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Abstract—We present sparse interpolation algorithms for re-
covering a polynomial with < B terms from NN evaluations at
distinct values for the variable when < FE of the evaluations
can be erroneous. Our algorithms perform exact arithmetic in
the field of scalars K and the terms can be standard powers
of the variable or Chebyshev polynomials, in which case the
characteristic of K is % 2. Our algorithms return a list of
valid sparse interpolants for the IN support points and run
in polynomial-time. For standard power basis our algorithms
sample at N = | 2 E+ 2| B points, which are fewer points than
N = 2(E +1)B —1 given by Kaltofen and Pernet in 2014. For
Chebyshev basis our algorithms sample at N = |2FE + 2| B
points, which are also fewer than the number of points required
by the algorithm given by Arnold and Kaltofen in 2015, which has
N =74|E +1] for B =3 and E > 222. Our method shows
how to correct 2 errors in a block of 4B points for standard
basis and how to correct 1 error in a block of 3B points for
Chebyshev Basis.

Index Terms—Sparse polynomial interpolation, error correc-
tion, black box polynomial, list-decoding.

I. INTRODUCTION

ET f(z) be a polynomial with coefficients from a field
K (of characteristic # 2),

flz) = chT(sj (x) € K[z],

0<d1 <da << =deg(f),Vj,1<j<t:ie; #0,
1

where T};(x) is the Chebyshev Polynomial of the First Kind
(of degree d for d > 0), defined by the recurrence

)= A wracz o

We say that f(z) is Chebyshev-1 ¢-sparse. We wish to compute
the term degrees ¢; and the coefficients c; from values of
a; = f(¢) for i = 1,2,..., where the distinct arguments
(; € K can be chosen by the algorithms; the latter is the setting
of Prony-like sparse interpolation methods. Our objective is to
interpolate with a number of points that is proportional to the
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sparsity ¢ of f. The algorithms have as input an upper bound
B > t for the sparsity, for otherwise the zero polynomial
(of sparsity 0) is indistinguishable from f(z) = [[,(x — ()
at < deg(f) evaluation points a; = 0. The algorithms by
[1], [2], [3], based on Prony-like interpolation [4], [5], [6],
can interpolate f(x) (see (1)) from 2B values at points (; =
Ti(B) = (W' + 1/w')/2 for i = 0,1,...,2B — 1 where 3 =
(w+1/w)/2 with w € K such that w% # wo* forall 1 < j <
k < t. Like Prony’s original algorithm, our algorithms utilize
an algorithm for computing roots in K of polynomials with
coefficients in K and logarithms to base w. More precisely,
one utilizes an algorithm that on input w and w? for an integer
d € 7 computes d, possibly modulo the finite multiplicative
order 7 of w (w”7 = 1 minimally) [7]. We note that in [2]
we show that one may instead use the odd-indexed argument
Toi1(B) for i = 0,1,...,2B — 1, provided w?% 1 #£ 20x+1
forall 1 <j < k<t

Here we consider the case when the evaluations a;, which
we think of being computed by probing a black box that
evaluates f, can have sporadic errors. We write a,; for the
black box values, which at some unknown indices ¢ can have
Gy # ag. In the plot in Fig. 1 below, which is for the range
—1 <z < 1, the purple function is T5(x) — 2711 (z) + To(x)
that fits 37 of the 40 values, while the red model is a
polynomial least squares fit of degree < 19. The red function
captures 3 possible outliers, resulting in a model which has a
lower accuracy on the remaining 37 data points.

Fig. 1. Sparse Chebyshev-1 polynomial fit after removing 3 errors vs.
polynomial least squares fit

We shall assume that we have an upper bound FE for the
number of errors on a batch of N evaluations. Therefore our
sequence of black box calls has a non-stochastic error rate
< E/N. We shall also assume that the black box for f
does not return stochastic errors, meaning that if a # f({)
then a second evaluation of the black box at ( produces the
same erroneous a. Furthermore, we perform list-interpolation
which produces a valid list of sparse interpolants for the
black box values with errors, analogously to list-decoding



error correcting codes. We restrict to algorithms that run
in polynomial time in B and E (N is computed by the
algorithms), which limits the list length to polynomial in B
and F.

A simple sparse list-interpolation algorithm with errors
evaluates £ + 1 blocks of 2B arguments, which produce
N = (E + 1)2B black box values a; , at the arguments

T (61), T3(61), ooy Tup—1(Br),

T1(52), T3(B2), vy Typ—1(B2),

: : : E+1
T1(6E+1); .Ts(ﬁEH), .oy Tup—1(BE+1), )

where 8, = (wy + 1/wy)/2 and where the arguments in (3)
are selected distinct: T2;41(85) # Tam+1(Br) for i # m and
o # T (& w2l £ WP If we have for all w, distinct
term values wY’ # Wik (j # k) then the algorithm in [2] can
recover f from those lines in (3) at which the black box does
not evaluate to an error, because we assume < F errors there
is such a block of good arguments/values. Other blocks with
errors may lead to a different ¢-sparse Chebyshev-1 interpolant
with ¢ < B. The goal is to recover f (and possible other
sparse interpolants with < FE errors) from N < (E + 1)2B
evaluations.

In [2] we give algorithms for the following bounds B, E':

B=1:VE >57:

E 23
N =231 +1) <2AE+1) =2B(E +1); | < 165,
B =2:VE > 86:
E 43
N =43| 55 + 1] <4(E+1) = 2B(E +1); 15 < 3.59,
B =3:VE >222:
E 74
N =74 75 + 1] <6(E +1) = 2B(E +1); 15 <5.70.

“)
The evaluation counts (4) are derived by using the method
of [8]: subsampling at all subsequences x < T,.4;s(3) of
arguments whose indices are arithmetic progressions to locate
a subsequence without an error. The counts (4) are established
by explicitly computed lengths for the Erdds-Turdn Problem
for arithmetic progressions of length 38 when B =1, 2, 3.
For an arbitrary positive integer B, Gowers’s 2001 effective
estimates [9, Theorem 1.3] for Szemeredi’s proof of the Erdds-
Turdn Conjecture allow us to compute a lower bound for F
when subsampling requires fewer than 2B(FE + 1) values,
but the lower bound is quintuply exponential in B. Here we
give an algorithm that recovers f (and possible other sparse
interpolants) for all B > 1, E' > 1 bounds from

N = B’E+2JB Q)

evaluations with < FE errors. Our new algorithm uses fewer
evaluations than (4). We show that one can list-interpolate
from 3B points correcting a single error, which with blocking
yields (5). We correct one error from 3B points by deriving
a non-trivial univariate polynomial for the value as a variable
in each possible position.

Our technique applies to Prony’s original problem of in-
terpolating a t-sparse polynomial with ¢ < B in power
basis 1,x,22,... in the presence of erroneous points. In [8,
Lemma 2] it was shown that from (E + 1)2B — 1 points one
can correct < F errors. Here we show that

N = EE+2JB (6)

points suffice to correct < E errors. The count (6) is achieved
by correcting < 2 errors from 4B points and blocking. We
correct 2 errors at 4B points by deriving a bivariate Pham
system for variables in place of the values in all possible error
locations, which yields a bounded number of possible value
pairs among which are the actual values. We note that for
E = 2 the count 4B is smaller than the values nopg o in [8,
Table 1], which are the counts for having a clean arithmetic
progression of length 25 in the presence of 2 errors.

Our algorithms for interpolating sparse polynomials in
power basis (or Laurent polynomials) with errors, can tolerate
a higher error rate £//N than the existing algorithms in [10]
and [8]. For correcting E errors, the algorithm in [10] uses
redundant-block decoding which requires N = 2B(E + 1)
points, and the algorithm in [8] uses subsampling which is
shown by an explicit analysis of the arising Erd&s-Turdn
Problem to require no more than N = 2B(F + 1) — 1
points. That is the best we have been able to do for all
B and E using subsampling. We use a different technique.
We correct one error in a block of 3B points, or correct 2
errors in a block of 4B points, by replacing possible errors
with symbols, and then solve for the symbols to obtain the
actual values; next with redundant-block decoding, we can
correct E errors from N = [%E + 2J B points, for all B
and FE. Since Chebyshev polynomials can be transformed into
Laurent polynomials (15), we first discuss our new algorithms
for Laurent polynomials in Section II, and then apply the same
technique for Chebyshev bases.

Finally we note that our sparse list-interpolation algorithms
are interpolation algorithms over the reals K = R if w, > 1 (or
ws > 0 when f is in power basis) and N > 2B + 2F, that is,
there will only be a single sparse interpolant computed by our
algorithms. Uniqueness is a consequence of Descartes’s Rule
of Signs and its generalization to polynomials in orthogonal
bases by Obrechkoff’s Theorem of 1918 [11] (see also Corol-
lary 2 in [8] and Corollary 2.4 in [2]). Over fields with roots
of unity, the sparse list-interpolation problem for the power
bases with < (2F + 1)2B points can have more than a single
B-sparse solution [8, Theorem 3], which is also true for the
Chebyshev base as shown by Example 6.

II. SPARSE INTERPOLATION IN STANDARD POWER BASIS
WITH ERROR CORRECTION

A. Correcting One Error

Let K be a field of scalars. Let f(z) € K[z, 2] be a sparse
univariate Laurent polynomial represented by a black box and



it is equal to:

t
flz) = Zc‘jx‘sf, 01 < 0g < --- < 0p = deg(f),

j=1
Vi 1<j<t:e;#0. (7)

We assume that the black box for f returns the same value

when probed multiple times at the same input. Let B be an

upper bound on the sparsity of f(z) and D > |§;| for all

1 < j <t. Choose a point w € K\ {0} such that:

(1) w has order > 2D + 1, meaning that Vn,1 < n <
2D: w" #£ 1.

(2) wh # w for all 1 <4y < iy < 3B.

The first condition is an input specification of the Integer
Logarithm Algorithm (see Algorithm 1) that computes §; from
w% . The second condition guarantees that the inputs probed
at the black box are distinct so that we don’t get the same
error at different locations.

For ¢+ = 1,2,...,3B, let a; be the output of the black
box for f probed at input w®. Assume there is at most
one error in the evaluations, that is, there exists < 1 index
i € {1,2,...,3B} such that a; # f(w'). We present an
algorithm to compute a list of sparse polynomials which
contains f.

Forr=1,...,B,let H, € KIBFDX(B+1) pe the following
Hankel matrix:

ay &rJrl dTJrB*l dTJrB
dry1 art2 ar+B  AryBt1
H, — . . ) .
ryB-1  QryB Gry2B-2 Gry2B-1
Gr+B Ar+B+1 Gr4+2B—1 Gr+2B

®)

Let ¢ be the error location, i.e., a; # f(w’). There are three
cases to be considered:
Case 1: 1< /< B;
Case 2: B+1</<2B;
Case 3: 2B +1</¢{<3B.

For Case 1 and Case 3, we can use Prony’s algorithm (see
Algorithm 2) to recover f(z) from a consecutive sequence of
length 2 B: either (&17&27 . ,dQB) or (&B+17&B+27 . ,&33).
To deal with Case 2, we replace the erroneous value ay
by a symbol a. Then the determinant the Hankel matrix
Hy;_p (see (8)) is univariate polynomial of degree B + 1
in a.. By Prony/Blahut/Ben-Or/Tiwari Theorem [4], [12], [5],
(f(w%))i>o is a linearly generated sequence and its minimal
generator has degree < B. Therefore f(w’) is a solution of
the equation:

det(Hg_B) =0. (9)

By solving the equation (9), we obtain a list of candidates
{&1,...,&) for the correct value f(w’). For each candidate
&(1 < k < b), we substitute a;, by & in the sequence
(ap+1,aB42,...,a025) and try Prony’s algorithm on the up-
dated sequence (a1, ds,...,asp), which gives us a list of
sparse polynomials containing f(x). The process of correcting
one error from 3B evaluations is illustrated by the following
example.

Example 1 Assume that we are given B = 3. With 3B =9
evaluations a1, as, . .., a9 obtained from the black box for f

at inputs w,w?,...,w”, we have the following 6 x 4 matrix:

c K6><4

For r = 1,2, 3, the matrices H, (see (8)) are 4 x 4 submatrices
of H:

ay Gz az G4 Gz a3 G4 as
az a4z aq as az G4 a5 Gg
H, = . , Hy= |7 & .7 7,
as a4 Aas Gg a4 a5 ag ar
G4 as ag ag as Gg Gy asg

as as as ag

as as ae ag

as ag ar as

ag a7 as g

Suppose there is one error G, # f(w’) in these 3B evaluations.

We recover f(x) by the following steps.

Step 1: Try to recover f(z) from (aq,ds,...,d46) and
(G4, as5,...,a9) by Prony’s algorithm; f(z) will be re-
turned if ¢ € {7,8,9} or £ € {1,2,3}.

Step 2: For ¢ € {4, 5,6}, substitute a, by o, then det(H,_3)
is a univariate polynomial of degree 4 in a and f(w’)
is a root of det(H,_3). Compute the roots {&j}r>1 of
det(H,_3). For each root &, replace a, by & and check
if the matrix A has rank < 3. If yes, then use Prony’s
algorithm (see Algorithm 2) on the updated sequence
(41,az,...,06). As f(w’) is equal to some &, this step
will recover f(z) in case that ¢ € {4,5,6}.

For computing the term degrees d; of f, we need an integer
logarithm algorithm having the following input and output
specifications.

Algorithm 1 Integer Logarithm Algorithm
Input:
> An upper bound D € Z+y.
»w € K\ {0} and has order > 2D + 1, meaning that Vn >
lLw'=1=n>2D+1.
> p e K\ {0},
Output:
» Either § € Z with |§] < D and wd = p,
> or FAIL.

We describe the subroutine which we call Try Prony’s
algorithm. This subroutine will be frequently used in our main
algorithms.

Algorithm 2 Try Prony’s algorithm
Input:
> A position 7 and sequence (G, . -

K is a field of scalars.
> An upper bound D € Z-~.

., ar1op—1) in K where



»w € K\ {0} and has order > 2D + 1.
> Algorithm 1: Integer Logarithm Algorithm that takes
D, w, p as input and outputs:
> either § € Z with |§| < D and wd = p,
> or FAIL.

Output:

> Either a sparse Laurent polynomial of sparsity ¢t < B and
has term degrees 0; with |§;] < D,
> or FAIL.

Step 1: Use Berlekamp/Massey algorithm to compute the min-
imal linear generator of the sequence (Qy,...,0r+25-1)
and denote it by A(z). If A(0) = 0 return FAIL.

Step 2: Compute all distinct roots € K of A(z), denoted by
P1s- -5 pe If t < deg(A) then return FAIL.

Step 3: For j = 1,...,t, use the Algorithm 1: Integer Log-
arithm Algorithm to compute §; = log,, p;. If the Integer
Logarithm Algorithm returns FAIL, then return FAIL.

Step 4: Compute the coefficients cy,...,c; by solving the
following transposed generalized Vandermonde system

‘s ‘s '
P1 P2 Tt Pt c1 a,
r+1 r+1 r+1 R
P1 P2 Pt Co Grt1
r4t—1 r4t—1 r4t—1 c Qg
P1 P2 Pt t rt—1

Step 5: Return the polynomial 22:1 cjx5-7'

Now we give an algorithm for interpolating a black-box
polynomial with sparsity bounded by B. This algorithm can
correct one error in 35 evaluations. More specifically, if there
is at most one error in the 35 evaluations of a univariate black-
box polynomial f(x) of sparsity < B, then the Algorithm 3
will compute a list of sparse interpolants containing f(x).
Moreover, f(z) is not distinguishable from other interpolants
(if there are any) in the list, because all interpolants returned
by the algorithm satisfy the output conditions and f(z) could
be any one of them. In fact, [8, Theorem 3] shows that for
K = C, one needs N > 2B(2E + 1) points to guarantee a
unique interpolant where £/ > the number of errors. However,
for K = R, by Descartes’s rule of signs, [8, Corollary 2]
shows that if we probe f(x) at N > 2B+ 2F distinct positive
arguments with at most E errors in the output evaluations, then
f(z) is the only interpolant in R[z] which has sparsity < B
and has < FE errors in the N evaluations. Therefore, in the
Algorithm 3, if K =R, w > 0, 3B > 2B+ 2F = 2B + 2,
and the 3B evaluations contain at most one error, then f(z)
will be the only interpolant in the output. The Algorithm 3
will return FAIL if no sparse interpolants satisfy the output
conditions.

Algorithm 3 A list-interpolation algorithm for power-basis
sparse polynomials with evaluations containing at most one
error.
Input:

» A black box representation of a polynomial f € K[z, z7!]
where K is a field of scalars. The black box for f returns

the same (erroneous) output when probed multiple times
at the same input.

> An upper bound B on the sparsity of f.

> An upper bound D > max; |J,|, where §; are term degrees

of f.
»w e K\ {0} satisfying:
> w has order > 2D + 1;
»wit £ w2 forall 1 <4 < iy < 3B.

> An algorithm that computes all roots € K of a polynomial

€ Klz].

Output:

» Either a list of sparse polynomials {f [, ..., f[M]} with

each f[¥] (1 <k < M) satisfying:
» £k has sparsity < B and has term degrees 0; with

6| < D

» f ¥l is represented by its term degrees and coefficients;
> there is at most one index i € {1,2,...,3B} such that

FU(w?) # a; where @; is the output of the black box

probed at input w?’;

> f is contained in the list,

> or FAIL.

Step 1: For v = 1,2,...,3B, get the output a; of the black
box for f at input w'. Let L be an empty list.

Step 2: Use Algorithm 2 on the sequence (ai,ds,...,a2p3).
If the algorithm returns a sparse polynomial f of sparsity
< B and has term degrees 6; with |5]-| < D, and there is
at most one index i € {1,2,...,3B} such that f(w') # a;,
then add f to the list L.

If the error is in (G2p+y1,d2B+42.-.,G35), then the se-
quence (a1, ds,...,a2p5) is free of errors, so Algorithm 2
in Step 2 will return f, and f will be added to the list L.

Step 3: Use Algorithm 2 on the sequence (ipy1, Apta,. .-,

asp). If the algorithm returns a sparse polynomial f of
sparsity < B and has term degrees 0; with |6;| < D, and
there is at most one index i € {1,2,...,3B} such that
f(w?) # @, then add f to the list L.
If the error is in (Gi,...,ap), then the sequence
(ap+1,Gp+2,-..,a3p) is free of errors, so Algorithm 2
in Step 3 will return f, and f will be added into the list
L.

Step 4: For { =B+ 1,B+2,...,2B,

4(a): substitute Gy by a symbol « in the matrix Hy_p (see
(8)); use the fraction free Berlekamp/Massey algorithm
[13], [14] to compute the determinant of H,_p and
denote it by Ay(a);

Here Ay(a) is a univariate polynomial of the form
(=1)BHaP+ 4 Ay(a) with deg(Ay()) < B+ 1;
4(b): compute all solutions of the equation A¢(a) = 0 in

K; denote the solution set as {&1,...,&} ;

4(c): for k=1,...,b

4(c)i: substitute ay by &g,

4(c)ii: use Berlekamp/Massey algorithm to compute the
the minimal linear generator of the new sequence
(a1,a2,...,asp) and denote it by A(z);

4(cjiii: if deg(A(z)) < B, repeat Step 2.

If G, # f(w’) with ¢ € {B+1,B +2,...,2B}, then
we substitute a; by a symbol o and compute the roots




{€&1,...,&) of Ay(a) in K. The correct value f(w’) is in
the set {&1,...,&}. Thus for every root &, (kK =1,...,b),
we replace a, with &, and use Berlekamp/Massey al-
gorithm to check if the new sequence (a1, as,...,d35)
is generated by some polynomial of degree < B. If
so, then we apply Algorithm 2 on the updated sequence
(a1,0a2,...,a25). In the end, Step 4 will add f into the
list L in case that B+ 1 < /¢ < 2B.

Step 5: If the list L is empty, then return FAIL, otherwise
return the list L.

Proposition 1 The output list of Algorithm 3 contains < B2+
B + 2 polynomials.

Proof: The Step 2 in Algorithm 3 produces < 1 pol-
ynomial and so is Step 3. In the Step 4 of Algorithm 3,
because Ay(cv) has degree B + 1, the equation Ay(a) = 0
has < B + 1 solutions in K, therefore this step produces
< B(B+1) polynomials. Thus the output list of Algorithm 3
contains < 2+ B(B + 1) polynomials. O

B. Correcting 2 Errors

In this section, we give a list-interpolation algorithm to
recover f(z) (see (7)) from 4B evaluations that contain 2
errors. Recall that B is an upper bound on the sparsity of
f(x) and D is an upper bound on the absolute values of the
term degrees of f(z). We will use Algorithm 3 as a subroutine.

Let w € K\ {0} such that: (1) w has order > 2D + 1, and
(2) wt # w forall 1 <iy <iy <4B.Fori=1,2,...,4B,
let G; be the output of the black box probed at input w’. Let
g, and ay, be the 2 errors and ¢ < (5. The problem can be
covered by the following four cases:

Case 1: 1 </, < B;

Case 2: 3B+ 1< /{5 <4B;

Case 3: B+1</i <ty <2Bor2B+1</V <ty <3B;
Case 4: B+1</;, <2Band 2B+1</y <3B.

First, we try the Algorithm 3 on the sequences (a1,
as,...,asp) and (aGpy1,apto,...,a4n), which can list in-
terpolate f(x) if either Case 2 or Case 1 happens. Next,
we use the Algorithm 2 on the sequences (a1, ...,d2p) and
(a2B+1,---,a4p), which will return f(z) if Case 3 happens.
For Case 4, we substitute the two erroneous values a,, and
ag, by two symbols o1 and ay respectively. Then the pair of
correct values (f(w®), f(w?)) is a solution of the following
Pham system (see Lemma 2 and Lemma 3):

det(Hgl_B) =0, det(HgQ_B) =0, (10)

where Hy, _p and Hy,_p are Hankel matrices defined as (8).
As the Pham system (10) is zero-dimensional (see Lemma 3),
we compute the solution set {(&11,82.1),..-,(&1,p,&2)} Of
(10). Then, for £k = 1,...,b, we substitute (dy,,das,) by
(&1,%,62,,) and apply Algorithm 2 on the updated sequence
(a1,d2,...,asp); this results in a list of candidates for f if
Case 4 happens.

The following Lemma shows that the determinants arising
in (10) have the Pham property, using diagonals in place of
anti-diagonals.

Lemma 2 Let A be an n X n matrix with the following

properties:

(1) fori=1,...,n, Ali,i] = aq;

(2) for some fixed k € {1,...,n—1}andfori=1,... ,n—k,
A[Z, Z —+ k] = g,

(3) all other entries of A elements are in the field of scalars
K

Then det(A) = of + Q(a1,as) where Q(ay,az) is a
polynomial of total degree < n — 1.

Proof: The matrix A is of the form:

[0S T (%) *

Q2

Qg |

We prove by induction on n. It is trivial if n = 1. Assume
that the conclusion holds for n — 1. By minor expansion on
the first column of A, we have

det(A) = ar ()" + Q1 (o1, 2)) + Qa2(ar, az)

where Q2(a1, ) has total degree < n — 1. By induction
hypothesis, @Q1(1,as) has total degree < n — 2. Let Q =
a1 - Q1 + Q2. The proof is complete. O

Lemma 3 The Pham system
ay’ + Qi(ar, az) =0, deg(Q1) <ny —1
ay® + Q2(a1,a2) =0, deg(Q2) <np—1

has at most nins solutions, where Q1 and Q)2 are two
polynomials in Klaq, as).

(an

Proof: See e.g. [15, Chapter 5, Section 3, Theorem 6]. []

Example 2 Let B = 3. With 4B = 12 evaluations
a1, a9, . ..,a412 obtained from the black box for f at inputs

w,w?,...,w?, we have the following 9 x 4 matrix:

ap Gz a4z a4
as az a4 as
as aqg as ae
as as ag ar
H=|as ag ar as
ag ar ag Qg

c K9><4

ar ag ag QAo
ag ag aipp ai
ag aip a1 a2

Suppose there are two errors dg,,d¢, (€1 < ¢3) in the
evaluations. If ¢; € {1,2,3}, then the Algorithm 3 can
recover f(x) from the last 3B evaluations (aq, ds, - .., a12).
Similarly, f(x) can also be recovered from (a4, s, . .., d9) by
the Algorithm 3 if /5 € {10,11,12}. Next, if 1, (> € {4,5,6}
or (1,05 € {7,8,9}, then the Algorithm 2 can recover f(z)
from (ary,...,a12) or (a,...,as).

It remains to consider the case that ¢; € {4,5,6} and {5 €
{7,8,9}. We substitute ay,, as, by a1, ag respectively. Then



the determinants of the matrices Hy,_3 and Hy,_3 can be
written as:

det(Hy,—3) = —ai + Q1 (a1, a2), deg@Qq <3
det(Hg, 3) = —0/2l + Q2(1, ), degQ2 <3

where Hy,_3, Hy,_3 are Hankel matrices defined as (8) and
where )7 and @2 are bivariate polynomials in «; and ao.
We compute the roots (&1 x,&2,x)k>1 of the system (12) in
K and the pair correct values (f(w’), f(w’)) is one of
the roots. For each root (& x,&2%), we substitute dg,, G,
by &1k, &2 respectively, and check if the matrix [ has
rank B = 3. If so, then run Algorithm 2 on the updated
sequence (a1, G, - - - , 4g). In the end, we obtain a list of sparse
polynomials that contains f(z).

(12)

We summarize the process of correcting 2 errors in Al-
gorithm 4 below. If there are at most 2 errors in the 4B
evaluations of a univariate black-box polynomial f(x) of
sparsity < B, then the Algorithm 4 will compute a list
of sparse interpolants containing f(z). Again, f(z) is not
distinguishable from other interpolants (if there are any) in
the list, because all interpolants returned by the algorithm
satisfy the output conditions and f(x) could be any one of
them. Nevertheless, in the Algorithm 4, if K = R, w > 0,
4B > 2B + 2FE = 2B + 4, and the 4B evaluations contain
at most 2 errors, then f(x) will be the only interpolant in
the output. The Algorithm 4 will return FAIL if no sparse
interpolants satisfy the output conditions.

Algorithm 4 A list-interpolation algorithm for power-basis
sparse polynomial with evaluations containing at most 2
errors.
Input:

» A black box representation of a polynomial f € K[z, 2]
where K is a field of scalars. The black box for f returns
the same (erroneous) output when probed multiple times
at the same input.

> An upper bound B on the sparsity of f.

> An upper bound D > max; |d;|, where 0, are term degrees
of f.

»w € K\ {0} satisfying:

> w has order > 2D + 1;
»wit £ w2 forall 1 < iy < iy < 4B.

> An algorithm to compute all roots € K of polynomials in
Klz].

Output:

» Either a list of sparse polynomials {f [, ..., f[M]} with
each f[¥ (1 <k < M) satisfying:

» £ ¥ has sparsity < B and has term degrees 0; with
|0;] < D; degrees and coefficients;

» f ] is represented by its term

> there are at most 2 indices i1,i9 € {1,2,...,4B} such
that f *)(w™) # a;, and fFl(w?) # a;, where @;, and
a;, are the outputs of the black box probed at inputs
w' and w respectively;

> f is contained in the list,

> or FAIL.

Step 1: For i = 1,2,...,4B, get the output a; of the black
box for f at input W'.

Step 2: Take (dl,dz, o ,ng) and (&B+1, &B+2, . ,d4B) as
the evaluations at the first step of Algorithm 3 and get two
lists L1, Lo. Let L be the union of L1 and L.

If either (dl, as,y ..., dBB) or (dB+1,dB+2, . ,&43) con-
tains < 1 error, the Algorithm 3 can compute a list of
sparse polynomials containing f(x).

Step 3: Use Algorithm 2 on the sequences (a1, az,...,a28)
and (Gop11,a42p+2, a4 ). If Algorithm 2 returns a sparse
polynomial f of sparsity < B and has term degrees 0;
with |3;] < D, then add f into the list L.

If either (@1, Gz, ..., aop) or (G2p+1,028+2,Gap) 1S error-
free, the Algorithm 2 will return f(x).

Step 4: For every polynomial f in the list L, if there are at
least 3 indices i € {1,2,...,4B} such that f(w') # a;
then delete f from L.

Step 5: For {1y =B +1,...,2B and {3 =2B+1,...,3B,

5(a): substitute Gy, by o and ag, by o in the Hankel ma-
trices Hy,—p and Hy,_p (see (8)); let Ay, (a1, ) =
det(Hy, —p) and Ay, (a1, ) = det(Hyp,—p).

Here, we also use the fraction free Berlekamp/Massey
algorithm [13], [14] to compute the determinants of
Hfl—B and Hz2_B.

5(b): compute all solutions of the Pham system
{Ay, (a1, 0) = 0, Ay, (a1, a2) = 0} in K2; denote the
solution set as {(&1,1,82.1), -, (§1.6,&2.0) }-

One may use a Sylvester resultant algorithm and the
root finder in K[xz] to accomplish this task in polynomial

time.
5(): fork=1,...,b,
5(c)i: substitute Gy, by &1 and g, by &o 15

5(c)ii: use Berlekamp/Massey algorithm to compute the
the minimal linear generator of the new sequence
(a1, a9, ...,a4p) and denote it by A(z);

S(cjiii: if deg(A(z)) < B, use Algorithm 2 on the
updated sequence (a1,as,...,asp); if Algorithm 2
returns a sparse polynomial f of sparsity < B and
has term degrees 6; with |§;| < D, and there are
at most 2 indices 11,19 € {1,2,...,4B} such that
flw™) # a;, and f(w™) # a,,, then add f into the
list L;

If the two errors are Gy, and ay, with ¢; € {B+1,...,2B}
and ¢o € {2B + 1,...,3B}, we substitute ay, and dy,
by two symbols o and ao respectively. As the pair of
correct values (f(w?), f(w?)) is a solution of the system
{Ay, (a1,a2) = 0,Ap, (a1, 2) = 0}, Step 5 will add f
into the list L.

Step 6: If the list L is empty, then return FAIL, otherwise
return the list L.

Proposition 4 The output list of Algorithm 4 contains < B*+
2B3 + 3B% + 2B + 6 polynomials.

Proof: In Algorithm 4, only Step 2, Step 3, and Step 5
produce new polynomials. By Proposition 1, both the lists 1q
and Ly obtained at Step 2 contain < B? + B+ 2 polynomials.
Step 3 produces < 2 polynomials. For Step 5 of Algorithm 4,



the Pham system {A, (o, ) = 0, Ay, (o, ) = 0} has < (B+
1)? solutions, so this step produces < B?(B+1)? polynomials.
Therefore the output list contains < B2(B + 1) + 2(B? +
B + 2) + 2 polynomials. [

C. Correcting E Errors

Recall that f(x) is a sparse univariate polynomial of the
form 22:1 cjz’ (see (7)) with t < B and Vj,|5;| < D.
We show how to list interpolate f(z) from N evaluations
containing < FE errors, where

N = {§E+ ZJ B. (13)

Let § = | E/3]. Choose wy,...,wp, wpt+1 € K\ {0} such that:

(1) wy has order > 2D + 1 forall 1 <o <+ 1, and
2) wf,ll ;éwf,g forany 1 < o3 <oy <f+1land1<i <
io < 4B.

Let a,; denote the output of the black box at input w’. for
c=1,...,0+1landi=1,...,4B.

If £ mod 3 =0 then N = (E/3)4B + 2B. The problem is
reduced to one of the following situations: (1) the last block
(Go+1,1,00+1,2,---,00+1,28) of length 2B is free of error, or
(2) there is some block (Gy,1,00.2, ..., G0a8) With 1 < o <
E /3 which contains < 2 errors. These two situations can be
handled by Algorithm 2 and Algorithm 4, respectively.

If Fmod3 = 1 then N = 4B6 + 3B. The problem is
reduced to one the following situations: (1) the last block
(Go+1,1,00+1,2,---,00+1,35) of length 3B has < 1 error, or
(2) there is some block (¢, 1,002, .., Grap) With1 <o <0
which contains < 2 errors. Therefore by applying the Algo-
rithm 3 on (Gg+1,1, Go+1,2, - - -, Gg+1,35) and the Algorithm 4
on (41,002, -.,0,45), We can list interpolate f(z).

If Emod3 = 2then F =360+2and N = (6 + 1)4B.
So there is some o € {1,...,0 + 1} such that the block
(Go1,0G6,2,---,004p) of length 4B contains < 2 errors, and
we can use the Algorithm 4 on this block to list interpolate

[ ().

Remark 1 We apply the Algorithm 4 on every block
(Go1,00,2,-..,004p) forall o € {1,..., | E/3]}, which will
result in < |E/3] (B*+ 2B3 + 3B2 + 2B + 6) polynomials
according to Proposition 4. The length of the last block
depends on the value of E, and we have the following different
upper bounds on the number of resulting polynomials:

(1) (E/3)(B*+2B3*+3B*+2B+6)+1, if Emod 3 =0;

() |E/3|(B*+2B%+3B*+ 2B+ 6) + B>+ B + 2, if
E mod 3 =1 (see Proposition 1);

3) (|E/3] +1)(B*+2B3+3B%+2B+6), if E mod 3 = 2.

By Descartes’ rule of signs (see e.g. [16, Proposi-
tion 1.2.14]), the approach for correcting E errors will produce
a single polynomial if K =R, N > 2B+2F and w, > 0, Vo.
However, if N < 2B+ 2F then there can be > 2 valid sparse
interpolants. We give an example to illustrate this.

Example 3 Choose w > 0. Let B be an upper bound on the
sparsity of f and E be an upper bound on the number of errors
in the evaluations. Let

2B—-2

h = H (x_wi)v

=0

and fU1 be the sum of odd degree terms of h and f[? be
the negative of the sum of even degree terms of h. Clearly,
we have h = f0 — fBland f0(w%) = FBI(WY) for i =
0,1,...,2B — 2. Moreover, both f[1 and f[? have sparsity
< B as deg(h) = 2B — 1. Consider a sequence G consisting
of the following 2B + 2F — 1 values:

a(l) _ (f[l](wo), ., f[l] szfz)

o — (f[l](w2B—1)’ .., f w2B+E—2’))’
a® — (f[2](wQB+E_1), o f[Q](w2B+2E—2))

(14)

)

that is, & = (a("),a® a®). If all the errors are in a(®) then
M is a valid interpolant. Alternatively, if all the errors are
in a® then f[? is a valid interpolant. Therefore, from these
2B + 2F — 1 values, we have at least 2 valid interpolants.

We remark that one of the valid interpolants, f [ and f[2,
must have B terms since otherwise uniqueness is guaranteed
by Descartes’s rule of signs. In this example, both f[ and
f 2 have B terms because the polynomial & has 2B terms.
Indeed, deg(h) = 2B — 1 implies that h has < 2B terms, and
by Descartes’ rule of signs, h has > 2B terms because it has
2B — 1 positive real roots. Therefore / is a dense polynomial.
However, with the following substitutions

=y, w=a" for some k> 1,

we have again a counter example where h, f (1], and f 2] are
sparse with respect to the new variable y.

III. SPARSE INTERPOLATION IN CHEBYSHEV BASIS WITH
ERROR CORRECTION

A. Correcting One Error

Let K be a field of scalars with characteristic # 2. Let
f(z) € K[z] be a polynomial represented by a black box.
Assume that f(z) is a sparse polynomial in Chebyshev-1 basis
of the form:

t
F@) =" ¢iTs, (x) € Klal,
j=1
0<d1 <da<--- < =deg(f),Vj,1<j<t:ie; #0,

where T, (x) (j = 1,...,t) are Chebyshev polynomials of the
First kind of degree ;. We are given an upper bound B > t,
and we want to recover term degrees J; and the coefficients c;
from 3B evaluations of f(x) where the evaluations contain at
most one error. Using the formula Tn(”;f1 ) = £ for
all n € Z>q, [2, Sec. 4] transforms f(x) into a sparse Laurent
polynomial:

-1 t ]
o) L) =3 Dyt 4y )

j=1

15)



Therefore the problem is reduced to recover the term degrees
and coefficients of the polynomial g(y). Let w € K such that
w has order > 4D + 1.

For ¢ = 1,2,...,3B, let as;—1 be the output of the black
box probed at input vo;_; = (W~ ! 4+ w™ (1) /2. Note
that g(w?) = g(w™*) for any integer . For odd integers r €
{2k —1 |k =1,...,B}, let G, € KBTUX(B+1) pe the
following Hankel-+Toeplitz matrix:

. B . B
Gr = [a\T+2(i+J’)\]i,j:0 + [a|7‘+2(i_j)|]i,j:0' (16)

Hankel matrix Teoplitz matrix

If all the values involved in the matrix G, are correct, then
det(G,) =0 [2, Lemma 3.1].

If the 2B evaluations {ao;_1 }25, are free of errors, then one
can use Prony’s algorithm to recover g(y) (and f(x)) from the
following sequence [8, Lemma 1]:

G—4B+1,0-4B43,-..,0-1,01,...,04p_3,04p—1. (17)

Now we show how to list interpolate f(x) from 3B evaluations
{a2;—1}3B, containing < 1 error.

Assume that ag—1 is the error, that is, dog—1 # f(7y20-1) =
g(w?*=1). The problem can be reduced to three cases:
Case 1: 1 </(< B;
Case 2: B+1</¢<2B;
Case 3: 2B+ 1</(<3B.

For Case 3, we can recover f(x) from the sequence
(&21-,1)1257(2371). For the Case | and Case 2, we substitute
Gg¢—1 by a symbol a. Let

[ det(Gae—1),
Agp1(a) = { det(Ga—By-1)>

where Ggg—1 and Gg_py_; are defined as in (16) and
Ag¢_1(«) is a univariate polynomial of degree B+1 in « (see
Lemma 5). By [2, Lemma 3.1], the correct value f(vy2¢—1) is
a solution of the equation Agy_1(a)) = 0. So we compute
all solutions {&1,...,&} of Agy_q1(c) = 0 in K. For each
solution & (1 < k < b) we replace Go¢—1 by & and try Prony’s
algorithm on the updated sequence (Gg;—1)*2 (25—1)- In the
end, we will get a list of polynomials containing f(x).

if 1 </{<B,
if B+1</¢{<2B,

Lemma 5 Let r € {2k — 1 | k = 1,...,B} and G, =

[d|r+2(i+j)| + &\T+2(i*j)|]i,j:0’ If G, or G,49p is substituted
by a symbol « in G,, then the determinant of G, is a
univariate polynomial of degree B + 1 in a.

Proof: First, we show that if a,,2p is substituted by «,
then the matrix (G, has the form:

o+ *x
* o+ %
(18)
o+ %
o+ *
Sincer € {2k —1|k=1,...,B} and 4,5 € {0,1..., B},
we have
Ir+2(i+j)|=r+2B=i+j=B,
r+2(i—j)|=r+2B=i=DB,j=0o0ri=0,j = B.

Therefore, either |+ 2(i 4 j)| =7+ 2B or [r +2(i — j)| =
r + 2B implies ¢ + j = B, so a,4+92p only appears on the
anti-diagonal of the matrix G,.. Conversely, every element on
the anti-diagonal of G, is equal to a,i2p + &|T+2(i_j)‘ for
some 4,5 € {0,1,..., B}. Thus G, has the form (18) and its
determinant is a univariate polynomial of degree B + 1 in a.

Now we consider the case that a, is substituted by «a.

Similarly, because » € {2k — 1 | k = 1,...,B} and
i,7€{0,1..., B}, we have

P 26i4j)|=r=i=j=0,

r+2(i+ ) J o

[r+2(i—j)|=r=i=jori=j—rifj>r
Therefore, if » > B then 7 = j in (19), so a,- only appears on
the main diagonal of GG,.. On the other hand, every element on
the main diagonal of G, is equal t0 @, 1 2(;4¢) + G, for some
1€{0,1,...,t}. Hence, if r > B then the determinant of G,
is a polynomial of degree B + 1 in . Assume that r < B.
From (19), we see that after substituting a, by «, the matrix
G, has the form:

[ + * o+ * *
o+ % (20)
* :
L o+ *
According to Lemma 2, the determinant of the matrix (20) is
a univariate polynomial of degree B + 1 in o. O

Example 4 For B = 3, we have 3B = 9 evaluations
{a2i—1}38, obtained from the black box for f at inputs
v = (W1 4 w= (1)) /2. We construct the following 6 x 4
matrix:

241 az3+a1 as+asz a7+ as
243 as+a1 a7+a; a9+ as
G- 205 ar+az ag-+ap ap+ap c KOx4
2a7 ag+as a1 +az a3+ ap
2a9 Q11+ a7 a3+ as a1z + as
2a11 a13+ag ais+ay aiy +as

For r = 1, 3,5, the matrices GG,. are 4 x 4 submatrices of the
matrix GG. The matrix GG; consists of the first 4 rows of G. If
we substitute aq or a7 by a symbol «, then the determinant of
(31 is univariate polynomial of degree 4 in «. The matrix G5
consists of the second to the fifth row of GG and the determinant
of G5 becomes a univariate polynomial of degree 4 in « if ag
or ag is substituted by «. Similarly, the matrix G5 consists of
the last 4 rows of G. Substituting a5 or a1 by «, det(Gs) is
a univariate polynomial of degree 4 in .

Suppose there is one error doy—1 # f(y2¢—1) in the 3B
evaluations. Here is how we correct this single error for all
possible £’s:

(1) if ¢ € {1,2,3}, then substitute Go¢—1 by « and compute
the roots of det(Ga¢—1), and the roots are candidates for
f(v2e-1);

(2) if ¢ € {4,5,6}, then substitute Go¢—1 by « and compute
the roots of det(Ga(y—3)—1), and the roots are candidates
for f(vae—1)s



(3) if £ € {7,8,9}, then f(x) can be recovered by applying
Prony’s algorithm on the sequence (2;—1)%_ .

We summarize the process of correcting one error from 35
evaluations in Algorithm 5 below. The Algorithm 5 returns a
list of sparse interpolants containing f(x) if there is at most
one error in the 3B evaluations of f(x). Also, f(x) is not
distinguishable from other interpolants (if there are any) in the
list, because all interpolants returned by the algorithm satisfy
the output conditions and f(z) could be any one of them.
However, if in the Algorithm 5 we have K = R, w, > 1,
3B > 2B+ 2F = 2B + 2 and the 3B evaluations contain at
most one error, then f(z) will be the only interpolant in the
output. This is explicitly stated in [2, Corollary 2.4], which
is a consequence of a generalization of Descartes’s rule of
signs to orthogonal polynomials by Obrechkoff’s theorem [11,
Theorem 1.1]. The Algorithm 5 will return FAIL if no sparse
interpolants satisfy the output conditions.

Algorithm 5 A [ist-interpolation algorithm for Chebyshev-1
sparse polynomials with evaluations containing at most one
error.
Input:
> A black box representation of a polynomial f € K|x]
where K is a field of scalars with characteristic # 2 and f
is a linear combination of Chebyshev-1 polynomials. The
black box for f returns the same (erroneous) output when
probed multiple times at the same input.
> An upper bound B of the sparsity of f.
> An upper bound D of the degree of f.
*»w € K\ {0} has order > 4D + 1.
> An algorithm that computes all roots € K of a polynomial
€ Klz].
Output:
» Either a list of sparse polynomials {f [, ..., fIM} with
each I (1 <k < M) satisfying:
» £ ¥ has sparsity < B and degree < D;
» £ Il is represented by its Chebyshev-1 term degrees and
coefficients;
> there is at most one index ¢ € {1,2,...,3B} such that
f (k] (’}/Qi_l) 7’5 &21‘_1 where Yi = (w%_l +w‘<2i_1))/2
and ag;_; is the output of the black box probed at input
Y2i-15
> f is contained in the list,
> or FAIL.

Step 1: For i = 1,2,...,3B, get the output a; of the black
box for f at input v; = (W' +w™71) /2 Let L be
an empty list.

Step 2: Use Algorithm 2 on the sequence (d%*l)?ff(qu)'
If Algorithm 2 returns a polynomial of the following form:
22:1 %(w“;jxmﬂ’ 4w x=2%) with ¢; €K, t<B,§; <
D, then let f = Z;Zl ¢jTs; (). If there is at most one
index i € {1,...,3B} such that f(v2;_1) # a2;—1, then
add f to the list L.

Step 2 will add f to the list L if the error is in
{d2i71}§£23+1-
Step 3: For ¢ =1,...,B,

3(a): substitute G201 by a symbol « in the matrix Gop_1;
compute the determinant of Gop_1 and denote it by
Az (a);

According to Lemma 5, Agy_1 () is a univariate poly-

nomial of degree B + 1 in a.

3(b): compute all solutions of the equation Aqy_1(a)) =0
in K; denote the solution set as {&1,...,&};

3(c): fork=1,...,b,

3(c)i: substitute as¢—1 by &,

3(c)ii: use Berlekamp/Massey algorithm to compute the
the minimal linear generator of the new sequence
(a2i-1)?8 55, and denote it by A(z);

3(o)iii: if deg(A(z)) < 2B, repeat Step 2.

If the error is agp—1 with 1 < ¢ < B, that is dgp—1 #
f(v20-1), then we substitute ao¢—1 by a symbol a. As the
correct value f(72¢—1) is a solution of Agy_; () = 0, that
is f(y2e—1) = & for some k € {1,...,b}, Step 3 will add
f into the list L.

Step 4: For { =B +1,...,2B,

4(a): substitute as¢—1 by a symbol o in the matrix
G2(¢—B)—1, compute the determinant of Gy py—1 and
denote it by Ngp_1(0);

According to Lemma 5, Agy_1 () is a univariate poly-

nomial of degree B + 1 in a.

4(b): compute all solutions of the equation Agy_1 () = 0
in K; denote the solution set as {&1,...,&y};

4(c): for k=1,...,V,

4(c)i: substitute asg—1 by &g

4(c)ii: use Berlekamp/Massey algorithm to compute the
the minimal linear generator of the new sequence
(a2i-1)38 55, and denote it by A(z);

4(c)iii: if deg(A(z)) < 2B, repeat Step 2.

If the error is dop—1 (B+1 < ¢ < 2B), that is ag¢_1 #
f(v20-1), we also substitute aop—1 by a symbol «. As
the solution set {&1,...,&} of Agy_q1(a) = 0 contains
f(vae-1), Step 4 will add f into the list L.

Step 5: If the list L is empty, then return FAIL, otherwise
return the list L.

Proposition 6 The output list of Algorithm 5 contains <
2B? + 2B + 1 polynomials.

Proof: The Step 2 in Algorithm 5 produces < 1 poly-
nomial, and both Step 3 and Step 4 produce < B(B + 1)
polynomials. Hence the final output list has < 14+2B(B +1)
polynomials. O

B. Correcting E Errors

The settings for f(z) are the same as in Section III-A.
We show how to list interpolate f(x) from N evaluations
containing < F errors, where

5 21

Let 0 = | E/2]. Choose wy,...,wp, wp+1 € K\ {0} such that
wy has order > 4D + 1 for 1 <o <6+ 1.

N = {BE—FQJ B.



If E is even then N = (E/2)3B + 2B. The problem is
reduced to one the following situations: (1) the last block
(Gp41,2i—1)78, of length 2B is free of errors, or (2) there is
some block (&0721_1)?’51 with 1 < o < E/2 of length 3B that
contains at most 1 error. These two situations can be handled
by the Algorithm 2 and Algorithm 5, respectively.

If £isodd then E=2-0+1and N = (0 + 1)3B. Thus,
there is some block (Gy1,...,0,35) With 1 < o < §+1
of length 3B that contains at most 1 error; we can use the
Algorithm 5 on this block to list interpolate f(x).

Remark 2 For every o € {1,...,|E/2|}, we apply Al-
gorithm 5 on the block (&0721'_1)?51 which will result in
< |E/2] (2B? + 2B + 1) polynomials by Proposition 6. The
length of the last block depends on the value of E, and we
have the following different upper bounds on the number of
resulting polynomials:

(1) (E/2)(2B? + 2B + 1) + 1, if E is even;
@) (LE/2) +1) (2B + 2B + 1), if E is odd.

Due to Obrechkoff’s theorem [11, Theorem 1.1], a general-
ization of Descartes’s rule of signs to orthogonal polynomials,
our approach for correcting E errors gives a unique valid
sparse interpolant when K = R, N > 2B+2F and w, > 1 [2,
Corollary 2.4]. Similar to the case of standard power basis, if
N < 2B+ 2F then there can be > 2 valid sparse interpolants
in Chebyshev-1 basis as shown by the following example.

Example 5 Choose w > 1. The polynomials h, f Y and f 2,
given in Example 3, can be represented in Chebyshev-1 basis
using the following formula [17, P. 303], [18, P. 412], [19, Eq.
@1

d
1 d Ti(z) ifj>1
d: 7 - L
Ui = B0 VI (A AR B e
d—j is even
(22)

Moreover, the formula (22) implies that f (1] is a linear combi-
nation of the odd degree Chebyshev-1 polynomials T5;_1(z)
(j=1,2,...,B), and f [l is a linear combination of the even
degree Chebyshev-1 polynomials T»;_o(x) (j = 1,2,..., B),
which means both f[ and f[? have sparsity < B in
Chebyshev-1 basis as well. Therefore, f (1 and f[2 are also
valid interpolants in Chebyshev-1 basis for the 2B + 2F — 1
evaluations given in (14) (if we assume B is an upper bound
on the sparsity of the black-box polynomial f and F is an
upper bound on the number of errors in the evaluations).

Again, we remark that one of the valid interpolants, f (1]
and f[2l, must have sparsity B since otherwise uniqueness
is a consequence of the Obrechkoff’s theorem [11, Theorem
1.1]. In this example, h also has 2B terms in Chebyshev-1
basis because deg(h) = 2B — 1 and h has 2B — 1 real roots
wt>1,4=1,...,2B — 1. Thus both f[1 and f[ have
sparsity B in Chebyshev-1 basis. One can also make h, f !
and f 2 sparse with respect to the Chebyshev-1 basis by the
following substitutions:

x=Tk(y), w=Tk(w) for some k > 1.

For K = C, we usually choose w as a root of unity. But
then we may need 2B(2F + 1) evaluations to get a unique
interpolant. Here is an example from [8, Theorem 3], simply
by changing the power basis to Chebyshev-1 basis.

Example 6 Consider the following two polynomials:
=
filz) =~ > Tojm ()
j=0

t—1
1
fa(z) = — > Tejinz (@),
=0

where m > 2t(2E + 1) — 1 and 2t divides m. Let w be a
primitive m-th root of unity. Let

b=(0,...,0,1,0,...,0) € K*~1,
N—_—— N——

t—1 t—1

The evaluations of f; at % for i = 1,2,...,2t(2E +
1) —1 are

(b, 1,...,b, 1,b) € KHEE+D=1
N———

2F pairs of b, 1

The evaluations of fo at % for i = 1,2,...,2t(2E +
1) —1 are

(b,—1,...,b,—1,b) € KH#CEFD-L,

— ———

2F pairs of b,—1

Suppose we probe the black box for f at % with 7 =
1,2,...,2t(2E +1) — 1 sequentially, and obtain the following
sequence of evaluations:

a= (b, 1,...,b, 1,b,—1,...,b,—1,b) € KHCEFD-1

E pairs of b, 1

E pairs of b,—1

Assume B = t and there are E errors in the sequence
G. Then both f; and f5 are valid interpolants for a. More
specifically, f; is a valid interpolant for @ if the E errors are
Gst,aot.9, . . ., aot.p; fo is a valid interpolant for ¢ if the F
€ITors are CAl2t(E+1)7 &Qt(E+2)7 ey dgt‘gE.

Remark 3 Polynomials in Chebyshev-2, Chebyshev-3 and
Chebyshev-4 bases can be transformed into Laurent polyno-
mials using the formulas given in [3, Sec. 1, (7)-(9)]. There-
fore, our approach to list-interpolate black-box polynomials in
Chebyshev-1 bases also works for black-box polynomials in
Chebyshev-2, Chebyshev-3 and Chebyshev-4 bases.
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APPENDIX

Notation (in alphabetic order):

a; the output of the black box for f at input w’

« a symbol that substitute the single error in a block
of 3B outputs of the black box for f

a1, symbols that substitute the two errors in a block of
4B outputs of the black box for f

B > t, an upper bound on the sparsity of f

b number of solutions to polynomial equation(s) for
hypothetical errors

Jé; = (w + 1/w)/2, evaluation point of Chebyshev-1
polynomials

c;j the coefficient of the j-th term of f

D > |0;], an upper bound on the absolute values of the
degree of f

0 the j-th term degree of f

A a matrix determinant

E an upper bound on the number of errors that is input
to the algorithm

f the black-box polynomial

Vi = (w®+1/w?)/2, inputs of the black box for f if f
is in Chebyshev bases

G, e K(B+DX(B+1) " the Hankel+Toeplitz matrix with
A|p42(i+j)| T Qry2(i—j)| on its (i + 1)-th row and
(7 + 1)-th column

H, e  KB+Ux(B+D " the Hankel matrix with
Qpai—1,0ptiy---,0prri—14p ON its i-th row

K a field of scalars with characteristic # 2

& candidates for the correct value f(w®) if a, is
assumed to be an error

&1.i,&o,; candidates for the pair of correct values f(w‘),
f(w®) if a,, and Gy, are assumed to be errors

Continued on next page




Notation continued (in alphabetic order):

1

0,0

> =

&

Pj

~~

Gi

the error location in the outputs of the black box for

fitE=1
the error locations in the outputs of the black box
for fif E=2

the output list of our list decoding algorithms

the term locator polynomial

the number of the output polynomials of our error-
correcting algorithms

the number of the evaluations by the black box for
f

a non-zero number in K, evaluation base point for
the black-box polynomial f when only one block of
evaluations are needed

oc=1,2,...,0 + 1, non-zero numbers in K, eval-
uation base points for the black box polynomial f
when multiple blocks of evaluations are needed

1 < 7 < t, the roots of the term locator polynomial
A

the actual number of terms of f

= | E/3] if the black-box polynomial f is in power
basis, or = | E'/2] if the black-box polynomial f is
in Chebyshev bases

distinct, algorithm-dependent arguments in K




