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generally more skillful in simulating extremes, such as heavy precipitation, strong
winds, and severe storms.  In addition, research has shown that fine-scale features
such as mountains, coastlines, lakes, irrigation, land use, and urban heat islands can
substantially influence a region’s climate and its response to changing forcings.
Regional climate simulations explicitly simulating convection are now being performed,
providing an opportunity to illuminate new physical behavior that previously was
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represented by parameterizations with large uncertainties.  Regional and global
models are both advancing toward higher resolution, as computational capacity
increases.  However, the resolution and ensemble size necessary to produce a
sufficient statistical sample of these processes in global models has proven too costly
for contemporary supercomputing systems.  Regional climate models are thus
indispensable tools that complement global models for understanding regional climate
variability and change, and are critical for supporting societal responses to changing
climate.
This paper highlights examples of current approaches to and innovative uses of
regional climate modeling that deepen understanding of the climate system.  We
discuss how these approaches allow for hypothesis testing and experimentation that
are not possible with global models.  This deeper understanding also benefits
stakeholders and policymakers who need physically robust, high resolution climate
information to guide decision-making.  Finally, we identify key scientific questions that
will continue to require regional climate models, and emerging opportunities for
addressing those questions.
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Abstract 1 

 2 

Regional climate modeling addresses our need to understand and simulate climatic processes and 3 

phenomena unresolved in global models.  This paper highlights examples of current approaches to and 4 

innovative uses of regional climate modeling that deepen understanding of the climate system.  High 5 

resolution models are generally more skillful in simulating extremes, such as heavy precipitation, strong 6 

winds, and severe storms.  In addition, research has shown that fine-scale features such as mountains, 7 

coastlines, lakes, irrigation, land use, and urban heat islands can substantially influence a region’s 8 

climate and its response to changing forcings. Regional climate simulations explicitly simulating 9 

convection are now being performed, providing an opportunity to illuminate new physical behavior that 10 

previously was represented by parameterizations with large uncertainties.  Regional and global models 11 

are both advancing toward higher resolution, as computational capacity increases.  However, the 12 

resolution and ensemble size necessary to produce a sufficient statistical sample of these processes in 13 

global models has proven too costly for contemporary supercomputing systems.  Regional climate 14 

models are thus indispensable tools that complement global models for understanding physical 15 

processes governing regional climate variability and change.  The deeper understanding of regional 16 

climate processes also benefits stakeholders and policymakers who need physically robust, high 17 

resolution climate information to guide societal responses to changing climate.  Key scientific questions 18 

that will continue to require regional climate models, and opportunities are emerging for addressing 19 

those questions. 20 

 21 

 22 

 23 

 24 
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Capsule 1 

A perspective is given on current achievements and future capabilities in high-resolution 2 

regional climate simulation for understanding regional climate processes and contributing to 3 

climate information needs of stakeholder communities.  4 



4 
 

1.  Introduction  1 

 2 

 Regional climate modeling has been developed to understand processes affecting 3 

climate that are not resolved well by global models, particularly those that may be important 4 

for climate change in regions.  A further motivation has been to provide policymakers and other 5 

stakeholders information about changing climate for their specific regions that is salient, 6 

credible and legitimate (Cash et al. 2003).   High quality simulation of regional processes is vital 7 

for satisfying this need.  The scale of targeted regions is generally subcontinental, such as an 8 

agricultural or water-resource region (i.e., a few tens of kilometers).   9 

 Although global models can (and have) been run at resolutions fine enough to simulate 10 

regional processes, with grid spacings of a few to tens of kilometers, the cost of performing 11 

extensive simulation and experimentation with different assumptions about forcing scenarios 12 

and relevant earth-system processes has been prohibitive.  Knowledge about the scientific 13 

value of high-resolution global modeling is emerging, but it is expected to evolve slowly given 14 

unprecedented data storage and analysis requirements, and lingering issues with model tuning 15 

and validation at unfamiliar scales; intuition for such issues is more easily drawn from regional 16 

benchmarks.    17 

 Beside computational considerations, one can tailor regional models to focus on climatic 18 

processes that are especially germane to a targeted region, such as sea ice in the Arctic or 19 

mesoscale convective systems where they prevail.  Several such climatic processes that are 20 

highly relevant in the context of regional modeling are depicted in Figure 1.  With fine 21 
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resolution, users of regional models can also exploit high spatial-resolution observations to 1 

evaluate and refine the model performance.   2 

 There are several approaches to producing regional climate information.  Obtaining 3 

regional climate from numerical models is often referred to as “dynamical” because the climate 4 

dynamics are explicitly simulated.  Limited-area numerical models derived from forecast models 5 

or developed ab initio have yielded regional climate models (RCMs; Giorgi and Mearns 1991; 6 

Wang et al. 2004; Giorgi 2019), which are the focus of this article. Other numerical-model 7 

approaches have used global climate models (GCMs), either with uniform fine-scale grid 8 

spacing (Zhao and Held 2012; Bacmeister et al. 2014) or with variable resolution that has fine-9 

scale grid spacing over a targeted region (Fox-Rabinovitz et al. 2008; Zarzycki et al. 2014; 10 

Sakaguchi et al. 2015).   Here, fine-scale refers to resolutions of 50-km grid spacing or smaller 11 

as grid spacing of 100-150 km is still common for GCMs used in historical simulations and long-12 

term projections.  Statistical approaches under the general descriptor of empirical statistical 13 

downscaling (ESD) have also provided regional information.  ESD covers a wide range of 14 

methods; Maraun and Widmann (2018) assess these approaches.  Finally, hybrid approaches 15 

combine dynamical and statistical approaches to expand (Mearns et al. 2013), refine (Walton et 16 

al. 2015) or bias-correct (Wood et al. 2004) the output from numerical simulations. 17 

 As computing power has increased, the resolutions used by both global and regional 18 

models have tended to increase, though other simulation goals have also competed for the 19 

increased power, such as producing ensembles of simulations or adding more processes (e.g., 20 

carbon cycle, ecosystems, etc.) to make models more representative of the earth’s climate 21 

system.  For RCMs, the advances in computing power have allowed climate simulations at grid 22 
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spacings of 1-4 km, for which a parameterization of atmospheric deep convection is no longer 1 

used, simulations termed “convection-permitting” [See Prein et al. (2015) and references 2 

therein].  These simulations cross a threshold into direct simulation of a process heretofore 3 

parameterized, and they show advantages over RCM simulations at coarser resolution (e.g., 4 

Yang et al. 2017).  Higher resolution in RCMs permits better representation of key climate 5 

processes and features, as depicted in Figure 2. 6 

 RCM simulation relies on good input data for its boundary conditions, and so it can be 7 

sensitive to GCM biases.  As resolutions for GCMs have increased, they have demonstrated 8 

potential for improving boundary conditions for RCM simulations (Roberts et al. 2018).  The 9 

increase in supercomputer performance over the past 30 years has been approximately 10 

exponential, with performance doubling every 1.2 years (TOP500 2019), facilitating increased 11 

GCM resolution.  However, the cost of global simulation can be substantial as resolution 12 

increases.  Assuming model complexity and vertical resolution are held constant, the growth in 13 

computing performance would correspond to a feasible doubling of horizontal resolution every 14 

3-4 years.  The actual rate has been closer to 8-10 years (e.g., Cubasch et al. 2013), partly 15 

because of the other uses of increased computing power identified above. In fact, since the 16 

fourth IPCC assessment report was published in 2007, the nominal GCM resolution has 17 

remained at ~1 degree, although 0.25 degree simulations are now being conducted as part of 18 

the HighResMIP program (Haarsma et al. 2016).  With this past experience in mind, it is 19 

expected that nominal grid resolution for GCM production simulations will be on the order of 20 

10s of km for at least the next decade.  This resolution places them clearly in the hydrostatic 21 

regime (typically grid spacing greater than 10km).   22 
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   Roberts et al. (2018) discuss the current and future capabilities of global high-resolution 1 

climate simulation, especially in the context of assessing climate risks associated with the 2 

hydrological cycle.  This paper complements Roberts et al. (2018) in highlighting current 3 

capabilities of high-resolution climate modeling for regions by RCMs and pointing a direction 4 

for future development that complements and adds value to high-resolution GCM simulation.  5 

Although there is substantial RCM activity around the world (Giorgi and Gutowski 2015), we 6 

focus here primarily on North America in order to use a succinct set of regional processes for 7 

illustrating the benefits of high-resolution regional simulation of climate. 8 

 9 

2.  Overview of experimental designs and scientific questions addressed  10 

 11 

RCMs have played an important role over the past three decades in advancing regional 12 

climate science for several reasons: (1) their low computational cost, relative to uniform-13 

resolution GCMs; (2) their high level of configurability, which permits selection of physics 14 

options and calibration of model parameters to focus on domains and regional phenomena of 15 

interest and reduce regional climate biases; and (3) the unique experimental designs enabled 16 

through manipulation of lateral boundary conditions. The low computational cost arises simply 17 

because they operate over a limited area of the globe, with areal coverage—and therefore their 18 

computational cost relative to GCMs—typically not exceeding approximately 15% of the global 19 

surface area (e.g., the area of a quadrangle bounding a continent). This efficiency enables long 20 

integrations on university-scale computing clusters, and even desktop computers, worldwide 21 
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(Schaller et al. 2017).  For a fixed level of computational resources, RCMs thus enable higher 1 

model resolution, model complexity, and ensemble size (Fig. 3). 2 

 RCMs typically offer a higher level of atmospheric and land model configurability than 3 

GCMs.  This is partly because RCMs, such as the Weather Research and Forecasting model 4 

(WRF), often offer a wide variety of parameterization choices.  In addition, a regional model’s 5 

flexibility in domain size and location can allow it to target specific regional processes (and 6 

choose appropriate parameterizations as needed).  Further, the regional models’ smaller 7 

domains and the grid nesting they often contain allow substantial flexibility in grid-spacing 8 

choices.  This flexibility has important implications for regional climate-science experiments, as 9 

one can configure RCM experiments from a suite of subgrid parameterizations to ensure that 10 

processes important for regional phenomena are well-represented in a given simulation: e.g., 11 

cloud-radiation-turbulence interactions for coastal clouds (O’Brien et al. 2013; Jousse et al. 12 

2016) and microphysics for mesoscale convective systems (MCSs; Squitieri and Gallus 2016; 13 

Feng et al. 2018).  In addition to WRF’s potential for optimizing parameterization choices for 14 

regional climate, WRF has spawned specialized variants, such as WRF-Chem (Grell et al. 2005), 15 

WRF-Hydro (Gochis et al. 2013), WRF-Parflow (Maxwell et al. 2011) and Polar WRF (Hines and 16 

Bromwich 2008).  17 

 There are three broad classes of experimental design that make RCMs a unique and 18 

invaluable tool for building our understanding of regional climate, which we describe below: 19 

lateral boundary condition modification experiments, dynamical downscaling experiments, and 20 

pseudo-global-warming experiments.  21 

 22 
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 Lateral boundary condition modification 1 

 2 

 Regional climate models require prescribed lateral boundary conditions (LBCs). The LBCs 3 

are a controllable constraint on the simulation, providing an opportunity for unique 4 

experimental designs.  Regional models are thus well-suited for performing hypothesis-driven, 5 

mechanistic experiments to understand how transient wave activity propagating from one 6 

region can influence downstream atmospheric phenomena and climate.  For example, 7 

experiments in which the mid-latitude storm track was seeded by high-frequency atmospheric 8 

waves through the LBCs have demonstrated relationships between wave-breaking and the 9 

North Pacific storm track (Orlanski 2005) and the North Atlantic Oscillation (Riviere and Orlanski 10 

2007).  This approach has also unraveled the causality between Atlantic tropical cyclones (TC) 11 

and their typical precursor, African easterly waves (AEWs), on seasonal timescales.  By 12 

designing a regional domain that included the TC genesis region and excluded the AEW genesis 13 

region, and applying a 2-10 day filter to the LBCs to remove any AEWs, Patricola et al. (2018) 14 

demonstrated that seasonal Atlantic TC number is not limited by AEWs. 15 

 Although LBCs provide opportunities for mechanistic experiments, they can pose a 16 

hindrance for addressing some types of scientific questions.  The tropical-channel model is 17 

another configuration option, which uses periodic zonal LBCs, prescribed meridional LBCs, and a 18 

domain covering at least the entire tropical band.  It is therefore well-suited for understanding 19 

teleconnections between ocean variability and the weather and climate within the tropics, as 20 

the model design allows the atmospheric response to ocean forcing to propagate throughout 21 

the tropics uninhibited by zonal lateral boundary constraints.  The tropical-channel 22 
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configuration of the WRF model has been used to understand MJO initiation (Pallav et al. 2010) 1 

and the influence of the spatial patterns and magnitude of El Niño events on TC activity 2 

(Patricola et al. 2016).  It is unique in demonstrating skill at representing interannual TC 3 

variability across Northern Hemisphere basins and the MJO (Fu et al. 2019).  4 

 5 

Dynamical Downscaling  6 

 7 

Most uses of RCMs can be classified as dynamical downscaling.  However, here we refer 8 

to “dynamical downscaling experiments” as experiments whose primary purpose is to produce 9 

high-resolution climate information from low-resolution boundary conditions. A large body of 10 

literature exists describing individual and coordinated (multi-model) downscaling experiments, 11 

such as the Coordinated Regional Downscaling Experiment (CORDEX; Giorgi and Gutowski 2015 12 

and references therein).  There are two main applications of dynamical downscaling: 13 

downscaling of output from atmospheric reanalyses, and downscaling of output from GCM 14 

simulations.  With reanalysis-driven RCM simulations, synoptic state information from the LBCs, 15 

and possibly from scale-selective “spectral nudging” over the simulation domain (e.g., 16 

Kanamaru and Kanamitsu 2007a), drives the RCM such that its time-evolving synoptic state 17 

approximates the observed synoptic state.  There is good evidence that this approach 18 

effectively allows an RCM simulation to be used like a regional reanalysis, achieving higher 19 

resolution than would otherwise be practical via global reanalysis (Kanamaru and Kanamitsu 20 

2007b).  For example, a 27 km WRF simulation with lateral boundary conditions prescribed 21 

from 2.5° reanalysis can reproduce the characteristics of atmospheric rivers compared with a 22 
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reanalysis at ~0.5° resolution (Patricola et al. 2019); see Figure 4 and the associated animation 1 

in Electronic Supplement 1.  Reanalysis-driven RCM simulations are also commonly used in 2 

configuring and assessing a model with respect to the mean climate and phenomena-of-3 

interest in a region (e.g., Booth et al. 2018).  4 

Reanalysis-driven simulations, often referred to as hindcasts, are often a preparatory 5 

step for GCM-driven experiments (Fig. 5). These experiments typically involve boundary 6 

conditions from GCM simulations of both historical climate and climate projections based on 7 

scenarios of future climate forcings.  The former serves as a method for re-validating the RCM 8 

simulation and as a baseline for future climate simulations.   Evaluating the performance of the 9 

historical GCM-driven RCM simulations is also important for assessing large-scale biases that 10 

the RCM may inherit from the driving GCM that can compromise results from accompanying 11 

climate-change simulations.  The biases could include, for example, incorrect midlatitude jet-12 

stream position or sea-surface temperature (Giorgi and Gutowski, 2015).  The GCM-driven RCM 13 

simulations of future climate are then examined relative to their historical counterparts to 14 

understand how regional climate, and associated regional phenomena, might change with 15 

future climate forcing.   16 

The historical GCM-driven simulations also allow assessing the added value from 17 

improved resolution of a region’s climate processes that the RCM simulation contributes to the 18 

GCM output (Di Luca et al. 2016; Rummukainen 2016).  For example, Bukovsky et al. (2017) 19 

noted that an ensemble of RCM simulations at 50 km grid spacing over North America 20 

produced improved baseline simulations and projected more consistent future summer drying 21 

in the central U.S. than their GCM counterparts. The drying was traced to mechanistically 22 
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credible processes involving strengthening of the North American monsoon high, an earlier 1 

springtime poleward shift of the upper-level jet, strengthening of the Great Plains low-level jet 2 

converging moisture poleward, and land-atmosphere interactions that amplify the drying 3 

initially set up by the large-scale and mesoscale circulation changes.  4 

 5 

Pseudo-global warming  6 

 7 

 An alternate approach to direct dynamical downscaling of GCMs is pseudo-global 8 

warming (PGW; Schär et al. 1996; Kimura and Kitoh 2007). The PGW approach utilizes 9 

reanalysis-driven RCM simulations as a baseline.  Future climates are represented by modifying 10 

greenhouse gas concentrations, aerosols, and/or landcover in the regional model and using 11 

initial, surface and lateral boundary conditions from reanalysis, with adjustments to add a mean 12 

climate-change signal estimated from one or more GCMs.  The synoptic and interannual 13 

variability from the present climate is maintained in these experiments.  In addition, this 14 

treatment of surface and lateral boundary conditions attempts to mitigate any GCM biases 15 

(e.g., Richter 2015; Zuidema et al. 2016) that would be prescribed in the direct downscaling 16 

method and that can substantially degrade the quality of simulated extreme events such as 17 

tropical cyclones (e.g., Hsu et al. 2018).   18 

The PGW approach can be applied for both continuous, decades-long simulations and 19 

event-scale experiments.  It is particularly useful for addressing how climate change could 20 

influence the magnitude of specific historical events, conditional on the occurrence of similar 21 

synoptic or seasonal-interannual conditions in different climate scenarios.  However, the 22 
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approach is unable to inform changes in the frequency of events.  An additional limitation of 1 

the approach is that it does not consider changes in transient eddy activity that may occur, for 2 

example, with changes in the mid-latitude storm track.  Nonetheless, the configurability 3 

provided by regional models is advantageous for producing simulations of historical events 4 

under conditions altered by climate change.  The PGW approach has been used to quantify the 5 

influence of climate change (from pre-industrial to present to future) on extreme synoptic 6 

events, including floods (Pall et al. 2017), extreme precipitation and convective storms (Prein et 7 

al. 2017a,b), and tropical cyclones (Patricola and Wehner 2018; Wehner et al. 2019), as well as 8 

multi-year drought (Ullrich et al. 2018). 9 

 10 

3.  Highlights of accomplishments to date  11 

 12 

The fine-scale simulation provided by RCMs has allowed them to support the goal of 13 

advancing understanding of regional processes and their role in regional climate and climate-14 

change impacts.  This success derives from their ability to resolve fine-scale atmospheric 15 

phenomena and fine-scale heterogeneity of surface properties, adding value not only by 16 

producing more spatial detail, but, more important, improving the overall simulation quality 17 

and enabling investigation of the role of fine-scale atmospheric phenomena and fine-scale 18 

surface heterogeneity in regional climate variability and change. 19 

 20 
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Fine-scale atmospheric phenomena 1 

 2 

RCMs provide significant capabilities in resolving fine-scale atmospheric phenomena 3 

that are too computationally expensive to resolve in GCMs. Especially important examples of 4 

fine-scale atmospheric phenomena are different types of convection ranging from isolated and 5 

organized mesoscale convection to severe convective storms and hurricanes. Cumulus 6 

parameterizations have been a major source of uncertainty in climate modeling, with 7 

consequential impacts on many aspects of climate simulations through their direct influence on 8 

clouds, precipitation, and water vapor, and their indirect effects on radiation and atmospheric 9 

circulation.    10 

Mesoscale convective systems (MCSs), for example, contribute over 50% of warm 11 

season precipitation in the central and midwestern U.S. Failing to simulate MCSs, most GCMs 12 

exhibit dry and warm biases in those regions, accompanied by errors in the precipitation diurnal 13 

cycle and intensity (Lin et al. 2018; van Weverberg et al. 2018). In contrast, convection-14 

permitting RCMs with grid spacing of a few kilometers are able to simulate MCS behavior, 15 

allowing investigations of how large-scale environments and convection-circulation interactions 16 

may influence MCS characteristics such as lifetime and propagation (Yang et al. 2017; Feng et 17 

al. 2018), as in Figure 6 (animated in Electronic Supplement 2).  By tracking and compositing 18 

MCSs that are explicitly simulated by a climate model, one can evaluate changes in storm 19 

characteristics to advance scientific understanding and provide important user-relevant 20 

information. Consistent with the observed changes in MCSs (Feng et al. 2016), MCSs in future 21 

warming scenarios produce a 15-40% increase in maximum precipitation rates that also spread 22 
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over larger rain areas (Prein et al. 2017a). Furthermore, as warming increases both the 1 

convective available potential energy (CAPE) and convective inhibition (CIN), convection-2 

permitting RCM simulations project a shift of convective storms from weak-to-moderate 3 

convection to more frequent intense convection (Rasmussen et al. 2017). Global warming may 4 

also influence the characteristics of hazardous convective weather (HCW) such as hail, tornado, 5 

lightning, and strong winds. While resolving these processes requires modeling at sub-kilometer 6 

grid spacing, a model proxy based on the simulated updraft helicity and radar reflectivity factor 7 

has been used to study tornado characteristics in convection permitting simulations (e.g., 8 

Hoogewind et al. 2017). Future projections of hazardous convective weather may also be 9 

diagnosed from predictors such as wind shear, CAPE, freezing level height, and storm relative 10 

helicity for hail (Prein and Holland 2018) and microphysical processes for lightning (Wilkinson 11 

2016) in high-resolution simulations. 12 

While decadal convection-permitting simulations can provide more robust statistics of 13 

signal-to-noise for analysis of climate response, their computational cost has limited their use 14 

to a relatively small number of studies (e.g., Rasmussen et al. 2011; Kendon et al. 2014; Prein et 15 

al. 2017a,b; Hoogewind et al. 2017).  An alternative to continuous dynamical downscaling is to 16 

composite severe storms in short initialized simulations of specific storm events. This approach 17 

has been used to study storms in the present climate (e.g., Trapp et al. 2011; Robinson et al. 18 

2013) and their future changes (e.g., Mahoney et al. 2013). Focusing on hailstorms in the Rocky 19 

Mountains, Mahoney et al. (2013) found that future warming may increase the height of the 20 

melting level, leading to a reduction in hail reaching the surface during the warm season. 21 

Patricola and Wehner (2018) used a PGW approach to evaluate anthropogenic influence on 22 
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major tropical cyclones. Comparing an ensemble of short RCM convection-permitting 1 

simulations of 15 major tropical cyclones in the historical record with and without 2 

anthropogenic forcing, they found that in 11 of the tropical cyclones simulated, future 3 

anthropogenic warming would robustly increase the storms’ wind speed and rainfall.  4 

Convection-permitting resolution was necessary to reproduce the observed Category 5 5 

intensity of Hurricane Katrina (Figure 2d of Patricola and Wehner 2018), and it captures finer-6 

scale storm characteristics compared with 9km and 27km grid spacing; see Figure 7 and the 7 

associated animation in Electronic Supplement 3.      8 

 9 

Fine-scale heterogeneity of surface properties 10 

 11 

Fine-scale heterogeneity in surface properties is another key source of spatial variability 12 

in weather and climate unresolved by GCMs.  Elevation fluctuations in regions of complex 13 

topography are one important source of this fine-scale heterogeneity. Regional models have 14 

demonstrated added value over GCMs in resolving the significant spatial variations in 15 

temperature, circulation, and precipitation in such regions. 16 

Complex topography produces variations in temperature simply because of lapse rate 17 

effects, and when regional models such as WRF are driven by reanalysis, they reproduce these 18 

variations with a reasonable degree of realism (e.g., García‐Díez et al. 2013, Walton et al. 2017). 19 

In addition, topography produces temperature anomalies due to the nighttime pooling of cool, 20 

dense air masses in valleys and other depressions. Reanalysis-driven regional models, with 21 

appropriate boundary-layer modeling, can simulate the phenomenon realistically (Zängl 2005, 22 
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Pagès et al. 2017). In climate change experiments using regional models, resolution of the 1 

snowline in areas of complex topography produces credible localized intensification of warming 2 

due to snow albedo feedback. This phenomenon has been demonstrated in many regions, 3 

including the U.S. Rocky Mountains (Letcher and Minder 2015; Minder et al. 2016), the U.S. 4 

Pacific Northwest (Leung et al. 2004; Salathé et al. 2008), California’s Sierra Nevada (Walton et 5 

al. 2017), the Canadian Rockies (Pollock and Bush 2013), and the European Alps (Winter et al. 6 

2017). In contrast, global models often put the snow-albedo-feedback warming in the wrong 7 

place because of a poorly resolved and often displaced snowline (Walton et al. 2017). This 8 

affirms the need for regional modeling techniques to produce credible warming projections in 9 

regions of complex topography. 10 

Regional models can also resolve the intricate circulation patterns prevalent in areas of 11 

complex topography. For example, a reanalysis-driven regional model simulated the influence 12 

of coastal mountains and capes on the spatial structure of near-shore winds crucial for 13 

upwelling (Boé et al. 2011; Renault et al. 2016; Patricola and Chang 2017) and coastal 14 

circulation (Steele et al. 2015). Hughes and Hall (2010) demonstrated that a regional modeling 15 

framework is necessary to produce the critical offshore wintertime flow pattern known as the 16 

Santa Ana winds in Southern California that is due to topographic pooling of desert air masses 17 

and downslope channeling of the winds through mountain passes to the coast. Mountain-valley 18 

circulations, characterized by thermally-driven upslope flow during the day and downslope flow 19 

at night, are also very realistically simulated by regional models (e.g. Jin et al. 2016; Junquas et 20 

al. 2018) 21 
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Topographically-induced variations in both temperature and circulation lead to a variety 1 

of climatologically-important effects, such as orographic uplift yielding precipitation, rain 2 

shadows, and barrier jets. The skill of regional models in simulating these signals has been 3 

recognized for more than two decades through studies on multiple continents (e.g. Marinucci 4 

et al. 1995; Leung and Qian 2003, 2009; Insel et al. 2010; Cardoso et al. 2013). Improving the 5 

representation of orographic forcing also improves simulations of extreme precipitation in 6 

mountains, such as that induced by atmospheric rivers (e.g., Leung and Qian 2009; Chen et al. 7 

2018).  In fact, in mountainous regions, well-configured regional models may produce better 8 

estimates of total annual rain and snow than current observational estimates (Lundquist et al., 9 

2019) and improve understanding of processes driving surface hydrologic extremes associated 10 

with landfalling atmospheric rivers in mountainous areas (Chen et al. 2019).   11 

Regional models are also capable of simulating more subtle orographic precipitation 12 

effects, such as the blocked flows that develop parallel to mountain chains on the windward 13 

side in low Froude number flow configurations. Such blocked flows produce more gradual 14 

forced ascent in advance of the topographic barrier. The corresponding reduction in 15 

precipitation gradients normally associated with orography on the windward side has been 16 

successfully simulated for California (Hughes et al. 2009) and the Andes (Viale et al. 2013). On 17 

the lee side, where rain shadows are found, regional models have also demonstrated the 18 

inverse relationship between the static stability of the large-scale flow and rain shadow 19 

intensity (Lorente-Plazas et al. 2018). Finally, regional models have been used to illustrate the 20 

interannual mesoscale precipitation signals that result when ENSO cycles drive systematic 21 
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changes in the orientation of moist flows. This shifts the mountainsides driving orographic uplift 1 

(Leung et al. 2003).  2 

Variations in surface properties themselves (apart from elevation) also produce spatial 3 

variability in weather and climate variables. These variations include transitions from open 4 

water to land along complex coastlines and around lakes, and variations in land cover and land 5 

use. Thus, regional models can simulate land-sea breezes and lake breezes with a high degree 6 

of realism, along with the localized suppression of the land-water temperature gradient in the 7 

coastal zone that results (Hughes et al. 2007, Vishnu and Francis 2014). Regional models also 8 

provide much more realistic distributions of “lake effect” precipitation through resolution of 9 

local coastlines and topography than is possible with global models (e.g. Wright et al. 2013). 10 

Finally, when given urban-rural land-use differences, regional models can simulate urban heat 11 

island impacts on local energy flows and atmospheric circulation (Sharma et al. 2017; Hai et al. 12 

2018).   These capabilities underscore the relevance of regional modeling techniques for 13 

credible climate change projections in regions where surface properties vary significantly. 14 

 15 

4. Future promise and directions 16 

 17 

Continued advances in computing and algorithms for regional climate modeling have 18 

the potential to greatly advance understanding of key processes and features in the Earth 19 

system.  Upcoming major changes in GPU-enabled supercomputing capacity have the potential 20 

to be transformative for cloud-resolving simulations (Fuhrer et al. 2018).  However, new 21 

hardware architectures do require a substantial rethinking of traditional model design, with 22 



20 
 

more computation needed per memory access or parallel exchange (e.g., a convection 1 

superparameterization applied on one compute node per grid point).  Similarly, machine-2 

learning emulation of turbulent physics (Brenowitz and Bretherton 2018; O’Gorman and Dwyer 3 

2018) could be transformative, especially if it can be made robust and stable (Rasp et al. 2018). 4 

Further, by pursuing traditional strategies like limiting the geographic extent of the high-5 

resolution region, computational resources can be better leveraged to enhance model 6 

complexity, local resolution, simulation length and ensemble size.  Growth in conventional 7 

computing power has already enabled several promising approaches for modeling at regional 8 

scales, including further development of regional convection-permitting and finer scale 9 

modeling, use of unstructured meshes, and regional integrated assessment modeling.  In this 10 

section, we focus on the value of these approaches, while also noting briefly several other 11 

promising pathways for modeling at regional scales, all of which could enable the development 12 

of more valuable models for scientific discovery. 13 

 14 

Regional climate modeling at convection-permitting and smaller scales 15 

 16 

As discussed above, MCSs are an important part of the water cycle, and improving their 17 

representation in models has implications for many stakeholders. Simulations at resolutions of 18 

1-4 km, far from the scale employed by GCMs for decadal simulations, can unlock some of the 19 

critical questions posed by MCS research.   For example, how do cloud microphysical processes, 20 

surface fluxes, and convection-circulation interactions influence MCS properties and lifecycle? 21 

How do MCS precipitation impact the surface water balance, surface temperature, and runoff? 22 
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Even at convection-permitting resolutions, convective updraft characteristics can be artificially 1 

constrained as a result of insufficient resolution to resolve entrainment effects from turbulent 2 

motions (Lebo and Morrison 2015).       There also remains a reliance on parameterization of 3 

sub-kilometer turbulent mixing, which requires even finer scales to resolve well (~5-100 m). 4 

Such scales of turbulence matter.  They are key, for example, to recent understanding of 5 

vegetation-induced drying in the Amazon (Kooperman et al. 2018; Langenbrunner et al. 2019), 6 

in which ecophysiological responses to CO2 force the PBL through repartitioning of sensible and 7 

latent heat fluxes.  Likewise, near-surface eddies on sub-kilometer scales sustain stratocumulus 8 

dynamics (Wood 2012), including turbulence-induced transitions between various forms of low-9 

level cloud organization that impact their mean optical properties. 10 

Parameterizations of processes at the smallest scales, such as cloud microphysics, also 11 

strongly impact the structure and lifetime of MCSs (Feng et al. 2018), but these sensitivities can 12 

be small relative to natural variability (Elliott et al. 2016), necessitating multi-year simulations. 13 

Investigation across all relevant scales, in the context of natural variability, thus presents a 14 

computational challenge that regional modeling can approach through technical advances (GPU 15 

computing and machine learning), creative solutions for complexity trade-offs (embedded 16 

cloud-resolving models and variable-resolution), and explicit Large-Eddy Simulation models. 17 

 18 

Unstructured meshes for targeted studies in RCMs  19 

 20 

Downscaling via RCMs can build on efforts in the global modeling community to use 21 

unstructured grids (Abiodun et al., 2008; Tomita 2008; Walko and Avissar 2011; Zarzycki et al. 22 
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2014; Skamarock et al. 2018).  One way this has been implemented is via a GCM with relaxation 1 

of the far-field atmospheric state to a specified driver, such as a reanalysis (Kooperman et al. 2 

2012; Tang et al. 2019).  The strong advantage of unstructured grids within RCMs is that the 3 

transition between typical RCM resolutions (10 – 50 km) to much finer resolution in targeted 4 

regions is seamless in terms of model column physics, though it does require careful 5 

consideration of parametrizations’ resolution dependency, such as for cloud and convection 6 

processes.   7 

RCMs with an unstructured grid can attain much finer resolution in targeted regions to 8 

resolve coupling of land-atmosphere or ocean-atmosphere process where surface and 9 

atmosphere features vary on scales of kilometers.  For example, studies have demonstrated the 10 

importance of subsurface processes such as groundwater table dynamics in regulating land-11 

atmosphere interactions (e.g., Gutowski et al. 2002, Maxwell and Kollet 2008). Fine-scale 12 

heterogeneity in surface fluxes induced by fine-scale heterogeneity in topographically 13 

modulated subsurface processes may influence atmospheric boundary-layer processes and 14 

cloud formation (Rihani et al. 2015).  Such tight coupling at extremely high resolution, 15 

becoming achievable in regional models, has opened the door for modeling fine-scale effects of 16 

irrigation and water management, and their feedback to local and regional atmospheric and 17 

water cycle processes. 18 

 19 

Regional integrated human-Earth System modeling 20 

 21 
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There has been extensive growth in the development of integrated human-Earth System 1 

models (IHESMS), which incorporate representations of both the physical system and multi-2 

sector dynamics, and scenarios of future emissions and land-use changes (O’Neill et al. 2017). 3 

These developments have included increased regional resolution, increased process detail, and 4 

increased coupling with  detailed subsystem models, such as models of marine and terrestrial 5 

ecosystems or water resources management      (Monier et al., 2018; Weyant 2017). 6 

Nonetheless, many outstanding research questions remain that can be addressed by this new 7 

generation of models (Calvin and Bond-Lamberty 2018). 8 

 The push toward a higher resolution representation of atmospheric, oceanic and land 9 

processes in RCMs opens a pathway for parallel and concerted effort in the IHESM community 10 

for two major reasons. First, changes in climate are local as are many human-system processes. 11 

To adequately capture human responses to those changes, higher resolution IAMs are needed. 12 

For example, changes in water availability may vary from one grid cell to the next (Hanasaki et 13 

al. 2013). Without sufficient regional resolution, those changes may be averaged away, 14 

obscuring their implications for energy and land use (Hejazi et al. 2015; Cui et al. 2018).  15 

Second, the local and regional climate is strongly influenced by land management practices that 16 

impact land characteristics like albedo, surface roughness and soil moisture. For example, 17 

irrigation practices (Lobell and Bonfils 2008; Qian et al. 2013) and land-use change (Brovkin et 18 

al. 2013; Hallgren et al. 2013) can influence land-atmosphere fluxes, impacting local and 19 

regional temperature and precipitation patterns.  For these reasons, a coordinated effort 20 

between the regional climate modeling and the integrated assessment modeling communities 21 
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can explore regional and local implications of coupling between human decisions, climate 1 

evolution and impacts.  2 

 3 

Further opportunities for regional modeling 4 

 5 

 In addition to the opportunities for RCMs discussed above, there are several further 6 

important pathways for advancing RCM applications; we describe some briefly here. 7 

 8 

a) Better simulation of fine-scale processes and their interactions:  There are extensive, ongoing 9 

efforts to build comprehensive, fully coupled regional models that contain not only 10 

atmosphere, land and ocean models, but fully integrated ocean surface, hydrology and 11 

ecosystem models with sophisticated physics, chemistry and biology.  For example, coupling 12 

regional models of atmosphere, land, ocean, and waves (e.g., Chen and Curcic 2016) may 13 

improve their representation of tropical-storm climatology by accounting for the impacts of 14 

hurricane winds on the cold wakes that modulate the surface enthalpy flux, a major energy 15 

source for hurricane intensification.  Adding wave models to an atmosphere-ocean RCM (e.g., 16 

Warner et al. 2010) is also important for improving the modulation of surface winds by ocean 17 

waves and for assessing hurricane-induced storm surges.  Shallow-water polar ocean eddies, 18 

sea ice deformation, and dust lofting over the Sahara, all critical to broader climate, are areas 19 

that would benefit from reduced assumptions of how scale interactions in the momentum 20 

budget occur in the planetary boundary layer. Such issues are currently slave to unrealistic 21 
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assumptions of eddy isotropy in both GCMs and RCMs and an ideal focus of RCM process study 1 

to improve modeling of coupled processes at regional scale. 2 

 3 

b) Addressing questions of uncertainty:  Climate models hold great promise to inform decisions 4 

and increase our understanding of fundamental processes but also have known or unknown 5 

errors and biases from various sources such as uncertain parameters, structure, initial and 6 

lateral boundary conditions (e.g. Qian et al. 2016, 2018). RCMs offer a promising framework for 7 

identifying and quantifying these errors and their sources, ultimately improving both RCMs and 8 

GCMs (e.g. Yang et al. 2012).  For example, Xu et al. (2019) used RCMs with observation-based 9 

boundary conditions and a wide range of GCMs to separate regional-scale errors from large-10 

scale errors, quantify how the large-scale errors propagated to regional scales, and map 11 

regional errors back to their upstream drivers.  One can also conduct climatic parameter-12 

sensitivity tests at process level (e.g. different cloud regimes) and develop new 13 

parameterizations of local-to-regional scale phenomena at the native scales of those 14 

phenomena (Yan et al. 2014).  Further, climate measurements and observations at local scales 15 

and the process level can be more appropriately utilized for model validation and calibration. 16 

 17 

c) Sub-seasonal to seasonal (S2S) forecasting: Credible forecasts on S2S timescales are of 18 

growing value to a wide range of stakeholders.  In regions where global S2S forecasting systems 19 

are skillful at capturing large-scale teleconnection modes (e.g., the NCEP coupled forecast 20 

system model version 2: CFSv2), dynamical downscaling, especially at convective-permitting 21 

resolutions, may improve forecasts.   Efforts such as the MultiRCM Ensemble Downscaling 22 
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(MRED) project demonstrated that RCMs are highly relevant to forecasting on these 1 

timescales.  Advances in modeling at convection-permitting scales can provide an improved 2 

representation of storm-scale structures and have the potential to substantially improve      S2S 3 

forecasts, which have historically performed on par or worse than climatology (Castro et al., 4 

2016).  Further, ongoing RCM-centric efforts to evaluate and compare modeling approaches, 5 

develop scale-aware physical parameterizations, and simulate at non-hydrostatic scales will be 6 

essential in improving forecast quality (Leung and Gao, 2016). 7 

 8 

d) Ensembles and climate variability:  The relatively low computational cost of regional models 9 

enables development of large ensembles at resolutions capable of capturing fine-scale 10 

processes (e.g., Mearns et al. 2017) and their role in internal climate variability (Nikiéma et al. 11 

2018 and references therein).  Given that the challenges and costs associated with convection-12 

permitting models are still high, ensembles of regional simulations at moderately high 13 

resolutions (~10 km) will remain relevant and useful in the future.  At these scales, models have 14 

demonstrable value over coarser resolutions in, e.g., complex terrain (Torma et al. 2015); can 15 

perform equally as well as convection permitting simulations where convection is not forced by 16 

the boundary layer; and may project similar futures in precipitation regimes where changes are 17 

primarily forced by the large-scale (e.g., Fosser et al. 2017).   18 

 Assessing internal variability in RCMs requires acceptable LBCs and sea-surface 19 

temperatures that are broadly sampled from large-scale, low-frequency drivers (e.g. PDO, 20 

AMO) that future high-resolution GCM simulations are expected to provide (Roberts et al. 21 

2018).  In addition, an increasing number of single-GCM large ensembles now allow RCM 22 
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ensembles to address the uncertainty that results from natural variability (e.g. von Trentini et 1 

al. 2019).  Multiple realizations are also relevant for studying extreme events, which are rare by 2 

definition. 3 

 4 

5.  Concluding Remarks 5 

 6 

  Regional and global climate modeling have been simultaneously advancing toward 7 

higher resolution along complementary paths.   These advancements have provided — and will 8 

continue to provide — a deeper understanding of the processes that govern climate and its 9 

change in a region.  The ability of higher resolution GCMs to provide improved representation 10 

of processes, such as storm tracks, that feed into boundary conditions for RCMs, allows better 11 

simulation by the RCMs of targeted regions (Roberts et al. 2018).   Together, the two 12 

approaches can cross thresholds in simulating climate for regions, opening the door to 13 

potentially transformative advances such as convection-permitting regional modeling.   The 14 

opportunities provided by the complementary development of both modeling approaches 15 

argues for developing seamless models, as occurring at the Hadley Centre (Lewis et al. 2018; 16 

Williams et al. 2018) and developing at NCAR (Singletrack 2019).  Such efforts would support 17 

the development of modeling tools that can be tailored for targeted problems, e.g., high-18 

resolution GCMs for studying storm-tracks, in conjunction with finer-resolution RCMs for 19 
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climatological study of mesoscale convective systems with cloud-permitting dynamics and local 1 

coupling of land-atmosphere hydrologic processes. 2 

 The configurability of RCMs allows for a wide range of studies that help disentangle the 3 

local climatic response to global versus regional processes.  By better resolving land surface 4 

heterogeneity stemming from complex topography, land use and coastlines, regional models 5 

capture critical phenomena such as orographically-influenced variations in precipitation, wind, 6 

and surface energy balance, as well as details of other regional phenomena such as irrigation, 7 

atmospheric aerosols and urban heat islands.  Regional models are thus indispensable tools for 8 

understanding drivers of regional climate variability and change in complex terrain, including 9 

hydrologic response; they can demonstrate when and where regional climate response to fine-10 

scale forcing is significant.  11 

 Finally, regional models can show substantial skill in simulating extreme events such as 12 

heavy precipitation, tropical storms and strong winds, including their spatial and temporal 13 

variability, by virtue of their ability to represent regional atmospheric behavior, such as 14 

atmospheric circulation, orographic uplift, atmospheric instability, vertical and horizontal 15 

gradients, etc.  Extreme events, in particular, have substantial societal impact.  Insights gained 16 

from regional modeling can and will continue to provide stakeholders important information 17 

about changing climate in their regions of interest that satisfies the need for information that is 18 

salient, credible and legitimate. 19 

 20 

 21 

  22 
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Figures 1 

 2 

 3 

Figure 1:  Key features of the climate system where fine-scale regional climate modeling will likely be 4 

important for advancing our understanding.   5 

  6 

  7 
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 1 

 2 

Figure 2:  The horizontal grid spacing employed in regional and global atmospheric models and the 3 

approximate horizontal grid spacing required to capture key atmospheric features.  Regional climate 4 

modeling has the greatest potential to improve our understanding of processes where grid spacing less 5 

than 50km resolution is needed. 6 

  7 

  8 

  9 
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 1 

Figure 3:  A depiction of the allowed state space for modeling experiments given a prescribed limit on 2 

computational resources.  Reducing the domain extent allow for more options for model resolution, 3 

ensemble size and model complexity. 4 

 5 

  6 
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 1 

Figure 4:  An atmospheric river as shown by precipitable water (shaded; mm) at 12z 17 January 2 
2017 from (top) the NCEP CFSRv2 (Saha et al. 2014) and (bottom) a 27km resolution WRF 3 
simulation (Patricola et al. 2019).  Lateral boundary conditions for the WRF simulation were 4 
prescribed from the 6-hourly 2.5° x 2.5° NCEP-II reanalysis.  (See Supplemental Material for an 5 
animation of this event.)  6 
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 1 

 2 

Figure 5:  Relationships among common RCM experimental designs and their associated scientific 3 

questions. 4 

  5 
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 1 

Figure 6a:  An MCS and its large-scale environment at ~0400 UTC on April 15, 2011 from 2 

observations (upper left) and three MPAS simulations at grid spacing of 4km (upper right), 12 3 

km (lower left) and 25 km (lower right) in a regionally refined domain over the U.S. The MCS is 4 

depicted by its cloud shield (red shading, defined as a contiguous area with brightness 5 

temperature < 241K; Feng et al. 2018) and precipitation (color shading varying from yellow to 6 

dark blue). The MCS large-scale environment is indicated by the 500 hPa geopotential height 7 

(black contours) and 900 hPa wind vectors (vectors with color shading). At 4 km grid spacing, 8 

The MCS developed under the strong baroclinic forcing of a frontal system. MPAS produced the 9 

most realistic simulation compared to observations. (See Supplemental Material for an 10 

animation of this event.) 11 
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 1 

Figure 6b:  Same as Figure 6a, but for an MCS and its large-scale environment at ~1800 UTC on 2 

August 1, 2011. The MCS developed under weak forcing associated with mid-tropospheric 3 

shortwaves on the poleward fringes of a high-pressure system over the central United States. 4 

Only the simulation at 4 km grid spacing captured the MCS, despite being weaker than 5 

observed.   (See Supplemental Material for an animation of this event.)  6 
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 1 

Figure 7:  Hurricane Katrina as shown by outgoing longwave radiation (shaded; W-m-2) at 16z 28 2 

August, 2005 from hindcasts simulated with WRF at (a) 3km resolution, (b) 9km resolution 3 

without cumulus parameterization, (c) 9km resolution with cumulus parameterization, and (d) 4 

27km resolution (Patricola and Wehner 2018).  (See Supplemental Material for an animation of 5 

this event.) 6 

 7 
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Responses to reviewer comments for BAMS-D-19-0113 
 
Reviewer #1: Review of "The ongoing need for high-resolution regional climate models: 
Process understanding and stakeholder information" by Gutowski et al. 
 
This manuscript provides a timely overview of regional climate modeling offering a brief history 
of regional climate modeling, examples of scientific experiments and questions addressed with 
regional climate models, examples of noteworthy regional climate modeling results and a 
perspective on future directions for regional climate modeling. The manuscript is well written 
and I offer only a few minor comments below. This manuscript should be accepted for 
publication in the Bulletin of the American Meteorological Society with minor revisions. 
 
Minor comments 
p4, l16: Reference to Figure 1 here should be to Figure 2 instead or the order of figures 1 and 2 
should be reversed. 
 
Response: We have revised the ordering of Figures 1-7. 
 
p5, l5: It may be useful to explain why 50 km is considered fine resolution (i.e. this is finer 
resolution than is commonly used in global climate models). 
 
Response: Indeed, we define fine resolution as 50 km grid spacing or smaller simply because 
GCMs that are used in historical simulations and future projections (e.g., CMIP6 DECK) still 
have grid spacing of 100-150 km. We have expanded the sentence to include this explanation. 
 
p8, l10: It isn't clear to me why Fig 4 is referenced here. 
 
Response: We had a glitch in the ordering of Figures 1-4.  The numbering and ordering has 
been revised such that they are consistent both with what is being referenced and such that 
they are numbered consistently with the order in which they are referenced 
 
p23, l7: Layers should be conditions. 
 
Response: Changed. 
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Reviewer #2: This article discusses the necessity of running regional climate models in order to 
better understand regional processes and phenomena and to produce climate information 
for climate service activities. 
 
To be honest, at first glance this article appears to be mostly aimed at U.S. program managers, 
but regardless of its intended purpose, I think it is a very useful document for the broad 
climate modeling and impact community. In particular, the specific focus on regional processes 
and phenomena makes it somewhat different from other, more general review papers. The 
article is very clearly written and I do not think it needs major work to attain publication quality, 
but there are a few issues that I would like to point out, which the authors may want to consider. 
 
Response: We thank the reviewer for this critical feedback.  In order to make the point that 
RCMs continue to be invaluable experimental tools, while also being cognizant of submitting a 
manuscript of appropriate scope and scale for BAMS, we intentionally focused on using 
phenomena in the continental U.S. for illustrative examples. We are glad to hear that the 
reviewer agrees that this is “a very useful document for the broad climate modeling and impact 
community.”   
 
1) The authors focus mostly on the transition to convection permitting (CP) regional models, 
which is quite understandable given that this is clearly the next step in regional modeling. 
However, I think the value of large ensembles at ~10 km resolution is quite high and should not 
be underestimated. In Europe, the ~12 km large EURO-CORDEX ensemble has provided a 
wealth of information on fine scale regional climate information and the behavior models. I 
would thus not dismiss this approach too casually, especially given the computing resources 
needed to complete long simulations at CP resolutions. I think the paper should reflect on and 
discuss this issue a bit more. 
 
Response: We agree with the reviewer, and have added this discussion as a part of "Future 
Promises and Directions” under the heading “Ensembles and climate variability”.  The added 
text reads:  “Given that the challenges and costs associated with convection-permitting models 
are still high, ensembles of regional simulations at moderately high resolutions (~10 km) will 
remain relevant and useful in the future.  At these scales, models have demonstrable value over 
coarser resolutions in, e.g., complex terrain (Torma et al. 2015); can perform equally as well as 
convection permitting simulations where convection is not forced by the boundary-layer; and 
may project similar futures in precipitation regimes where changes are primarily forced by the 
large-scale (e.g., Fosser et al. 2017). “ 
 
2) The authors mention the issue of running global models at CP resolutions in a somewhat 
defensive way.  I have been in regional modeling for many years and heard many times that 
RCMs would soon become obsolete because in a few years global models would reach the 
same resolution. In fact, this has never happened, because the resolution increase in models is 
not only a technological issue but also a scientific one. Higher resolution does not always 
automatically imply better results, especially when we move to substantially different CP 
modeling frameworks. A key point is that maybe it is possible, or will soon be possible, to run 



 

 

atmospheric GCMs at CP resolutions for decade long simulations, but a totally different matter 
is to run coupled models at those resolutions. I think we are still many years away from that. 
Perhaps the discussion should reflect a bit better these considerations. 
 
Response: We agree that there are fundamental issues facing CP global models that could 
have been elaborated more strongly as part of our motivation in the introduction of the paper; 
thanks to the reviewer for this suggestion.  The computational considerations are certainly 
daunting:  DYAMOND simulations conducted by several models report, on average, about 5 
simulated days per day at globally uniform convection-permitting resolutions (Stevens et al., 
2019) and entire summer schools have been spawned (e.g. at Max-Planck in 2019) to grapple 
with the unprecedented data analytics at global convection-resolving scales.  On the one hand  
this paper is probably not the best venue for delving into a detailed discussion of all the 
shortcomings of CP global models.  Nonetheless, we agree that these challenges are important 
to state as part of the motivation for regional modeling and its continued relevance, and have 
added a sentence to the introduction to further reinforce the essence of the reviewer’s comment:   
“Knowledge about the scientific value of high-resolution global modeling emerging, but it is 
expected to evolve slowly given unprecedented data storage and analysis requirements, and 
lingering issues with model tuning and validation at unfamiliar scales; intuition for such issues is 
more easily drawn from regional benchmarks.” 
 
Stevens, B., Satoh, M., Auger, L., Biercamp, J., Bretherton, C.S., Chen, X., Düben, P., Judt, F., 
Khairoutdinov, M., Klocke, D. and Kodama, C., 2019. DYAMOND: the DYnamics of the 
Atmospheric general circulation Modeled On Non-hydrostatic Domains. Progress in Earth and 
Planetary Science, 6(1), p.61. 
 
 
3) From the technical point of view, I found the figures not very effective, especially figures 6 
and 7 that should allegedly clearly show the added value of running CP models. In fact, if 
anything, at a cursory view they show that coarser resolution models do not do such a bad job 
in reproducing hurricanes and atmospheric rivers. i wonder if the authors can find more effective 
figures, since these have an important role in the paper. For example, in the text it is said that 
Figure 7 is supposed to show the improvements in simulating topographic effects on extreme 
events, which does not seem the case to me, at least not in an immediate way. Especially given 
the (maybe) intended purpose of the article, the figures should be of more immediate impact. 
 
Response: Thanks for pointing this out.  For Figure 6 (now Figure 7 in the revised manuscript), 
the reviewer is correct that the added value of convection-permitting resolution needs some 
additional discussion.  A different (already published) figure shows the value added in terms of 
representing observed tropical cyclone intensity, now discussed in the revised 
manuscript.  Thus, the last paragraph of Section 3, Fine-scale atmospheric phenomena now 
ends:  “Convection-permitting resolution was necessary to reproduce the observed Category 5 intensity 

of Hurricane Katrina (Figure 2d of Patricola and Wehner 2018), and it captures finer-scale storm 

characteristics compared with 9km and 27km grid spacing; see Figure 7 and the associated animation in 

Electronic Supplement 3.”  We have also deleted the previous reference to this figure and 



 

 

supplemental material that appeared in Section 3. Fine-scale heterogeneity of surface 
properties. 
 
The original Figure 7 (now Figure 4 in the revised manuscript) shows that a 27 km regional 
model downscaling of 2.5-degree reanalysis can reproduce well atmospheric rivers seen in finer 
resolution reanalysis.  This is now mentioned in the first paragraph of  Section 2, Dynamical 
downscaling: “For example, a 27 km WRF simulation with lateral boundary conditions 
prescribed from 2.5° reanalysis can reproduce the characteristics of atmospheric rivers 
compared with a reanalysis at ~0.5° resolution (Patricola et al. 2019); see Figure 4 and the 
associated animation in Electronic Supplement 1.”  We have also added this sentence to the 
figure’s caption:  “Lateral boundary conditions for the WRF simulation were prescribed from the 
6-hourly 2.5° x 2.5° NCEP-II reanalysis.” 
   



 

 

Reviewer #3: [Reviewer 3 comments also attached as "review_BAMS-D-19-0113_R1.doc"] 
 
Review for BAMS-D-19-0113_R1 
 
Overview: 
This is an excellent overview of recent developments of regional climate modelling. My only 
concern is the lack of discussion of what cannot be done and what are the likely challenges 
ahead (i.e. is the paper too positive and optimistic?). 
 
Acceptable with minor revisions 
 
Major comments: 
 
1. Pros and cons of PGW simulations: When commenting on the pros of PGW simulations, it is 
important to discuss the drawback of such simulations that such simulations cannot represent 
circulation changes (i.e. like changes to storm-track location etc.). Such simulations can tell how 
a meteorological event may look like in a future-climate, but it cannot represent the probability 
changes of such events. 
 
Response: Thanks for pointing out the limitations to the PGW approach.  We added discussion 
of these to the manuscript. 
 
2. Roadblocks to future RCM simulations and the wish-list of future opportunities: As the authors 
have commented on page 6 (section 1) and page 18 (section 14) - Moore's Law and GPUs 
have been pretty kind to climate model going higher and higher resolution. If the wish-list for 
future RCM simulations is to go to even higher resolution to improve the turbulence and PBL, 
how much we can still rely on the above technical innovations? My understanding from recent 
climate modelling workshops are that GPUs do not scale particularly good, and issues with 
memory bandwidth are likely to become a major bottleneck. These limitations and challenges 
should be communicated in the paper. This is to highlight how realistic are our speculations to 
the future of climate modelling. As a climate scientist myself, I do not know how well our 
technical requirements are known to the other fields, so we can drive the technical requirements 
by communicating them properly; for instance, I am not quite sure GPUs are designed with 
climate models in mind; more likely they are there for Hollywood and video game industry. 
 
Response: We understand the reviewer’s concern and agree this is an important issue. To do it 
justice would almost require a separate manuscript, and we worry that, with the fast-moving 
evolution of modern hardware in the face of current energy density/cooling limits, any specific 
technical guidance would be unlikely to stand the test of time. One thing is clear -- demands for 
exascale computation capabilities have produced an environment where future investments in 
hardware will be increasingly GPU-focused (i.e. the Department of Energy Aurora system, 
https://press3.mcs.anl.gov/aurora/).  This has meant that model developers are obligated to 
design flexible software frameworks that can leverage these investments.  GPU architectures 
can only provide superior performance when certain model design criteria are met, such as 



 

 

maximization of local workload between communication steps, and maximization of computation 
per datum.  This means that GPUs are not going to be particularly good at improving throughput 
for traditional halo-exchange simulations, but can provide substantial benefits for novel 
approaches such as superparameterizations, complex atmospheric chemistry calculations, or 
other high-intensity local calculations. 
 
To address this comment, without delving too far into technical specifics like memory bandwdith 
(which are changing rapidly), we have thus added the following sentence to section 4:  
“However, new hardware architectures have required a substantial rethinking of traditional 
model design, with more computation needed per memory access or parallel exchange (e.g., a 
convection superparameterization applied on one compute node per grid point).” 
 
3. S2S: The problem with S2S is more than just CPMs. Good S2S needs good driving data (i.e. 
good GCMs). This should be commented on bullet point (c) in page 23 under Further 
opportunities for regional modelling. If the GCM cannot capture the large-scale variability of a 
particular region well, CPM S2S is unlikely to be beneficial. Since the authors mention warm 
season, for which region's warm season they are interested? Can the GCMs do a reasonable 
job for the warm season large-scale variability for these regions? 
 
Response: As stated in sentence 2 of this section, we are discussing downscaling of global S2S 
forecasts here, not the GCMs referred to in the rest of the document; we have added an 
example for clarity.  Additionally, we already mentioned in that sentence that downscaling S2S 
forecasts may only add value in regions where the S2S systems are skillful at capturing large-
scale teleconnections to begin with.  We have removed “warm season”, as convection during 
any season may be improved with CP-scale downscaling.   
 
4. Not really a comment for specific changes to the paper, but this is the first paper that I have 
reviewed that is attempting to add multimedia content (movie files) to the paper. I support and 
encourage the use of such content in the paper. If there is really something to add, make sure 
the authors mention them within the main text. Right now, they are only mentioned in the figure 
captions. 
 
Response:  We that the reviewer for this encouragement. We have modified the main text to 
include references to both the figures and the associated animations. 
 
Minor comments: 
 
Page 7, lines 18-20 "RCM typically offer a higher level of configurability than GCMs...": The 
statement is potentially misleading, as it is vague how GCMs parametrization choices actually 
works (e.g. flipping different "switches" in the model configuration files, so GCM configurations 
can be quite "flexible"). If this is about comparing different WRF configurations, perhaps first 
focus on what differences between those configurations, and why they stand out differently? For 
instance, what does WRF-Chem has but is not in WRF-Hydro? And why that may be important? 



 

 

And then discuss why GCMs cannot be configured to have physics that are specific to -Chem 
and -Hydro. 
 
Response:  There are several aspects of regional-model configurability that support this point.  
RCMs such as WRF often have several parameterization choices available for a given process, 
and there are more choices, for example, in WRF than in the CESM model.  In addition, a 
regional model has flexibility in domain size and location, which can allow it to target specific 
regional processes (and choose parameterizations as needed appropriately).  Finally, the 
regional models’ smaller domains (together with the grid nesting RCMs often contain) allow 
substantial flexibility in grid-spacing choices.  Contemporary uses of regional models have grid 
spacings ranging from 50 km down to just a few km, an order of magnitude difference not found 
in typical GCM applications. 
 
Going into the details of the various versions of WRF goes beyond the key point that WRF’s 
configurability allows them.  Similarly, going into details of what GCMs can or cannot add goes 
beyond the key point of highlighting the flexibility possible with regional models. 
 
To address this comment, we have added further text elaborating on the configurability:  
In the first paragraph of Section 2 we have added “domains and” to this sentence part:  “(2) their 
high level of configurability, which permits selection of physics options and calibration of model 
parameters to focus on domains and regional phenomena of interest and reduce regional 
climate biases;” 
In the second paragraph, we have added:  “In addition, a regional model’s flexibility in domain 
size and location can allow it to target specific regional processes (and choose appropriate 
parameterizations as needed).  Further, the regional models’ smaller domains and the grid 
nesting they often contain allow substantial flexibility in grid-spacing choices.” 
 
Page 9, lines 5-7 "Another configuration variation is the construction of a tropical-channel 
model, ...": Basic details are needed for the "tropical channel model" - what specific types of 
simulation domain and lateral boundary conditions do they use? Just over the ITCZ of a specific 
ocean basin? A ring across the entire tropics? Please expand. 
 
Response: The TCM uses periodic zonal LBCs, prescribed meridional LBCs, and a domain 
covering at least the entire tropical band.  We have added the details to the manuscript. 
 
Page 10, lines 9-10 "Reanalysis-driven simulations are ...": It is not clear how this particular 
sentence is associated with Figure 4. Since the word "hindcast" is often used to describe such 
simulations, it is perhaps good to mention the word here to inform readers what the word means 
as they are likely to encounter it in climate modelling literature. 
 
Response: There was a glitch in the ordering of figures; this should have referenced the figure 
that was originally listed as Figure 1.  We have fixed the ordering of figures 1-7. 
 
We have added a reference to the term ‘hindcast’ 



 

 

 
Page 13, lines 19-21: The risks posed by organised convection is more than high precipitation 
rates. It may worth commenting on these other these risks (hail, tornado, lightning, winds); can 
they be simulated at all? My understanding, at least for now, is difficult (even for convection-
permitting models), but efforts are made to make that possible. Perhaps, authors could cite and 
discuss a few on-going work that may make that possible? These include the possibility of 
diagnosing hail (Prein and Holland, 2019) and lightning (Wilkinson, 2016) from the models. 
 
Response: We have added a few sentences to discuss the need to model hazardous convective 
weather like hail, tornado, and lightning but that requires modeling at sub-kilometer grid spacing. 
We cited a few examples of diagnosing tornado (Hoogewind et al. 2018), hail (Prein and 
Holland 2018), and lightning (Wilkinson 2017) using model proxy or predictors from fine scale 
simulations. 
 
Page 19, line 5 "statistical extremes of MCSs": meaning is unclear. 
 
Response:  This sentence has been rephrased to “Even at convection-permitting resolutions, 
convective updraft characteristics can be artificially constrained as a result of insufficient 
resolution to resolve entrainment effects from turbulent motions (Lebo and Morrison 2015).” 
 
Page 19, line 11 "surface energy repartitioning": do you mean the partition between sensible 
and latent heat fluxes (i.e. Bowen Ratio)? 
 
Response: We have changed "surface energy repartitioning" to "repartitioning of sensible and 
latent heat fluxes" for clarity. 
 
Page 21. Line 6 "other models": what are these "other models"? Given the context of the 
paragraph, are you talking about models of ecology, emissions and land use changes etc.? 
 
Response: We revised “other models” with the following: “detailed subsystem models, such as 
models of marine and terrestrial ecosystems or water resources management” 
 
Page 24. Lines 8-17: While not an American perspective, but such work is underway in Europe 
with results available. See: 
https://www.metoffice.gov.uk/research/approach/collaboration/ukcp/about . Also a period/full-
stop is missing at the end. 
 
Response:  We already have a published European example cited in the manuscript (von 
Trentini et al. 2019), so we do not feel there is need to cite further work, partly in the interest of 
maintaining a succinct reference list. 
 
 

https://www.metoffice.gov.uk/research/approach/collaboration/ukcp/about
https://www.metoffice.gov.uk/research/approach/collaboration/ukcp/about
https://www.metoffice.gov.uk/research/approach/collaboration/ukcp/about
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