
Research Article
A Fortran-Keras Deep Learning Bridge for Scientific Computing

Jordan Ott,1 Mike Pritchard,2 Natalie Best,3 Erik Linstead,3 Milan Curcic,4

and Pierre Baldi 1

1Department of Computer Science, University of California, Irvine, CA, USA
2Department of Earth System Science, University of California, Irvine, CA, USA
3Fowler School of Engineering, Chapman University, Orange, CA, USA
4Department of Ocean Sciences, University of Miami, Coral Gables, FL, USA

Correspondence should be addressed to Pierre Baldi; pfbaldi@ics.uci.edu

Received 20 April 2020; Accepted 7 August 2020; Published 28 August 2020

Academic Editor: Manuel E. Acacio Sanchez

Copyright © 2020 Jordan Ott et al. (is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Implementing artificial neural networks is commonly achieved via high-level programming languages such as Python and easy-to-
use deep learning libraries such as Keras. (ese software libraries come preloaded with a variety of network architectures, provide
autodifferentiation, and support GPUs for fast and efficient computation. As a result, a deep learning practitioner will favor training a
neural network model in Python, where these tools are readily available. However, many large-scale scientific computation projects
are written in Fortran, making it difficult to integrate with modern deep learning methods. To alleviate this problem, we introduce a
software library, the Fortran-Keras Bridge (FKB). (is two-way bridge connects environments where deep learning resources are
plentiful with those where they are scarce. (e paper describes several unique features offered by FKB, such as customizable layers,
loss functions, and network ensembles. (e paper concludes with a case study that applies FKB to address open questions about the
robustness of an experimental approach to global climate simulation, in which subgrid physics are outsourced to deep neural network
emulators. In this context, FKB enables a hyperparameter search of one hundred plus candidate models of subgrid cloud and
radiation physics, initially implemented in Keras, to be transferred and used in Fortran. Such a process allows the model’s emergent
behavior to be assessed, i.e., when fit imperfections are coupled to explicit planetary-scale fluid dynamics. (e results reveal a
previously unrecognized strong relationship between offline validation error and online performance, in which the choice of the
optimizer proves unexpectedly critical. (is in turn reveals many new neural network architectures that produce considerable
improvements in climate model stability including some with reduced error, for an especially challenging training dataset.

1. Introduction

(e Fortran programming language was originally de-
veloped in the 1950s and published in 1957. It was created
to help programmers implement solutions for scientific
and engineering problems on the IBM 704 computer,
which at the time needed to be written in machine or
assembly language. Fortran has been regarded as revolu-
tionary and possibly one of the most influential software
products in history [1]. Having evolved many times since
its creation, with the most recent release in 2018, each
version adds new features and capabilities. Fortran initially
gained popularity and remains a widely used language due
to its fast and efficient computational ability. Additionally,

Fortran’s strength is its backward compatibility, which
allows modern compilers to build code written in the 60s
and 70s.

(ough not as popular as it once was, Fortran is still used
in specialized fields, including oceanography, solid me-
chanics, computational physics, earthquake simulation,
climate modeling, and aerospace. Because of Fortran’s
continued use, a great deal of legacy code and new code
exists. Unfortunately, it is difficult to rewrite all existing code
bases in more mainstream languages, due to their size and
complexity. (erefore, when algorithms and extensive li-
braries are created in modern languages, backwards com-
patible methods must be developed to make them available
in older legacy code, such as Fortran.

Hindawi
Scientific Programming
Volume 2020, Article ID 8888811, 13 pages
https://doi.org/10.1155/2020/8888811

mailto:pfbaldi@ics.uci.edu
https://orcid.org/0000-0001-8752-4664
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8888811


In recent years, the rise of machine learning and deep
learning has led to successful applications in various do-
mains. Substantial improvements in the size of the training
sets and available computing power have led to a new wave
of implementations [2, 3]. In turn, this success has increased
the usage and dissemination of deep learning. (ese
methods have been applied to a variety of domains, e.g.,
ranging from remote sensing [4, 5] to computer vision
[6–10], and to games [11, 12]. Specifically, within scientific
computing, many advancements have been achieved
through the application of neural networks. Neural networks
have been augmented with physically informed capabilities
[13, 14], better suiting them for conservation restrictions.
Learning partial differential equations [15, 16] has proved
valuable in multiple scientific domains.

(e success and popularity of deep learning have in-
spired the creation of powerful software libraries written in
several modern programming languages. However, Fortran
is not among the modern languages that benefit from these
deep learning libraries. (is absence leaves Fortran pro-
grammers with few options to implement deep neural
networks.

(e implementation of deep neural networks, in Fortran,
may be achieved via two primary pathways. One solution is
to rewrite all existing deep learning libraries in Fortran. (e
second solution is to leverage existing frameworks and
bridge available functionalities to Fortran. (e former is
extremely arduous and time consuming, considering the size
and scope of existing deep learning packages and the diz-
zying pace of their evolution [17–19]. (e latter approach,
which this paper describes, is to allow users to leverage the
power of existing frameworks while providing a bridge
between paradigms where deep learning resources are
plentiful and those where they are scarce. In this way, we can
leverage aspects of currently available deep learning software
libraries, such as Keras [20], and bring them to large-scale
scientific computing packages written in Fortran. To this
end, we propose the Fortran-Keras Bridge (FKB), a two-way
bridge connecting models in Keras with ones available in
Fortran. (e source code is publicly available and can be
found in https://github.com/scientific-computing/FKB. We
begin by reviewing existing Fortran projects that would
benefit from the integration of FKB.

2. Fortran Projects

FKB can be integrated with many existing large-scale and
computationally intensive projects written in Fortran. (ese
projects will benefit from the easy integration of neural
network models, which FKB makes possible.

For example, Fortran is used to do a great deal of work in
climate and ocean modeling. For instance, the US-produced
Community Earth System Model [21] is written in object-
oriented Fortran-90; this is the most widely used climate
model in the world, so are the other climate simulation codes
used by the US Department of Energy [22] and the National
Oceanographic and Atmospheric Administration’s Geo-
physical Fluid Dynamics Laboratory [23]. Meanwhile, the
Nucleus for European Modelling of the Ocean (NEMO)[26]

engine is used for studying ocean circulation problems on
regional and global scales andmaking future predictions and
is also written in Fortran. (e Hybrid Coordinate Ocean
Model (HYCOM)[27], also used for ocean modeling, ex-
tends traditional ocean models to allow for a smooth
transition from the deep ocean to coastal regimes. Re-
searchers have also developed models for the modeling of
waves and wind stress [26]. (e Weather Research and
Forecasting Model (WRF) is arguably the most widely used
numerical weather prediction models for regional decision
support [27]. Since its release in 2000, the number of WRF
registrations has grown to over 36,000. WRF produces at-
mospheric simulations with support for special applications,
including air chemistry, hydrology, wildland fires, hurri-
canes, and regional climate, and is again a Fortran-based
model.

Fortran has found continued use in solid mechanics
packages for implementing finite element methods. Popular
packages such as ANSYS [28], ABAQUS [29], and LS-DYNA
[30] are written in Fortran or accept Fortran subroutines.
Similarly, in earthquake modeling, the SPECFEM3D [31]
package leverages Fortran for simulations.

(e list goes on. Code Saturne [32], developed by
Électricité de France, and NEK5000 [33] are Fortran open-
source computational fluid dynamics packages. Code_Sa-
turne allows for user customization via Fortran subroutines,
which is just one application domain for FKB. NEK5000 is
actively used in the Center for Exascale Simulation of Ad-
vanced Reactors (CESAR) projects. Fortran has also been
continually used for molecular modeling within chemistry
and physics. (e Chemistry at Harvard Macromolecular
Mechanics (CHARMM) Development Project has produced
a powerful molecular simulation program in Fortran [34].
(is simulation program not only primarily targets bio-
logical systems but can also be used for inorganic materials.
A similar tool, NWChem, has been developed by the Mo-
lecular Sciences Software Group at the Pacific Northwest
National Laboratory [35]. NWChem is a computational
chemistry software that includes quantum chemical and
molecular dynamics functionalities. Within the molecular
physics domain, Fluktuierende Kaskade (FLUKA) is a
proprietary tool for calculations of particle transport and
interactions with matter [36].

(e models mentioned above and projects can leverage
the FKB library to leverage neural networks within their
codebases. For example, neural networks have proven useful
in modeling sea surface temperature cooling for typhoon
forecasting [37].(erefore, the integration of FKB with tools
such as NEMO, HYCOM, or WRFmodels is a possibility. In
a recent study of computational fluid dynamics, Ling et al.
solve the Reynolds-averaged Navier–Stokes equations,
similar to Code_Saturne and NEK5000. By implementing
deep neural networks, the authors report that the archi-
tecture improved prediction accuracy [38]. Finally, the Fluka
tool contains a wide range of molecular physics applications,
including dosimetry calculations. Vega-Carrillo et al. have
shown neural networks aided in the calculation of neutron
doses [39]. For global climate simulation, there is proof that
deep neural networks can offer skillful alternatives to

2 Scientific Programming

https://github.com/scientific-computing/FKB


assumption-prone approximations of subgrid cloud and
turbulence physics in the atmosphere [40, 41]. We hope that
the FKB library enables Fortran users to expand their re-
search and projects to include neural networks.

Having reviewed several Fortran-based projects that can
leverage FKB, we now introduce the two sides of this bridge.
(e following sections will develop the foundations on
which to anchor each side of this two-way bridge. We start
by introducing the deep learning anchor.

3. The Python Anchor (Deep Learning)

Many programming languages offer tools and libraries for
implementing artificial neural networks. However, in recent
years, Python has emerged as the clear favorite within this
domain. Metrics in Figure 1 display Python’s dominance.
Python is used nearly 50% more than the second most
popular language; R. Python’s ubiquitous presence in ma-
chine learning makes it the obvious choice to leverage
existing libraries for Fortran. (e question then becomes,
which available software library within Python is best suited
to bridge to Fortran?

Of the available deep learning libraries, Keras [18] is the
most popular among practitioners (Figure 1(b)). Keras is an
Application Programming Interface (API) built on top of
TensorFlow [17], which provides users the ability to im-
plement quickly, train, and test networks. (is convenience
encapsulates much of the low-level complexity one must
manage when implementing deep networks from scratch.
Keras abstracts many of the complicated aspects of Ten-
sorFlow while still providing customizability and ease of use.
(is combination makes Keras the first choice of many for
deep learning applications. As a result of its popularity and
ease of use, Keras is the clear choice on which to build one
end of the two-way bridge.

Figure 2 depicts the positioning of the Python anchor,
FKB/P, within the deep learning ecosystem. (e Keras API
leverages Python to build deep neural networks. FKB/P
resides on top of Keras to access models produced from
Keras and transmit them to the Fortran anchor, FKB/F. (is
structure allows for integration with Fortran applications
that wish to leverage deep neural network architectures.
Having described the deep learning anchor within Python,
Section 4 develops the foundation for anchoring the bridge
with Fortran.

4. The Fortran Anchor (Scientific Computing)

Several attempts have been made to implement neural
networks in Fortran, with some success [43–47]. However,
many implementations resort to hacking a single-use neural
network by hand, or binding code from other languages [47].
Along these lines, one may consider accessing Python
functionality directly from Fortran, by running a Python
instance within Fortran. While providing flexibility and ease
of use, this is vulnerable to extreme deficiencies in speed and
computational resources. As a result, this solution becomes
untenable for large-scale computation projects such as the
ones described in Section 2.

(ere are a small number of existing neural network
libraries in Fortran [46–48]. (e most recent and well de-
veloped library is Neural Fortran [46], a lightweight neural
network library, written natively in Fortran. (e Neural
Fortran library provides the ability to implement artificial
neural networks of arbitrary size with data-based parallel-
ism. Additionally, in benchmark studies, Neural Fortran was
shown to have comparable compute performance with Keras
while maintaining a lower memory footprint. (is library
offers a foundation to anchor the Fortran side of the two-way
bridge, FKB/F. By extending and building on top of-Neural
Fortran, we can convert Keras models to ones readily
available in Fortran and implement them in existing Fortran
projects.

(e positioning of FKB within the scientific computing
ecosystem is shown in Figure 2. (e Fortran anchor, FKB/F,
can use models originally constructed and trained in Keras,
which can then be transferred to Fortran via FKB/P. To use
these models, the Fortran side of FKB implements a neural
network library. (is portion of FKB can be used within
large-scale scientific computation software, such as the
projects identified in Section 2.

By leveraging FKB, it becomes seamless to train net-
works in Python and transfer them to Fortran, to run inside
large-scale simulations. Similarly, neural network models
constructed in Fortran can be transferred to Python for
additional analysis, expansion, and optimization-including
hyperparameter searches using available tools in Python
[20, 49, 50]. As both sides of the bridge have been properly
introduced, the following section will describe the specific
features and functionalities of FKB.

5. Features of FKB

Once a neural network is trained in high-level APIs such as
Keras, the practitioner has few practical avenues for using
this model in Fortran-based projects. One approach maybe
to hard code network operations inside Fortran while
manually moving parameters from the Keras model. Several
examples of this can been seen in climate modeling
[41, 51–53].

To provide one specific example, in [41], the authors
trained a deep neural network (DNN) to represent subgrid
cloud and convective energy transport processes, in Keras.
To assess its credibility, they needed to test the DNN’s two-
way interactions when thousands of replicates of it were
embedded within a coarse-resolution global atmospheric
model, written in Fortran neural network-emulated clouds
interacting with deterministic physical calculations of
planetary geophysical fluid dynamics. As the global atmo-
spheric simulator does not offer native neural network
support, the authors hardcoded their DNN model into the
global simulation software framework. (is approach has
obvious disadvantages. Every minor change made to the
model in Keras requires rewriting the Fortran code. If one
wishes to test a suite of models in Fortran, this approach
becomes untenable.

As each network may require different hyperparameters
and, as a result, necessitates rewriting and compiling the

Scientific Programming 3



Fortran code for every new model. (is process drastically
limits the breadth of available models to be tested within the
simulator. (is bottleneck is currently a significant road-
block to ongoing debates in the climate simulation com-
munity, more broadly, about whether or not to use DNN
representations of subgrid physics in next-generation cli-
mate modeling. Insufficient testing of diverse candidate
neural networks (NN) means that little is known about how
minor imperfections in the fit of one NN can amplify when
the NN is coupled to fluid dynamics, which is just beginning
to be explored [54].

(ese issues demand a solution, in the form of a bridge
between Keras and Fortran. (e FKB software solves these
issues via two key elements. First, it provides a neural
network library implemented in Fortran (FKB/F). Second, it
offers the ability to parse existing Keras models into formats
consistent with the Fortran neural network library (FKB/P).
As a result, users can switch, seamlessly, back and forth
between Python and Fortran.(is context provides a way for
iterative neural network tuning (Python) and testing (For-
tran), with a simple way to translate between the two
software environments. Additionally, FKB offers currently
unavailable Fortran specific features for neural networks. It
will be useful to highlight those new features while doc-
umenting the format to which FKB adheres. (e following
sections describe the Python and Fortran anchors’ features,
FKB/P and FKB/F, respectively.

5.1. FKB/P. Keras models—once built, trained, and
saved—are stored in Hierarchical Data Format 5 (HDF5)
files. (ese files contain the network architecture, weights,
biases, and additional information-optimizers, learning
rates, gradients, etc. From the HDF5 file, FKB/P parses the
network architecture, extracting the number of layers, ac-
tivation functions, nodes per layer, and all weights and
biases. (is information is converted to match the Fortran
neural network configuration in FKB/F. (is allows users to
build an equivalent network in Fortran, which can easily be
loaded and used within a Fortran environment. If any
modifications to the model are made inside Fortran, FKB/P
will parse this back into the equivalent HDF5 file to be used
in Keras once again.

On the contrary, networks may be initially constructed
in Fortran. After initial training and testing, a user can
switch to Keras for further evaluation. From Keras, users can
conduct additional testing or hyperparameter tuning where
these tools are readily available [49].

(e ability to seamlessly pass neural network architec-
tures between Python and Fortran is essential for any
practitioner working in this space. (is bridge allows users
to take advantage of the high-level Keras API—training on
computationally efficient GPUs—then to insert their trained
model into a Fortran codebase. (e functionality provided
bridges the chasm between Keras and Fortran.

5.2. FKB/F. (e Fortran anchor of FKB leverages and ex-
tends the original Neural Fortran library. Below, we in-
troduce newly implemented features tomake Neural Fortran
more flexible and able to communicate on the two-way
bridge.

5.2.1. Custom Layers. To implement neural networks in
Fortran, FKB leverages and extends the Neural Fortran li-
brary [46]. (e prototype Neural Fortran library format that
we build on was only capable of implementing a fully
connected layer. Forward and backward operations occurred

Python

R

C/C++

Java

20% 40% 60% 80%
Usage Percentage

(a)

Keras

TensorFlow

PyTorch

Fast.ai

10% 20% 30% 40% 50%
Usage Percentage

(b)

Figure 1: (a) Usage of programming languages for machine learning and data science. Statistics are from the 2018 Kaggle ML and DS survey
[40]. (b) Usage metrics of deep learning frameworks. Statistics are from the 2019 Kaggle State of Data Science andMachine Learning Report
[42].

FKB
FKB/F FKB/P

Neural Fortran

Fortran

Large-scale scientific
computation

Keras

Python

Deep learning

Figure 2: Positioning of FKB within Fortran and Python
ecosystems.

4 Scientific Programming



outside this layer in the network module. An example of this
is shown in Algorithm 1. From the algorithm, one can
observe hardcoded matrix multiplication of layer weights,
the addition of biases, and the activation functions inside the
networkmodule.(is network-level subroutine accesses and
modifies individual layer attributes. (is rigid format is
inconsistent with modern neural network implementation
paradigms [17–19], but it makes it impossible to implement
other layers or custom operations. To increase the library’s
flexibility, operations must be encapsulated inside the layer,
consistent with current practice.

In FKB, we introduce an extendable layer type module
(Algorithm 2). To implement a layer, one simply extends the
layer type and specifies the construction of the forward and
backward functions. Adhering to this format offers several
advantages. By restructuring the format of the library, we
offer the ability to implement arbitrary layers. Additionally,
in the network module, all layers are stored in an array of
pointers. (is leads to the encapsulated version shown in
Algorithm 2 wherein a forward pass, in the network module,
calls the layer-specific forward function. In this way, all
operations are confined to the layer module, and the output
from one layer is passed as input to the next.

FKB supports fully connected or dense layers, dropout
[55, 56], and batch normalization [57]. Algorithm 3 is an
example of extending the layer_type to implement a batch
normalization layer. (is format translates to increased
functionality and customizability to the user. As a result,
more standard layers from Keras are available, while giving
users the flexibility to implement their own custom
operations.

5.2.2. Training in Fortran. It is necessary to distinguish
between the terms offline versus online for the following
section. (ese terms serve to distinguish two different set-
tings in which a neural network can be used in a Fortran
computing package. Both settings can make use of historical
or simulated data to train an artificial network. (e dis-
tinguishing feature is how the predictions of a model are
used. In an online setting, predictions from the model are
used to evolve a physical process.(e predictions at one time
step affect how the system acts at the following time step. As
a result, inputs to the model will change based on how the
model acted in the past. In offline settings, this is not the
case. Predictions made in the past do not affect the input to
the model in the future.

In many cases, offline training may be sufficient to learn
a model, if enough prior data is available. However, in some
cases, online training may be the method of choice. To this
end, FKB is equipped to handle backpropagation for gra-
dient descent optimization of a specified cost function.

(e layer encapsulationmentioned above of forward and
backward operations (Section 5.2.1) becomes extremely
valuable in training. Instead of all computations occurring
within the network module [46], they are contained in layer-
specific functions. Much like the forward pass, backward
operations occur in the layer. In this fashion, each layer is
responsible for computing its gradients with respect to its

parameters and returning the gradient with respect to the
layer below it.

Online training can serve a variety of purposes. First, a
neural network model may be learned entirely in Fortran,
based on the evolving state variables during the integration
of a physical dynamical system simulation, and then
transferred to Keras after the fact. In this setting, the ground
truth, from the simulator, is passed to the network for it to
calculate its errors and update its parameters accordingly
through backpropagation. Second, online training could
serve to provide gentle corrections to an imperfect pre-
trained model, for instance, to hedge against the amplifi-
cation of its imperfections that are only revealed once the
NN is coupled to other physical calculations. Here, a model
is trained offline in Keras and transferred to Fortran (Section
5.1). In some cases, for a variety of reasons, the offline
training data may have a differing distribution than that of
the online data. In such a setting, it proves beneficial to offer
slight corrections to the network. Finally, a secondary model
may be constructed to learn and compensate for the defi-
ciencies in the primary model. In this way, the two networks
work together to balance out any instability issues.

(e ease of use and proper format directly results from
the encapsulation of layer operations. Online training offers
a solution to tackle a suite of potential problems. As a result,
models may be updated with slight corrections or learned
entirely online.

5.2.3. Custom Loss Functions. In many applications, prac-
titioners may wish to optimize a unique quantity, a function
other than a mean squared error or crossentropy. (is is
common when target variables interact or additional in-
formation is known about their relationship in a desired
application. For example, in modeling any physical system,
predictions from a neural network must not violate physical
constraints, energy cannot be created or destroyed in the
system. To satisfy this restriction, a loss function can be
written to quantify the amount of violation of physical
properties. (is construction can then be minimized to
alleviate constraint infractions [13].

(e implementation of custom loss functions is standard
for high-level APIs such as Keras, TensorFlow, and PyTorch
to provide this ability in their codebase [17–19]. As FKB is
designed for those working in the physical sciences where
environmental, physical, or application-specific constraints
are common, it provides the ability to implement custom
loss functions. To take advantage of this functionality, users
must implement their desired loss function, just as they
would in Keras. As FKB does not provide automatic dif-
ferentiation, the derivatives with respect to the input are also
required for training. Once these functions have been
specified, they can be dropped into the existing framework
and run normally, much like Keras.

(is capability is demonstrated through the imple-
mentation of the crossentropy loss function in Algorithm 4.
To implement this previously unavailable loss function, we
first declare two functions. First, the crossentropy scalar loss.
Second, the loss with respect to the input logits is derived.

Scientific Programming 5



(ese two functions are then referenced as the loss and
d_loss, respectively. By providing this functionality, users
may leverage a variety of loss functions that can be used to
minimize application-specific quantities. Once described,
they may be included with the existing framework and used
during online training.

5.2.4. Ensembles. Ensembles consist of different models,
each trained on the same, or bootstrapped, data. (e output
of the ensemble will be an average of all its member’s

predictions. In machine learning, ensembles of models
typically perform better than any one of its members alone.
(e ensemble strategy exploits the fact that each model will
make different errors. (erefore, when averaged together,
these predictions becomemore accurate, as certain errors get
smoothed out. A consensus from machine learning prac-
titioners is ensembling and gives 1-2% improvement in
performance [58].

As a result of this averaging, ensembles provide a boost
in performance as well as additional robustness. In domains,
where physical constraint violations yield stability issues,

pure subroutine fwdprop(self, x)

! Performs the forward propagation and stores arguments to activation

! functions and activations themselves for use in backprop.
class(network_type), intent(in out): self

real(rk), intent(in): x()
integer(ik): n

associate(layers �> self % layers)
layers(1) % a� x

do n� 2, size(layers)
layers(n) % z� matmul(transpose(layers(n-1) % w), layers(n-1) % a) + layers(n) % b

layers(n) % a� self % layers(n) % activation(layers(n) % z)
end do

end associate
end subroutine fwdprop

ALGORITHM 1: Original code from [46]. Layer operations occur inside the network module, limiting flexibility.

function output(self, input) result(last_layer_output)

...
! iterate through layers passing activation forward

do n� 1, size(layers)
call layers(n) % p % forward(layers(n-1) % p % o)

end do
! get output from last layer

last_layer_output� layers(size(layers)) % p % o
end function output

ALGORITHM 2: Forward pass in the FKB network module. Each layer simply calls its own forward function. (e technical operations occur
within each layer.

! BatchNorm layer-extends from base layer_type

! Implements batch normalization
type, extends(layer_type): BatchNorm

! epsilon parameter
real(rk): epsilon

contains
procedure, public, pass(self): forward �> batchnorm_forward
procedure, public, pass(self): backward �> batchnorm_backward

end type BatchNorm

ALGORITHM 3: Example of extending the layer_type to implement batch normalization.

6 Scientific Programming



ensembles may be applied to dampen these problems. By
averaging across many networks, the instability of any one
model will be drastically reduced in the presence of more
sound predictions.

(e functionality provided requires the user to specify a
directory that contains the models of interest and a desired
amount of noise. (e ensemble type will read in each model
and construct a network corresponding to each of them. To
get a prediction from the ensemble, an input vector is passed
to it. For nonzero amounts of noise, Gaussian noise is
applied to the input vector each time it is passed to an
ensemble member. (is allows each member to see a slightly
different variant of the input, increasing the robustness of
prediction around that point. (is operation runs in parallel
using OpenMP, where each network can be given its thread
to expedite computation; such an approach could easily be
adapted via OpenACC for GPU-based threading of large
ensemble network calculations. Following the computation,
the predictions are averaged together, and the final output is
given.

6. Case Study

(e following section provides a case study demonstrating
an application of FKB to experimental next-generation
climate modeling. (e Superparameterized Community
Atmospheric Model version 3.0 (SPCAM3) is used for all
simulations in this study. Superparameterization is an ap-
proach that confronts the decade-long problem of repre-
senting subgrid cloud physics in climate models by
embedding thousands of limited-domain explicit submodels
of moist convection within a conventional planetary-scale
model of the large-scale atmosphere [59–62]. (is approach
tends to involve two orders of magnitude more computa-
tional intensity per unit area of the simulated earth, but
recently Rasp et al. used a deep neural network to emulate all
of the expensive subgrid cloud resolving models’ (CRM)
influence on the planetary host at drastically reduced
computational expense [41]. (is study, along with others in
the emerging climate modeling literature [51] have dem-
onstrated the potential advantages of a data-driven approach

for addressing the critical unresolved effects of clouds and
convection on planetary climate, as compared to previous,
heuristic-based, approximations to subgrid physics. How-
ever, the idea of emulating turbulence in climate simulation
is still an emerging one, with unclear trade-offs, including
frequent instabilities when NN emulators are coupled with
fluid dynamics, which the community is seeking to learn
how to control [51]. It has even been questioned whether the
offline skill of such emulators, during their training, is
predictive of their online performance [63, 64], an important
open question.

(ese questions are understudied primarily due to the
lack of the simple software interface that FKB now enables
for climate scientists to test diverse candidate neural net-
works and ensembles within planetary climate models.

To illustrate an advance on this front, we now apply FKB
to shed new light on two related questions currently in
debate:

(1) Does offline performance translate to online model
performance [63, 64]?

(2) Which neural network hyperparameters most affect
online performance?

Using FKB, the study can be broken into two stages.
First, a suite of 108 candidate neural network models of
convection are trained, via Keras, on simulated data from the
SPCAM3. Second, the models are converted to Fortran and
run online (i.e., coupled to planetary fluid dynamics) in the
SPCAM3 simulator. (e number of steps serves as a pre-
liminary metric of performance until catastrophic failure. It
is clear that, in the absence of the FKB library, running
hundreds of candidate neural network submodels of con-
vection within the Fortran-based model of the rest of the
planet’s atmosphere would be nearly impossible. As each
network contains various hyperparameters, each with dif-
ferent weights and biases learned during training, including
layer-specific properties such as optional use of dropout or
batch normalization. To leverage the FKB library with
SPCAM3, we simply compile the neural network library in
advance and link it to the compilation of SPCAM3. Doc-
umentation steps for the implementation of this case study

real(rk) function crossentropy_loss(self, y_true, y_pred)

! Given predicted and expected output, returns the scalar loss

class(network_type), intent(in out): self
real(rk), intent(in): y_true(), y_pred()

loss� - sum(y_true ∗ log(y_pred))
end function loss

function d_crossentropy_loss(self, y_true, y_pred) result(loss)
! Given predicted and expected output

! returns the loss with respect to softmax input
class(network_type), intent(in out): self

real(rk), intent(in): y_true(), y_pred()
real(rk), allocatable: loss()

loss� y_pred - y_true
end function d_loss

ALGORITHM 4: Implementation of crossentropy loss function and the corresponding derivation with respect to the input logits.

Scientific Programming 7



are provided in https://github.com/scientific-computing/
FKB/blob/master/SPCAM_Instructions.md.

(e input to this neural network model is a 94-di-
mensional vector. Features include vertically resolved vec-
tors representing the large-scale (host model) temperature,
humidity, meridional wind vertical structure, surface pres-
sure, incoming solar radiation, sensible heat flux, and latent
heat flux scalars. (e output of the network is a 65-di-
mensional vector composed of the embedded models’ in-
fluence on their host, i.e., the sum of the CRM and radiative
heating rates, the CRM moistening rate, the net radiative
fluxes at the top of the atmosphere and surface of the Earth,
and the precipitation.

(e training data used here are challenging to fit, as they
come from an enhanced version of the CRM training data
that was originally studied by [41]. In superparameterized
simulations, one can control the degrees of freedom of the
interior resolved scale through the room available for in-
teresting forms of subgrid storm organization to form. One
can control the physical extent (i.e., number of columns used
in) each embedded CRM array [65]. In [41], CRM arrays
with only 8 columns (32-km extent, given the 4-km hori-
zontal resolution) were used. Here, we quadruple the extent
(from 32 km to 128 km, i.e., from 8 columns to 32 columns)
to improve its physical realism. Despite several attempts,
these data have never been fit successfully. NNs trained from
the enriched data tend to produce crashes within just a few
simulated weeks after they are embedded in the climate
model (see discussion of “NN-unstable” by [54], for details).

Our working hypothesis is that historical failures in free-
running tests when emulators are trained on higher quality
CRM training data reflect a broader issue of insufficient
hyperparameter tuning in climate model applications. To
address this, we conducted neural network optimization via
a random search using SHERPA [49], a Python library for
hyperparameter tuning. We detail the hyperparameters of
interest in Table 1, as well as the range of available options
during the search.(e hyperparameters of interest consisted
of whether or not to use batch normalization, the amount of
dropout, the leaky ReLU coefficient, learning rate, nodes per
layer, the number of layers, and the optimizer. (e random
search algorithm has the advantage of making no as-
sumptions about the structure of the hyperparameter search
problem and is ideal for exploring a variety of settings.

We attained 108 candidate neural network model
configurations, each trained for 25 epochs with early
stopping monitoring the validation loss. Following the
offline training stage, the neural network models were
converted into their Fortran counterparts and ran inside
SPCAM3. We underscore that this critical step would have
been prohibitive using standard tools that have required
manual translation of each candidate model. However, by
leveraging the FKB library, each model was loaded inde-
pendently into Fortran and run as the subgrid physics
emulator inside SPCAM3’s host planetary model, of the
large-scale atmospheric state. Each model was coupled to
fluid dynamics, to run a wide ensemble of prognostic tests
across an unprecedented diversity of candidate neural

network architectures. Each of the one hundred and eight
candidate neural network models—with their various
numbers of layers, layer-specific settings (batch normali-
zation, relu magnitude, etc), nodes per layer, weights, and
biases—were run online, all without rewriting any Fortran
code.

In order to address the first question and evaluate a
neural network model’s performance, we compare its vali-
dation MSE during training with the time-to-failure of the
online tests in which 8,192 instances of the NN, spaced at
regular intervals around the globe, are coupled interactively
to their host global atmospheric model of large-scale geo-
physical fluid dynamics. (is yields Figure 3, which sheds
new light on the offline vs. online relationship.

(e results in this figure demonstrate a relationship
between offline validation error and online performance.
(ere is a distinct, negative, relationship between offline
MSE and online stability (Spearman correlation of −0.73;
p� 4.961e−19). Intriguingly, the mean-squared error loss of
our multilayer perceptron is a reasonable predictor of sta-
bility once coupled to the climate model, insofar as the time-
to-failure is concerned. (is finding is interesting in the
context of the recent speculation by [64] that such a rela-
tionship might not exist using similar NNs in a similar
setting, as well as the comments by [63] about similar in-
congruities even in reduced-order dynamical systems when
emulated with GANs.

Of course, stability alone is a necessary but not a suf-
ficient condition of prognostic success, which also requires
an in-depth analysis of biases in the simulated climate.
Figure 4 shows the time evolution of the tropospheric
temperature and humidity biases, colorized by the offline
validation error. (ese metrics reveal that, although our
search has uncovered many runs that are “stable,”can run
without catastrophically crashing for several months, most
of these runs would not be very useful in an operational
setting. Almost all NNs exhibit major errors in the simulated
climate, having drifted to erroneous attractors with root
mean square errors in temperature frequently above 10K.
However, the NN that produced the best offline validation
error stands out as having the combined desired qualities of
stability and skill with temperature biases of less than 2K,
competitive with [41]. Interestingly, coupling instead to the
ensemble mean of a few of the best-ranked models (magenta
dashed lines) does not outperform coupling to the best fit

Table 1: Hyperparameter space.

Name Options Parameter type
Batch normalization [yes, no] Choice
Dropout [0, 0.25] Continuous
Leaky ReLU
coefficient [0–0.4] Continuous

Learning rate [0.00001–0.01] Continuous
(log)

Nodes per layer [125, 256, 512] Discrete
Number of layers [4–11] Discrete

Optimizer [Adam, RMSProp,
SGD] Choice

8 Scientific Programming

https://github.com/scientific-computing/FKB/blob/master/SPCAM_Instructions.md
https://github.com/scientific-computing/FKB/blob/master/SPCAM_Instructions.md


model, the value of having found it using SHERPA
(Figure 4).

In short, we have produced a successful coupled sim-
ulation that was particularly challenging without formal
hyperparameter tuning and FKB. (is result suggests that
sufficient hyperparameter tuning may be critical to solving
chronic instability in climate model applications of DNNs
for subgrid physics.

(e second question naturally arises as to which of the
hyperparameters are most impactful to the online perfor-
mance. To assess this, Figures 4(b)–4(i) decompose the
sensitivity of the baseline relationship to individual hyper-
parameter choices. (e choice of the optimizer is shown to
correlate most strongly with online performance (Figure 3).
(is finding is confirmed by Spearman values, as shown in
Table 2. (e optimizer hyperparameter has the largest

absolute correlation value with online performance. No
other hyperparameter shows as clear a distinction in cor-
relation that is evident in the choice of the optimizer, in-
cluding the network depth and total number of parameters,
which are known to be important to offline fits for this
problem [66], but are surprisingly not as predictive of
coupled skill as the choice of the optimizer, whose impact
has not previously been isolated (for this application).

Further investigation into the specific optimizer used
reveals the SGD optimizer to perform poorly; NNs fit with
SGD never run longer than 1,000 steps when coupled online
(Figure 3). Again the visual intuition from Figure 3 is
confirmed by Spearman correlation values. SGD, Adam, and
RMSProp have Spearman values of -0.6670, 0.5936, 0.0586,
respectively.(ese values demonstrate that the use of SGD is
negatively correlated with online performance, whereas

104

103

102

101

St
ep

s (
lo

g)

0.005 0.010 0.015 0.020 0.025
Validation MSE

(a)

104

103

102

101

St
ep

s (
lo

g)

0.005 0.010 0.015 0.020 0.025
Validation MSE

Batch normalization

No
Yes

(b)

104

103

102

101

St
ep

s (
lo

g)

0.005 0.010 0.015 0.020 0.025
Validation MSE

0.20

0.15

0.10

0.05

D
ro

po
ut

(c)

104

103

102

101

St
ep

s (
lo

g)

0.005 0.010 0.015 0.020 0.025
Validation MSE

0.35
0.30
0.25 
0.20
0.15 
0.10 
0.05

Le
ak

y 
Re

LU

(d)

104

103

102

101

St
ep

s (
lo

g)

0.005 0.010 0.015 0.020 0.025
Validation MSE

0.007
0.006
0.005 
0.004
0.003 
0.002 
0.001

Le
ar

ni
ng

 ra
te

(e)

104

103

102

101

St
ep

s (
lo

g)

0.005 0.010 0.015 0.020 0.025
Validation MSE

Dense nodes
128
256
512

(f )

104

103

102

101

St
ep

s (
lo

g)

0.005 0.010 0.015 0.020 0.025
Validation MSE

Layers
4
5
6
7

8
9
10
11

(g)

104

103

102

101

St
ep

s (
lo

g)

0.005 0.010 0.015 0.020 0.025
Validation MSE

2500000

2000000

1500000 

1000000

500000 To
ta

l p
ar

am
et

er
s

(h)

Optimizer
Adam
SGD
RMSProp

104

103

102

101
St

ep
s (

lo
g)

0.005 0.010 0.015 0.020 0.025
Validation MSE

(i)

Figure 3: Offline performance-validation mean squared error (MSE) vs. online performance number of steps until crash. (a) All models. (b)
By batch normalization usage. (c) By dropout amount. (d) By leaky ReLU coefficient. (e) By learning rate. (f ) By number of dense nodes per
layer. (g) By number of layers. (h) By total number of model parameters. (i) By optimizer type.

Scientific Programming 9



Adam positively correlates with online performance. (is
result leads one to speculate that increased improvements in
online skill may be realized from more advanced optimizers
with enhanced gradient update schedules.

Finally, after answering the two questions motivating
this case study, we can compare the results of the best
performing model with that of previously published models
of [41] when applied to the challenging limit of CRMs with
32-km horizontal extent. (e model proposed by Rasp et al.
was a single deep neural network.(e hyperparameter space
of this model was not fully explored online in large part due
to the laborious process required to transfer those models
into Fortran.(e Rasp et al. model (provided by the authors)
ran for 128 steps before crashing due to instability issues.(e
five best models achieved in this study ran to completion of a
5-year simulation, i.e., for 87,840 steps; of these, two of the
five models further exhibited root mean square errors in
simulated tropospheric temperature of less than 2 degrees
Celsius. (is dramatic improvement in stability is a direct
result of the ease with which a wide variety of models
(identified by SHERPA) can be transferred between Python
and Fortran (thanks to FKB). We also note that this method

is preferable to another approach that was recently proposed
to begin stabilizing the same model, through small-ampli-
tude Gaussian input perturbation [54], a strategy that, while
promising, adds computational expense and introduces out-
of-sample extrapolation issues that can be avoided with the
brute-force optimization and wide-ensemble prognostic
testing path to stabilization we have outlined here.

(is case study has investigated two closely entangled
questions: (1) does offline performance correspond to online
model performance? and (2) what neural network hyper-
parameters most affect online performance? Both of these
questions have been answered by leveraging the FKB library.
(e library offers the ability to expeditiously transfer models
trained in Keras to Fortran, where they may be run online in
existing simulators. In the absence of FKB, neither one of
these questions could be approached without unreasonable
human intervention, as the operational target is a climate
model with over a hundred thousand lines of code written in
Fortran.

7. Conclusion

(e ubiquitousness of deep learning has resulted from ex-
tensive free and open-source libraries [17, 46, 58]. Deep
learning’s success and popularity merit its integration in
large-scale computing packages, such as those written in
Fortran. Instead of rewriting all existing libraries in Fortran,
we introduced a two-way bridge between low-level, Fortran,
and Python through the FKB Library. (e library provides
researchers the ability to implement neural networks into
Fortran code bases while being able to transfer them back
and forth with Keras.

Fortran, which has been a staple within computationally
intensive fields for decades, will undoubtedly see continued
use due to its fast computational ability and vast amounts of

RM
SE

 o
f T

 (p
 ≥

 1
97

.9
 h

Pa
) l

og

102

101

100

5 10 15 20 25
Time (simulated months)

×10–3

5.9

5.8

5.7

5.6

5.5

5.4

5.3

5.2

5.1

5

V
al

id
at

io
n 

lo
ss

Neural networks
Ensembles

(a)

RM
SE

 o
f Q

 (p
 ≥

 1
97

.9
 h

Pa
) l

og

10–2 

10–3

5 10 15 20 25
Time (simulated months)

×10–3

5.9

5.8

5.7

5.6

5.5

5.4

5.3

5.2

5.1

5

Neural networks
Ensembles

Va
lid

at
io

n 
lo

ss

(b)

Figure 4: (e time-evolution of the tropospheric (a) temperature and (b) humidity biases, colorized by the offline validation error.

Table 2: Spearman correlation of corresponding hyperparameter
with online performance and associated p value.

Correlation p-value
BatchNorm 0.0859 3.7896e−01
Dropout 0.1919 4.7591e−02
Leaky ReLU 0.0055 9.5465e−01
Learning rate −0.2087 3.0923e−02
Dense nodes 0.1427 1.4249e−01
Layers 0.0410 6.7491e−01
Optimizer −0.6998 5.0177e−17
Parameters 0.1528 1.1609e−01

10 Scientific Programming



legacy code. (e FKB library enables users to access many
features of the Keras API directly in Fortran, including the
ability to create custom layers and loss functions to suit their
needs. We demonstrate the integrability of FKB through our
case study involving the SPCAM3 simulator. An advantage
of FKB is its ease of use, demonstrated by its ability to be
compiled in advance and once linked can be easily leveraged
in existing large-scale simulators, as we have illustrated for
the application of multiscale physical simulations of the
global atmosphere.

Data Availability

Code is made publicly available in https://github.com/
scientific-computing/FKB. Steps documenting the case
study are documented in https://github.com/scientific-
computing/FKB/blob/master/SPCAM_Instructions.md.

Conflicts of Interest

(e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

(e work of JO and PB is supported by NSF NRT (Grant
1633631). MP acknowledges NSF funding from OAC-
1835863 and AGS-1734164. (is research also used HPC
resources of the Extreme Science and Engineering Discovery
Environment (XSEDE), which was supported by the Na-
tional Science Foundation under Grant no. ACI-1548562
[67] and allocation number TG-ATM190002.

References

[1] “FORTRAN,” March 2011, https://www.ibm.com/ibm/
history/ibm100/us/en/icons/fortran/.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,”
Advances in Neural Information Processing Systems,
pp. 1097–1105, 2012.

[3] J. Schmidhuber, “Deep learning in neural networks: an
overview,” Neural Networks, vol. 61, pp. 85–117, 2015.

[4] N. LaHaye, “Multi-modal object tracking and image fusion
with unsupervised DeepLearning,” IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing,
vol. 12, pp. 3056–3066, 2019.

[5] X. X. Zhu, “Deep learning in remote sensing: a comprehensive
review and list ofresources,” IEEE Geoscience and Remote
Sensing Magazine, vol. 5, pp. 8–36, 2017.

[6] J. Ott, A. Atchison, and J. Erik, “Exploring the applicability of
low-shot learning in mining software repositories,” Journal of
Big Data, vol. 6, p. 35, 2019.

[7] J. Ott, “A deep learning approach to identifying source code in
images and video,” in Proceedings of the 2018 IEEE/ACM 15th
International Conference on Mining Software Repositories
(MSR), pp. 376–386, Gothenburg, Sweden, May 2018.

[8] J. Ott, “Learning lexical features of programming languages
from imagery using con-volutional neural networks,” in
Proceedings of the 26th Conference on Program Comprehen-
sion, pp. 336–339, Gothenburg, Sweden, May 2018.

[9] J. Tompson, M. Stein, Y. Lecun, and K. Perlin, “Real-time
continuous pose recovery of human hands using convolu-
tional networks,” ACM Transactions on Graphics (ToG),
vol. 33, p. 169, 2014.

[10] G. Urban, “Deep learning achieves near human-level polyp
detection in screening colonoscopy,” Gastroenterology,
vol. 155, 2018.

[11] F. Agostinelli, S. McAleer, A. Shmakov, and P. Baldi, “Solving
the Rubik’s cube with deep reinforcement learning and
search,” Nature Machine Intelligence, vol. 1, no. 8,
pp. 356–363, 2019.

[12] D. Silver, “Mastering the game of Go with deep neural net-
works and tree search,” Nature, vol. 529, 2016.

[13] T. Beucler, “Enforcing analytic constraints in neural-networks
emulating physical systems,” 2020, http://arxiv.org/abs/1909.
00912.

[14] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-
informed neural networks: a deep learning framework for
solving forward and inverse problems involving nonlinear
partial differential equations,” Journal of Computational
Physics, vol. 378, pp. 686–707, 2019.

[15] Y. Bar-Sinai, S. Hoyer, J. Hickey, and M. P. Brenner,
“Learning data-driven discretizations for partial differential
equations,” Proceedings of the National Academy of Sciences,
vol. 116, no. 31, pp. 15344–15349, 2019.

[16] S. H. Rudy, “Data-driven discovery of partial differential
equations,” Science Advances, vol. 3, 2017.

[17] M. Abadi, “Tensorflow: a system for large-scale machine
learning,” in Proceedings of the 12th Symposium on Operating
Systems Design and Implementation 2016, pp. 265–283, Sa-
vannah, GA, USA, November 2016.

[18] F. Chollet, “Keras,” 2015, https://github.com/fchollet/keras.
[19] P. Adam, Automatic Differentiation in PytorchUniversity of

Warsaw, Warszawa, Poland, 2017.
[20] B. James, D. Yamins, and D. D. Cox, “Hyperopt: a python

library for optimizing the hyperparameters of machine
learning algorithms,” in Proceedings of the 12th Python in
Science Conference, pp. 13–20, Austin, TX, USA, June 2013.

[21] J. W. Hurrell, “(e community earth system model: a
framework for collaborative re-search,” Bulletin of the
American Meteorological Society, vol. 94, pp. 1339–1360, 2013.

[22] J.-C. Golaz, “(e DOE E3SM coupled model version 1:
overview and evaluation at standard resolution,” Journal of
Advances in Modeling Earth Systems, vol. 11, pp. 2089–2129,
2019.

[23] I. M. Held, “Structure and performance of GFDL’s CM4. 0
climate model,” Journal of Advances in Modeling Earth Sys-
tems, vol. 11, pp. 3691–3727, 2019.

[24] NEMO System Team, “NEMO ocean engine,” Scientific Notes
of Climate Modelling Center, vol. 27, 2019.

[25] A. J. Wallcraft, H. Hurlburt, E. J. Metzger, E. Chassignet,
J. Cummings, and O. M. Smedstad, “Global ocean prediction
using HYCOM,” in 2007 DoD High Performance Computing
Modernization ProgramUsers Group Conference, pp. 259–262,
Pittsburgh, PA, USA, June 2007.

[26] M. A. Donelan, “Modeling waves and wind stress,” Journal of
Geophysical Research: Oceans, vol. 117, 2012.

[27] J. G. Powers, “(e weather research and forecasting model:
overview, system efforts, andFuture directions,” Bulletin of the
American Meteorological Society, vol. 98, pp. 1717–1737, 2017.

[28] E. Madenci and I. Guven, ?e Finite Element Method and
Applications in Engineering using ANSYSR©, Springer, Berlin,
Germany, 2015.

Scientific Programming 11

https://github.com/scientific-computing/FKB
https://github.com/scientific-computing/FKB
https://github.com/scientific-computing/FKB/blob/master/SPCAM_Instructions.md
https://github.com/scientific-computing/FKB/blob/master/SPCAM_Instructions.md
https://www.ibm.com/ibm/history/ibm100/us/en/icons/fortran/
https://www.ibm.com/ibm/history/ibm100/us/en/icons/fortran/
http://arxiv.org/abs/1909.00912
http://arxiv.org/abs/1909.00912
https://github.com/fchollet/keras


[29] L. B. orgesson, “Abaqus,” in Developments in Geotechnical
Engineering, vol. 79, pp. 565–570, Elsevier, Amsterdam,
Netherlands, 1996.

[30] Y. D. Murray, “Users manual for LS-DYNA concrete material
model 159,” Federal Highway Administration, Washington,
DC, USA, Tech. Rep, 2007.

[31] D. Komatitsch, SPECFEM3DCartesian v2.0.2, Computational
Infrastructure for Geodynamics, Davis, CA, USA, 2012.

[32] F. Archambeau, N. Mechitoua, andM. Sakiz, “Code saturne: a
finite volume codefor the computation of turbulent incom-
pressible flows-industrial applications,” International Journal
on Finite Volumes 1, vol. 1, 2004.

[33] J. Fischer and S. G. Kerkemeier, “nek5000 Web Page,” 2008,
http://nek5000.mcs.anl.gov.

[34] B. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States,
S. Swaminathan, and M. Karplus, “CHARMM: a program for
macromolecular energy, minimization, and dynamics calcu-
lations,” Journal of Computational Chemistry, vol. 4,
pp. 187–217, 1983.

[35] M. Valiev, E. J. Bylaska, N. Govind et al., “NWChem: a
comprehensive and scalable open-source solution for large
scale molecular simulations,” Computer Physics Communi-
cations, vol. 181, no. 9, pp. 1477–1489, 2010.

[36] A. Ferrari, P. R. Sala, A. Fasso, and J. Ranft, “FLUKA: a multi-
particle transport code,” Technical Report SLAC-R-773,
Stanford University, Stanford, CA, USA, 2005.

[37] G.-Q. Jiang, J. Xu, and J. Wei, “A deep learning algorithm of
neural network forthe parameterization of typhoon-ocean
feedback in typhoon forecast models,” Geophysical Research
Letters, vol. 45, pp. 3706–3716, 2018.

[38] J. Ling, A. Kurzawski, and J. Templeton, “Reynolds averaged
turbulence modelling using deep neural networks with em-
bedded invariance,” Journal of Fluid Mechanics, vol. 807,
pp. 155–166, 2016.

[39] H. R. Vega-Carrillo, “Artificial neural networks in neutron
dosimetry,” Radiation Protection Dosimetry, vol. 118,
pp. 251–259, 2005.

[40] Kaggle, “Kaggle ML & DS Survey,” 2018, https://www.kaggle.
com/kaggle/kaggle-survey-2018.14.

[41] S. Rasp, M. S. Pritchard, and P. Gentine, “Deep learning to
represent subgrid processes in climate models,” Proceedings of
the National Academy of Sciences, vol. 115, pp. 9684–9689,
2018.

[42] “Kaggle State of Data Science and Machine Learning,” 2019,
https://www.docdroid.net/qzyxCr4/kaggle-state-of-data-
science-and-machine-learning-2019.pdf.

[43] J. Bernal, NEURBT: A Program for Computing Neural Net-
works for Classification using Batch Learning, Technical Re-
port 8037, National Institute of Standards and Technology,
Gaithersburg, ML, USA, 2015.

[44] J. Bernal and J. Torres-Jimenez, “SAGRAD: a program for
neural network training withSimulated annealing and the
conjugate gradient method,” Journal of Research of the Na-
tional Institute of Standards and Technology, vol. 120, p. 113,
2015.

[45] P. Brierley, “Fortran90 MLP backprop code,” http://www.
philbrierley.com/phil.html.

[46] M. Curcic, “A parallel Fortran framework for neural networks
and deep learning,” ACMSIGPLAN Fortran Forum, vol. 38,
pp. 4–21, 2019.

[47] S. Nissen, Implementation of a Fast Artificial Neural Network
Library (Fann)Addison-Wesley, Boston, MA, USA, Dec.2003.

[48] D. J. Lary, M. D. Müller, and H. Y. Mussa, “Using neural
networks to describe tracer correlations,” Atmospheric
Chemistry and Physics, vol. 4, pp. 143–146, 2004.

[49] L. Hertel, “Sherpa: robust hyperparameter optimization for
machine learning,” SoftwareX, https://arxiv.org/pdf/2005.
04048.pdf, 2020.

[50] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian
optimization of machine learning algorithms,” Advances in
Neural Information Processing Systems, vol. 1, pp. 2951–2959,
2012.

[51] N. D. Brenowitz and C. S. Bretherton, “Prognostic validation
of a neural networkunified physics parameterization,” Geo-
physical Research Letters, vol. 45, pp. 6289–6298, 2018.

[52] D. John Gagne, C.-C. Chen, and A. Gettelman, “Emulation of
bin Microphysical Processes with machine learning,” in
Proceedings of the 100th American Meteorological Society
Annual Meeting, Boston, MA, USA, January 2020.

[53] D. John Gagne, “Machine learning parameterization of the
surface layer: bridging the observation-modeling gap,” in
Proceedings of the AGU's Fall Meeting, San Francisco, CA,
USA, 2019.

[54] N. D. Brenowitz, “Interpreting and stabilizing machine-
learning parametrizations of con-vection,” 2020, http://arxiv.
org/abs/2003.06549.

[55] P. Baldi and P. Sadowski, “(e dropout learning algorithm,”
Artificial Intelligence, vol. 210, pp. 78–122, 2014.

[56] N. Srivastava, “Dropout: a simple way to prevent neural
networks from over fitting,” ?e Journal of Machine Learning
Research, vol. 15, pp. 1929–1958, 2014.

[57] Sergey Ioffe and C. Szegedy, “Batch normalization: acceler-
ating deep network training by reducing internal covariate
shift,” 2015, http://arxiv.org/abs/1502.03167.

[58] F. Chollet, Deep Learning mit Python und Keras: Das Praxis-
Handbuch vom Entwickler derKeras-Bibliothek, MITP-Ver-
lags, Bonn, Germany, 2018.

[59] W. W. Grabowski, “Coupling cloud processes with the large-
scale dynamics using the cloud-resolving convection pa-
rameterization (CRCP),” Journal of the Atmospheric Sciences,
vol. 58, no. 9, pp. 978–997, 2001.

[60] M. Khairoutdinov, C. DeMott, and D. Randall, “Evaluation of
the simulated interannual and subseasonal variability in an
AMIP-style simulation using the CSU multiscale modeling
framework,” Journal of Climate, vol. 21, no. 3, pp. 413–431,
2008.

[61] M. Khairoutdinov, D. Randall, and C. DeMott, “Simulations
of the atmospheric general circulation using a cloud-resolving
model as a superparameterization of physical processes,”
Journal of the Atmospheric Sciences, vol. 62, no. 7, pp. 2136–
2154, 2005.

[62] K. (ayer-Calder and D. A. Randall, “(e role of convective
moistening in the madden-julian oscillation,” Journal of the
Atmospheric Sciences, vol. 66, no. 11, pp. 3297–3312, 2009.

[63] D. John Gagne II, H. M. Christensen, A. C. Subramanian, and
A. H. Monahan, “Machine learning for stochastic parame-
terization: generative adver-sarial networks in the lorenz ‘96
model,” Journal of Advances in Modeling Earth Systems,
vol. 12, 2020.

[64] S. Rasp, “Online learning as a way to tackle instabilities and
biases in neural network parameterizations,” 2019, http://
arxiv.org/abs/1907.

[65] M. S. Pritchard, C. S. Bretherton, and C. A. DeMott,
“Restricting 32–128 km horizontal scales hardly affects the
MJO in the Superparameterized Community Atmospher-
eModel v. 3.0 but the number of cloud-resolving grid columns

12 Scientific Programming

http://nek5000.mcs.anl.gov
https://www.kaggle.com/kaggle/kaggle-survey-2018.14
https://www.kaggle.com/kaggle/kaggle-survey-2018.14
https://www.docdroid.net/qzyxCr4/kaggle-state-of-data-science-and-machine-learning-2019.pdf
https://www.docdroid.net/qzyxCr4/kaggle-state-of-data-science-and-machine-learning-2019.pdf
http://www.philbrierley.com/phil.html
http://www.philbrierley.com/phil.html
https://arxiv.org/pdf/2005.04048.pdf
https://arxiv.org/pdf/2005.04048.pdf
http://arxiv.org/abs/2003.06549
http://arxiv.org/abs/2003.06549
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1907
http://arxiv.org/abs/1907


constrains vertical mixing,” Journal of Advances in Modeling
Earth Systems, vol. 6, pp. 723–739, 2014.

[66] P. Gentine, M. Pritchard, S. Rasp, G. Reinaudi, and G. Yacalis,
“Could machine learning break the convection parameteri-
zation deadlock?” Geophysical Research Letters, vol. 45, no. 11,
pp. 5742–5751, 2018.

[67] J. Towns, “XSEDE: accelerating scientific discovery,” Com-
puting in Science Engineering, vol. 16, pp. 62–74, 2014.

Scientific Programming 13


