polynomials in α1 and α2.

We compute the roots (ξ1,k, ξ2,k)k≥1 of the system (12) in

K and the pair correct values (f(ωℓ1), f(ωℓ2)) is one of

the roots. For each root (ξ1,k, ξ2,k), we substitute âℓ1 , âℓ2
by ξ1,k, ξ2,k respectively, and check if the matrix H has

rank B = 3. If so, then run Algorithm 2 on the updated

sequence (â1, â2, . . . , â6). In the end, we obtain a list of sparse

polynomials that contains f(x).

We summarize the process of correcting 2 errors in Al-

gorithm 4 below. If there are at most 2 errors in the 4B
evaluations of a univariate black-box polynomial f(x) of

sparsity ≤ B, then the Algorithm 4 will compute a list

of sparse interpolants containing f(x). Again, f(x) is not

distinguishable from other interpolants (if there are any) in

the list, because all interpolants returned by the algorithm

satisfy the output conditions and f(x) could be any one of

them. Nevertheless, in the Algorithm 4, if K = R, ω > 0,

4B ≥ 2B + 2E = 2B + 4, and the 4B evaluations contain

at most 2 errors, then f(x) will be the only interpolant in

the output. The Algorithm 4 will return FAIL if no sparse

interpolants satisfy the output conditions.

Algorithm 4 A list-interpolation algorithm for power-basis

sparse polynomial with evaluations containing at most 2
errors.

Input:

◮ A black box representation of a polynomial f ∈ K[x, x−1]
where K is a field of scalars. The black box for f returns

the same (erroneous) output when probed multiple times

at the same input.
◮ An upper bound B on the sparsity of f .
◮ An upper bound D ≥ maxj |δj |, where δj are term degrees

of f .
◮ω ∈ K \ {0} satisfying:

◮ω has order ≥ 2D + 1;
◮ωi1 6= ωi2 for all 1 ≤ i1 < i2 ≤ 4B.

◮ An algorithm to compute all roots ∈ K of polynomials in

K[x].

Output:

◮ Either a list of sparse polynomials {f [1], . . . , f [M ]} with

each f [k] (1 ≤ k ≤M) satisfying:

◮ f [k] has sparsity ≤ B and has term degrees δj with

|δj | ≤ D; degrees and coefficients;
◮ f [k] is represented by its term
◮ there are at most 2 indices i1, i2 ∈ {1, 2, . . . , 4B} such

that f [k](ωi1) 6= âi1 and f [k](ωi2) 6= âi2 where âi1 and

âi2 are the outputs of the black box probed at inputs

ωi1 and ωi2 respectively;
◮ f is contained in the list,

◮ or FAIL.

Step 1: For i = 1, 2, . . . , 4B, get the output âi of the black

box for f at input ωi.

Step 2: Take (â1, â2, . . . , â3B) and (âB+1, âB+2, . . . , â4B) as

the evaluations at the first step of Algorithm 3 and get two

lists L1, L2. Let L be the union of L1 and L2.

If either (â1, â2, . . . , â3B) or (âB+1, âB+2, . . . , â4B) con-

tains ≤ 1 error, the Algorithm 3 can compute a list of

sparse polynomials containing f(x).
Step 3: Use Algorithm 2 on the sequences (â1, â2, . . . , â2B)

and (â2B+1, â2B+2, â4B). If Algorithm 2 returns a sparse

polynomial f̄ of sparsity ≤ B and has term degrees δj
with |δj | ≤ D, then add f̄ into the list L.

If either (â1, â2, . . . , â2B) or (â2B+1, â2B+2, â4B) is error-

free, the Algorithm 2 will return f(x).
Step 4: For every polynomial f̄ in the list L, if there are at

least 3 indices i ∈ {1, 2, . . . , 4B} such that f̄(ωi) 6= âi
then delete f̄ from L.

Step 5: For ℓ1 = B + 1, . . . , 2B and ℓ2 = 2B + 1, . . . , 3B,

5(a): substitute âℓ1 by α1 and âℓ2 by α2 in the Hankel ma-

trices Hℓ1−B and Hℓ2−B (see (8)); let ∆ℓ1(α1, α2) =
det(Hℓ1−B) and ∆ℓ2(α1, α2) = det(Hℓ2−B).
Here, we also use the fraction free Berlekamp/Massey

algorithm [13], [14] to compute the determinants of

Hℓ1−B and Hℓ2−B .

5(b): compute all solutions of the Pham system

{∆ℓ1(α1, α2) = 0,∆ℓ2(α1, α2) = 0} in K
2; denote the

solution set as {(ξ1,1, ξ2,1), . . . , (ξ1,b, ξ2,b)}.
One may use a Sylvester resultant algorithm and the

root finder in K[x] to accomplish this task in polynomial

time.

5(c): for k = 1, . . . , b,

5(c)i: substitute âℓ1 by ξ1,k and âℓ2 by ξ2,k;

5(c)ii: use Berlekamp/Massey algorithm to compute the

the minimal linear generator of the new sequence

(â1, â2, . . . , â4B) and denote it by Λ(z);
5(c)iii: if deg(Λ(z)) ≤ B, use Algorithm 2 on the

updated sequence (â1, â2, . . . , â2B); if Algorithm 2

returns a sparse polynomial f̄ of sparsity ≤ B and

has term degrees δj with |δj | ≤ D, and there are

at most 2 indices i1, i2 ∈ {1, 2, . . . , 4B} such that

f̄(ωi1) 6= âi1 and f̄(ωi2) 6= âi2 , then add f̄ into the

list L;

If the two errors are âℓ1 and âℓ2 with ℓ1 ∈ {B+1, . . . , 2B}
and ℓ2 ∈ {2B + 1, . . . , 3B}, we substitute âℓ1 and âℓ2
by two symbols α1 and α2 respectively. As the pair of

correct values (f(ωℓ1), f(ωℓ2)) is a solution of the system

{∆ℓ1(α1, α2) = 0,∆ℓ2(α1, α2) = 0}, Step 5 will add f
into the list L.

Step 6: If the list L is empty, then return FAIL, otherwise

return the list L.

Proposition 4 The output list of Algorithm 4 contains ≤ B4+
2B3 + 3B2 + 2B + 6 polynomials.

Proof: In Algorithm 4, only Step 2, Step 3, and Step 5

produce new polynomials. By Proposition 1, both the lists L1

and L2 obtained at Step 2 contain ≤ B2+B+2 polynomials.

Step 3 produces ≤ 2 polynomials. For Step 5 of Algorithm 4,
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the Pham system {∆ℓ1(α, β) = 0,∆ℓ2(α, β) = 0} has ≤ (B+
1)2 solutions, so this step produces ≤ B2(B+1)2 polynomials.

Therefore the output list contains ≤ B2(B + 1)2 + 2(B2 +
B + 2) + 2 polynomials.

C. Correcting E Errors

Recall that f(x) is a sparse univariate polynomial of the

form
∑t

j=1 cjx
δj (see (7)) with t ≤ B and ∀j, |δj | ≤ D.

We show how to list interpolate f(x) from N evaluations

containing ≤ E errors, where

N =

⌊
4

3
E + 2

⌋

B. (13)

Let θ = ⌊E/3⌋. Choose ω1, . . . , ωθ, ωθ+1 ∈ K\{0} such that:

(1) ωσ has order ≥ 2D + 1 for all 1 ≤ σ ≤ θ + 1, and

(2) ωi1
σ1
6= ωi2

σ2
for any 1 ≤ σ1 < σ2 ≤ θ + 1 and 1 ≤ i1 <

i2 ≤ 4B.

Let âσ,i denote the output of the black box at input ωi
σ for

σ = 1, . . . , θ + 1 and i = 1, . . . , 4B.

If E mod 3 = 0 then N = (E/3)4B+2B. The problem is

reduced to one of the following situations: (1) the last block

(âθ+1,1, âθ+1,2, . . . , âθ+1,2B) of length 2B is free of error, or

(2) there is some block (âσ,1, âσ,2, . . . , âσ,4B) with 1 ≤ σ ≤
E/3 which contains ≤ 2 errors. These two situations can be

handled by Algorithm 2 and Algorithm 4, respectively.

If E mod 3 = 1 then N = 4Bθ + 3B. The problem is

reduced to one the following situations: (1) the last block

(âθ+1,1, âθ+1,2, . . . , âθ+1,3B) of length 3B has ≤ 1 error, or

(2) there is some block (âσ,1, âσ,2, . . . , âσ,4B) with 1 ≤ σ ≤ θ
which contains ≤ 2 errors. Therefore by applying the Algo-

rithm 3 on (âθ+1,1, âθ+1,2, . . . , âθ+1,3B) and the Algorithm 4

on (âσ,1, âσ,2, . . . , âσ,4B), we can list interpolate f(x).

If E mod 3 = 2 then E = 3 θ + 2 and N = (θ + 1)4B.

So there is some σ ∈ {1, . . . , θ + 1} such that the block

(âσ,1, âσ,2, . . . , âσ,4B) of length 4B contains ≤ 2 errors, and

we can use the Algorithm 4 on this block to list interpolate

f(x).

Remark 1 We apply the Algorithm 4 on every block

(âσ,1, âσ,2, . . . , âσ,4B) for all σ ∈ {1, . . . , ⌊E/3⌋}, which will

result in ≤ ⌊E/3⌋ (B4 + 2B3 + 3B2 + 2B + 6) polynomials

according to Proposition 4. The length of the last block

depends on the value of E, and we have the following different

upper bounds on the number of resulting polynomials:

(1) (E/3)(B4 +2B3 +3B2 +2B+6)+ 1, if E mod 3 = 0;

(2) ⌊E/3⌋ (B4 + 2B3 + 3B2 + 2B + 6) + B2 + B + 2, if

E mod 3 = 1 (see Proposition 1);

(3) (⌊E/3⌋+ 1) (B4+2B3+3B2+2B+6), if E mod 3 = 2.

By Descartes’ rule of signs (see e.g. [16, Proposi-

tion 1.2.14]), the approach for correcting E errors will produce

a single polynomial if K = R, N ≥ 2B+2E and ωσ > 0, ∀σ.

However, if N < 2B+2E then there can be ≥ 2 valid sparse

interpolants. We give an example to illustrate this.

Example 3 Choose ω > 0. Let B be an upper bound on the

sparsity of f and E be an upper bound on the number of errors

in the evaluations. Let

h =
2B−2∏

i=0

(x− ωi),

and f [1] be the sum of odd degree terms of h and f [2] be

the negative of the sum of even degree terms of h. Clearly,

we have h = f [1] − f [2] and f [1](ωi) = f [2](ωi) for i =
0, 1, . . . , 2B − 2. Moreover, both f [1] and f [2] have sparsity

≤ B as deg(h) = 2B − 1. Consider a sequence â consisting

of the following 2B + 2E − 1 values:

a(1) =
(
f [1](ω0) , . . . , f [1](ω2B−2)

)
,

a(2) =
(
f [1](ω2B−1), . . . , f [1](ω2B+E−2)

)
,

a(3) =
(
f [2](ω2B+E−1), . . . , f [2](ω2B+2E−2)

)
,

(14)

that is, â = (a(1), a(2), a(3)). If all the errors are in a(3) then

f [1] is a valid interpolant. Alternatively, if all the errors are

in a(2) then f [2] is a valid interpolant. Therefore, from these

2B + 2E − 1 values, we have at least 2 valid interpolants.

We remark that one of the valid interpolants, f [1] and f [2],

must have B terms since otherwise uniqueness is guaranteed

by Descartes’s rule of signs. In this example, both f [1] and

f [2] have B terms because the polynomial h has 2B terms.

Indeed, deg(h) = 2B− 1 implies that h has ≤ 2B terms, and

by Descartes’ rule of signs, h has ≥ 2B terms because it has

2B−1 positive real roots. Therefore h is a dense polynomial.

However, with the following substitutions

x = yk, ω = ω̄k for some k ≫ 1,

we have again a counter example where h, f [1], and f [2] are

sparse with respect to the new variable y.

III. SPARSE INTERPOLATION IN CHEBYSHEV BASIS WITH

ERROR CORRECTION

A. Correcting One Error

Let K be a field of scalars with characteristic 6= 2. Let

f(x) ∈ K[x] be a polynomial represented by a black box.

Assume that f(x) is a sparse polynomial in Chebyshev-1 basis

of the form:

f(x) =

t∑

j=1

cjTδj (x) ∈ K[x],

0 ≤ δ1 < δ2 < · · · < δt = deg(f), ∀j, 1 ≤ j ≤ t : cj 6= 0,

where Tδj (x) (j = 1, . . . , t) are Chebyshev polynomials of the

First kind of degree δj . We are given an upper bound B ≥ t,
and we want to recover term degrees δj and the coefficients cj
from 3B evaluations of f(x) where the evaluations contain at

most one error. Using the formula Tn(
x+x−1

2 ) = xn+x−n

2 for

all n ∈ Z≥0, [2, Sec. 4] transforms f(x) into a sparse Laurent

polynomial:

g(y)
def
= f(

y + y−1

2
) =

t∑

j=1

cj
2
(yδj + y−δj ) (15)
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Therefore the problem is reduced to recover the term degrees

and coefficients of the polynomial g(y). Let ω ∈ K such that

ω has order ≥ 4D + 1.

For i = 1, 2, . . . , 3B, let â2i−1 be the output of the black

box probed at input γ2i−1 = (ω2i−1 + ω−(2i−1))/2. Note

that g(ωi) = g(ω−i) for any integer i. For odd integers r ∈
{2k − 1 | k = 1, . . . , B}, let Gr ∈ K

(B+1)×(B+1) be the

following Hankel+Toeplitz matrix:

Gr =
[
â|r+2(i+j)|

]B

i,j=0
︸ ︷︷ ︸

Hankel matrix

+
[
â|r+2(i−j)|

]B

i,j=0
︸ ︷︷ ︸

Teoplitz matrix

. (16)

If all the values involved in the matrix Gr are correct, then

det(Gr) = 0 [2, Lemma 3.1].

If the 2B evaluations {â2i−1}
2B
i=1 are free of errors, then one

can use Prony’s algorithm to recover g(y) (and f(x)) from the

following sequence [8, Lemma 1]:

â−4B+1, â−4B+3, . . . , â−1, â1, . . . , â4B−3, â4B−1. (17)

Now we show how to list interpolate f(x) from 3B evaluations

{â2i−1}
3B
i=1 containing ≤ 1 error.

Assume that â2ℓ−1 is the error, that is, â2ℓ−1 6= f(γ2ℓ−1) =
g(ω2ℓ−1). The problem can be reduced to three cases:

Case 1: 1 ≤ ℓ ≤ B;

Case 2: B + 1 ≤ ℓ ≤ 2B;

Case 3: 2B + 1 ≤ ℓ ≤ 3B.

For Case 3, we can recover f(x) from the sequence

(â2i−1)
2B
i=−(2B−1). For the Case 1 and Case 2, we substitute

â2ℓ−1 by a symbol α. Let

∆2ℓ−1(α) =

{
det(G2ℓ−1), if 1 ≤ ℓ ≤ B,

det(G2(ℓ−B)−1), if B + 1 ≤ ℓ ≤ 2B,

where G2ℓ−1 and G2(ℓ−B)−1 are defined as in (16) and

∆2ℓ−1(α) is a univariate polynomial of degree B+1 in α (see

Lemma 5). By [2, Lemma 3.1], the correct value f(γ2ℓ−1) is

a solution of the equation ∆2ℓ−1(α) = 0. So we compute

all solutions {ξ1, . . . , ξb} of ∆2ℓ−1(α) = 0 in K. For each

solution ξk(1 ≤ k ≤ b) we replace â2ℓ−1 by ξk and try Prony’s

algorithm on the updated sequence (â2i−1)
2B
i=−(2B−1). In the

end, we will get a list of polynomials containing f(x).

Lemma 5 Let r ∈ {2k − 1 | k = 1, . . . , B} and Gr =
[
â|r+2(i+j)| + â|r+2(i−j)|

]B

i,j=0
. If âr or âr+2B is substituted

by a symbol α in Gr, then the determinant of Gr is a

univariate polynomial of degree B + 1 in α.

Proof: First, we show that if âr+2B is substituted by α,

then the matrix Gr has the form:









α+ ∗

* α+ ∗
...

α+ ∗ *
α+ ∗










. (18)

Since r ∈ {2k − 1 | k = 1, . . . , B} and i, j ∈ {0, 1 . . . , B},
we have

|r + 2(i+ j)| = r + 2B ⇒ i+ j = B,

|r + 2(i− j)| = r + 2B ⇒ i = B, j = 0 or i = 0, j = B.

Therefore, either |r + 2(i+ j)| = r + 2B or |r + 2(i− j)| =
r + 2B implies i + j = B, so âr+2B only appears on the

anti-diagonal of the matrix Gr. Conversely, every element on

the anti-diagonal of Gr is equal to âr+2B + â|r+2(i−j)| for

some i, j ∈ {0, 1, . . . , B}. Thus Gr has the form (18) and its

determinant is a univariate polynomial of degree B + 1 in α.

Now we consider the case that âr is substituted by α.

Similarly, because r ∈ {2k − 1 | k = 1, . . . , B} and

i, j ∈ {0, 1 . . . , B}, we have

|r + 2(i+ j)| = r ⇒ i = j = 0,

|r + 2(i− j)| = r ⇒ i = j or i = j − r if j ≥ r.
(19)

Therefore, if r > B then i = j in (19), so âr only appears on

the main diagonal of Gr. On the other hand, every element on

the main diagonal of Gr is equal to â|r+2(i+i)| + âr for some

i ∈ {0, 1, . . . , t}. Hence, if r > B then the determinant of Gr

is a polynomial of degree B + 1 in α. Assume that r ≤ B.

From (19), we see that after substituting âr by α, the matrix

Gr has the form:











α+ ∗ · · · α+ ∗ ∗
. . .

. . .

. . . α+ ∗

∗
. . .

...

α+ ∗












. (20)

According to Lemma 2, the determinant of the matrix (20) is

a univariate polynomial of degree B + 1 in α.

Example 4 For B = 3, we have 3B = 9 evaluations

{â2i−1}
3B
i=1 obtained from the black box for f at inputs

γi = (ω2i−1 +ω−(2i−1))/2. We construct the following 6× 4
matrix:

G =











2â1 â3 + â1 â5 + â3 â7 + â5
2â3 â5 + â1 â7 + â1 â9 + â3
2â5 â7 + â3 â9 + â1 â11 + â1
2â7 â9 + â5 â11 + â3 â13 + â1
2â9 â11 + â7 â13 + â5 â15 + â3
2â11 â13 + â9 â15 + â7 â17 + â5











∈ K
6×4.

For r = 1, 3, 5, the matrices Gr are 4× 4 submatrices of the

matrix G. The matrix G1 consists of the first 4 rows of G. If

we substitute â1 or â7 by a symbol α, then the determinant of

G1 is univariate polynomial of degree 4 in α. The matrix G3

consists of the second to the fifth row of G and the determinant

of G3 becomes a univariate polynomial of degree 4 in α if â3
or â9 is substituted by α. Similarly, the matrix G5 consists of

the last 4 rows of G. Substituting â5 or â11 by α, det(G5) is

a univariate polynomial of degree 4 in α.

Suppose there is one error â2ℓ−1 6= f(γ2ℓ−1) in the 3B
evaluations. Here is how we correct this single error for all

possible ℓ’s:

(1) if ℓ ∈ {1, 2, 3}, then substitute â2ℓ−1 by α and compute

the roots of det(G2ℓ−1), and the roots are candidates for

f(γ2ℓ−1);
(2) if ℓ ∈ {4, 5, 6}, then substitute â2ℓ−1 by α and compute

the roots of det(G2(ℓ−3)−1), and the roots are candidates

for f(γ2ℓ−1);
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(3) if ℓ ∈ {7, 8, 9}, then f(x) can be recovered by applying

Prony’s algorithm on the sequence (â2i−1)
6
i=−5.

We summarize the process of correcting one error from 3B
evaluations in Algorithm 5 below. The Algorithm 5 returns a

list of sparse interpolants containing f(x) if there is at most

one error in the 3B evaluations of f(x). Also, f(x) is not

distinguishable from other interpolants (if there are any) in the

list, because all interpolants returned by the algorithm satisfy

the output conditions and f(x) could be any one of them.

However, if in the Algorithm 5 we have K = R, ωσ > 1,

3B ≥ 2B + 2E = 2B + 2 and the 3B evaluations contain at

most one error, then f(x) will be the only interpolant in the

output. This is explicitly stated in [2, Corollary 2.4], which

is a consequence of a generalization of Descartes’s rule of

signs to orthogonal polynomials by Obrechkoff’s theorem [11,

Theorem 1.1]. The Algorithm 5 will return FAIL if no sparse

interpolants satisfy the output conditions.

Algorithm 5 A list-interpolation algorithm for Chebyshev-1

sparse polynomials with evaluations containing at most one

error.

Input:

◮ A black box representation of a polynomial f ∈ K[x]
where K is a field of scalars with characteristic 6= 2 and f
is a linear combination of Chebyshev-1 polynomials. The

black box for f returns the same (erroneous) output when

probed multiple times at the same input.
◮ An upper bound B of the sparsity of f .
◮ An upper bound D of the degree of f .
◮ω ∈ K \ {0} has order ≥ 4D + 1.
◮ An algorithm that computes all roots ∈ K of a polynomial

∈ K[x].

Output:

◮ Either a list of sparse polynomials {f [1], . . . , f [M ]} with

each f [k] (1 ≤ k ≤M) satisfying:

◮ f [k] has sparsity ≤ B and degree ≤ D;
◮ f [k] is represented by its Chebyshev-1 term degrees and

coefficients;
◮ there is at most one index i ∈ {1, 2, . . . , 3B} such that

f [k](γ2i−1) 6= â2i−1 where γi = (ω2i−1+ω−(2i−1))/2
and â2i−1 is the output of the black box probed at input

γ2i−1;
◮ f is contained in the list,

◮ or FAIL.

Step 1: For i = 1, 2, . . . , 3B, get the output âi of the black

box for f at input γi = (ω2i−1 + ω−(2i−1))/2. Let L be

an empty list.

Step 2: Use Algorithm 2 on the sequence (â2i−1)
2B
i=−(2B−1).

If Algorithm 2 returns a polynomial of the following form:
∑t

j=1
cj
2 (ω

−δjx2δj +ωδjx−2δj ) with cj ∈ K, t ≤ B, δj ≤

D, then let f̄ =
∑t

j=1 cjTδj (x). If there is at most one

index i ∈ {1, . . . , 3B} such that f̄(γ2i−1) 6= â2i−1, then

add f̄ to the list L.

Step 2 will add f to the list L if the error is in

{â2i−1}
3B
i=2B+1.

Step 3: For ℓ = 1, . . . , B,

3(a): substitute â2ℓ−1 by a symbol α in the matrix G2ℓ−1;

compute the determinant of G2ℓ−1 and denote it by

∆2ℓ−1(α);
According to Lemma 5, ∆2ℓ−1(α) is a univariate poly-

nomial of degree B + 1 in α.

3(b): compute all solutions of the equation ∆2ℓ−1(α) = 0
in K; denote the solution set as {ξ1, . . . , ξb};

3(c): for k = 1, . . . , b,

3(c)i: substitute â2ℓ−1 by ξk;

3(c)ii: use Berlekamp/Massey algorithm to compute the

the minimal linear generator of the new sequence

(â2i−1)
3B
i=−3B+1 and denote it by Λ(z);

3(c)iii: if deg(Λ(z)) ≤ 2B, repeat Step 2.

If the error is â2ℓ−1 with 1 ≤ ℓ ≤ B, that is â2ℓ−1 6=
f(γ2ℓ−1), then we substitute â2ℓ−1 by a symbol α. As the

correct value f(γ2ℓ−1) is a solution of ∆2ℓ−1(α) = 0, that

is f(γ2ℓ−1) = ξk for some k ∈ {1, . . . , b}, Step 3 will add

f into the list L.

Step 4: For ℓ = B + 1, . . . , 2B,

4(a): substitute â2ℓ−1 by a symbol α in the matrix

G2(ℓ−B)−1; compute the determinant of G2(ℓ−B)−1 and

denote it by ∆2ℓ−1(α);
According to Lemma 5, ∆2ℓ−1(α) is a univariate poly-

nomial of degree B + 1 in α.

4(b): compute all solutions of the equation ∆2ℓ−1(α) = 0
in K; denote the solution set as {ξ1, . . . , ξb′};

4(c): for k = 1, . . . , b′,

4(c)i: substitute â2ℓ−1 by ξk;

4(c)ii: use Berlekamp/Massey algorithm to compute the

the minimal linear generator of the new sequence

(â2i−1)
3B
i=−3B+1 and denote it by Λ(z);

4(c)iii: if deg(Λ(z)) ≤ 2B, repeat Step 2.

If the error is â2ℓ−1 (B + 1 ≤ ℓ ≤ 2B), that is â2ℓ−1 6=
f(γ2ℓ−1), we also substitute â2ℓ−1 by a symbol α. As

the solution set {ξ1, . . . , ξb′} of ∆2ℓ−1(α) = 0 contains

f(γ2ℓ−1), Step 4 will add f into the list L.

Step 5: If the list L is empty, then return FAIL, otherwise

return the list L.

Proposition 6 The output list of Algorithm 5 contains ≤
2B2 + 2B + 1 polynomials.

Proof: The Step 2 in Algorithm 5 produces ≤ 1 poly-

nomial, and both Step 3 and Step 4 produce ≤ B(B + 1)
polynomials. Hence the final output list has ≤ 1+2B(B+1)
polynomials.

B. Correcting E Errors

The settings for f(x) are the same as in Section III-A.

We show how to list interpolate f(x) from N evaluations

containing ≤ E errors, where

N =

⌊
3

2
E + 2

⌋

B. (21)

Let θ = ⌊E/2⌋. Choose ω1, . . . , ωθ, ωθ+1 ∈ K \ {0} such that

ωσ has order ≥ 4D + 1 for 1 ≤ σ ≤ θ + 1.
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If E is even then N = (E/2)3B + 2B. The problem is

reduced to one the following situations: (1) the last block

(âθ+1,2i−1)
2B
i=1 of length 2B is free of errors, or (2) there is

some block (âσ,2i−1)
3B
i=1 with 1 ≤ σ ≤ E/2 of length 3B that

contains at most 1 error. These two situations can be handled

by the Algorithm 2 and Algorithm 5, respectively.

If E is odd then E = 2 · θ + 1 and N = (θ + 1)3B. Thus,

there is some block (âσ,1, . . . , âσ,3B) with 1 ≤ σ ≤ θ + 1
of length 3B that contains at most 1 error; we can use the

Algorithm 5 on this block to list interpolate f(x).

Remark 2 For every σ ∈ {1, . . . , ⌊E/2⌋}, we apply Al-

gorithm 5 on the block (âσ,2i−1)
3B
i=1 which will result in

≤ ⌊E/2⌋ (2B2 + 2B + 1) polynomials by Proposition 6. The

length of the last block depends on the value of E, and we

have the following different upper bounds on the number of

resulting polynomials:

(1) (E/2)(2B2 + 2B + 1) + 1, if E is even;

(2) (⌊E/2⌋+ 1) (2B2 + 2B + 1), if E is odd.

Due to Obrechkoff’s theorem [11, Theorem 1.1], a general-

ization of Descartes’s rule of signs to orthogonal polynomials,

our approach for correcting E errors gives a unique valid

sparse interpolant when K = R, N ≥ 2B+2E and ωσ > 1 [2,

Corollary 2.4]. Similar to the case of standard power basis, if

N < 2B+2E then there can be ≥ 2 valid sparse interpolants

in Chebyshev-1 basis as shown by the following example.

Example 5 Choose ω > 1. The polynomials h, f [1] and f [2],

given in Example 3, can be represented in Chebyshev-1 basis

using the following formula [17, P. 303], [18, P. 412], [19, Eq.

(2)]:

xd =
1

2d−1

d∑

j=0
d−j is even

(
d

(d− j)/2

)

×

{
Tj(x) if j ≥ 1,
1
2 if j = 0.

(22)

Moreover, the formula (22) implies that f [1] is a linear combi-

nation of the odd degree Chebyshev-1 polynomials T2j−1(x)
(j = 1, 2, . . . , B), and f [2] is a linear combination of the even

degree Chebyshev-1 polynomials T2j−2(x) (j = 1, 2, . . . , B),
which means both f [1] and f [2] have sparsity ≤ B in

Chebyshev-1 basis as well. Therefore, f [1] and f [2] are also

valid interpolants in Chebyshev-1 basis for the 2B + 2E − 1
evaluations given in (14) (if we assume B is an upper bound

on the sparsity of the black-box polynomial f and E is an

upper bound on the number of errors in the evaluations).

Again, we remark that one of the valid interpolants, f [1]

and f [2], must have sparsity B since otherwise uniqueness

is a consequence of the Obrechkoff’s theorem [11, Theorem

1.1]. In this example, h also has 2B terms in Chebyshev-1

basis because deg(h) = 2B − 1 and h has 2B − 1 real roots

ωi > 1, i = 1, . . . , 2B − 1. Thus both f [1] and f [2] have

sparsity B in Chebyshev-1 basis. One can also make h, f [1]

and f [2] sparse with respect to the Chebyshev-1 basis by the

following substitutions:

x = Tk(y), ω = Tk(ω̄) for some k ≫ 1.

For K = C, we usually choose ω as a root of unity. But

then we may need 2B(2E + 1) evaluations to get a unique

interpolant. Here is an example from [8, Theorem 3], simply

by changing the power basis to Chebyshev-1 basis.

Example 6 Consider the following two polynomials:

f1(x) =
1

t

t−1∑

j=0

T2j m
2t
(x)

f2(x) = −
1

t

t−1∑

j=0

T(2j+1)m
2t
(x),

where m ≥ 2t(2E + 1) − 1 and 2t divides m. Let ω be a

primitive m-th root of unity. Let

b = (0, . . . , 0
︸ ︷︷ ︸

t−1

, 1, 0, . . . , 0
︸ ︷︷ ︸

t−1

) ∈ K
2t−1.

The evaluations of f1 at ωi+ω−i

2 for i = 1, 2, . . . , 2t(2E +
1)− 1 are

(b, 1, . . . , b, 1
︸ ︷︷ ︸

2E pairs of b, 1

, b) ∈ K
2t(2E+1)−1.

The evaluations of f2 at ωi+ω−i

2 for i = 1, 2, . . . , 2t(2E +
1)− 1 are

(b,−1, . . . , b,−1
︸ ︷︷ ︸

2E pairs of b,−1

, b) ∈ K
2t(2E+1)−1.

Suppose we probe the black box for f at ωi+ω−i

2 with i =
1, 2, . . . , 2t(2E+1)−1 sequentially, and obtain the following

sequence of evaluations:

â = (b, 1, . . . , b, 1
︸ ︷︷ ︸

E pairs of b, 1

, b,−1, . . . , b,−1
︸ ︷︷ ︸

E pairs of b,−1

, b) ∈ K
2t(2E+1)−1

Assume B = t and there are E errors in the sequence

â. Then both f1 and f2 are valid interpolants for â. More

specifically, f1 is a valid interpolant for â if the E errors are

â2t, â2t·2, . . . , â2t·E ; f2 is a valid interpolant for â if the E
errors are â2t(E+1), â2t(E+2), . . . , â2t·2E .

Remark 3 Polynomials in Chebyshev-2, Chebyshev-3 and

Chebyshev-4 bases can be transformed into Laurent polyno-

mials using the formulas given in [3, Sec. 1, (7)-(9)]. There-

fore, our approach to list-interpolate black-box polynomials in

Chebyshev-1 bases also works for black-box polynomials in

Chebyshev-2, Chebyshev-3 and Chebyshev-4 bases.
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APPENDIX

Notation (in alphabetic order):

âi the output of the black box for f at input ωi

α a symbol that substitute the single error in a block

of 3B outputs of the black box for f
α1, α2 symbols that substitute the two errors in a block of

4B outputs of the black box for f
B ≥ t, an upper bound on the sparsity of f
b number of solutions to polynomial equation(s) for

hypothetical errors

β = (ω + 1/ω)/2, evaluation point of Chebyshev-1

polynomials

cj the coefficient of the j-th term of f
D ≥ |δj |, an upper bound on the absolute values of the

degree of f
δj the j-th term degree of f
∆ a matrix determinant

E an upper bound on the number of errors that is input

to the algorithm

f the black-box polynomial

γi = (ωi +1/ωi)/2, inputs of the black box for f if f
is in Chebyshev bases

Gr ∈ K
(B+1)×(B+1), the Hankel+Toeplitz matrix with

â|r+2(i+j)| + â|r+2(i−j)| on its (i + 1)-th row and

(j + 1)-th column

Hr ∈ K
(B+1)×(B+1), the Hankel matrix with

âr+i−1, âr+i, . . . , âr+i−1+B on its i-th row

K a field of scalars with characteristic 6= 2
ξi candidates for the correct value f(ωℓ) if âℓ is

assumed to be an error

ξ1,i, ξ2,i candidates for the pair of correct values f(ωℓ1),
f(ωℓ2) if âℓ1 and âℓ2 are assumed to be errors

Continued on next page
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Notation continued (in alphabetic order):

ℓ the error location in the outputs of the black box for

f if E = 1
ℓ1, ℓ2 the error locations in the outputs of the black box

for f if E = 2
L the output list of our list decoding algorithms

Λ the term locator polynomial

M the number of the output polynomials of our error-

correcting algorithms

N the number of the evaluations by the black box for

f
ω a non-zero number in K, evaluation base point for

the black-box polynomial f when only one block of

evaluations are needed

ωσ σ = 1, 2, . . . , θ + 1, non-zero numbers in K, eval-

uation base points for the black box polynomial f
when multiple blocks of evaluations are needed

ρj 1 ≤ j ≤ t, the roots of the term locator polynomial

Λ
t the actual number of terms of f
θ = ⌊E/3⌋ if the black-box polynomial f is in power

basis, or = ⌊E/2⌋ if the black-box polynomial f is

in Chebyshev bases

ζi distinct, algorithm-dependent arguments in K


