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River flow statistics are expected to change as a result of increasing atmospheric 17 

CO2, but uncertainty in Earth System Models (ESM) projections is high. While this 18 

is partly driven by changing precipitation, with well-known ESM uncertainties, 19 

here we show the influence of plant stomatal conductance feedbacks can cause 20 

equally large changes in regional flood extremes and even act as the main control 21 

on future low latitude streamflow. Over most tropical land masses, modern 22 

climate predictions suggest plant-physiological effects will boost streamflow, 23 

overwhelming opposing effects of soil drying driven by CO2’s effects on 24 

atmospheric radiation, warming and rainfall redistribution. The relatively 25 

unknown uncertainties in representing eco-physiological processes must 26 

therefore be better constrained in land-surface models. To this end, we identify a 27 

distinct plant-physiological fingerprint on annual peak, low, and mean discharge 28 

throughout the tropics and identify river basins where physiological responses 29 

dominate radiative responses to rising CO2 in modern climate projections. 30 

  31 

The effects of climate change on the hydrologic cycle will likely alter river networks and 32 

floodplains globally. Improving our understanding of the drivers behind these changes is 33 

critical for increasing confidence in projections of future flow extremes. If, for example, 34 

the main driver of basin-wide hydrologic change is a result of atmospheric responses to 35 

CO2 increases, then model development efforts should focus on improving the 36 

representation of precipitation in ESMs, which is frequently noted as a critical 37 

component of flood projection uncertainty1–4. The ability of plant-physiological changes 38 

(i.e. stomatal closure at high CO2) to modify extreme runoff, however, has only recently 39 
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received attention5. We posit that such ecosystem effects could be just as important as 40 

precipitation for streamflow extremes, consistent with known first-order impacts on 41 

mean runoff and discharge6–9, thus also requiring significant model improvement efforts 42 

to reduce uncertainty.  43 

 44 

The atmospheric (radiative) effects of rising CO2 have been widely studied. Global 45 

mean precipitation is expected to increase, with the most extreme rates projected to 46 

intensify even more than the Clausius-Clapeyron rate10–12. Regionally, more 47 

frequent/intense precipitation can contribute to more soil saturation, leading to higher 48 

streamflow or more frequent flooding. This is of particular concern in the tropics, where 49 

a multi-model ensemble suggests an increase in the frequency and intensity of heavy 50 

precipitation despite mean decreases13. 51 

 52 

However, atmospheric processes may not be the sole driver of streamflow changes in 53 

some regions. As the concentration of CO2 rises, many plants respond by closing their 54 

stomata, which can lower the amount of water lost through transpiration7,14,15. While this 55 

effect may be offset at mid-latitudes by increased leaf area, the physiological response 56 

of stomata is an important mechanism regulating changes in evapotranspiration in 57 

densely forested tropical regions16. Decreases in transpiration and increases in water 58 

use efficiency can lead to higher antecedent soil moisture, and as a consequence, 59 

streamflow may increase even without a shift in precipitation statistics. 60 

 61 
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The relative roles of future radiative vs. plant-physiological responses in regulating 62 

flooding and seasonal streamflow changes have not been previously quantified. In part, 63 

this is due to the highly uncertain magnitude of the physiological response in 64 

observations, related to the difficulty of directly observing such changes over sufficiently 65 

long periods of time17 and across a large range of sites18. Incorporating sparse 66 

observations into global-scale ESMs has led to wide variance in representation19, with 67 

subsequent effects on river discharge further hampered by the lack of sophisticated 68 

river routing models in most ESMs.  The goals of this study are thus two-fold: first, to 69 

assess the extent to which plant-physiological effects modulate global flood frequency 70 

and seasonal streamflow relative to radiatively driven changes; and second, to identify 71 

river basins where plant responses are dominant and thus where efforts to constrain the 72 

strength of the net physiological effects in nature (i.e., through carbon enrichment 73 

experiments20,21 or regional simulations attempting to match observed streamflow 74 

changes) may prove most fruitful. 75 

 76 

Physiological and radiative effects on extreme flooding 77 

To separate the atmospheric and plant responses to elevated CO2, we conduct a series 78 

of four fully-coupled ESM experiments using the Community Earth System Model with 79 

biogeochemistry enabled (CESM1-BGC)22,23, which are validated against flood and 80 

streamflow estimates from established CMIP5 RCP8.5 multi-model means by 81 

Hirabayashi et al.4 (hereafter H13) and Koirala et al.24 (hereafter K14). Leaf area in the 82 

Community Land Model (CLM425) increases with enhanced CO2 but no dynamic 83 

vegetation is represented (consistent with most CMIP5/6 models), which could limit a 84 
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potential buffering effect from changes in forest area and associated evapotranspiration. 85 

The transpiration reduction in CLM4 may also be overestimated relative to 86 

observations19,26,27, though the large spread among observational sites and comparison 87 

to other ESMs suggest that the model is not an extreme outlier14.  88 

 89 

In three sensitivity experiments, CO2 was increased to quadruple its pre-industrial value 90 

(CTRL; 285 ppm) at a rate of 1% yr-1. This increasing concentration was applied to the 91 

atmosphere and land in FULL, only the atmosphere in RAD, and only the land in PHYS, 92 

following the C4MIP experimental protocol28,29 (where PHYS and RAD refer to the 93 

simulations’ forcing rather than a specific mechanism in the complex regional 94 

responses). These experiments were extended for 50 years at constant 1140 ppm CO2. 95 

We used daily runoff from the last 30 years of each (CTRL, FULL, PHYS, and RAD) to 96 

hydrodynamically downscale river discharge using the Catchment-Based Macroscale 97 

Floodplain model (CaMa)30. This choice allows consistency with H13, but our main 98 

findings are insensitive to expanding to 50 years (Supplementary Fig. S1). Though 99 

human management of rivers is not included in our analysis, we have confirmed that 100 

CaMa captures the geographic diversity of annual average streamflow (Methods and 101 

Supplementary Figure S2) and that PHYS-induced ecosystem responses are consistent 102 

with previous studies (Supplementary Note and Supplementary Fig. S3).  103 

 104 

To estimate flood frequency, we fit the 30-year time series of annual maximum 105 

discharge at every location to an extreme value distribution (here, the Generalized 106 
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Extreme Value; GEV) to compute the return period of a flood magnitude equivalent to 107 

the 100-year flood in pre-industrial conditions (hereafter the CTRL100 flood), following 108 

H13. We consider flood changes relative to this baseline return period of 100 years; 109 

regions with increased (decreased) flooding thus have future return periods less 110 

(greater) than 100 years. We limit our analysis to signals that are significant at 95% as 111 

measured across a large bootstrap ensemble (see Methods).  112 

 113 

To confirm that our use of a single ESM produces flood shift patterns comparable to an 114 

established multi-model ensemble, we compared the resulting return period in FULL 115 

(Fig. 1a) with the CMIP5 analysis of H13 (Fig. 1b). Though the magnitude of return 116 

period varies between the two, and in fact varies based on how the extreme value 117 

distribution itself is defined (see Methods), the sign is reassuringly consistent -- 78.3% 118 

of locations in FULL show flood changes in the same direction as H13. In both cases, 119 

the CTRL100 flood occurs at least twice as frequently over much of the tropics (dark blue 120 

shading in Fig. 1). Flood frequency decreases instead throughout Western Europe, the 121 

northeast and east coasts of South America, and parts of North America (red shading in 122 

Fig. 1), where reduced mean precipitation (over eastern South America) or less spring 123 

snow melt (high latitudes) tends to reduce runoff extremes.  124 

 125 

Fig 1: Frequency of the pre-industrial 100-year flood under elevated CO2 and its 126 

drivers. (a) Return period of the historical 100-year flood in FULL vs. (b) the results of 127 

H13 for a multi-model average under RCP8.5 forcing (H13 Figure 1; dry regions 128 

masked). (c) PHYS and (d) RAD as individual drivers of flood responses in FULL. (e) 129 
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Regional categorization of flood increases as primarily PHYS-driven (green), RAD-130 

driven (orange), or a combination of both (blue) based on their contributions to the 131 

return period of the CTRL100 flood in FULL. Results omitted in (a, c-e) where 132 

insignificant at 95% confidence based on a large bootstrap ensemble (see Methods). 133 

 134 

Flood shifts in FULL are shown to be a result of both physiologically- (Fig. 1c) and 135 

radiatively- (Fig. 1d) driven changes in return period, while changes of similar 136 

magnitude are induced by either mechanism alone. Over the Western Amazon, for 137 

example, increased flooding is primarily plant-driven, where dynamical mountain-forest 138 

interactions result in basin-wide precipitation rearrangement16. Increased flooding over 139 

much of South Asia is a result of radiatively-forced changes, potentially due to 140 

intensification of the Indian summer monsoon rain31. A third class of region can be 141 

defined by concurrent changes in both PHYS and RAD, thus dividing the globe into 142 

three flood-driving regimes: PHYS-driven, RAD-driven, and multiply stressed (Fig. 1e). 143 

 144 

Eight regions with broadly consistent drivers are defined by rectangles in Figure 1e and 145 

analyzed further to determine the cause of increased flooding (Supplementary Note and 146 

Supplementary Tables S1-S3). For multiply stressed regions (blue rectangles in Fig. 147 

1e), PHYS leads to more frequent flooding through increased soil moisture, which we 148 

interpret as a direct effect of CO2-induced transpiration decline (Supplementary Fig. S3) 149 

since it occurs despite increases in plant productivity, leaf area and surface shortwave 150 

radiation; all of those changes, with varying degrees of statistical significance, would 151 

tend to dry the soil (Supplementary Table S1 and Fig. S3). When only the atmosphere 152 
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responds to rising CO2 (RAD), increased precipitation is likely the most important driver 153 

given the inability of other variables such as snowmelt, which is already near zero in 154 

these regions during the flood season, to explain the increased flooding. Other possible 155 

causative drivers, like increases in soil moisture and ET, are difficult to disentangle from 156 

precipitation changes (Supplementary Table S1). Control by precipitation also 157 

dominates radiatively-driven regions (orange rectangles in Fig. 1e; Supplementary 158 

Table S2), consistent with the expectation that warmer temperatures can promote 159 

higher mean precipitation and/or more frequent extremes, which can increase the 160 

likelihood of flooding. 161 

 162 

Regions with plant-driven flood changes (green rectangles in Fig. 1e) experience more 163 

frequent flooding not only as a result of increased soil moisture via direct stomatal 164 

closure, but also through indirect precipitation effects, including mean precipitation 165 

increases over the Western Amazon (Supplementary Note and Table S3) – in turn a 166 

result of complex interactions between surface energy partitioning, vertical vapor 167 

transport by planetary boundary layer turbulence, and lateral vapor advection by 168 

regional orographic flow16,32–34.  169 

 170 

Plant-physiological effects on annual streamflow metrics 171 

Although CESM produces a striking physiological effect on floods, uncertainties in 172 

stomatal responses to CO2 are large. Beyond a handful of regional ecosystems that 173 

have been subjected to Free Air CO2 Enrichment experiments17,35, data are sparse, 174 
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notably in the tropics; extending direct measurements to span a sufficient range of 175 

climates to constrain the magnitude of the stomatal response in ESMs is untenable. 176 

This motivates the need for indirect observable proxies of the plant-physiological effect 177 

on streamflow in nature, as originally suggested by Gedney et al.8. If the same 178 

processes that produce large changes in extreme floods also modulate annual 179 

streamflow statistics, these -- being more readily observable -- could provide a useful 180 

metric for constraining net ecosystem responses to rising CO2.  181 

 182 

We thus investigate the seasonal cycle of streamflow, identifying broad regions and 183 

specific river basins where the PHYS effect rivals RAD contributions to FULL. Following 184 

K14, we compute annual mean (Qmean), peak (Qpeak), and low flows (Qlow) for each river 185 

gridcell based on daily discharge, where seasonal extrema are defined as the 5th and 186 

95th percentile flow rates annually, averaged to climatology.  187 

 188 

Fig. 2: Changes in seasonal streamflow. Percent change from CTRL in Qmean (a), 189 

Qlow (b) and Qpeak (c). Regions with CTRL Qlow discharge less than 50 or Qpeak less than 190 

500 m3 s-1 masked (Supplementary Fig. S4). Latitudinal decompositions are smoothed 191 

with a 5˚ running mean; shading denotes zonal variability as the interquartile range.  192 

 193 

We confirm the validity of CESM by comparing our results with CMIP5 mean changes 194 

from Figure 1 of K14, as discussed in the Supplementary Note and Supplementary 195 

Figure S5. In brief, FULL agrees well with the pattern of that multi-model average – 196 
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79.2%, 80.5%, and 68.0% of river gridcells in our experiment agree on the sign of Qmean, 197 

Qpeak, and Qlow changes respectively. The datasets generally agree in terms of large-198 

scale spatial trends, showing increased Qpeak over much of the globe and concentrating 199 

the largest Qlow increases over northern latitudes (Supplementary Fig. S4).  200 

 201 

The key result here, however, is that plant physiological changes are the main control of 202 

these streamflow statistics (mean, seasonal peak, and especially seasonal low flow) 203 

equatorward of 35˚. PHYS plays a major role in driving dramatic Qlow increases 204 

throughout low latitude regions (Fig. 2a), which is linked primarily to higher soil moisture 205 

as a result of reduced stomatal conductance (Fig. 3b); rainwater simply becomes more 206 

prone to running off as increased plant water efficiency maintains a higher subsurface 207 

moisture reservoir that limits infiltration. Radiatively driven changes in Qlow actually tend 208 

to oppose this increase throughout the tropics due to increases in evaporative demand 209 

(Supplementary Fig. S6), but this is vastly overwhelmed by physiological effects in the 210 

zonal mean. Systematic increases in Qpeak and Qmean equatorward of 45˚N are again 211 

mostly controlled by plant responses, though radiatively driven changes in both cases 212 

are nearly neutral in the zonal mean (Fig. 2b). In the tropics and parts of the subtropics 213 

then, PHYS is almost solely responsible for increasing annual streamflow cycles across 214 

large portions of land. 215 

 216 

Fig. 3: Changes in environmental conditions. Changes in 1m soil moisture (top; a-c) 217 

and the fraction of precipitation that reaches the surface as rain instead of snow 218 
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(bottom; d-f) relative to their values in CTRL for FULL (left; a,d), PHYS (center; b,e), and 219 

RAD (right; c,f). Mean differences are taken over the full 30-year period.  220 

 221 

At higher latitudes, the importance of atmospherically-driven changes in RAD increases 222 

relative to plant-driven effects. Increases in all three streamflow metrics over much of 223 

high-latitude western Europe and North America can be linked to strong polar-amplified 224 

warming in RAD, which tends to reduce peak snowmelt rates (contributing to earlier and 225 

lower peak discharge in spring) and shift the ratio of falling precipitation towards rainfall 226 

at the expense of snow (Supplementary Fig. S6; Fig. 3f). This change raises winter low 227 

flow by increasing runoff rather than allowing water to be stored in seasonal snowpack. 228 

The geographic disparity between tropical and higher latitude regions is summarized by 229 

pattern correlations in Supplementary Table S4.  230 

 231 

Interestingly, PHYS also plays a non-negligible role in increasing Qlow and Qmean across 232 

high-latitude continental interiors (Supplementary Fig. S4), with a signal that is strongest 233 

towards the southern edge of the boreal forest, i.e. decreasing with latitude, opposite to 234 

the polar-amplified warming effect of RAD and associated snow-rain transitions (Fig. 3). 235 

This might suggest the potential for an identifiable fingerprint of the physiological effect 236 

in unmanaged high latitude river basins, with the caveat that radiative controls tend to 237 

dominate the FULL response poleward of 45˚N. In the transition zone between PHYS- 238 

and RAD-dominated Qlow regimes, the influence of rising CO2 on ecosystem processes 239 

allows for increasing vegetation cover in PHYS, yet transpiration reductions overwhelm 240 
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these changes causing soil moisture to increase with a sharp boundary at the southern 241 

edge of the boreal forest region (Fig. 3).   242 

 243 

Radiative and physiological effects on basin-level discharge 244 

Our analysis allows us to separate the relative contributions of PHYS and RAD to 245 

changes in discharge for large river basins. We limit our attention to 18 of the 32 basins 246 

assessed (Supplementary Fig. S7) in which the relative effects of PHYS and RAD on 247 

FULL are additive for mean, peak, or low flow. In these basins, the residual of the 248 

following decomposition is small relative to the sum of PHYS and RAD, suggesting the 249 

response of FULL can be well explained by a linear combination of individual drivers, 250 

∆𝐹𝑈𝐿𝐿
𝐶𝑇𝑅𝐿 =

∆𝑃𝐻𝑌𝑆
𝐶𝑇𝑅𝐿 +

∆𝑅𝐴𝐷
𝐶𝑇𝑅𝐿 + 𝜀 251 

Where ∆𝐹𝑈𝐿𝐿, ∆𝑃𝐻𝑌𝑆, and ∆𝑅𝐴𝐷 are the basin-averaged differences in streamflow 252 

from CTRL, and 𝜀 is the residual, computed as the root mean square error between 253 

∆𝐹𝑈𝐿𝐿 and the sum of ∆PHYS and ∆RAD across the 30-year ensemble (Supplementary 254 

Fig. S8 and Tables S5-S7). The results of the decomposition are included below (Fig. 255 

3).  256 

 257 

Fig. 4: Basin-level streamflow changes. FULL changes in (a) Qmean, (b) Qpeak, and (c) 258 

Qlow relative to CTRL. (d-f) The contributions of ∆𝑃𝐻𝑌𝑆 and ∆𝑅𝐴𝐷 to ∆FULL flow 259 

changes. Black stars represent the FULL percent change from CTRL (as shown by 260 

shaded circles in a-c), and black circles represent the sum of ∆𝑃𝐻𝑌𝑆 and ∆𝑅𝐴𝐷. 261 

(1) 



 13 

Colored bars indicate the ∆PHYS (green) + ∆RAD (blue) percent changes that support 262 

the total. 263 

 264 

The primary driver of streamflow change can be identified by the dominant color of the 265 

basin’s bar in the bottom row of Figure 3, with the magnitude of FULL indicated by the 266 

overall size of the circles in the top row. Again, basin responses are driven by PHYS, 267 

RAD, or a combination of both: Mekong Qmean and Qlow increases are primarily plant-268 

driven, while the Yukon is almost exclusively radiatively-driven. In general, the zonal 269 

pattern indicated in Figure 2 is seen here at the basin level as well, where tropical 270 

regions tend to be more strongly controlled by PHYS while high latitudes are more 271 

heavily impacted by RAD. 272 

 273 

Four basins stand out in particular as nearly exclusively plant-driven – the Amazon, 274 

Parana, Congo, and Yangtze. Annual streamflow cycles in those basins reveal a 275 

systematic effect of PHYS to raise streamflow, which controls changes in FULL despite 276 

opposing changes in RAD (Fig. 5).  277 

 278 

Fig. 5: Average annual streamflow cycles at river outlets in PHYS-dominated 279 

basins. Area-weighted average streamflow annual cycles near the outlets of each river. 280 

Dashed black lines represent nearby GRDC station data (all available years in the 281 

period 1970-2005) while colored lines show modeled streamflow, where all grid cells 282 
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within a quarter degree of the GRDC station have been averaged together. Error bars 283 

correspond to twice the standard error of discharge over the 30-year period. 284 

 285 

Details on these streamflow cycles and their comparison to observations are included in 286 

the Supplementary Note. In brief, despite a series of varying bias patterns in each basin 287 

– expected given ESM precipitation biases (Supplementary Fig. S10) and the exclusion 288 

of human water management in CaMa -- the effect of reduced stomatal conductance is 289 

a systematic increase in streamflow across all months that is common to all four basins. 290 

This consistency adds confidence that the streamflow response to PHYS is a robustly 291 

simulated signal, in line with the observational findings of Gedney et al.8 despite the fact 292 

that they did not allow for leaf area changes36.  293 

 294 

Discussion 295 

Improved understanding of the physical mechanisms behind streamflow and flood 296 

frequency changes is critical for future ecosystem planning and management. Here, for 297 

the first time, we have linked ESM experiments that isolate the plant-physiological from 298 

radiative effects of CO2 on runoff to a hydrodynamic model that predicts their 299 

consequences for streamflow globally. Flood frequency analysis shows that plant-300 

physiological effects on the terrestrial water cycle are a first order control on future shifts 301 

of the 100-year flood. 302 

 303 
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Despite the major role of plants in the evolution of hydrological extremes under CO2 304 

forcing in CESM demonstrated here, the coupling between water and carbon cycles in 305 

modern land-surface models remains poorly constrained. To help address this source of 306 

uncertainty and complement sparse observational constraints, we use the model to 307 

identify fingerprints of plant-physiological effects in observable metrics of annual 308 

streamflow. For low flows, the results show a competition in which the radiative effect 309 

tends to reduce but the physiological effect tends to increase seasonal flow minimums 310 

throughout low latitudes. At high latitudes, the relatively smaller net plant effect on mean 311 

and low flow expresses itself with an opposing meridional gradient to the polar-312 

amplifying radiative effect across boreal forest watersheds. For peak flows, the plant 313 

response is the main driver of future changes throughout most low latitudes. Given this, 314 

we encourage more investigation of such fingerprints across multiple independent 315 

hydrodynamically downscaled ESMs, towards the hope of using observed streamflow to 316 

constrain the magnitude of buffered ecosystem responses to CO2 in nature. The effect 317 

of the plant-physiological response on hydrologic extremes across timescales is often 318 

overlooked in future climate projections, but this work highlights the need to assess 319 

these effects more explicitly moving forward. 320 

 321 

Methods 322 

CESM experiments 323 

The four CESM1-BGC simulations include fully active atmosphere (CAM4)37, land 324 

(CLM4)25, ocean (POP2)38, and sea ice (CICE4)39 components, as described in 325 
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Koopermen et al.5. CTRL was initialized from spun-up pre-industrial conditions with a 326 

fixed CO2 concentration of 285 ppm, which was maintained for 50 years. Three 327 

additional experiments (i.e., FULL, RAD, and PHYS) were then initialized from the end 328 

of CTRL to test the flood response to quadruple the amount of CO2. In these 329 

simulations the CO2 concentration increased at 1%/year over a 140-year period and 330 

was then held fixed for an additional 50 years.  In RAD and PHYS, the land and 331 

atmosphere, respectively, experience the original 285 ppm of CO2 rather than the 332 

increased value of 1140 ppm when they are not the targeted response pathway, while in 333 

FULL both the land and atmosphere experienced the increased value. Global runoff 334 

from these 1˚ resolution simulations are interpolated to 0.5˚ via a bi-linear cubic spline 335 

before being used in the CaMa model. 336 

 337 

Hydrodynamic downscaling and extreme value curve fitting 338 

For downscaling coarse resolution ESM output, we use the CaMa-Flood model (version 339 

3.6.2), which uses daily runoff to generate high resolution streamflow by solving a 340 

hydrodynamic flow equation30. This method of downscaling is well established in recent 341 

literature3,4,24,40,41 and produces a reasonably accurate global river flow pattern4,30. 342 

Using runoff instead of precipitation as the driving boundary condition accounts for CO2 343 

impacts on both precipitation and evapotranspiration, while our experiment design 344 

allows us to separate the radiative (RAD) and plant-physiological (PHYS) contributions 345 

to runoff changes. To ensure that CESM1-generated runoff is able to produce 346 

reasonable streamflow estimates when paired with CaMa, we compare CTRL river 347 

discharge with observations from 30 large river basins, as reported by the Global Runoff 348 



 17 

Data Centre (GRDC). We take the same approach as in H13, choosing 30 river basins 349 

that meet spatial (areas larger than 150,000 km2) and temporal requirements (at least 350 

20 years of data in the modern period of 1970-2000). Computing the correlation 351 

between the two datasets provides an estimate of how well the model can simulate 352 

streamflow (Supplementary Fig. S2). The reasonably good agreement provides some 353 

confidence that CESM is a useful tool for exploring future changes in streamflow 354 

originating from radiative and physiological impacts of rising CO2.  355 

 356 

We consider two extreme value distributions to fit annual maximum discharge to, the 357 

Gumbel and the Generalized Extreme Value (GEV). The pattern of flood frequency 358 

shifts created from this fitting is found to be insensitive to the choice of distribution, 359 

though the magnitude of the changes can vary significantly between the two 360 

(Supplementary Fig. S1). As a result, we focus here only on the regional distribution of 361 

changes and the relative contributions of PHYS and RAD to that pattern. These metrics 362 

are insensitive to the choice of curve fit.  363 

 364 

We choose the GEV here based on its simulation of less extreme frequency shifts and a 365 

reasonable value of the global average probability plot correlation coefficient (0.90).  366 

The GEV was then used to find the shape (𝜉), location (𝜇), and scale (𝜎) parameters to 367 

estimate river discharge, F(x): 368 

𝐹(𝑥) = exp:−<1 + 𝜉
(𝑥 − 𝜇)
𝜎 >

?@A
B 369 (2) 
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 370 

The statistical fit to this distribution is carried out independently at each location and for 371 

each of the four experiments. The curve itself can thus be shifted based on the location 372 

parameter or stretched/shrunk based on the scale parameter, while additional 373 

characteristics like its skewness can be altered by changes in the shape parameter at 374 

every location. The magnitude of a given flood (UT) can then be determined based on 375 

return period (T) by inverting the CDF of the GEV above: 376 

𝑈C = 	𝜇 +
𝜎
𝜉 <− ln G1 −

1
𝑇H

?A

− 1> 377 

 378 

This is used to estimate the magnitude of the CTRL100 flood. Equation 3 is then solved 379 

for T to determine the frequency of a flood with the CTRL100 magnitude in each of the 380 

enhanced CO2 experiments. Statistical confidence is built by limiting our analysis to 381 

signals that are significant at the 95% level, measured by a large bootstrap that is 382 

produced by randomly sampling with replacement the actual 30-year annual maxima 383 

time series at each location and repeating the GEV fit 1,000 times. 384 

 385 

Defining grid cells as RAD-driven, PHYS-driven, or multiply stressed 386 

To better isolate regions with flood increases that are driven by the atmospheric 387 

response (RAD-driven), the plant response (PHYS-driven), or by a combination of the 388 

two (multiply stressed), each grid cell is sorted based on agreement between the three 389 

experiments. RAD and PHYS flood frequency increases must both be at least 20% of 390 

(3) 
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the increase in FULL for a region to qualify as multiply stressed. Otherwise, the location 391 

is assigned to the driver with the larger change between the two. This practice is first 392 

carried out at the 0.25˚ CaMa-Flood resolution but is then scaled to the 1˚ CESM grid by 393 

identifying the mode of drivers within each larger CESM grid cell. Note that although the 394 

Nile region is particularly noticeable as a multiply stressed region (shown in blue in Fig. 395 

1e), it is not selected for detailed analysis due to the high aridity of the region. 396 

 397 
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Code availability 414 

All scripts that replicate the results of this study are accessible at 415 

https://github.com/megandevlan/Physiology-Streamflow. Data associated with these 416 

scripts are included in the repository, with a few exceptions. Relevant CESM and CaMa 417 

output are not included due to their size but are available at 418 
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http://portal.nersc.gov/archive/home/m/mdfowler/www/. Data obtained from Y. 419 

Hirabayashi, S. Koirala, and from the GRDC are not included and should be requested 420 

from the sources independently. The CaMa model itself can be obtained by emailing the 421 

developer, D. Yamazaki, while CESM is publicly available through a Subversion code 422 

repository – see http://www.cesm.ucar.edu/models/cesm1.0/ for more details.  423 

 424 

Data Availability 425 

The relevant datasets generated during this analysis are available at 426 

http://portal.nersc.gov/archive/home/m/mdfowler/www/. The full CESM output record is 427 

archived and available upon request. Data used to create Figure 1b was received via 428 

personal correspondence with Y. Hirabayashi, and requests should be directed to her. 429 

Similarly, CMIP5 multi-model mean streamflow data used for comparison between 430 
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