Fast Computation of Persistent Homology with
Data Reduction and Data Partitioning

Nicholas O. Malott and Philip A. Wilsey
Dept. of EECS, University of Cincinnati, Cincinnati, OH 45221, USA
Email: malottno@mail.uc.edu, philip.wilsey @uc.edu

Abstract—Persistent homology is a method of data analysis that
is based in the mathematical field of topology. Unfortunately, the
run-time and memory complexities associated with computing
persistent homology inhibit general use for the analysis of big
data. For example, the best tools currently available to compute
persistent homology can process only a few thousand data points
in R>. Several studies have proposed using sampling or data
reduction methods to attack this limit. While these approaches
enable the computation of persistent homology on much larger
data sets, the methods are approximate. Furthermore, while they
largely preserve the results of large topological features, they
generally miss reporting information about the small topological
features that are present in the data set. While this abstraction
is useful in many cases, there are data analysis needs where the
smaller features are also significant (e.g., brain artery analysis).
This paper explores a combination of data reduction and data
partitioning to compute persistent homology on big data that
enables the identification of both large and small topological
features from the input data set. To reduce the approximation
errors that typically accompany data reduction for persistent
homology, the described method also includes a mechanism
of ‘“upscaling” the data circumscribing the large topological
features that are computed from the sampled data. The designed
experimental method provides significant results for improving
the scale at which persistent homology can be performed.

Index Terms—topological data analysis; persistent homology;
data reduction; data partitioning; data mining; unsupervised
learning

I. INTRODUCTION

We live in the age of data. Everyday, massive volumes of
data are analyzed to extract meaningful information. This task
is generally referred to as data analysis or data mining. Data
analysis has grown over the past few decades to be a vast and
interdisciplinary field of study encompassing statistics, math-
ematics, and computer science. Numerous methods have been
developed to analyze large and complex data sets to extract
useful knowledge. An emerging method of data analysis is
based in the mathematical field of topology. Topology is the
study of the properties of space that are preserved under certain
types of deformations [1]. Over the last 15 years, substantial
efforts have been put together to use topological methods
for solving problems related to large and complicated data
sets. This gave birth to a field of study called Topological
Data Analysis (TDA) [2]-[6]. The fundamental idea is that
topological methods can be used to study patterns or shapes
that are preserved despite the presence of noise and variations

Support for this work was provided in part by the National Science
Foundation under grants ACI-1440420 and IIS-1909096.

in the data. The ability of TDA to identify shapes under
certain deformations renders it immune to noise and leads
to discovering properties of data that are not discernible by
conventional methods of data analysis [3], [4].

The computation of Persistent Homology (PH) is one of the
principal components in TDA. Unfortunately, the computation
of PH is exponential in both time and space [6]. The result is
that TDA cannot be directly applied to point clouds containing
more than a few thousand data points in R3. One direction that
has been explored to address this limitation is the application
of data reduction or dimensional reduction to enable the
computation of PH on large data sets [7]-[11]. While these
methods enable the computation of PH on data sets that are
3-4 orders of magnitude larger, this enablement comes at
a cost. In particular, the reduction of the data disables the
identification of the smaller topological features in the data
set as well as providing only an approximation of the specific
boundaries surrounding the larger topological features. While
the approximation of the large features is often sufficient
for some analysis requirements, there are application areas
for which the loss of the smaller topological features is a
significant problem [12], [13].

This paper provides a solution to computing PH on large
data sets while enabling the identification of both large and
small topological features in the data. The solution uses k-
means++ clustering to organize the data into partitions (the
clusters). The clusters and their centroids are then inde-
pendently analyzed using PH to locate the large and small
topological features in the entire data set. More specifically,
the data is first organized into k clusters; each cluster is
then independently analyzed with a PH computation (locating
the small topological features); the cluster centroids are also
analyzed with a PH computation (locating the large topological
features); and finally the results are merged together with
duplicate results filtered. In addition, a data upscaling step can
also be performed on the large topological features identified
from the cluster centoid data to further refine their boundary
computation. The actual algorithm is a slightly more complex
than this and is more fully described in Section IV.

Computing persistent homology using partitioning, data
reduction, and upscaling enables the application of PH to
large data sets; it provides accurate identification of the large
and small topological features in the data and accelerates the
computation of PH by several orders of magnitude. This paper
includes a systematic experimental analysis of the approach

and demonstrates the accuracy of the computation against
existing PH libraries on smaller data sets that are analyzable
without reduction. Experiments are also performed with large
data sets that cannot be fully processed by existing tools. The
results show that the approach of this paper provides accurate
computations of the PH output and that it does so with run-
times that are generally 3 orders of magnitude faster than
performing the PH on the entire data set.

The remainder of this paper is organized as follows. Section
II presents some of the background on persistent homology.
Section III summarizes the related work in this area. Section
IV provides the theoretical overview of the application of
partitioning and data reduction to enable and accelerate the
computation of persistent homology on big data. Section V
describes the implementation and limitations of the general
solution outlined in Section IV that is used in the experimental
testing of this paper. These approximations to the general
solution are required to use existing tools for testing instead
of rebuilding the entire PH infrastructure needed to evaluate
this approach. Section VI presents the experimental results
on several different data sets. Section VII discusses some
shortcomings of the upscaling step. Finally, we conclude the
paper with some remarks in Section VIIIL.

II. BACKGROUND

This section provides a brief overview of persistent homol-
ogy, its computation, and the current tools for computing the
PH of a point cloud. Brief statements on the computational
growth of computing PH are also given. A more detailed
presentation on the fundamentals of topology are available
[1] along with TDA [14], [15]. A tutorial article by Chazal
is available here [2]. Otter et al provide a general review of
the current approaches and solutions to computing PH [6].

TDA, and specifically PH, supports data analysis by identi-
fying the topological features embedded in point clouds over
different spatial resolutions. The persistence of a topological
feature is observed and measured across a range of connectiv-
ity distances (called e distances). Topological features identi-
fied that persist over larger intervals are generally considered
significant, as they represent topological groups that exist at
many different spatial resolutions. Shorter intervals have often
been regarded as noise in the aspect of homology, but encode
additional information about the connectedness of simplices
identified in the point cloud.

The computation of PH is accomplished from simplices or-
ganized into a simplicial complex. A simplex is a generalized
representation of a triangle into any number of dimensions. In
this case a 0-simplex represents a point, a 1-simplex is a line, a
2-simplex is a triangle, a 3-simplex is a tetrahedron, and so on.
The simplicial complex stores all simplices generated from the
point cloud. In the simplest terms PH proceeds by constructing
simplicial complexes at different € distances (€,,in tO €maz)
to create a filtration of complexes. PH then records the ¢
distances when topological features (holes, loops, and voids)
appear and disappear from the filtration. The e distance when
a topological feature appears is called its birth and the ¢

distance when that feature disappears is called its death. The
< birth, death > interval then defines the persistence interval
of the topological feature and can be represented in a number
of different ways, namely: barcodes, persistence diagrams,
persistence landscapes, and persistence images [6].

Unfortunately, the computation of persistent homology can
require significant memory resources [6]. This is due to the
size of the complex which grows exponentially based on the
number of point cloud vectors (n), the dimension of the point
cloud (d), the maximum dimension of features to compute
(dmax)', and minimum/maximum e distance to be observed
(which is generally a user defined range). This exponential
growth occurs with all of these parameters and characteristics
of the point cloud, consequentially growing quickly beyond
millions of simplices to store and process.

The resource requirements make computing PH on current
hardware infeasible for more than only a few thousand points
in R3. Even when the complex can be constructed and
evaluated the runtime for the computation can take hours due
to memory access and processing. This limits the primary use
of PH to relatively small, static datasets, although efforts to
compute PH on large and streaming data are being pursued.

Several libraries are available to compute persistent homol-
ogy; some of the recent include Ripser [16], GUDHI [17],
and Eirene [18]. Ripser is a C++ library designed to compute
Vietoris—Rips (VR) complexes in a memory efficient manner.
GUDHI is a large C++ library for topological data analysis
supporting many options of (i) complex types, (ii) complex
reduction algorithms, and (iii) data analysis to support a larger
understanding of TDA. Eirene is a newer project built in Julia
that enables persistent homology computation and includes
several other valuable analysis tools.

All three tools suffer from similar limitations in maximum
data-set size as explored in Section VI. By limiting the
maximum epsilon, €,,,,, used to filter the complex along
with the maximum dimension, d,,.,, to identify topological
features in, some larger data-sets can be analyzed but still take
significant time to process.

In general, point clouds have different characteristics that
can cause settings on one dataset to not be applicable on
another. Typically persistent homology requires careful selec-
tion of the €,,,, parameter to control how large of a complex
is generated from the point cloud. This limitation leaves out
any features that are born, or die, after €,,,, is reached and
potentially discards valuable information in higher dimensions.

Computing the full PH for a large data set with high
dimensional features is very challenging for current tools. As
the upper bound on the range of e values increase, more points
become connected forming both 1-dimensional and higher
dimensional simplices. This growth with higher dimensional
features requires additional simplices be evaluated during the
insertion and boundary reduction steps for PH. The scale of
growth of the complex for big data quickly grows beyond

'Most PH tools allow for the computation of the homology at a limited
range of dimensions to look for topological features.

limitations of system resources. Currently, PH computation
on big data is infeasible without some approximation or
predefined bounds of analysis.

III. RELATED WORK

Efforts to reduce the complexity and resource requirements
for computing PH on large point clouds include analysis
of (i) storage, (ii) processing, (iii) approximation, and (iv)
subsampling and data reduction optimizations. Storage of
complexes such as the Simplex Tree [19] use memory more
efficiently, leading to the successful computation of PH on
larger complexes. Processing optimizations, such as the twist
algorithm [20], clearing [21], and coreduction [22], have
significantly improved the boundary matrix reduction step,
leading to large performance increases in Ripser [16], GUDHI
[17], and Eirene [18]. Approximation of PH through simplicial
batch collapse has been studied by Dey et al, and implemented
in the SimBa library [23]. Since they are closely related to the
topic of this paper, additional details on studies to sample or
reduce the point cloud are discussed below.

With computational costs of PH limiting the use in larger
data-sets, a natural approach is to look at approximation of
the simplicial complex and persistence intervals. Two major
proposals exist: (i) manipulating the point cloud prior to
building the simplicial complex or (ii) reducing the simplicial
complex by removing non-critical simplices.

Subsampling [7], [10] and the effects of data reduction [§]
on PH have been studied and successfully used to locate large
topological features in a data set. Even when using random
sampling, these studies show remarkable success in locating
the large topological features in a large data set. Finally, the
application of random projection to reduce the dimensionality
of the original data set has been studied by [9], [11].

Strong collapses have provided approximation of larger
features in a point cloud by reducing the number of simplices
represented in the complex [24]. Cycles of the the shortest
length representing a generator of a hole are preserved, en-
abling identification of features in large data to be attained.
SimBa [23] uses simplicial batch collapse to subsample and
collapse points to nearby points. Once the data is reduced,
the VR-complex is built over the subsamples, providing an
approximation of the complex that PH can be computed over.
The resulting persistence intervals are approximations, but
have shown consistent identification of large features in high
dimensions with acceptable resources and runtime.

A similar approach of approximating the PH of big data
point clouds was studied by Chazal er al [7]. Data was sampled
from source point clouds and PH was computed on multiple
independent samplings. Moitra et al [8] introduced a more
targeted sampling approach by replacing the point cloud with
nanoclusters — centroids of clusters identified with the k-
means++ algorithm. Replacement of points in the point cloud
with centroids preserved large topological features and signif-
icantly reduced the resource requirements for computation.

Experimental results with the k-means++ algorithm for
replacement of the original point cloud with the computed

centroids preserves the general shape of the point cloud data,
even to 90% reduction of the original point cloud. Figure 1
shows this reduction property of k-means++ on a triangulated
mesh point cloud of a Camel. The reduced point cloud retains
the shape of the source data while thinning out dense regions
around the legs, neck, and head of the camel.

Performance of the k-means++ algorithm as a preprocessor
to PH shows promising results as well — in some cases as
much as 3-orders of magnitude faster than without prepro-
cessing [8]. The reduction in total vectors greatly decreases
the number of simplexes stored and also thins the dense areas
of the point cloud that have many connections beginning at
low epsilon values. The combination of reduction and thinning
provides significant results for approximating PH.

The issues with approximations of the simplicial complex
primarily arise from feature loss. SimBa [23] reduces the
initial complex to identify larger topological features within
reasonable resources, but smaller features that do not directly
contribute to identified topological features are not guaranteed
to be stored and cannot be recovered. For general PH this is
suitable, but smaller features for pattern detection and recog-
nition may need additional detail. Alternatively, any sampling
of data or clustering reduces the size of the input point
cloud which will remove O-dimensional features (connected
components) and possibly higher dimensional features.

Recovery of lost features is not a priority of approximations
to the PH, as the main goal has been to identify large features
representing the homology groups of the point cloud. Recent
studies have found use for smaller features in identifying small
perturbations or differences between similar point clouds. In
particular, Bendich er al [13] uses brain artery data to classify
patients based on the small differences of the persistence
intervals observed between scans of different patients.

Finally, the error induced from approximating the PH could
completely mask the small differences between persistence
intervals. In big data where the true persistence intervals can
not be computed, the approximations may not give accurate re-
sults, in which case the analysis with TDA may not be viable.
Convergence on the true persistence interval should be the goal
of any approximation method to attempt to retrieve the most
accurate barcodes with the resources available. The approach
described in this paper builds a scalable approximation of
the PH with analysis of convergence to the true persistence
intervals present in big data.

IV. DATA REDUCTION AND PARTITIONING

This paper presents a method to apply both partitioning and
data reduction for the computation of PH. In particular, the
partitioning organizes a large point cloud of data into regional
partitions for computing PH. The partitioning is coupled with
a computation of PH on a data reduced representation of the
original point cloud to provide an approximation of the PH of
the original point cloud. The approach permits the computation
of PH on much larger point clouds than previously possible.
The remainder of this section will use the term “identify a
topological feature” to indicate that the PH computation will

Original Camel triangular mesh point cloud

Reduced Camel triangular mesh point cloud

Fig. 1. Reduction of Camel triangular mesh point cloud with k-means++ cluster centroid replacement

return < birth, death > intervals that represent a topological
feature in the point cloud.

A high level outline of the steps in the method of this paper
is described as follows:

1)

2)

3)

4)

Partition the point cloud P so that each point is assigned
to one and only one partition. All points in the original
point cloud must be placed in some partition. Let M
be the maximum number of points in R¢ for which
the computation of PH can be performed. The targeted
number of partitions for this step must be bounded by
M. While some partitioning methods will results in
faster and more complete solutions, as a general rule
most d-dimensional spatial partitioning approaches will
work. Partitioning is defined fully in Section IV-A.

Let P’ be a set of points in R¢ such that the elements
of P’ are composed of the geometric centers (centroid)
from each partition. P’ is the reduced data for approxi-
mating PH. This computation will identify the barcodes
for the larger topological features in the point cloud.
The smaller features will be identified by a regional PH
computation described in step 3.

For each partition defined in step 1, compute PH on a
region of points within and around the partition (these
PH computations can occur in parallel among each other
and concurrently to steps 2 and 4). The size of this
region, to ensure identification of all topological features
in dimension 2 and above, is slightly larger than the
points in the contained partition. This additional size
parameter is defined below. If any extended partition
contains too many points for a PH computation, a recur-
sive re-partitioning/data reduction step can be performed
and the results returned as the PH result for the partition.
A description of computing the regional PH in a partition
is contained in Section IV-B.

For each topological feature identified in step 2 above,
upscale the data in the partitions on the boundary of the
feature and recompute the PH on the restored data from
the partitions on the feature boundary (this step can be
performed in parallel for each feature). Upscaling can

be performed iteratively (by repartitioning/upscaling)
to grow the restored data in cases where a one step
upscaling presents too many points for computing PH.
While the total number of points forming the convex
hull®> of the topological feature could, in rare cases,
exceed the ability to compute PH on all of the boundary
points; a subset of the points from the surrounding
clusters can be used to partially upscale in order to
reduce the error bounds of the computed homology.
Further analysis of the upscaling of identified features
is contained in Section IV-C.

5) This method may produce duplicate persistence intervals
for the topological features in the original point cloud.
Any duplicate features found by the regional PH com-
putations can be eliminated by creating an arbitrary total
order on the points in the original data set and having
each regional computation report only < birth, death >
intervals for topological features where the lowest or-
dered point in the convex hull of that feature is a member
of a partition of that regional PH computation. A final
step is to remove duplicate < birth,death > inter-
vals returned from the centroid based PH computation
that are also discovered in a regional PH computation.
The regionally computed < birth,death > interval
is preserved as it will generally have a more precise
computation of the feature < birth, death > interval
than the centroid based PH computation. The persistence
interval merging of duplicate and overlapping features
can be found in Section IV-E.

A. Fartitioning

The first step in this approach is to partition the points in
the original point cloud. While some partitioning methods may
result in faster and more complete solutions, as a general rule

2While the convex hull of a set P is generally defined as the boundary
around the smallest convex set of points that contain P, this paper uses the
term convex hull around a topological feature (a hole, void, or loop) to denote
the set of points forming the boundary around the topological feature (in all
dimensions of that void) precisely at the minimum e distance when the feature
first appears.

most d-dimensional spatial partitioning approaches will work.
The partitioning should define no more than M partitions and
must place each point into a unique partition. More precisely,
let P={p|p C P} be a partitioning of P, then Vp,q € P |
p#qgpng=0andU, pp=P.

From this partitioning, the algorithm will then select a
single representative point from each partition to define a
new (reduced) point cloud. While any data point (actual or
representative) from each partition can serve this purpose, this
work will examine the specific use of the geometric center of
each partition, where the geometric center is the mean of each
dimension of all points in that partition. More precisely, let
P’ be the set of geometric centers of the partitions P, then if
p; € P’ is the centroid for partition p; € P then p; = IIQﬁI Y
In the remainder of this paper, the term centroid will be used
to denote the geometric center of a partition.

The objective in this step is to discover a point cloud P’ such
that the large topological features of P are also in P’. This
desired similarity is necessary only for the larger topological
features (where larger is formally defined below); the smaller
topological features will be discovered and characterized by
their birth/death times during the regional PH computations
described in Section IV-B. In the remainder of this paper, the
following terms will be used without further definition:

o]5, the partitions,

o P’, the centroids,

« 1, the distance from the partition centroid, P € P’, to
the most distant point in that partition, and

o Twaz = max(r;), the maximum r; of all the partitions.

The use of the smaller point cloud P’ to estimate the
PH of P will identify the larger topological features. In
particular let B be the boundary of points in the complex
circumscribing a d > 2-dimensional topological feature and
let sp = max(distance(b;,b;))Vb;,b; € B, then we define
the term “large topological feature” to be any feature with
Sp > 2Tmar. Informally, a large topological feature has a
diameter that cannot be contained within the largest partition
defined in P. Any topological feature with a diameter smaller
than 2r,,,, may or may not be identified during this step. In
particular, the identification of the smaller topological feature
by the estimation of PH will depend specifically on whether
that feature lies between the boundaries of the partitions or
if it is wholly contained within a partition. Fortunately, as
described in Section IV-B, the regional computations of PH
on each partition will identify all smaller topological features.

Ideally the partitioning and data reduction steps described
above will cooperatively result in a centroid-based data set P’
that is, for the large topological features, topologically similar
to that of P. However, this is not required. Furthermore, while
traditional uses of PH focus on large topological features,
in cases where the large features are insignificant [12], [13],
P’ and its PH computation can be skipped. The regional PH
computations will compute the PH of the small features.

In the discussion above, partitioning and data reduction are
presented as a coupled process to extract smaller collections of

data vectors to be used in the computation of PH. However, it
is not necessarily that the geometric centers of the partitions
also form the points for the reduced data. This is done for
convenience of the exposition and to streamline the formal de-
velopment. Technically they can be performed independently
and there is nothing the prevents some form of partitioning
the data and independently using something such as random
selection [7] for the data reduction step.

B. Smaller Topological Feature Identification

Since the point cloud P’ will identify the 2 < k < d dimen-
sional topological features containing a diameter d; > 27,44,
more work may be needed to identify topological features
with smaller diameters. This can be achieved by computing
PH at each partition. However since a feature can originate
near the boundary of a partition and extend outside of the
partition, it becomes necessary to include points beyond the
partition boundary so that the smaller features are all properly
identified. Thus, in order to properly identify these smaller
features, the PH computation must be performed with all
points from P that lie within a distance of r; + 27,42 + €max
from the partition centroid P, € P’. That is:

Theorem 1. All 2 < k < d dimensional topological features
containing a convex hull of diameter d; < 2r;,4. in P can
be identified by performing a PH computation corresponding
to each partition p; € P such that the points included in the
PH include all the points in the partition plus any point in P
that lie within the hyper-sphere of radius v; + 2rmaz + €max
centered at the centroid for that partition.

The regional PH computations can all be performed in parallel.
Of course, if the total number of points contained in the
bounding radius defining the regional PH computation exceeds
M, then it may be necessary to recursively partition the points
of the regional space and iterate this algorithm to extract the
persistence intervals for that region.

C. Upscaling

Partitioning, as described in IV-A, generates a represen-
tative point cloud P’ of an original point cloud P that is
topologically similar regarding large features. For each feature
identified through the PH of P’, there exists a mapping
back to P that indicates the source points represented in
the approximated persistence. This reveals that any feature
approximated in P’ is also a feature in P that can be mapped to
constituent points forming the true feature. By determining the
topological features in PP/, the constituent points can be further
analyzed to refine the < birth, death > interval in a subset of
P, removing data not contributing to the approximated feature
for faster computation. This process is called upscaling.

PH emits boundary information not typically examined dur-
ing the computation of persistence intervals. More precisely,
when loops in the data are computed in the boundary matrix
reduction, the boundary points forming a loop are also avail-
able if tracked through the reduction step. The boundary points
represent the critical path forming a loop for the corresponding

persistence interval. Examining the boundary of a persistence
interval can be used to extract that individual boundary’s points
for further identification of the feature.

In some cases a partitioning, P’, may shift the dimension of
an identified topological feature (into either a higher or lower
dimension). Certain representative points of classifications
may end up coplanar in one dimension, causing reduction
of the original dimension of the topological feature. In other
cases, the representatives may create features in a higher
dimensions than in P, and cannot be rectified without utilizing
the mapping from P’ back to P.

Upscaling of significant topological features identified in P’
aids in recovering features classified in incorrect dimensions.
Regardless of the dimension an approximated feature of P’
is initially identified in, the upscaling step recomputes the PH
over P, utilizing the constituent boundary points of the feature.
This step ignores the previous persistence interval calculated
with the approximation and will use points from P to produce
an accurate persistence interval, or multiple persistence inter-
vals describing the boundary. This also indicates when features
shift a dimension, either higher or lower, the upscaling step
will recompute the PH around that feature regardless of the
P’ classifications of the approximated feature.

The upscaling of significant topological features can provide
significant improvements to the persistence intervals generated
by a point cloud regardless of the initial size of the data-
set. With a well-chosen partitioning algorithm the significant
topological features can be preserved and upscaled to produce
more accurate persistence intervals beyond the limits of current
tools for computing PH.

D. Upscaling Limits

There are limitations to the effectiveness of upscaling in the
context of the geometric structure of points within the point
cloud. More precisely, let B be the boundary of centroid points
around a topological feature and let C' be the set of clusters
from which all b; € B are originate. Then the upscaling step is
performed on all points in all members of C. Further let g4,
be the maximum radius for all the clusters in C' (where the
radius is defines as the distance from the centroid any point
in C). Then,

Theorem 2. The upscaling step has a worst case error
approximation of the approximate < birth,death > interval
of a large topological feature to 2q.,q-

Upscaling has the potential to reduce the error bounds for
the large topological features to zero. However, there are
geometric situations where this reduction is not complete. In
particular, consider a feature shaped as two intersecting n-
spheres (Sy and .S7) with an opening between them of distance
d. Furthermore assume that there is a circumscribing path
around Sy and S; such that the path can be connected at
distance d’ < d/2. Assume that the partitioning is such that
the opening between Sp and S; is covered by two identical
spherical partitions (P and P;) of radius d/2 each centered at
the two closest boundary point where .Sy and .S; intersect and

meeting at the center of the opening between Sy and S;. Then
the upscaling step will stop with a < birth, death > interval
for Sy and S; that is bounded by a birth distance > d/2
even though there should be a single persistence interval for
a feature including both Sy and S; with a birth value at d’.

E. Merging Duplicate Topological Features

It is possible that a the PH computation on P’ and the
regional partitions identify the same feature. Furthermore,
since the centroid based PH is approximate, it may not be
possible to filter by an exact match of the boundary to the
regional results. Thus, an approximately equal to relation will
be used to remove duplicates.

In addition, it is possible that two different regional PH
computations may locate the same small feature (if the feature
is contained within an intersecting region between two more
more regional PH computations). Fortunately, any duplication
of features found by different regional PH computations can
be filtered out by defining a total order on all points in P.
With this order, it is possible to restrict the reporting of a
topological feature by a regional computation only when the
lowest ordered point on the boundary of the identified feature
lies within the original partition for which the regional PH
computation is performed. This will remove these duplicates.

V. IMPLEMENTATION STRATEGY AND TECHNIQUES

The implementation of the described method can become
complex in order to correctly identify and map persistence
intervals between several separate pipelines, specifically when
dealing with regional PH. To account for this complexity, a
preliminary technique was evaluated to focus on: (i) upscal-
ing of connected components, (ii) upscaling of independent
boundary features, and (iii) upscaling of individual centroids.
Each function is independent of the others and provides
opportunities for parallelism to increase performance beyond
the experimental results in this study.

The simplest function is to compute the connected compo-
nents of the original data-set, P. With a low d,,,, and € the
persistence intervals can be output up to M points, where M is
primarily dependent on available memory resources. In most
cases, the original data can be computed at d,,,, = 0 for
millions of points. This processing on P will give the true
1-dimensional topological features (connected components)
within the data-set.

Computing the PH on the individual partitions will iden-
tify additional topological features within a centroid (where
birth < death < T;,4,) that were missed during the first
pass. For examining the additional features in a partition,
only features of dimension 2 or higher are considered, as the
connected components are computed individually.

The constituent boundary points provide a mapping of large
features identified in the first pass back to their initial cen-
troids. Each centroid is the representative point of a respective
partition of the original point cloud, and can be upscaled to
provide more accurate persistence intervals of large features.

Each of these methods provides additional features that
can be merged into a single set of persistence intervals:
the true 1-dimensional features cover connected components
of the complex; the upscaled centroids will find smaller,
higher dimensional features embedded in the reduction; the
upscaling of the large feature boundary points will refine
persistence intervals found in the approximated PH. During
upscaling three sets of persistence intervals are collected:
the connected components, the upscaled features, and the
upscaled centroids. The connected components represent the
complete set of 0-dimensional features identified in the point
cloud. The upscaled features contain subsections of the point
cloud with identified features through approximation, and only
are concerned with higher dimensional (> 0) features. The
upscaled centroids handles the remainder of the centroids not
included in the other boundaries to compute local features
smaller than 7,,,,. All of these data-sets are independent and
merging does not require any special mapping or comparison
of the data.

VI. EXPERIMENTAL RESULTS

This section evaluates the described approach to data re-
duction through clustering alongside upscaling to refine the
persistence intervals. The experiments performed analyze both
partitioning and upscaling as a means to minimize the induced
error in previous sampling experiments performed by Moitra et
al [8]. Each test requires multiple steps: partitioning the data to
generate clusters and indexes for the mappings, computing PH
on the reduced point cloud, and upscaling the approximated
results to refine error in < birth,death > intervals. The
results are analyzed to characterize the effects of clustering
on the PH and the degree of rectification upscaling yields in
producing more accurate < birth,death > intervals.

In all cases k-means++ was used to cluster the original data-
set. Previous studies show that partitioning with k-means++
preserves the relative shape of data regardless of varying
density throughout the point cloud [8]. For the upscaling
approach described the identification of large features in the
initial processing of PH is vital to the accuracy of the output
persistence intervals. Enough centroids must be used when
initially processing the data to properly identify large features.
Centroid counts are used throughout the experimental results
to describe the size of the reduced data set in the context of
upscaling. The processing also included output of centroids
for each identified cluster along with index labels to map
the original points to their constituent centroids. Once data
was preprocessed and classified with k-means++, the centroids
were used for PH computation.

PH computation requirements for upscaling include output
of the boundary points forming significant features in the
point cloud. Eirene was used for this purpose, as other PH
tools do not track and resolve the original points contributing
to topological features. Eirene outputs the boundary points
forming significant features as indexed sets referring to each
original point passed to the library; in our case, the index
of the centroid is identified for each boundary. The boundary

centroids were recorded to file for upscaling along with the
persistence intervals for comparison and analysis.

Upscaling is executed as a post-processor, requiring the
original data, the centroids and labels, and the boundary
centroids contributing to significant features. The upscaling
function can use any PH library, as boundary extraction from
the PH boundary matrix is not immediately necessary. For
consistency in application requirements Eirene was used for
PH computation steps in the approach.

All experiments were performed on an Intel(R) Xeon(TM)
E5-2670 CPU @ 2.60GHz with 64GB of RAM and an
additional 64GB of swap. The Scikit-Learn implementation of
k-means++ was used to cluster the data, outputting centroids
and labels. The Eirene library, executed in Julia 1.1.0, was
used for computing the PH of the reduced data and subse-
quently used for upscaling. Both GUDHI and Ripser were
included to collect persistence intervals at maximum vector
sizes for comparison. All results were organized and stored
for post-processing analysis of persistence intervals, cluster
characteristics, and upscaling accuracy.

Analysis of the experiments involved computing the con-
tinuous heat-based kernel metric [25] to compare output per-
sistence intervals from different partitions of the point cloud.
For comparing results between reduced and upscaled data the
continuous heat-based kernel provides a multi-scale kernel
designed for topological machine learning, giving a stable
metric for evaluating persistence diagrams in comparison. The
continuous heat-based kernel in this experiment is used to give
a general degree of difference between compared persistence
intervals.

The upscaling step was first evaluated to demonstrate the
effectiveness of data reduction through partitioning coupled
with upscaling. Point clouds were chosen where the source
data could be computed with existing PH tools. Evaluation
of the source data provides a baseline, or ground truth, to
compare all partitioned and upscaled data against. Persistence
intervals that match the ground truth will have continuous
heat metric of 0. The implemented approach is expected to
have some error due to features that are not wholly contained
within a partition, but should have a significant impact to
the continuous heat metric when compared to the persistence
intervals of the reduced data.

To explore the effectiveness of upscaling the Stanford
Dragon and TwoCircles point clouds were used. The Stanford
Dragon data-set has 2,000 vectors in R* around the surface
of a 3-dimensional dragon model. Study of the Dragon point
cloud has been found in several topology and machine learning
applications, specifically around object recognition and differ-
entiation [6]. The TwoCircles data-set is a 2,000 vector point
cloud of two independent circles in R2. The TwoCircles data-
set provides a synthetic data-set for understanding the impact
of low dimensional features (loops) on the upscaling approach.
PH can be computed at full scale for both of these point clouds,
enabling comparison to the ground truth persistence intervals.

Performance characteristics for the upscaling technique are
shown in Table I. Individual times for partitioning, approx-

Dataset P Persistence Partitions Partitioning P’ Persistence Upscale Total
Name Time (s) Time (s) Time (s) Time (s) Time (s)
Dragon 208.19 500 1.72 0.40 155.25 157.37
twoCircles 122.56 500 1.25 0.62 61.06 62.93
Lion (Max 1500) 508.20 500 4.10 3.52 119.84 127.44
Camel (Max 1500) 178.68 500 24.44 1.68 80.49 106.61
Circles (Max 150) 1740.78 100 0.61 5.00 77.75 83.36
TABLE I
PERFORMANCE OF THE EXPERIMENT FOR EACH EVALUATED DATA-SET.

Reduced Reduced Heat Reduced Upscaled Heat Upscaled

Size Kernel Distance Betti Count Kernel Distance Betti Count

Stanford Dragon 100 8271.51 150 1680.70 2301

250 7942.82 389 909.56 2146

500 6804.43 783 6688.97 2047

750 5631.02 1146 2762.19 2020

1000 4596.11 1509 2791.65 2007

1250 3566.31 1833 2814.04 2004

1500 2814.87 2145 2820.00 2001

2000 0 2701 NA NA

TwoClircles 100 3575.62 110 DNF DNF

250 3192.58 272 3082.47 2257

500 2587.92 540 2015.35 2021

750 1985.96 804 DNF DNF

TABLE II

DIFFERENCES IN THE PERSISTENT DIAGRAMS AFTER REDUCTION AND UPSCALING, AS COMPARED TO THE KNOWN PERSISTENCE INTERVALS FOR THE
FULL SCALE DATA-SET. (DNF: DID NOT FINISH)

imated persistence on the reduced data, and upscaling are
shown separately. The performance increase from partitioning
and upscaling provides a considerable argument for processing
the PH of big data. In the cases of the data sets explored
later (Circles, Lion, and Camel), the maximum point cloud
is limited by experiments that did not finish with current PH
tools on the available systems. The time for comparison in
these cases is the time of the maximum computable PH.

Performance gives an initial indication that data reduction
and partitioning combined with upscaling brings faster topo-
logical feature identification, and clearly reduces the resource
requirements for computing topology on large data sets. The
described technique also needs to correctly identify features
in point clouds and improve on the approximated persistence.
Optimal results for upscaling the approximated topological
features requires the partitioning of data to preserve the
significant topological features in the original data-set, P.
Several different partitions were examined for each data-set
to observe optimal upscaling attempts at different reduction
levels.

Experimental results for the Stanford Dragon and Circles
data-set are shown in Table II. Several interesting results can
be found for both data-sets. In the Stanford Dragon data-
set, lower reductions such as 100 and 250 points with k-
means++ provided results better than all others in terms of
the continuous heat metric. This indicates that a low number
of clusters preserves the topology of the source data well, and
can be upscaled with marginal error induced to the persistence
diagram compared to reduction alone. An interesting case is
also found in the TwoCircles data-set.

The results from the first experiment show that the imple-
mented upscaling method does reduce the induced error from

partitioning when the partitioning preserves the underlying
topological structure of the point cloud. There are still lim-
itations to the approach, and some minor error will still exist,
but upscaling does refine the topological features found from
an approximated PH in the partitioned space, P’. To examine
the limitations of this refinement several other data-sets beyond
current PH tools were evaluated.

While the approach still remains approximate, the refine-
ment of < birth, death > intervals and identification of small
topological features provides additional insight not currently
available when examining PH. Circles is a generated data-set
with 2-dimensional circles embedded in R'C. There are 1500
vectors in the Circles data-set, permitting current TDA tools
to compute the ground truth < birth, death > intervals. The
dimensionality of the Circles data-set is one of the primary
reasons it was chosen, as current tools do not scale well in
higher dimensions. The Lion and Camel data-sets are both
from the UCI Machine Learning repository and describe the
boundaries of their respective models in R? [26]. The Lion
model has 4,999 vectors, making it just on the boundary of
being evaluated with current tools. The Camel data-set has
26K points, requiring significantly more memory to build the
complex and extract the persistence intervals.

Ground truths can not be utilized with the Circles, Lion,
and Camel data-sets due to the number of simplices generated
from the original point cloud is beyond limitations of current
persistent homology tools. For this reason, the upscaled persis-
tence intervals can not be quantitatively compared to the actual
persistence intervals. Comparing the upscaled persistence in-
tervals to the maximum computable reduction for each of these
data sets provides uncertain results, as the upscaled persistence
represents the entire data set while the reduced data-set is only

0.0 0.2 04 0.6
Time

0.8

1.0

Index

22501

2000 4

17501

1500 1

1250 4

1000 1

7504

0.0

04

0.6
Time

5600

5400

5200

Index

5000

4800

4600

4400

0.0

0.2

0.4 0.6
Time

1.0

500 Vector Barcodes

1500 Vectors (Max PH) Barcodes

Upscaled Barcodes

Fig. 2. Refinement of the Lion persistence intervals shown through an original partitioning, a maximum partitioning based on PH limitations, and an upscaled
set of intervals for the full data-set. The green lines represent Bg barcodes, the blue B1, and the red Bg; Bg persistence intervals shorter than 0.1 were
filtered to provide a clearer picture of the higher dimensional topological features.

looking at a partitioned space, P’.

Because a metric can not be used in these cases to indicate
refinement of data reduction through partitioning and upscal-
ing, persistence images are used to give a general idea of
each of the homology groups identified in the point cloud.
Figure 3 shows the persistence images for the Lion data-set at
original reduction level, maximum point reduction level, and
after upscaling. Each subset is divided into the Hy, H;, and
H, to show the impact of upscaling on each topological group.

The Lion persistence images were chosen because they
display the refinement of the topological features identified in
P’, of 500 vectors, that align more closely with the maximum
point reduction level, 1500 vectors. A similar conclusion can
be drawn from the barcodes for the same Lion results in Figure
2. At all 3 dimensions, the features present in the persistence
intervals of the reduced data are significantly different than
the maximum point reduction and the upscaled features. In
the persistence images of Figure 3, the reduced persistence
in Hy is high, reduced persistence in H; is high and to the
right, and reduced in persistence Ho is slightly to the right. The
similarity between the upscaled and maximum point reduction
data is much closer, indicating the features present in both
point clouds are roughly equivalent. Analysis with the full
point cloud would have more dense regions in Hy and H; due
to the small features removed during the reduction step, thus
the radius of upscaled persistence diagrams is much smaller.

VII. SHORTCOMINGS OF UPSCALING

The upscaling approach described in this paper is straight-
forward and requires little effort to understand and implement.
Less obvious nuances, such as loss of topological features
due to partitioning, are not handled through this experimen-
tal simplistic approach. In general there are several factors
that can significantly affect the topological features identified
during the initial approximation phase that determine the
effectiveness of upscaling. The partitioning algorithm used
for data reduction needs to preserve the topological features
present in the data for upscaling to be viable. The number of
points classified to a single cluster can also shift the results
of upscaling, or render the upscaling attempt useless due to
the number of points classified together. Finally, changes to
features are not immediately addressed for all cases described

Lion Persistence Images

PH Limitation Reduced Reduced
] I
I 'w
B

Upscaled

Fig. 3. Persistence images for the Lion data-set. Columns show the homology
groups for each evaluated set of persistence intervals. For rows, Reduced is
the original reduction of the data; PH Limitation Reduced is the max vector
size PH can be computed over with current tools; Upscaled is the generated
persistence intervals after upscaling the reduced data.

in Sections IV-B. This section describes in detail the known
shortcomings and suggestions for improvement of upscaling
through several optimizations.

Selection of a correct initial partitioning algorithm to pre-
serve significant topological features is not inherently obvious,
though can be adjusted for differing point clouds manually.
While the experiments described in this paper focus on the
k-means++ algorithm to generate centroids and associate the
original point cloud to the partitioned point cloud, other
partitioners may provide better results in certain situations.
Even with a well-chosen partitioning algorithm, the significant
topological features in the source point cloud can be lost if too
few partitions are identified.

To account for the consequential effect initial data reduction
has on upscaling the approximated persistence intervals a
multi-partitioning approach that samples several data reduction

levels and only upscales significant features (i.e., d > 0) may
identify additional features lost when only examining the point
cloud at a single reduction level. With multiple classifications
of the point cloud contributing to the realized features for
upscaling, both large and small features could be identified
and upscaled simultaneously, providing a more refined result.

Upscaling does provide computation of PH beyond the
current limits of TDA libraries, but is still limited by system
resources in all cases. If an extremely large data set is used,
say 100,000 vectors, and classified into 100 centroids each
centroid will contain somewhere around 1,000 points. Persis-
tent homology of the classified points may not be accessible,
in which case the persistence interval is thrown out. To account
for larger data sets and unbalanced partitions of the original
point cloud, an iterative approach may be used to compute PH
up to the system resource limitations. If the centroid of 1,000
points can not be computed, the data would be reduced again
and evaluated as another upscaling step.

Iterative upscaling could provide a mechanism for automat-
ically scaling to the system resources based on the complex-
ity of the point cloud. Examining the persistence intervals
at different vector sizes and epsilon values could identify
additional features not immediately recognized through parti-
tioning. Iterations could also track boundaries and constituent
points beyond their internal upscaling process, joining multiple
parallel efforts to refine the persistence intervals that merge
into a single, more complete output. The design of iterative
upscaling would utilize many of the observations detailed in
upscaling and address the issues of feature loss and parameter
selection when analyzing unknown data-sets.

VIII. CONCLUSIONS

Data reduction and data partitioning have many benefits in
analysis of big data that extend beyond measure. These topics
have been studied extensively in TDA to provide more efficient
ways to identify topological features within a point cloud,
often using PH. Accelerating the performance and reducing
the resource requirements for computing PH is necessary to
enable automation and extension of topology into machine
learning and the future of data analysis. The method presented
in this paper extends previous study of partitioning for PH
by introducing an upscaling process that approximates and
refines persistence intervals in an efficient and robust manner.
Experimental results with the primary features of upscaling
show the process can greatly improve the identified persistence
intervals in known point clouds, and can extend beyond current
tools for approximating persistence intervals of big data.

REFERENCES

[11 R. Ghrist, Elementary Applied Topology. Createspace, 2014.

[2] F. Chazal and B. Michel, “An introduction to topological data analysis:
fundamental and practical aspects for data scientists,” ArXiv e-prints,
Oct. 2017.

[3] R. Ghrist, “Barcodes: The persistent topology of data,” Bulletin of the
American Mathematical Society, vol. 45, no. 1, pp. 61-75, 2008.

[4] P. Y. Lum, G. Singh, A. Lehman, T. Ishkanov, M. Vejdemo-Johansson,
M. Alagappan, J. Carlsson, and G. Carlsson, “Extracting insights from
the shape of complex data using topology,” Scientific Reports, vol. 3,
Feb. 2013.

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]
[15]
[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

G. Singh, F. Memoli, and G. Carlsson, “Topological methods for the
analysis of high dimensional data sets and 3D object recognition,” in
Eurographics Symposium on Point-Based Graphics, M. Botsch, R. Pa-
jarola, B. Chen, and M. Zwicker, Eds. The Eurographics Association,
2007.

N. Otter, M. A. Porter, U. Tillmann, P. Grindrod, and H. A. Harrington,
“A roadmap for the computation of persistent homology,” EPJ Data
Science, vol. 6, no. 1, Aug. 2017.

F. Chazal, B. T. Fasy, F. Lecci, B. Michel, A. Rinaldo, and
L. Wasserman, “Subsampling methods for persistent homology,” in
International Conference on Machine Learning, ser. ICML 2015,
Lille, France, Jul. 2015. [Online]. Available: https://hal.archives-
ouvertes.fr/hal-01073073

A. Moitra, N. Malott, and P. A. Wilsey, “Cluster-based data reduction for
persistent homology,” in IEEE International Conference on Big Data,
Dec. 2018, pp. 327-334.

D. R. Sheehy, “The persistent homology of distance functions under
random projection,” in Proceedings of the Thirtieth Annual Symposium
on Computational Geometry, ser. SOCG’14. New York, NY, USA:
ACM, 2014, pp. 328-334.

V. de Silva and G. Carlsson, “Topological estimation using witness
complexes,” in Eurographics Symposium on Point-Based Graphics, ser.
SPBG ’04, M. Gross, H. Pfister, M. Alexa, and S. Rusinkiewicz, Eds.
The Eurographics Association, 2004.

K. N. Ramamurthy, K. R. Varshney, and J. J. Thiagarajan, “Computing
persistent homology under random projection,” in 2014 IEEE Workshop
on Statistical Signal Processing (SSP), Jun. 2014, pp. 105-108.

H. Adams, T. Emerson, M. Kirby, R. Neville, C. Peterson, P. Shipman,
S. Chepushtanova, E. Hanson, F. Motta, and L. Ziegelmeier, “Persistence
images: A stable vector representation of persistent homology,” Journal
of Machine Learning Research, vol. 18, no. 1, pp. 218-252, Jan. 2017.
[Online]. Available: http://dl.acm.org/citation.cfm?id=3122009.3122017
P. Bendich, J. S. Marron, E. Miller, A. Pieloch, and S. Skwerer,
“Persistent homology analysis of brain artery trees,” The Annals of
Applied Statistics, vol. 10, no. 1, pp. 198-218, Mar. 2016.

G. Carlsson, “Topology and data,” Bulletin of the American Mathemat-
ical Society, vol. 46, no. 3, pp. 255-308, Apr. 2009.

H. Edelsbrunner and J. Harer, Computational Topology, An Introduction.
American Mathematical Society, 2010.

U. Bauer. (2019) Ripser. The Technical University of Munich. [Online].
Available: http://www.cs.umd.edu/ mount/ANN/

C. Maria, J.-D. Boissonnat, M. Glisse, and M. Yvinec, “The
gudhi library: Simplicial complexes and persistent homology,” INRA,
Tech. Rep. RR-8548, 2014. [Online]. Available: https://hal.inria.fr/hal-
01005601v2

G. Henselman. (2019) Eirene: julia library for homological persistence.
[Online]. Available: https://github.com/Eetion/Eirene.jl

J.-D. Boissonnat and C. Maria, “The simplex tree: An efficient data
structure for general simplicial complexes,” Algorithmica, vol. 70, no. 3,
pp. 406427, Nov. 2014.

C. Chen and M. Kerber, “Persistent homology computation with a twist,”
in Proceedings 27th European Workshop on Computational Geometry
(EuroCG’11), 2011, pp. 197-200.

U. Bauer, M. Kerber, and J. Reininghaus, “Clear and compress: Com-
puting persistent homology in chunks,” in Topological Methods in Data
Analysis and Visualization III. Springer International Publishing, 2014,
pp. 103-117.

M. Mrozek and B. Batko, “Coreduction homology algorithm,” Discrete
& Computational Geometry, vol. 41, no. 1, pp. 96-118, Jan. 2009.

T. K. Dey, D. Shi, and Y. Wang, “Simba: An efficient tool for approx-
imating rips-filtration persistence via simplicial batch-collapse,” 24th
Annual European Symposium on Algorithms (ESA 2016), 2016.

J. A. Barmak and E. G. Minian, “Strong homotopy types, nerves and
collapses,” Discrete & Computational Geometry, vol. 47, no. 2, pp. 301—
328, Mar. 2012.

J. Reininghaus, S. Huber, U. Bauer, and R. Kwitt, “A stable multi-scale
kernel for topological machine learning,” in 2015 IEEE Conference on
Computer Vision and Pattern Recognition, ser. CVPR, Jun. 2015, pp.
4741-4748.

R. W. Sumner and J. Popovic, “Mesh data from deformation
transfer for triangle meshes,” 2004. [Online]. Available:
https://people.csail.mit.edu/sumner/research/deftransfer/data.html

