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On the initiative of Wen-shin Lee, Austin Lobo and Lihong Zhi and generously hosted by Mark
Giesbrecht and Stephen Watt at the University of Waterloo, the Milestones in Computer Algebra
(MICA 2016) conference was held July 1618, 2016 to celebrate my research. This special
issue contains papers submitted in connection to MICA 2016. My deep appreciation goes to the
organizers, who also include Shaoshi Chen and Arne Storjohann, and to the authors who have
submitted papers.

The talks at MICA discussed the past of the discipline of symbolic computation up to 2016,
and the papers in this volume form a snapshot of several aspects of current research in symbolic
computation: arithmetic such as greatest common divisors, root finding, computational number
theory, semantics of expressions in complex variables, applications to chemistry, including my
favorite topic of my youth, polynomial factoring, and one of my current topics, certifying com-
putations delegated to a cloud-based computing server. I feel honored to have those papers in a
volume associated with me.

My PhD adviser, the late Bobby F. Caviness, in his foreword to our Computer Algebra Hand-
book (Grabmeier et al., 2003) quotes David Berlinski (2001):

“Two ideas lie gleaming on the jeweler’s velvet. The first is the calculus, the second,
the algorithm. The calculus and the rich body of mathematical analysis to which it
gave rise made modern science possible; but it has been the algorithm that has made
possible the modern world.”

It is indeed the algorithm, performed on computers, that made possible the discipline of symbolic
computation. Computational complexity distinguishes problems that have a fast algorithmic
solution from those that do not. By a twist of fate, the most significant algorithm which our
discipline has produced, Bruno Buchberger’s (1965) algorithm for computing a Grobner Basis
and all its modern variants, solves NP-complete problems. The mystery remains, today, to know
if a given input is hard before running the algorithm to the limit of time and space resources.

Ten years ago, I asked a rising young star researcher what he thought would be the “next big
thing:” The symbolic computation discipline would embrace differential equations, was his an-
swer then, which is partly right: today large hybrid difference-differential models are composed
by symbolic computation software. The models are solved numerically by iteration. Gradient-
descent, a form of Newton’s method, can solve equations faster than Buchberger’s algorithm,
but that may be an illusion. For hard inputs, isolated solutions such as digits of the factors of an
integer, cannot be computed fast.
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The computerization of mathematics in all areas, from proof-checking and automated proof
generation to computer algebra and analysis, stands at the place where it stood when I was young.
Our highly-dedicated research community is relatively small, when compared with communities
such as in theoretical computer science or numerical optimization or signal processing. The
software has high impact, Mathematica and its wolframl|alpha interface, Maple, Magma and
Sage and its many underlying opensource components, but again the development community is
relatively small, when compared with artificial intelligence and data analysis.

The discipline of symbolic computation lives at the interface of mathematics and computer
science. In order to master development and achieve progress, one needs to understand both
well. I see some obstructions that have slowed growth:

1. Mathematicians remain focused on theorems and proofs, using symbolic computation for
generating examples. Programming new algorithms which add to the infrastructure remains
a secondary activity. The Macaulay 2 and Singular teams are an exception.

2. Numerical analysts do not hybridize their algorithms, which would mean to include symbolic
computation components. They search for new modeling applications of their trademark
numerical algorithms. The sparse Fourier transform algorithms may be an exception.

3. Symbolic computation researchers like to start from scratch, rebuilding the bottom layer of
the infrastructure: linear and polynomial arithmetic. The Maplesoft and Wolfram Research
Companies are a major exception. So are applications to cryptographic analysis.

I do not know if those attitudes will evolve in the future; I have wished for a long time that they
would.

Over my career as a researcher, our community has pioneered trademark algorithms on a
diversity of problems: randomization that is based on polynomial identity testing is ubiquitous
in our algorithms, from black box linear algebra (Wiedemann, 1986) to factorization of straight-
line and black box multivariate polynomials (Kaltofen and Trager, 1990) to sparse multivari-
ate interpolation (Zippel, 1990). Polynomial factorization was put into polynomial-time via the
Berlekamp (1967) algorithm and the lattice basis reduction algorithm (Lenstra et al., 1982; van
Hoeij, 2002). Prony’s sparse interpolation algorithm, the decoder of the 1959 BCH error correct-
ing codes, is randomized for sparsity determination (Kaltofen and Lee, 2003; Hao et al., 2016),
and adapted as a sparse polynomial error correction code (Kaltofen and Pernet, 2014). Determi-
nants of n-dimensional integer matrices, which can have > n digits, can be computed asymptoti-
cally essentially as fast as with fixed precision floating point arithmetic (Storjohann, 2005). One
can probabilistically check a proof for matrix-positive-definiteness, which is the core problem
in global optimization via sum-of-squares and semi-definite programming, in essentially-linear
time in the binary input size (Dumas and Kaltofen, 2014). The tri-variate generating function
for Gessel walks on the 2-dimensional grid (number of » moves among «, ", /', — that end at
grid point i, j) is an algebraic function (Bostan and Kauers, 2010). In real algebraic geometry,
there is a new roadmap algorithm (Safey El Din and Schost, 2017). There are many more, and
our symbolic computation community can be rightly proud of the accomplishments. Observing
the next generation of researchers, I have no doubt new important algorithms and software will
keep coming. Maybe some are already in this issue; history will tell.



References

Berlekamp, E. R., 1967. Factoring polynomials over finite fields. Bell Systems Tech. J. 46, 1853—1859, republished in
revised form in: E. R. Berlekamp, Algebraic Coding Theory, Chapter 6, McGraw-Hill Publ., New York, 1968.

Berlinski, D., 2001. The Advent of the Algorithm: The 300-Year Journey from an Idea to the Computer. Harcourt, San
Diego, CA, originally published 2000 with the subtitle “The Idea That Rules the World’.

Bostan, A., Kauers, M., Sep. 2010. The complete generating function for Gessel walks is algebraic. Proceedings of the
AMS 138, 3063-3078, with an Appendix by Mark van Hoeij.

Buchberger, B., 1965. Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimen-
sionalen Polynomideal. Dissertation, Univ. Innsbruck, Austria.

Dumas, J.-G., Kaltofen, E., 2014. Essentially optimal interactive certificates in linear algebra. In: Nabeshima (2014), pp.
146-153, URL: http://users.cs.duke.edu/~elk27/bibliography/14/DuKal4.pdf.

Grabmeier, J., Kaltofen, E., Weispfenning, V. (Eds.), 2003. Computer Algebra Handbook. Springer Verlag, Heidelberg,
Germany, 637 + xx pages + CD-ROM. Includes E. Kaltofen and V. Weispfenning §1.4 Computer algebra — impact
on research, pages 4-6; E. Kaltofen §2.2.3 Absolute factorization of polynomials, page 26; E. Kaltofen and B. D.
Saunders §2.3.1 Linear systems, pages 36—38; R. M. Corless, E. Kaltofen and S. M. Watt §2.12.3 Hybrid methods,
pages 112-125; E. Kaltofen §4.2.17 FoxBox and other blackbox systems, pages 383-385. URL: http://users.
cs.duke.edu/~elk27/bibliography/01/symnum. pdf.

Hao, Z., Kaltofen, E., Zhi, L., 2016. Numerical sparsity determination and early termination. In: Rosenkranz, M. (Ed.),
ISSAC’16 Proc. 2016 ACM Internat. Symp. Symbolic Algebraic Comput. Association for Computing Machinery,
New York, N. Y., pp. 247-254, URL: http://users.cs.duke.edu/~elk27/bibliography/16/HKZ16 . pdf.

van Hoeij, M., 2002. Factoring polynomials and the knapsack problem. J. of Number Theory 95, 167-189.

Kaltofen, E., Lee, W., 2003. Early termination in sparse interpolation algorithms. J. Symbolic Comput. 36 (3—4), 365—
400, special issue Internat. Symp. Symbolic Algebraic Comput. (ISSAC 2002). Guest editors: M. Giusti & L. M.
Pardo. URL: http://users.cs.duke.edu/~elk27/bibliography/03/KL03.pdf.

Kaltofen, E., Pernet, C., 2014. Sparse polynomial interpolation codes and their decoding beyond half the minimal dis-
tance. In: Nabeshima (2014), pp. 272-279, URL: http://users.cs.duke.edu/~elk27/bibliography/14/
KaPel4.pdf.

Kaltofen, E., Trager, B., 1990. Computing with polynomials given by black boxes for their evaluations: Greatest com-
mon divisors, factorization, separation of numerators and denominators. J. Symbolic Comput. 9 (3), 301-320, URL.:
http://users.cs.duke.edu/~elk27/bibliography/90/KaTr90.pdf.

Lenstra, A. K., Lenstra, Jr., H. W., Lovasz, L., 1982. Factoring polynomials with rational coefficients. Math. Ann. 261,
515-534.

Nabeshima, K. (Ed.), 2014. ISSAC 2014 Proc. 39th Internat. Symp. Symbolic Algebraic Comput. Association for Com-
puting Machinery, New York, N. Y.

Safey El Din, M., Schost, E., 2017. A nearly optimal algorithm for deciding connectivity queries in smooth and bounded
real algebraic sets. J. ACM 63 (6), 48:1-48:37, URL: https://doi.org/10.1145/2996450.

Storjohann, A., 2005. The shifted number system for fast linear algebra on integer matrices. J. Complexity 21 (5), 609—
650.

Wiedemann, D., 1986. Solving sparse linear equations over finite fields. IEEE Trans. Inf. Theory 11-32, 54-62.

Zippel, R., 1990. Interpolating polynomials from their values. J. Symbolic Comput. 9 (3), 375-403.



