
Fast Computation of Persistent Homology with

Data Reduction and Data Partitioning

Nicholas O. Malott and Philip A. Wilsey

Dept. of EECS, University of Cincinnati, Cincinnati, OH 45221, USA

Email: malottno@mail.uc.edu, philip.wilsey@uc.edu

Abstract—Persistent homology is a method of data analysis that
is based in the mathematical field of topology. Unfortunately, the
run-time and memory complexities associated with computing
persistent homology inhibit general use for the analysis of big
data. For example, the best tools currently available to compute
persistent homology can process only a few thousand data points
in R

3. Several studies have proposed using sampling or data
reduction methods to attack this limit. While these approaches
enable the computation of persistent homology on much larger
data sets, the methods are approximate. Furthermore, while they
largely preserve the results of large topological features, they
generally miss reporting information about the small topological
features that are present in the data set. While this abstraction
is useful in many cases, there are data analysis needs where the
smaller features are also significant (e.g., brain artery analysis).
This paper explores a combination of data reduction and data
partitioning to compute persistent homology on big data that
enables the identification of both large and small topological
features from the input data set. To reduce the approximation
errors that typically accompany data reduction for persistent
homology, the described method also includes a mechanism
of “upscaling” the data circumscribing the large topological
features that are computed from the sampled data. The designed
experimental method provides significant results for improving
the scale at which persistent homology can be performed.

Index Terms—topological data analysis; persistent homology;
data reduction; data partitioning; data mining; unsupervised
learning

I. INTRODUCTION

We live in the age of data. Everyday, massive volumes of

data are analyzed to extract meaningful information. This task

is generally referred to as data analysis or data mining. Data

analysis has grown over the past few decades to be a vast and

interdisciplinary field of study encompassing statistics, math-

ematics, and computer science. Numerous methods have been

developed to analyze large and complex data sets to extract

useful knowledge. An emerging method of data analysis is

based in the mathematical field of topology. Topology is the

study of the properties of space that are preserved under certain

types of deformations [1]. Over the last 15 years, substantial

efforts have been put together to use topological methods

for solving problems related to large and complicated data

sets. This gave birth to a field of study called Topological

Data Analysis (TDA) [2]–[6]. The fundamental idea is that

topological methods can be used to study patterns or shapes

that are preserved despite the presence of noise and variations

Support for this work was provided in part by the National Science
Foundation under grants ACI–1440420 and IIS–1909096.

in the data. The ability of TDA to identify shapes under

certain deformations renders it immune to noise and leads

to discovering properties of data that are not discernible by

conventional methods of data analysis [3], [4].

The computation of Persistent Homology (PH) is one of the

principal components in TDA. Unfortunately, the computation

of PH is exponential in both time and space [6]. The result is

that TDA cannot be directly applied to point clouds containing

more than a few thousand data points in R
3. One direction that

has been explored to address this limitation is the application

of data reduction or dimensional reduction to enable the

computation of PH on large data sets [7]–[11]. While these

methods enable the computation of PH on data sets that are

3-4 orders of magnitude larger, this enablement comes at

a cost. In particular, the reduction of the data disables the

identification of the smaller topological features in the data

set as well as providing only an approximation of the specific

boundaries surrounding the larger topological features. While

the approximation of the large features is often sufficient

for some analysis requirements, there are application areas

for which the loss of the smaller topological features is a

significant problem [12], [13].

This paper provides a solution to computing PH on large

data sets while enabling the identification of both large and

small topological features in the data. The solution uses k-

means++ clustering to organize the data into partitions (the

clusters). The clusters and their centroids are then inde-

pendently analyzed using PH to locate the large and small

topological features in the entire data set. More specifically,

the data is first organized into k clusters; each cluster is

then independently analyzed with a PH computation (locating

the small topological features); the cluster centroids are also

analyzed with a PH computation (locating the large topological

features); and finally the results are merged together with

duplicate results filtered. In addition, a data upscaling step can

also be performed on the large topological features identified

from the cluster centoid data to further refine their boundary

computation. The actual algorithm is a slightly more complex

than this and is more fully described in Section IV.

Computing persistent homology using partitioning, data

reduction, and upscaling enables the application of PH to

large data sets; it provides accurate identification of the large

and small topological features in the data and accelerates the

computation of PH by several orders of magnitude. This paper

includes a systematic experimental analysis of the approach

and demonstrates the accuracy of the computation against

existing PH libraries on smaller data sets that are analyzable

without reduction. Experiments are also performed with large

data sets that cannot be fully processed by existing tools. The

results show that the approach of this paper provides accurate

computations of the PH output and that it does so with run-

times that are generally 3 orders of magnitude faster than

performing the PH on the entire data set.

The remainder of this paper is organized as follows. Section

II presents some of the background on persistent homology.

Section III summarizes the related work in this area. Section

IV provides the theoretical overview of the application of

partitioning and data reduction to enable and accelerate the

computation of persistent homology on big data. Section V

describes the implementation and limitations of the general

solution outlined in Section IV that is used in the experimental

testing of this paper. These approximations to the general

solution are required to use existing tools for testing instead

of rebuilding the entire PH infrastructure needed to evaluate

this approach. Section VI presents the experimental results

on several different data sets. Section VII discusses some

shortcomings of the upscaling step. Finally, we conclude the

paper with some remarks in Section VIII.

II. BACKGROUND

This section provides a brief overview of persistent homol-

ogy, its computation, and the current tools for computing the

PH of a point cloud. Brief statements on the computational

growth of computing PH are also given. A more detailed

presentation on the fundamentals of topology are available

[1] along with TDA [14], [15]. A tutorial article by Chazal

is available here [2]. Otter et al provide a general review of

the current approaches and solutions to computing PH [6].

TDA, and specifically PH, supports data analysis by identi-

fying the topological features embedded in point clouds over

different spatial resolutions. The persistence of a topological

feature is observed and measured across a range of connectiv-

ity distances (called ǫ distances). Topological features identi-

fied that persist over larger intervals are generally considered

significant, as they represent topological groups that exist at

many different spatial resolutions. Shorter intervals have often

been regarded as noise in the aspect of homology, but encode

additional information about the connectedness of simplices

identified in the point cloud.

The computation of PH is accomplished from simplices or-

ganized into a simplicial complex. A simplex is a generalized

representation of a triangle into any number of dimensions. In

this case a 0-simplex represents a point, a 1-simplex is a line, a

2-simplex is a triangle, a 3-simplex is a tetrahedron, and so on.

The simplicial complex stores all simplices generated from the

point cloud. In the simplest terms PH proceeds by constructing

simplicial complexes at different ǫ distances (ǫmin to ǫmax)

to create a filtration of complexes. PH then records the ǫ
distances when topological features (holes, loops, and voids)

appear and disappear from the filtration. The ǫ distance when

a topological feature appears is called its birth and the ǫ

distance when that feature disappears is called its death. The

< birth, death > interval then defines the persistence interval

of the topological feature and can be represented in a number

of different ways, namely: barcodes, persistence diagrams,

persistence landscapes, and persistence images [6].

Unfortunately, the computation of persistent homology can

require significant memory resources [6]. This is due to the

size of the complex which grows exponentially based on the

number of point cloud vectors (n), the dimension of the point

cloud (d), the maximum dimension of features to compute

(dmax)1, and minimum/maximum ǫ distance to be observed

(which is generally a user defined range). This exponential

growth occurs with all of these parameters and characteristics

of the point cloud, consequentially growing quickly beyond

millions of simplices to store and process.

The resource requirements make computing PH on current

hardware infeasible for more than only a few thousand points

in R
3. Even when the complex can be constructed and

evaluated the runtime for the computation can take hours due

to memory access and processing. This limits the primary use

of PH to relatively small, static datasets, although efforts to

compute PH on large and streaming data are being pursued.

Several libraries are available to compute persistent homol-

ogy; some of the recent include Ripser [16], GUDHI [17],

and Eirene [18]. Ripser is a C++ library designed to compute

Vietoris–Rips (VR) complexes in a memory efficient manner.

GUDHI is a large C++ library for topological data analysis

supporting many options of (i) complex types, (ii) complex

reduction algorithms, and (iii) data analysis to support a larger

understanding of TDA. Eirene is a newer project built in Julia

that enables persistent homology computation and includes

several other valuable analysis tools.

All three tools suffer from similar limitations in maximum

data-set size as explored in Section VI. By limiting the

maximum epsilon, ǫmax, used to filter the complex along

with the maximum dimension, dmax, to identify topological

features in, some larger data-sets can be analyzed but still take

significant time to process.

In general, point clouds have different characteristics that

can cause settings on one dataset to not be applicable on

another. Typically persistent homology requires careful selec-

tion of the ǫmax parameter to control how large of a complex

is generated from the point cloud. This limitation leaves out

any features that are born, or die, after ǫmax is reached and

potentially discards valuable information in higher dimensions.

Computing the full PH for a large data set with high

dimensional features is very challenging for current tools. As

the upper bound on the range of ǫ values increase, more points

become connected forming both 1-dimensional and higher

dimensional simplices. This growth with higher dimensional

features requires additional simplices be evaluated during the

insertion and boundary reduction steps for PH. The scale of

growth of the complex for big data quickly grows beyond

1Most PH tools allow for the computation of the homology at a limited
range of dimensions to look for topological features.

limitations of system resources. Currently, PH computation

on big data is infeasible without some approximation or

predefined bounds of analysis.

III. RELATED WORK

Efforts to reduce the complexity and resource requirements

for computing PH on large point clouds include analysis

of (i) storage, (ii) processing, (iii) approximation, and (iv)

subsampling and data reduction optimizations. Storage of

complexes such as the Simplex Tree [19] use memory more

efficiently, leading to the successful computation of PH on

larger complexes. Processing optimizations, such as the twist

algorithm [20], clearing [21], and coreduction [22], have

significantly improved the boundary matrix reduction step,

leading to large performance increases in Ripser [16], GUDHI

[17], and Eirene [18]. Approximation of PH through simplicial

batch collapse has been studied by Dey et al, and implemented

in the SimBa library [23]. Since they are closely related to the

topic of this paper, additional details on studies to sample or

reduce the point cloud are discussed below.

With computational costs of PH limiting the use in larger

data-sets, a natural approach is to look at approximation of

the simplicial complex and persistence intervals. Two major

proposals exist: (i) manipulating the point cloud prior to

building the simplicial complex or (ii) reducing the simplicial

complex by removing non-critical simplices.

Subsampling [7], [10] and the effects of data reduction [8]

on PH have been studied and successfully used to locate large

topological features in a data set. Even when using random

sampling, these studies show remarkable success in locating

the large topological features in a large data set. Finally, the

application of random projection to reduce the dimensionality

of the original data set has been studied by [9], [11].

Strong collapses have provided approximation of larger

features in a point cloud by reducing the number of simplices

represented in the complex [24]. Cycles of the the shortest

length representing a generator of a hole are preserved, en-

abling identification of features in large data to be attained.

SimBa [23] uses simplicial batch collapse to subsample and

collapse points to nearby points. Once the data is reduced,

the VR-complex is built over the subsamples, providing an

approximation of the complex that PH can be computed over.

The resulting persistence intervals are approximations, but

have shown consistent identification of large features in high

dimensions with acceptable resources and runtime.

A similar approach of approximating the PH of big data

point clouds was studied by Chazal et al [7]. Data was sampled

from source point clouds and PH was computed on multiple

independent samplings. Moitra et al [8] introduced a more

targeted sampling approach by replacing the point cloud with

nanoclusters — centroids of clusters identified with the k-

means++ algorithm. Replacement of points in the point cloud

with centroids preserved large topological features and signif-

icantly reduced the resource requirements for computation.

Experimental results with the k-means++ algorithm for

replacement of the original point cloud with the computed

centroids preserves the general shape of the point cloud data,

even to 90% reduction of the original point cloud. Figure 1

shows this reduction property of k-means++ on a triangulated

mesh point cloud of a Camel. The reduced point cloud retains

the shape of the source data while thinning out dense regions

around the legs, neck, and head of the camel.

Performance of the k-means++ algorithm as a preprocessor

to PH shows promising results as well — in some cases as

much as 3-orders of magnitude faster than without prepro-

cessing [8]. The reduction in total vectors greatly decreases

the number of simplexes stored and also thins the dense areas

of the point cloud that have many connections beginning at

low epsilon values. The combination of reduction and thinning

provides significant results for approximating PH.

The issues with approximations of the simplicial complex

primarily arise from feature loss. SimBa [23] reduces the

initial complex to identify larger topological features within

reasonable resources, but smaller features that do not directly

contribute to identified topological features are not guaranteed

to be stored and cannot be recovered. For general PH this is

suitable, but smaller features for pattern detection and recog-

nition may need additional detail. Alternatively, any sampling

of data or clustering reduces the size of the input point

cloud which will remove 0-dimensional features (connected

components) and possibly higher dimensional features.

Recovery of lost features is not a priority of approximations

to the PH, as the main goal has been to identify large features

representing the homology groups of the point cloud. Recent

studies have found use for smaller features in identifying small

perturbations or differences between similar point clouds. In

particular, Bendich et al [13] uses brain artery data to classify

patients based on the small differences of the persistence

intervals observed between scans of different patients.

Finally, the error induced from approximating the PH could

completely mask the small differences between persistence

intervals. In big data where the true persistence intervals can

not be computed, the approximations may not give accurate re-

sults, in which case the analysis with TDA may not be viable.

Convergence on the true persistence interval should be the goal

of any approximation method to attempt to retrieve the most

accurate barcodes with the resources available. The approach

described in this paper builds a scalable approximation of

the PH with analysis of convergence to the true persistence

intervals present in big data.

IV. DATA REDUCTION AND PARTITIONING

This paper presents a method to apply both partitioning and

data reduction for the computation of PH. In particular, the

partitioning organizes a large point cloud of data into regional

partitions for computing PH. The partitioning is coupled with

a computation of PH on a data reduced representation of the

original point cloud to provide an approximation of the PH of

the original point cloud. The approach permits the computation

of PH on much larger point clouds than previously possible.

The remainder of this section will use the term “identify a

topological feature” to indicate that the PH computation will

most d-dimensional spatial partitioning approaches will work.

The partitioning should define no more than M partitions and

must place each point into a unique partition. More precisely,

let P̂ = {p | p ⊂ P} be a partitioning of P , then ∀p, q ∈ P̂ |
p 6= q, p ∩ q = ∅ and ∪

p∈P̂
p = P .

From this partitioning, the algorithm will then select a

single representative point from each partition to define a

new (reduced) point cloud. While any data point (actual or

representative) from each partition can serve this purpose, this

work will examine the specific use of the geometric center of

each partition, where the geometric center is the mean of each

dimension of all points in that partition. More precisely, let

P ′ be the set of geometric centers of the partitions P̂ , then if

pi ∈ P ′ is the centroid for partition p̂i ∈ P̂ then pi =
∑

q∈p̂i
q

||pi||
.

In the remainder of this paper, the term centroid will be used

to denote the geometric center of a partition.

The objective in this step is to discover a point cloud P ′ such

that the large topological features of P are also in P ′. This

desired similarity is necessary only for the larger topological

features (where larger is formally defined below); the smaller

topological features will be discovered and characterized by

their birth/death times during the regional PH computations

described in Section IV-B. In the remainder of this paper, the

following terms will be used without further definition:

• P̂ , the partitions,

• P ′, the centroids,

• ri, the distance from the partition centroid, P ′
i ∈ P ′, to

the most distant point in that partition, and

• rmax = max(ri), the maximum ri of all the partitions.

The use of the smaller point cloud P ′ to estimate the

PH of P will identify the larger topological features. In

particular let B be the boundary of points in the complex

circumscribing a d ≥ 2-dimensional topological feature and

let sB = max(distance(bi, bj))∀bi, bj ∈ B, then we define

the term “large topological feature” to be any feature with

sB > 2rmax. Informally, a large topological feature has a

diameter that cannot be contained within the largest partition

defined in P̂ . Any topological feature with a diameter smaller

than 2rmax may or may not be identified during this step. In

particular, the identification of the smaller topological feature

by the estimation of PH will depend specifically on whether

that feature lies between the boundaries of the partitions or

if it is wholly contained within a partition. Fortunately, as

described in Section IV-B, the regional computations of PH

on each partition will identify all smaller topological features.

Ideally the partitioning and data reduction steps described

above will cooperatively result in a centroid-based data set P ′

that is, for the large topological features, topologically similar

to that of P . However, this is not required. Furthermore, while

traditional uses of PH focus on large topological features,

in cases where the large features are insignificant [12], [13],

P ′ and its PH computation can be skipped. The regional PH

computations will compute the PH of the small features.

In the discussion above, partitioning and data reduction are

presented as a coupled process to extract smaller collections of

data vectors to be used in the computation of PH. However, it

is not necessarily that the geometric centers of the partitions

also form the points for the reduced data. This is done for

convenience of the exposition and to streamline the formal de-

velopment. Technically they can be performed independently

and there is nothing the prevents some form of partitioning

the data and independently using something such as random

selection [7] for the data reduction step.

B. Smaller Topological Feature Identification

Since the point cloud P ′ will identify the 2 < k < d dimen-

sional topological features containing a diameter di > 2rmax,

more work may be needed to identify topological features

with smaller diameters. This can be achieved by computing

PH at each partition. However since a feature can originate

near the boundary of a partition and extend outside of the

partition, it becomes necessary to include points beyond the

partition boundary so that the smaller features are all properly

identified. Thus, in order to properly identify these smaller

features, the PH computation must be performed with all

points from P that lie within a distance of ri+2rmax+ ǫmax

from the partition centroid P ′
i ∈ P ′. That is:

Theorem 1. All 2 < k < d dimensional topological features

containing a convex hull of diameter di < 2rmax in P can

be identified by performing a PH computation corresponding

to each partition pi ∈ P̂ such that the points included in the

PH include all the points in the partition plus any point in P
that lie within the hyper-sphere of radius ri + 2rmax + ǫmax

centered at the centroid for that partition.

The regional PH computations can all be performed in parallel.

Of course, if the total number of points contained in the

bounding radius defining the regional PH computation exceeds

M , then it may be necessary to recursively partition the points

of the regional space and iterate this algorithm to extract the

persistence intervals for that region.

C. Upscaling

Partitioning, as described in IV-A, generates a represen-

tative point cloud P ′ of an original point cloud P that is

topologically similar regarding large features. For each feature

identified through the PH of P ′, there exists a mapping

back to P that indicates the source points represented in

the approximated persistence. This reveals that any feature

approximated in P ′ is also a feature in P that can be mapped to

constituent points forming the true feature. By determining the

topological features in P ′, the constituent points can be further

analyzed to refine the < birth, death > interval in a subset of

P , removing data not contributing to the approximated feature

for faster computation. This process is called upscaling.

PH emits boundary information not typically examined dur-

ing the computation of persistence intervals. More precisely,

when loops in the data are computed in the boundary matrix

reduction, the boundary points forming a loop are also avail-

able if tracked through the reduction step. The boundary points

represent the critical path forming a loop for the corresponding

persistence interval. Examining the boundary of a persistence

interval can be used to extract that individual boundary’s points

for further identification of the feature.

In some cases a partitioning, P ′, may shift the dimension of

an identified topological feature (into either a higher or lower

dimension). Certain representative points of classifications

may end up coplanar in one dimension, causing reduction

of the original dimension of the topological feature. In other

cases, the representatives may create features in a higher

dimensions than in P , and cannot be rectified without utilizing

the mapping from P ′ back to P .

Upscaling of significant topological features identified in P ′

aids in recovering features classified in incorrect dimensions.

Regardless of the dimension an approximated feature of P ′

is initially identified in, the upscaling step recomputes the PH

over P , utilizing the constituent boundary points of the feature.

This step ignores the previous persistence interval calculated

with the approximation and will use points from P to produce

an accurate persistence interval, or multiple persistence inter-

vals describing the boundary. This also indicates when features

shift a dimension, either higher or lower, the upscaling step

will recompute the PH around that feature regardless of the

P ′ classifications of the approximated feature.

The upscaling of significant topological features can provide

significant improvements to the persistence intervals generated

by a point cloud regardless of the initial size of the data-

set. With a well-chosen partitioning algorithm the significant

topological features can be preserved and upscaled to produce

more accurate persistence intervals beyond the limits of current

tools for computing PH.

D. Upscaling Limits

There are limitations to the effectiveness of upscaling in the

context of the geometric structure of points within the point

cloud. More precisely, let B be the boundary of centroid points

around a topological feature and let C be the set of clusters

from which all bi ∈ B are originate. Then the upscaling step is

performed on all points in all members of C. Further let qmax

be the maximum radius for all the clusters in C (where the

radius is defines as the distance from the centroid any point

in C). Then,

Theorem 2. The upscaling step has a worst case error

approximation of the approximate < birth, death > interval

of a large topological feature to 2qmax.

Upscaling has the potential to reduce the error bounds for

the large topological features to zero. However, there are

geometric situations where this reduction is not complete. In

particular, consider a feature shaped as two intersecting n-

spheres (S0 and S1) with an opening between them of distance

d. Furthermore assume that there is a circumscribing path

around S0 and S1 such that the path can be connected at

distance d′ < d/2. Assume that the partitioning is such that

the opening between S0 and S1 is covered by two identical

spherical partitions (P0 and P1) of radius d/2 each centered at

the two closest boundary point where S0 and S1 intersect and

meeting at the center of the opening between S0 and S1. Then

the upscaling step will stop with a < birth, death > interval

for S0 and S1 that is bounded by a birth distance ≥ d/2
even though there should be a single persistence interval for

a feature including both S0 and S1 with a birth value at d′.

E. Merging Duplicate Topological Features

It is possible that a the PH computation on P ′ and the

regional partitions identify the same feature. Furthermore,

since the centroid based PH is approximate, it may not be

possible to filter by an exact match of the boundary to the

regional results. Thus, an approximately equal to relation will

be used to remove duplicates.

In addition, it is possible that two different regional PH

computations may locate the same small feature (if the feature

is contained within an intersecting region between two more

more regional PH computations). Fortunately, any duplication

of features found by different regional PH computations can

be filtered out by defining a total order on all points in P .

With this order, it is possible to restrict the reporting of a

topological feature by a regional computation only when the

lowest ordered point on the boundary of the identified feature

lies within the original partition for which the regional PH

computation is performed. This will remove these duplicates.

V. IMPLEMENTATION STRATEGY AND TECHNIQUES

The implementation of the described method can become

complex in order to correctly identify and map persistence

intervals between several separate pipelines, specifically when

dealing with regional PH. To account for this complexity, a

preliminary technique was evaluated to focus on: (i) upscal-

ing of connected components, (ii) upscaling of independent

boundary features, and (iii) upscaling of individual centroids.

Each function is independent of the others and provides

opportunities for parallelism to increase performance beyond

the experimental results in this study.

The simplest function is to compute the connected compo-

nents of the original data-set, P . With a low dmax and ǫ the

persistence intervals can be output up to M points, where M is

primarily dependent on available memory resources. In most

cases, the original data can be computed at dmax = 0 for

millions of points. This processing on P will give the true

1-dimensional topological features (connected components)

within the data-set.

Computing the PH on the individual partitions will iden-

tify additional topological features within a centroid (where

birth < death < rmax) that were missed during the first

pass. For examining the additional features in a partition,

only features of dimension 2 or higher are considered, as the

connected components are computed individually.

The constituent boundary points provide a mapping of large

features identified in the first pass back to their initial cen-

troids. Each centroid is the representative point of a respective

partition of the original point cloud, and can be upscaled to

provide more accurate persistence intervals of large features.

Each of these methods provides additional features that

can be merged into a single set of persistence intervals:

the true 1-dimensional features cover connected components

of the complex; the upscaled centroids will find smaller,

higher dimensional features embedded in the reduction; the

upscaling of the large feature boundary points will refine

persistence intervals found in the approximated PH. During

upscaling three sets of persistence intervals are collected:

the connected components, the upscaled features, and the

upscaled centroids. The connected components represent the

complete set of 0-dimensional features identified in the point

cloud. The upscaled features contain subsections of the point

cloud with identified features through approximation, and only

are concerned with higher dimensional (> 0) features. The

upscaled centroids handles the remainder of the centroids not

included in the other boundaries to compute local features

smaller than rmax. All of these data-sets are independent and

merging does not require any special mapping or comparison

of the data.

VI. EXPERIMENTAL RESULTS

This section evaluates the described approach to data re-

duction through clustering alongside upscaling to refine the

persistence intervals. The experiments performed analyze both

partitioning and upscaling as a means to minimize the induced

error in previous sampling experiments performed by Moitra et

al [8]. Each test requires multiple steps: partitioning the data to

generate clusters and indexes for the mappings, computing PH

on the reduced point cloud, and upscaling the approximated

results to refine error in < birth, death > intervals. The

results are analyzed to characterize the effects of clustering

on the PH and the degree of rectification upscaling yields in

producing more accurate < birth, death > intervals.

In all cases k-means++ was used to cluster the original data-

set. Previous studies show that partitioning with k-means++

preserves the relative shape of data regardless of varying

density throughout the point cloud [8]. For the upscaling

approach described the identification of large features in the

initial processing of PH is vital to the accuracy of the output

persistence intervals. Enough centroids must be used when

initially processing the data to properly identify large features.

Centroid counts are used throughout the experimental results

to describe the size of the reduced data set in the context of

upscaling. The processing also included output of centroids

for each identified cluster along with index labels to map

the original points to their constituent centroids. Once data

was preprocessed and classified with k-means++, the centroids

were used for PH computation.

PH computation requirements for upscaling include output

of the boundary points forming significant features in the

point cloud. Eirene was used for this purpose, as other PH

tools do not track and resolve the original points contributing

to topological features. Eirene outputs the boundary points

forming significant features as indexed sets referring to each

original point passed to the library; in our case, the index

of the centroid is identified for each boundary. The boundary

centroids were recorded to file for upscaling along with the

persistence intervals for comparison and analysis.

Upscaling is executed as a post-processor, requiring the

original data, the centroids and labels, and the boundary

centroids contributing to significant features. The upscaling

function can use any PH library, as boundary extraction from

the PH boundary matrix is not immediately necessary. For

consistency in application requirements Eirene was used for

PH computation steps in the approach.

All experiments were performed on an Intel(R) Xeon(TM)

E5-2670 CPU @ 2.60GHz with 64GB of RAM and an

additional 64GB of swap. The Scikit-Learn implementation of

k-means++ was used to cluster the data, outputting centroids

and labels. The Eirene library, executed in Julia 1.1.0, was

used for computing the PH of the reduced data and subse-

quently used for upscaling. Both GUDHI and Ripser were

included to collect persistence intervals at maximum vector

sizes for comparison. All results were organized and stored

for post-processing analysis of persistence intervals, cluster

characteristics, and upscaling accuracy.

Analysis of the experiments involved computing the con-

tinuous heat-based kernel metric [25] to compare output per-

sistence intervals from different partitions of the point cloud.

For comparing results between reduced and upscaled data the

continuous heat-based kernel provides a multi-scale kernel

designed for topological machine learning, giving a stable

metric for evaluating persistence diagrams in comparison. The

continuous heat-based kernel in this experiment is used to give

a general degree of difference between compared persistence

intervals.

The upscaling step was first evaluated to demonstrate the

effectiveness of data reduction through partitioning coupled

with upscaling. Point clouds were chosen where the source

data could be computed with existing PH tools. Evaluation

of the source data provides a baseline, or ground truth, to

compare all partitioned and upscaled data against. Persistence

intervals that match the ground truth will have continuous

heat metric of 0. The implemented approach is expected to

have some error due to features that are not wholly contained

within a partition, but should have a significant impact to

the continuous heat metric when compared to the persistence

intervals of the reduced data.

To explore the effectiveness of upscaling the Stanford

Dragon and TwoCircles point clouds were used. The Stanford

Dragon data-set has 2, 000 vectors in R3 around the surface

of a 3-dimensional dragon model. Study of the Dragon point

cloud has been found in several topology and machine learning

applications, specifically around object recognition and differ-

entiation [6]. The TwoCircles data-set is a 2, 000 vector point

cloud of two independent circles in R2. The TwoCircles data-

set provides a synthetic data-set for understanding the impact

of low dimensional features (loops) on the upscaling approach.

PH can be computed at full scale for both of these point clouds,

enabling comparison to the ground truth persistence intervals.

Performance characteristics for the upscaling technique are

shown in Table I. Individual times for partitioning, approx-

Dataset P Persistence Partitions Partitioning P
′ Persistence Upscale Total

Name Time (s) Time (s) Time (s) Time (s) Time (s)

Dragon 208.19 500 1.72 0.40 155.25 157.37
twoCircles 122.56 500 1.25 0.62 61.06 62.93
Lion (Max 1500) 508.20 500 4.10 3.52 119.84 127.44
Camel (Max 1500) 178.68 500 24.44 1.68 80.49 106.61
Circles (Max 150) 1740.78 100 0.61 5.00 77.75 83.36

TABLE I
PERFORMANCE OF THE EXPERIMENT FOR EACH EVALUATED DATA-SET.

Reduced Reduced Heat Reduced Upscaled Heat Upscaled
Size Kernel Distance Betti Count Kernel Distance Betti Count

Stanford Dragon 100 8271.51 150 1680.70 2301
250 7942.82 389 909.56 2146
500 6804.43 783 6688.97 2047
750 5631.02 1146 2762.19 2020

1000 4596.11 1509 2791.65 2007
1250 3566.31 1833 2814.04 2004
1500 2814.87 2145 2820.00 2001
2000 0 2701 NA NA

TwoCircles 100 3575.62 110 DNF DNF
250 3192.58 272 3082.47 2257
500 2587.92 540 2015.35 2021
750 1985.96 804 DNF DNF

TABLE II
DIFFERENCES IN THE PERSISTENT DIAGRAMS AFTER REDUCTION AND UPSCALING, AS COMPARED TO THE KNOWN PERSISTENCE INTERVALS FOR THE

FULL SCALE DATA-SET. (DNF: DID NOT FINISH)

imated persistence on the reduced data, and upscaling are

shown separately. The performance increase from partitioning

and upscaling provides a considerable argument for processing

the PH of big data. In the cases of the data sets explored

later (Circles, Lion, and Camel), the maximum point cloud

is limited by experiments that did not finish with current PH

tools on the available systems. The time for comparison in

these cases is the time of the maximum computable PH.

Performance gives an initial indication that data reduction

and partitioning combined with upscaling brings faster topo-

logical feature identification, and clearly reduces the resource

requirements for computing topology on large data sets. The

described technique also needs to correctly identify features

in point clouds and improve on the approximated persistence.

Optimal results for upscaling the approximated topological

features requires the partitioning of data to preserve the

significant topological features in the original data-set, P .

Several different partitions were examined for each data-set

to observe optimal upscaling attempts at different reduction

levels.

Experimental results for the Stanford Dragon and Circles

data-set are shown in Table II. Several interesting results can

be found for both data-sets. In the Stanford Dragon data-

set, lower reductions such as 100 and 250 points with k-

means++ provided results better than all others in terms of

the continuous heat metric. This indicates that a low number

of clusters preserves the topology of the source data well, and

can be upscaled with marginal error induced to the persistence

diagram compared to reduction alone. An interesting case is

also found in the TwoCircles data-set.

The results from the first experiment show that the imple-

mented upscaling method does reduce the induced error from

partitioning when the partitioning preserves the underlying

topological structure of the point cloud. There are still lim-

itations to the approach, and some minor error will still exist,

but upscaling does refine the topological features found from

an approximated PH in the partitioned space, P ′. To examine

the limitations of this refinement several other data-sets beyond

current PH tools were evaluated.

While the approach still remains approximate, the refine-

ment of < birth, death > intervals and identification of small

topological features provides additional insight not currently

available when examining PH. Circles is a generated data-set

with 2-dimensional circles embedded in R10. There are 1500
vectors in the Circles data-set, permitting current TDA tools

to compute the ground truth < birth, death > intervals. The

dimensionality of the Circles data-set is one of the primary

reasons it was chosen, as current tools do not scale well in

higher dimensions. The Lion and Camel data-sets are both

from the UCI Machine Learning repository and describe the

boundaries of their respective models in R
3 [26]. The Lion

model has 4, 999 vectors, making it just on the boundary of

being evaluated with current tools. The Camel data-set has

26K points, requiring significantly more memory to build the

complex and extract the persistence intervals.

Ground truths can not be utilized with the Circles, Lion,

and Camel data-sets due to the number of simplices generated

from the original point cloud is beyond limitations of current

persistent homology tools. For this reason, the upscaled persis-

tence intervals can not be quantitatively compared to the actual

persistence intervals. Comparing the upscaled persistence in-

tervals to the maximum computable reduction for each of these

data sets provides uncertain results, as the upscaled persistence

represents the entire data set while the reduced data-set is only

0.0 0.2 0.4 0.6 0.8 1.0
Time

0

100

200

300

400

500

600

700

In
de

x

500 Vector Barcodes

0.0 0.2 0.4 0.6 0.8 1.0
Time

500

750

1000

1250

1500

1750

2000

2250

In
de

x

1500 Vectors (Max PH) Barcodes

0.0 0.2 0.4 0.6 0.8 1.0
Time

4400

4600

4800

5000

5200

5400

5600

In
de

x

Upscaled Barcodes

Fig. 2. Refinement of the Lion persistence intervals shown through an original partitioning, a maximum partitioning based on PH limitations, and an upscaled
set of intervals for the full data-set. The green lines represent B2 barcodes, the blue B1, and the red B0; B0 persistence intervals shorter than 0.1 were
filtered to provide a clearer picture of the higher dimensional topological features.

looking at a partitioned space, P ′.

Because a metric can not be used in these cases to indicate

refinement of data reduction through partitioning and upscal-

ing, persistence images are used to give a general idea of

each of the homology groups identified in the point cloud.

Figure 3 shows the persistence images for the Lion data-set at

original reduction level, maximum point reduction level, and

after upscaling. Each subset is divided into the H0, H1, and

H2 to show the impact of upscaling on each topological group.

The Lion persistence images were chosen because they

display the refinement of the topological features identified in

P ′, of 500 vectors, that align more closely with the maximum

point reduction level, 1500 vectors. A similar conclusion can

be drawn from the barcodes for the same Lion results in Figure

2. At all 3 dimensions, the features present in the persistence

intervals of the reduced data are significantly different than

the maximum point reduction and the upscaled features. In

the persistence images of Figure 3, the reduced persistence

in H0 is high, reduced persistence in H1 is high and to the

right, and reduced in persistence H2 is slightly to the right. The

similarity between the upscaled and maximum point reduction

data is much closer, indicating the features present in both

point clouds are roughly equivalent. Analysis with the full

point cloud would have more dense regions in H0 and H1 due

to the small features removed during the reduction step, thus

the radius of upscaled persistence diagrams is much smaller.

VII. SHORTCOMINGS OF UPSCALING

The upscaling approach described in this paper is straight-

forward and requires little effort to understand and implement.

Less obvious nuances, such as loss of topological features

due to partitioning, are not handled through this experimen-

tal simplistic approach. In general there are several factors

that can significantly affect the topological features identified

during the initial approximation phase that determine the

effectiveness of upscaling. The partitioning algorithm used

for data reduction needs to preserve the topological features

present in the data for upscaling to be viable. The number of

points classified to a single cluster can also shift the results

of upscaling, or render the upscaling attempt useless due to

the number of points classified together. Finally, changes to

features are not immediately addressed for all cases described

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Up
sc

al
ed

 P
H

Lim
ita

tio
n

Re
du

ce
d

 R
ed

uc
ed

Lion Persistence Images
H0 H1 H2

Fig. 3. Persistence images for the Lion data-set. Columns show the homology
groups for each evaluated set of persistence intervals. For rows, Reduced is
the original reduction of the data; PH Limitation Reduced is the max vector
size PH can be computed over with current tools; Upscaled is the generated
persistence intervals after upscaling the reduced data.

in Sections IV-B. This section describes in detail the known

shortcomings and suggestions for improvement of upscaling

through several optimizations.

Selection of a correct initial partitioning algorithm to pre-

serve significant topological features is not inherently obvious,

though can be adjusted for differing point clouds manually.

While the experiments described in this paper focus on the

k-means++ algorithm to generate centroids and associate the

original point cloud to the partitioned point cloud, other

partitioners may provide better results in certain situations.

Even with a well-chosen partitioning algorithm, the significant

topological features in the source point cloud can be lost if too

few partitions are identified.

To account for the consequential effect initial data reduction

has on upscaling the approximated persistence intervals a

multi-partitioning approach that samples several data reduction

levels and only upscales significant features (i.e., d > 0) may

identify additional features lost when only examining the point

cloud at a single reduction level. With multiple classifications

of the point cloud contributing to the realized features for

upscaling, both large and small features could be identified

and upscaled simultaneously, providing a more refined result.

Upscaling does provide computation of PH beyond the

current limits of TDA libraries, but is still limited by system

resources in all cases. If an extremely large data set is used,

say 100, 000 vectors, and classified into 100 centroids each

centroid will contain somewhere around 1, 000 points. Persis-

tent homology of the classified points may not be accessible,

in which case the persistence interval is thrown out. To account

for larger data sets and unbalanced partitions of the original

point cloud, an iterative approach may be used to compute PH

up to the system resource limitations. If the centroid of 1, 000
points can not be computed, the data would be reduced again

and evaluated as another upscaling step.

Iterative upscaling could provide a mechanism for automat-

ically scaling to the system resources based on the complex-

ity of the point cloud. Examining the persistence intervals

at different vector sizes and epsilon values could identify

additional features not immediately recognized through parti-

tioning. Iterations could also track boundaries and constituent

points beyond their internal upscaling process, joining multiple

parallel efforts to refine the persistence intervals that merge

into a single, more complete output. The design of iterative

upscaling would utilize many of the observations detailed in

upscaling and address the issues of feature loss and parameter

selection when analyzing unknown data-sets.

VIII. CONCLUSIONS

Data reduction and data partitioning have many benefits in

analysis of big data that extend beyond measure. These topics

have been studied extensively in TDA to provide more efficient

ways to identify topological features within a point cloud,

often using PH. Accelerating the performance and reducing

the resource requirements for computing PH is necessary to

enable automation and extension of topology into machine

learning and the future of data analysis. The method presented

in this paper extends previous study of partitioning for PH

by introducing an upscaling process that approximates and

refines persistence intervals in an efficient and robust manner.

Experimental results with the primary features of upscaling

show the process can greatly improve the identified persistence

intervals in known point clouds, and can extend beyond current

tools for approximating persistence intervals of big data.

REFERENCES

[1] R. Ghrist, Elementary Applied Topology. Createspace, 2014.
[2] F. Chazal and B. Michel, “An introduction to topological data analysis:

fundamental and practical aspects for data scientists,” ArXiv e-prints,
Oct. 2017.

[3] R. Ghrist, “Barcodes: The persistent topology of data,” Bulletin of the

American Mathematical Society, vol. 45, no. 1, pp. 61–75, 2008.
[4] P. Y. Lum, G. Singh, A. Lehman, T. Ishkanov, M. Vejdemo-Johansson,

M. Alagappan, J. Carlsson, and G. Carlsson, “Extracting insights from
the shape of complex data using topology,” Scientific Reports, vol. 3,
Feb. 2013.

[5] G. Singh, F. Memoli, and G. Carlsson, “Topological methods for the
analysis of high dimensional data sets and 3D object recognition,” in
Eurographics Symposium on Point-Based Graphics, M. Botsch, R. Pa-
jarola, B. Chen, and M. Zwicker, Eds. The Eurographics Association,
2007.

[6] N. Otter, M. A. Porter, U. Tillmann, P. Grindrod, and H. A. Harrington,
“A roadmap for the computation of persistent homology,” EPJ Data

Science, vol. 6, no. 1, Aug. 2017.
[7] F. Chazal, B. T. Fasy, F. Lecci, B. Michel, A. Rinaldo, and

L. Wasserman, “Subsampling methods for persistent homology,” in
International Conference on Machine Learning, ser. ICML 2015,
Lille, France, Jul. 2015. [Online]. Available: https://hal.archives-
ouvertes.fr/hal-01073073

[8] A. Moitra, N. Malott, and P. A. Wilsey, “Cluster-based data reduction for
persistent homology,” in IEEE International Conference on Big Data,
Dec. 2018, pp. 327–334.

[9] D. R. Sheehy, “The persistent homology of distance functions under
random projection,” in Proceedings of the Thirtieth Annual Symposium

on Computational Geometry, ser. SOCG’14. New York, NY, USA:
ACM, 2014, pp. 328–334.

[10] V. de Silva and G. Carlsson, “Topological estimation using witness
complexes,” in Eurographics Symposium on Point-Based Graphics, ser.
SPBG ’04, M. Gross, H. Pfister, M. Alexa, and S. Rusinkiewicz, Eds.
The Eurographics Association, 2004.

[11] K. N. Ramamurthy, K. R. Varshney, and J. J. Thiagarajan, “Computing
persistent homology under random projection,” in 2014 IEEE Workshop

on Statistical Signal Processing (SSP), Jun. 2014, pp. 105–108.
[12] H. Adams, T. Emerson, M. Kirby, R. Neville, C. Peterson, P. Shipman,

S. Chepushtanova, E. Hanson, F. Motta, and L. Ziegelmeier, “Persistence
images: A stable vector representation of persistent homology,” Journal

of Machine Learning Research, vol. 18, no. 1, pp. 218–252, Jan. 2017.
[Online]. Available: http://dl.acm.org/citation.cfm?id=3122009.3122017

[13] P. Bendich, J. S. Marron, E. Miller, A. Pieloch, and S. Skwerer,
“Persistent homology analysis of brain artery trees,” The Annals of

Applied Statistics, vol. 10, no. 1, pp. 198–218, Mar. 2016.
[14] G. Carlsson, “Topology and data,” Bulletin of the American Mathemat-

ical Society, vol. 46, no. 3, pp. 255–308, Apr. 2009.
[15] H. Edelsbrunner and J. Harer, Computational Topology, An Introduction.

American Mathematical Society, 2010.
[16] U. Bauer. (2019) Ripser. The Technical University of Munich. [Online].

Available: http://www.cs.umd.edu/ mount/ANN/
[17] C. Maria, J.-D. Boissonnat, M. Glisse, and M. Yvinec, “The

gudhi library: Simplicial complexes and persistent homology,” INRA,
Tech. Rep. RR-8548, 2014. [Online]. Available: https://hal.inria.fr/hal-
01005601v2

[18] G. Henselman. (2019) Eirene: julia library for homological persistence.
[Online]. Available: https://github.com/Eetion/Eirene.jl

[19] J.-D. Boissonnat and C. Maria, “The simplex tree: An efficient data
structure for general simplicial complexes,” Algorithmica, vol. 70, no. 3,
pp. 406–427, Nov. 2014.

[20] C. Chen and M. Kerber, “Persistent homology computation with a twist,”
in Proceedings 27th European Workshop on Computational Geometry

(EuroCG’11), 2011, pp. 197–200.
[21] U. Bauer, M. Kerber, and J. Reininghaus, “Clear and compress: Com-

puting persistent homology in chunks,” in Topological Methods in Data

Analysis and Visualization III. Springer International Publishing, 2014,
pp. 103–117.

[22] M. Mrozek and B. Batko, “Coreduction homology algorithm,” Discrete

& Computational Geometry, vol. 41, no. 1, pp. 96–118, Jan. 2009.
[23] T. K. Dey, D. Shi, and Y. Wang, “Simba: An efficient tool for approx-

imating rips-filtration persistence via simplicial batch-collapse,” 24th

Annual European Symposium on Algorithms (ESA 2016), 2016.
[24] J. A. Barmak and E. G. Minian, “Strong homotopy types, nerves and

collapses,” Discrete & Computational Geometry, vol. 47, no. 2, pp. 301–
328, Mar. 2012.

[25] J. Reininghaus, S. Huber, U. Bauer, and R. Kwitt, “A stable multi-scale
kernel for topological machine learning,” in 2015 IEEE Conference on

Computer Vision and Pattern Recognition, ser. CVPR, Jun. 2015, pp.
4741–4748.

[26] R. W. Sumner and J. Popovic, “Mesh data from deformation
transfer for triangle meshes,” 2004. [Online]. Available:
https://people.csail.mit.edu/sumner/research/deftransfer/data.html

