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15  Abstract

16  Representing climate-crop interactions is critical to earth system modeling. Despite recent progress
17  in modeling dynamic crop growth and irrigation in land surface models (LSMs), transitioning these
18  models from field to regional scales is still challenging. This study applies the Noah-MP LSM
19  with dynamic crop-growth and irrigation schemes to jointly simulate the crop yield and irrigation
20  amount for corn and soybean in the central U.S. The model performance of crop yield and
21  irrigation amount are evaluated at county-level against the USDA reports and USGS water
22 withdrawal data, respectively. The bulk simulation (with uniform planting/harvesting management
23 and no irrigation) produces significant biases in crop yield estimates for all planting regions, with
24 root-mean-square-errors (RMSEs) being 28.1% and 28.4% for corn and soybean, respectively.
25  Without an irrigation scheme, the crop yields in the irrigated regions are reduced due to water
26  stress with RMSEs of 48.7% and 20.5%. Applying a dynamic irrigation scheme effectively
27  improves crop yields in irrigated regions and reduces RMSEs to 22.3% and 16.8%. In rainfed
28  regions, the model overestimates crop yields. Applying spatially-varied planting and harvesting
29  dates at state-level reduces crop yields and irrigation amount for both crops, especially in northern
30  states. A “nitrogen-stressed” simulation is conducted and found that the improvement of irrigation
31  on crop yields are limited when the crops are under nitrogen stress. Several uncertainties in
32 modeling crop growth are identified, including yield-gap, planting date, rubisco capacity, and
33 discrepancies between available datasets, pointing to future efforts to incorporating spatially-
34 varying crop parameters to better constrain crop growing seasons.

36  Plain Language Summary

37  Modeling dynamic crop growth and irrigation processes in the earth system are critical to the
38  understanding of climate-crop interaction and water availability for food security. While many of
39 the existing models and parameters are developed at local sites, it is challenging to transition them
40  to large regions. This study conducts a joint modeling effort of crop growth and irrigation in the
41  central U.S. and focuses on transitioning model parameters. The results show that irrigation could
42  significantly improve crop yields in the irrigated regions. By using spatially-varying planting and
43  harvesting date, the model shows a better estimate for both crop yield and irrigation amount. A
44  summary of model parameter uncertainties is provided. This urges future developments on detailed
45  spatial crop data and further understanding of crop photosynthesis to have better constrain on
46  model results.
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Introduction

This study intends to extend the investigation of Xu et al. (2019), which focused on the transition
of dynamic irrigation modeling from field to regional scales, by assessing the benefits and
uncertainties in joint crop-growth and irrigation modeling in the context of capturing climate-crop-
irrigation interactions in Earth System Models (ESMs). It has been recognized that climate change
and variability play a major role in affecting crop production (Drewniak et al., 2013; Ray et al.,
2015; Leng et al., 2016) from regional to global scales (Leng et al., 2016). Climate change has
already impacted global agricultural production (Ray et al., 2019), and negative trends on crop
yield per degree warming have been projected for major cultivars across the globe (National
Research Council, 2011). In addition to mean climatic conditions, extreme climate events, such as
drought and flooding, have also been emphasized as an important contributor to crop yield
reduction (Hlavinka et al., 2009; Lobell et al., 2014).

Agriculture management activities such as irrigation and fertilization also play an essential role in
increasing crop yields, especially in semi-arid climates and regions with strong seasonal variability
of precipitation during crop reproductive stages (Grassini et al., 2009). Globally, ~20% of
croplands are irrigated and contribute to ~40% of the world’s food production (Siebert and Doll,
2010). Over the 55.8 million acres of irrigated U.S. farmland (as of 2012), 115 billion gallons of
water was withdrawn for irrigation per day, accounting for more than one third of water-use
nationwide in 2015 (Maupin et al., 2014; Dieter et al., 2018). Furthermore, agriculture is
challenged to make efficient use of water to offest climate change impacts on freshwater
availability and groundwater over-exploitation (Vorosmarty et al.,, 2000). Therefore,
understanding the capability for freshwater to supply the world’s major food production, such as
in the U.S. Great Plain and Canadian Prairies, under climate change background, has become an
overarching science goal in the Global Energy and Water Exchanges project (GEWEX, Grand
Challenge on Water for the Food Baskets of the World:
https://www.gewex.org/about/science/wcrps-grand-challenges/water-for-the-food-baskets-of-the-
world/).

Agricultural management modifies surface water and energy balances, alters characteristics of
land-atmosphere interactions, and hence impacts local and regional climate (Pielke et al., 2007).
Furthermore, irrigation practices have been shown to increase humidity and decrease air
temperature (Chen et al., 2018; Xu et al., 2019). This irrigation-cooling effect has shown to modify
local environment, regional precipitation, and even reduce the chance of extreme heatwaves in the
U.S. (Lu et al., 2015) and globally (Thiery et al., 2017).

To better understand the climate change, crop yield and freshwater nexus, as well as critical
cropland-atmosphere interactions, it is important and necessary to improve the representation of
dynamic crop growth and irrigation in ESMs. Recent efforts have been dedicated to implement
crop growth dynamics and agricultural management into land surface models (LSM) within ESMs
(Levis et al., 2012; Drewniak et al., 2013; Liu et al., 2016; Leng et al. 2016; McDermid et al.,
2016). For instance, crop growth models were introduced into the Community Land Model version
4 with carbon-nitrogen cycle (CLM4CN) by Levis et al. (2012), which focused on the crop
coverage in mid-latitude regions. The results showed improvement on simulating leaf area index
(LAI), an index for crop growth, and summer precipitation, compared to the default setting of
CLM4.5. This work also highlights the importance of accurate representation of the cropping
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calendar, as a “late-planting” sensitivity test improved the simulated annual cycle of net ecosystem
exchange (NEE) in midwestern North America. More recently, a dynamic crop growth model was
incorporated into the Noah with multiple-physics (Noah-MP, Niu et al. 2011) model and tested for
two field sites in I1linois and Nebraska for corn and soybean (Liu et al., 2016). In Noah-MP-Crop,
crop growth stages are solely dependent on growing degree days (GDD). The Noah-MP-Crop
model improved the simulation of surface energy balance and LAI and provided reasonable
estimates of biomass. While these works demonstrated widespread potential for agriculture-
climate interactions in some key agroecology regions, it is still challenging to accurately represent
crop-climate-hydrology interactions in general and specifically the spatial variations of crop-
model parameters across various scales.

Similarly, irrigation parameterizations have been incorporated into various LSMs using the “soil
moisture deficit” approach. For example, Ozdonga et al. (2010) used the soil field capacity as a
threshold, below which irrigation is triggered, and calculated the irrigation demand from
subtracting current root-zone soil moisture from field capacity. Lawston et al. (2015) applied this
soil moisture deficit approach in the coupled Weather Research and Forecast (WRF) model and
found the regional climate is highly sensitive to the irrigation method chosen (drip, flood, and
sprinkler). Xu et al. (2019) used a similar approach to mimic sprinkler irrigation at the county level
in the central U.S. Instead of using a uniform value of field capacity, a spatially-varying soil
moisture threshold parameter is determined through regional calibration against the USGS water
withdrawal data, which enables transforming model parameters from field to regional scale.

The above-mentioned crop-focused and irrigation-focused modeling approaches are inadequate to
comprehensively address climate-crop-water interactions. In crop-focused models, a significant
amount of irrigation water as important input to the surface-water-budget equation is neglected in
semi-arid croplands and will result in a warm/dry surface environment through land-atmosphere
interactions, as well as loss in crop yield due to water stress. On the other hand, irrigation-only
models fail to capture the feedback between irrigation water demand and crop growth stages.
Therefore, regional irrigation modeling will benefit from the dynamic representation of crop
heterogeneity, such as constraining simulated irrigation amount by crop planting/harvest date.
Thus, it is necessary to perform joint crop-irrigation modeling in LSMs.

Leng et al. (2016) provided the first joint modeling effort with crop and irrigation on large-scale
in the U.S., and optimized irrigation and fertilization practice in CLM4.5CN. The results showed
that without optimization, the corn yield is much underestimated, due to the quick denitrification
in CLM4.5CN previously reported by Oleson et al. (2013). The irrigation optimization increases
yield only in the irrigated region and the fertilization optimization showed significant improvement
in all regions. However, the improvement of irrigation scheme on crop yield under sufficient
nutrition condition is not discussed. Moreover, uncertainties associated with crop model
parameters, sparse agricultural datasets at both spatial and temporal scales, and even discrepancies
between available datasets still remain unsolved.

Given the wide use of Noah-MP LSM in the community WRF model and in the operational
National Water Model (NWM), it is important to understand and improve its capability in
simulating concurrently crop growth and irrigation, because both processes affect surface heat and
water-vapor fluxes (as lower boundary conditions in WRF) and streamflow. Therefore, the primary
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objectives of this study are to: (1) assess the Noah-MP model’s performance in joint crop and
irrigation modeling; (2) investigate methods of transforming irrigation and crop modeling from
field to regional scales; and (3) identify uncertainties and challenges in crop modeling in LSMs.
We focus on two crops (corn and soybean) in this study, since they are the two crops currently
represented in Noah-MP-Crop and are two major field crops in the central U.S. Section 2
introduces the data required for model input and evaluation, and the Noah-MP crop and irrigation
schemes. The model results for crop yield and irrigation amount are presented in Section 3. The
uncertainties in simulating crop yield are discussed in Section 4. We conclude our findings in
Section 5.
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150 2. Description of input data, evaluation data, and models

151 2.1 Data Preparation

152 Inthis work, several agriculture management datasets are used to help constrain crop and irrigation
153  models and to define the crop growing season, cultivated land fraction, and irrigated fractions. The
154  planted area for corn and soybean are obtained from the 30-m CropScape data from the U.S.
155  Department of Agriculture’s (USDA) National Agricultural Statistics Service (NASS)/George
156  Mason University (GMU) (https://nassgeodata.gmu.edu/CropScape/). This is a geo-referenced,
157  crop-specific land cover data layer created for the contiguous U.S. using satellite imagery and has
158  been supported by extensive agricultural ground truthing. The CropScape dataset is originally
159  derived from the planting frequency in 11 years (from 2008 to 2018) and used to calculate the
160  fractional coverage of total cropland (relative to the grid cell’s vegetated area; hereafter F,.,,) and
161  of each crop type (relative to the grid cell’s total cropland area; F.o,, and Fs,ypeqn). In this study,
162 the planting areas are determined on two criteria: (1) the F,.,p, > 0.5; and (2) Forp O Fsoypean >
163 0.3, for corn and soybean, respectively . The planting area for these two crops and their planting
164  fraction are shown in Figure 1.

165

166 Figure 1. Planted-area fractions for (a) corn and (b) soybean in the Central U.S. domain derived from the USDA-
167  NASS CropScape dataset.

168

169  The 2010 USDA report on usual planting and harvesting dates is used to define the length of
170  growing season for corn and soybean. This survey reports the most active period of usual planting
171  and harvesting dates for each state. In our study, the middle dates of planting and harvest windows
172 are selected for the states within our study domain (see Figure 2). Although the middle dates for
173 each crop in each state may not reflect the complex decision of actual planting and harvesting, it
174  represents to some degree the spatial variation of planting and harvesting at state-level. The
175  impacts of uncertainties in planting/harvesting dates on simulated crop yield and irrigation amount
176  are discussed in section 3.2. For details of the planting and harvesting dates in each state, please
177  see Appendix A.

178

179 Figure 2. USDA-NASS state-level planting and harvest dates in Julian day for corn and soybean.

180

181  For each year, the USDA NASS reports the average yields for various crops at the county-level
182  over the U.S (https://quickstats.nass.usda.gov/). These data are based on harvested yields, reported
183 by a sample of farmers within each county, and verified with independent yield samples taken by
184  USDA staff when the crop reaches maturity (FAO and DWFI, 2015). Therefore, the model
|185 simulated biomass (g/m?) will need to be converted to standard yield (bushel/acre, bu/ac) to
186  compare with the USDA county-level data, following the instruction:

187  (see http://www.ag.ndsu.edu/pubs/plantsci/crops/ae905w.htm)

188

189 corn yield [bu/ac] = biomass[g/m?] = (1 — 0.155) * 4.046[km?/ac] /25.4[kg/bu] (1)
190  soybean yield [bu/ac] = biomass[g/m?| * (1 — 0.13) = 4.046[km?/ac] /27.4[kg/bu] (2)
191

192 Inthe Eq. (1) and (2), 0.155 and 0.13 are the standard moisture content (15.5% and 13%) for corn
193  and soybean, respectively. Harvested corn usually contain an initial moisture content greater than
194 15.5% (15.5~32%). For transportation and storage purpose, mechanical drying method is typically
195  applied to reduce the initial moisture to the standard moisture. Two sources of weight loss are
196  associated with this process: 1) the weight of the moisture loss (also known as “water shrink™) and
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2) the weight loss due to handling processes (Hicks and Cloud, 1992). The handling loss could
range from 0.04% to 5.22%, depending on the initial moisture content and shrinkage loss.
Therefore, the calculated dry mass losses tend to be variable among different growers. This
uncertainty is worth noting when comparing the model simulated dry mass with standard yield in
the USDA survey.

The irrigation locations are defined by the 500-m MODIS-based irrigation fraction map (Ozdogan
and Gutman, 2008) and the critical irrigation threshold parameter, IRR CRI, from Xu et al. (2019)
is applied in this study (see Figure 3). IRR CRI is a threshold parameter for the soil water content,
below which the irrigation scheme will be activated and was calibrated at county-level in Xu et al.
(2019). To evaluate the model irrigation amount, the five-year report from the U.S. Geological
Survey (USGS) on fresh water withdrawals for irrigation (http://water.usgs.gov/watuse/) is used
to constrain and calibrate the irrigation parameters in the irrigation module (for details of irrigation
modeling, see section 2.3 and Xu et al., 2019).

Two Ameriflux sites with irrigated agriculture (Nel and Ne2 in Mead, NE;
https://ameriflux.Ibl.gov/sites/) are analyzed (Suyker, 2001). Nel is an irrigated continuous maize
site and Ne2 is an irrigated maize-soybean rotation site. Data collected at the Ameriflux sites,
including LAI, leaf mass per area (LMA), and harvested biomass, are used to evaluate the model
output at these two locations with and without the irrigation scheme. Also, the measured leaf
biomass per area (LMA; g/m?) is equivalent to the Noah-MP-Crop parameter that converts biomass
to LAI (BIO2LAI), which is assumed to be a constant.

Figure 3. (a) The irrigation fraction used in this study. (b) The critical irrigation threshold parameter used in this study,
calibrated in Xu et al. (2019).
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2.2 Noah-MP-Crop model

Noah-MP is a land component of the Weather Research and Forecast (WRF) model (Skamarock
et al., 2008; Niu et al., 2011; Yang et al., 2011), which has been widely applied in numerical
weather prediction (NWP), regional climate and hydrology studies (Liu et al., 2017; Barlage et al.,
2015; Zhang et al., 2020). It has been also used to simulate the land surface processes for
streamflow forecasts in the National Water Model (www.water.noaa.gov/about/nwm).

The Noah-MP-Crop crop module consists of three components: a photosynthesis (PSN)-stomata
scheme, a carbon allocation scheme, and a dynamic crop growth scheme. The leaf-level PSN rate
and stomatal conductance are calculated based on the model of Farquhar et al. (1980) and Collatz
et al. (1992) for C3 and C4 plants, respectively. However, there is only one set of PSN parameters
for a generic C3 crop in the default Noah-MP. This simplified treatment doesn’t represent corn
(C4), a major productive species in Central U.S. Therefore, in this study, a set of C4 PSN
parameters are adapted from a synthesis of literature and model sensitivity tests (see Appendix B).

Following a similar approach used in traditional crop models (Hybrid-Maize for corn, Yang et al.,
2004; DSSAT for soybean, the Decision Support System for Agrotechnology Transfer, Jones et
al., 2003), the dynamic crop growth model in Noah-MP-Crop uses the accumulated growing
degree days (GDD) to determine eight plant growth stages (PGS, Liu et al., 2016): before seeding,
emergence, initial vegetative, normal vegetative, initial reproductive, to maturity, after maturity,
and after harvesting. Also in Liu et al (2016), the dynamic crop growth parameters, such as
planting/harvest dates and GDD-based thresholds to determine plant growth stages are calibrated
at two Ameriflux sites in Bondville (Bol), IL, for corn and Mead (Ne3), NE, for soybean.

Finally, the Noah-MP-Crop model allocates the assimilated carbohydrate to different parts of plant,
depending on the growth stages. For each stage, the total carbohydrate from the PSN scheme is
partitioned to the leaf, stem, root and grain according to stage-function fraction parameters (from
0 to 1). For example, during the vegetative stage, more carbon is allocated to leaf relative to stem
and root; while in the reproductive stage, most of the assimilated carbon is allocated to grain. Then,
the simulated leaf biomass is converted to LAI based on a model parameter, BIO2LAI (or specific
leaf area, SLA), in the following equation:
LAI = Leafy,qss * BIO2LAI 3)

The values of BIO2LAI are constants and are different for corn (0.015) and soybean (0.030),
respectively (Liu et al., 2016).
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2.3. Irrigation scheme

A dynamic irrigation scheme was integrated into Noah-MP and tested at field and regional scales
without using the Noah-MP-Crop model (Xu et al. 2019). In this study, we adopt the same
approach and couple it with dynamic crop growth, enabling two-way crop-irrigation interactions.

Plant photosynthesis and respiration processes are limited by water stress during droughts.
Therefore, irrigation plays a critical role in both the water and carbon cycle through relieving water
stress, especially for crops planted in arid and semi-arid regions. In Noah-MP, the water stress
function is plant- and soil-dependent and is determined by the integrated soil moisture availability
(SMA) in root zones. As in Xu et al. (2019), the root-zone SMA is also employed as a basic
irrigation trigger. For the irrigated cropland, the root-zone SMA 1is defined as the ratio of the
current root-zone available soil moisture (current SM — SM,,,;;, wilting point) and non-stress soil
moisture (SMy.cr — SM,,;¢):

SMA = (SM — SMyy11)/(SMyof — SMy1e) — (5)

The irrigated cropland is defined as the fraction within a cultivated grid cell (Fiy—c0p) and takes
the smaller value of Fy;., and F,p, * Fyeq (cropland fraction relative to the model grid cell’s total
area) in Figure 3(a):

Firr—crop = min(Firr» Fcrop ) Fveg) (6)

The irrigation triggering mechanism includes: (1) Firy_crop > IRR_FRC (an irrigation fraction
threshold); (2) within the growing season, defined by the planting/harvesting date map above; (3)
SMA < IRR_CRI (soil moisture trigger, see Figure 3(b)); and (4) stop irrigation on rainy days.
These criteria are checked daily, and if irrigation is triggered, the potential irrigation amount for
the day (IWA) is computed to maintain SMA to a non-stress level (SMy..¢): IWA = min (SM,..r —
SM,IRR_LIM), where IRR _LIM is the daily maximum irrigation amount, which is limited by the
capability of the irrigation system and water availability.

The above irrigation scheme would be executed for the crop type in each irrigated grid cell to
obtain the irrigation water amount for corn (IWA,,,) and soybean (IW Ay peqn), respectively.
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290 2.4 Model setup

291  The model domain is identical to the central U.S. domain in Xu et al. (2019). The model domain
292 is 600 grids (north-south) x 700 grids (west-east) at 4-km resolution, covering the major part of
293 the corn-belt in the Central U.S. The simulation period ranges from 1999-10-01 to 2004-12-31,
294 covering five growing seasons. The atmospheric forcing data are from the North American Land
295  Data Assimilation System (NLDAS, Cosgrove et al., 2003) forcing dataset at 0.125-degree and
296  hourly resolutions. The precipitation forcing are generated by combining observations from field
297  stations, Stage IV radar retrievals from Next Generation Weather Radar System and satellite. A
298  10-year spin-up period was used to ensure the soil moisture and temperature reach an equilibrium
299  state. An elevation adjustment was applied to the surface pressure, longwave radiation, near-
300 surface temperature and humidity fields to account for topography differences between the model
301 and NLDAS grids.

302

303  Six experiments were performed to assess Noah-MP’s performance in joint crop-irrigation
304 modeling (see Table 1). The first experiment (BULK) is a simulation with dynamic crop but
305  without irrigation, in which a uniform planting and harvest date is applied in the whole domain. It
306  adopts the default planting/harvest date (day of year) initially calibrated for corn in Bondville, IL,
307 and soybean in Mead, NE (for corn: Julian day 111/300; for soybean: Julian day 130/280). The
308  second experiment (BULK IRR) is the same as BULK but with the calibrated dynamic irrigation
309  scheme activated (Xu et al., 2019). The third (STATE) and the fourth simulation (STATE_IRR)
310  are the same as the BULK and BULK IRR but used the state-level planting and harvest date as
311  shownin Fig. 2. The BULK/BULK IRR simulations were referred as the baseline simulations and
312 the difference between BULK/BULK IRR and STATE/STATE IRR represents the impacts of
313  spatially-varied planting/harvest date on crop yield and irrigation amount. The fifth (0.5N) and the
314  sixth (0.5N_IRR) simulation are the same as STATE and STATE_IRR but reduce the nitrogen
315  concentration by half. The difference between STATE/STATE IRR and 0.5N/0.5N IRR can be
316  attributed to the impacts of nitrogen concentration. Furthermore, comparing the results between
317 STATE IRR and STATE with 0.5N_IRR and 0.5N will demonstrate the impacts of irrigation
318  under N-sufficient and N-stressed conditions.

319

320  Table 1. Description of the Numerical Experiments.
321
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3. Results

3.1. Model Performance

Figure 4 shows the county-level corn yields reported by USDA and results from the six
experiments (five-year average from 2000 to 2004). Yield results from the BULK and STATE
compare well with the USDA report in the magnitude and spatial pattern in the rainfed region but
are underestimated in heavily irrigated regions such as Southeast Nebraska. Using the dynamic
irrigation scheme in BULK IRR and STATE _IRR reduces the yield bias in irrigated regions. The
differences between the BULK and STATE will be further discussed in section 3.2. The 0.5N
experiment significantly reduces yield for more than 60% of the domain due to nitrogen stress,
which is similar to the CROP_DFLT scenario in Leng et al. (2016) for the fast denitrification in
the default version of CLM4.5. In this case, using irrigation scheme (0.5N_IRR) has little
improvement under nitrogen stress.

Figure 4. For Corn: Yield (bushel/acre) from USDA NASS county survey and six model simulations (five-year
average from 2000-2004).
Figure 5. For Soybean: Yield (bushel/acre) from USDA NASS county survey and six model simulations (five-year
average from 2000-2004).

As for soybean yields shown in Figure 5, BULK and STATE show good estimate of yield in the
major soybean production areas in the U.S (MI, IL, IL, 10, WI, MN, SD), but markedly
underestimate the yield in the irrigated regions such as NE, AR and MS. In the 0.5N nitrogen-
stressed condition, soybean yields are much under predicted for the entire domain. The dynamic
irrigation scheme can help improve yield in the BULK IRR and STATE IRR simulation, but it
doesn’t show much impact under nitrogen stress condition in 0.5N_IRR. These results from corn
and soybean suggest that the impacts of irrigation on yields in the irrigated regions are significant
but only occur with sufficient fertilization supply.
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349 3.2 Transition from field to regional scale crop modeling

350 The second objective of this study is to transition crop modeling from field to regional scale by
351  first exploring the use of spatially-varying planting/harvesting dates for regional simulation. The
352  impacts of spatially varying planting/harvest date on modeling crop yield and irrigation amount
353  can be assessed by comparing the results from the BULK IRR and STATE IRR simulation, as
354  shown in Figure 6. The bars are ranked by the yield from low to high in each of these states and
355  the black lines represent the delayed days in planting date compared to the uniform planting date
356 in BULK IRR (111 for corn and 130 for soybean in Julian day). The delayed planting for each
357  state implies a shorter growing season, which results in lower yields in STATE IRR than in
358 BULK IRR for both corn and soybean. These reduced yields help improve the high bias of
359 BULK IRR in all states, except for South Dakota and Minnesota, where STATE IRR
360  underestimates in both corn and soybean yield.

361

362  Figure 6. Bar plot of the USDA and modeled yield for each state from the BULK IRR and STATE_IRR simulation
363 for (a) corn and (b) soybean (five-year average, 2000-2004). The delayed days in planting date in STATE IRR
364  (compared to the uniform date in BULK_IRR) are shown in black lines.

365

366  Figure 7 shows the impacts of delayed planting date on reduced yield (bu/ac/day) for corn and
367  soybean. This impact of planting date on yield may be more complex than a linear relationship,
368  but strong spatial variation exists across states on the sensitivity of modeled yield to delay in
369 planting date. For both corn and soybean, a clear north-to-south gradient can be witnessed, as the
370  impacts of planting date are strong in Northern states, such as Minnesota, lowa, Wisconsin and
371  Michigan. While for soybean, the planting region in lower Mississippi river valley shows a clear
372  dependence on planting day as well. Moreover, this north-to-south gradient of yield dependence
373  on planting date also exhibits in each particular state as well. This is most obvious in Minnesota,
374  lowa, Illinois, and Indiana, for both corn and soybean, that the modeled yield in northern part of
375  the states are more sensitive to delay in planting date than in the south.

376

377 Figure 7. The impacts of delayed planting date on modeled yield (bu/ac/day) for (a) corn and (b) soybean.

378

379  In South Dakota the model shows very little sensitivity to the planting date, suggesting the modeled
380 yield may be impacted by water stress (Figure S1 confirms this speculation that the underestimated
381 yields in Eastern South Dakota and Western Minnesota are water-limited). However, the low
382  irrigation fractions in these two regions (Figure 3a) suggested irrigation is not a significant water
383  source for crop production. Therefore, we suspect that the perched shallow water table in the
384  northern corn belt plays a role in supplying water for corn production (Rizzo et al., 2018). Note
385  that the model applies a free drainage scheme for deep soil drainage and the complex two-way
386  groundwater exchange processes are not considered in this study.

387

388  Transforming the planting date from uniform value at point scale to spatially-varied at state-level
389  could also influence the modeled irrigation amount, as the irrigation period is constrained by the
390  crop growing season. Figure 8 shows the spatial distribution of USGS water withdrawal report at
391  county-level in 2000 and the modeled irrigation amount from the BULK IRR and STATE IRR.
392 The BULK IRR, with uniform planting/harvesting date, overestimates irrigation amount
393  compared to the USGS reported data, especially in the Lower Mississippi River Basin (LMRB).
394  The largest overestimation in irrigation amount is over 100 mm and occurs in Poinsett, Arkansas,
395  with USGS reported 459.2 mm and the BULK IRR simulated 561.3 mm. The overestimated
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irrigation amount in the BULK IRR has an intuitive explanation; the longer the growing season,
the more water is needed to maintain soil moisture at the critical level. The scatter plot in Figure 9
for the irrigation amount from two simulations also confirms the overestimate of irrigation amount
in the BULK IRR, especially in the LMRB. After applying the spatially-varying
planting/harvesting date, the performance in STATE IRR is improved compared to the
BULK_IRR (RMSEs improve from 29.67 to 26.24 mm, and coefficient of determination, R?,
increases from 0.89 to 0.92) in LMRB. The STATE IRR also reduces irrigation amount in
Nebraska as well, but not as much as in LMRB. In fact, the USGS county-level report represents
an upper bound of the total water withdrawal, but the water is not necessarily used all for irrigation.
Therefore, the model simulated irrigation amount shouldn’t exceed the USGS report. Hence, the
STATE IRR simulates less irrigation amount and provides better performance than the
BULK IRR.

Figure 8. Irrigation amount (mm) in 2000, from (a) USGS county-level water withdrawal report; (b) modeled
irrigation amount from the BULK IRR simulation; and (c) the STATE_IRR simulation.

Figure 9. Scatter plot of the model irrigation amount against the USGS water withdrawal data in two heavily irrigated
region, Nebraska and Lower Mississippi River Basin (LMRB).
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415 3.3 Impacts of irrigation on crop yield

416  Figure 10 shows the LAI and grain mass at the two Ameriflux sites (Nel and Ne2). STATE and
417  STATE IRR simulated LAI have good agreement in Nel for corn throughout the growing season,
418  but underestimate LAI in Ne2 in 2002 for soybean. When it comes to the crop reproductive stage
419  (grain production), the differences in yield between these two simulations are evident. The STATE
420  simulation significantly underestimates corn yield at both sites, ranging from 31% to 80%, but
421  using the irrigation scheme greatly improves corn yield at both sites.

422

423  As for the soybean yield, irrigation doesn’t improve soybean yield as much as it did for corn yield,
424  even with similar total irrigation amount. This is also noticed in Chen et al. (2018), as the increase
425  in crop yield due to irrigation has a strong dependence on crop species. This may be attributed to
426  the different biogeochemical characteristics between these two plants (corn is C4 and soybean is
427  C3) in their water-use efficiency, including photosynthesis and respiration.

428

429 Figure 10. Timeseries of LAI and harvested grain in Nel and Ne2 sites from 2000 to 2005. Nel is irrigated continuous
430 corn site and Ne2 is irrigated maize-soybean rotation; black boxes in Ne2 indicate soybean years.

431

|432 Figure 11 shows the USDA vyield data (five-year average) and the six simulations in this study,
433  aggregated at state level. The comparison between BULK and BULK IRR, and STATE and
434  STATE IRR in irrigated regions shows the improvement of yield with the irrigation scheme
435  activated. The yield in BULK IRR (156.5 bu/ac) is even double the amount than in BULK (74.61
436  bu/ac) for corn. The difference between BULK IRR and STATE IRR shows the impacts of
437  prolonged growing season on overestimating modeled yield in BULK IRR, due to the increase in
438  modeled irrigation amount.

439

440 Figure 11. Bar plots of yield (five-year average) for (a) corn and (b) soybean from USDA survey and six simulations
441 in this study. The red and blue bars represent the crop yields in the whole domain and in the irrigated region,
442  respectively.

443

444  Moreover, the STATE IRR and 0.5N_IRR represents the impacts of irrigation on crop yield under
445  the conditions of sufficient and stressed nitrogen, respectively. The doubled irrigated yield in
446  STATE IRR (from 74.28 to 143.5 bu/ac) decreases under nitrogen stress condition (from 51.52 to
447  68.41 bu/ac) in 0.5N_IRR. This is similar to Leng et al. (2016) results, in which the irrigation
448  scheme was applied to the default CLM4.5 run with fast denitrification rate. Thus, the irrigation
449  impacts in such nitrogen-stressed conditions is limited. However, when the nitrogen concentration
450  is unstressed, the impacts of irrigation manifest and improve crop yield.

451

452  Table 2 presents the statistics from all simulations, including RMSE (in both bu/ac and relative to
|453 USDA report) and the coefficient of determination (R?). These statistics confirm that under
454  sufficient nitrogen concentration and state-level planting/harvest management, the application of
455  adynamic irrigation scheme (STATE IRR) improves the modeled yield performance for both corn
456  and soybean, reducing RMSE from 47.8 to 22.3% for corn and from 18.9% to 16.8% for soybean.

457

458 Table 2. Summary of the model performance in simulating county-level corn and soybean yield from 2000-2004 (5
459  growing seasons) as compared to USDA report data for the whole domain and only irrigated regions (in parentheses).

460
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461 4. Discussion

462  Several uncertainties can contribute to the differences between simulated crop yields and the
463  USDA report, including those associated with discrepancies between available datasets, crop yield
464  gaps, and crop/irrigation model parameters, which is the subject of discussion in this section.

465

466 4.1 Yield gaps between actual yield and modeled potential or water-limited yield

|467 The yield potential (Y, ) is defined as the yield an adapted crop cultivar could achieve by alleviating
468  all abiotic and biotic stresses through optimal crop and soil management (Lobwell et al., 2009).
|469 Thus, Y, is achieved when management eliminates all limitations to crop growth and yield from
470  nutrient deficiencies, water deficit or surplus, toxicities, salinity, weeds, insect pests, and
471  pathogens. In our study, for irrigated corn and soybean, the model provides sufficient water and
472  nitrogen, hence, the modeled yield should be close to Y,,. For rainfed crops, the modeled yield is
473 less than the potential yield due to water limitation (Y,,, water-limited yield). The actual yield (Y,)
A74  is collected from USDA NASS dataset. Therefore, the relative yield gap (Y,) can be calculated in:

475
476 Y, = (1 — Ya/Yp) * 100%; for irrigated crop (7)
477 Y, = (1-Y,/Y,) *100%; for rainfed crop  (8)
478

479  Quantifying the yield gaps for each crop cultivar in different growing regions is still a research
480  topic in the food production community. The Global Yield Gap Atlas (GYGA, www.yieldgap.org)
481  provides estimates of untapped crop production potential on existing farmland based on current

82  climate and available soil and water resources. GYGA’s estimated Y, in US are 10~20% for

83  irrigated corn and 20~30% for rainfed corn, respectively. In our study, Y; are calculated between
484  USDA county-level data and our model simulations and listed in Table 3, which are 13~25% for
485  irrigated corn and 17~28% for rainfed corn. These numbers are comparable to the numbers given
486 by GYGA. However, the yield gaps for soybean are 15~32% for irrigated and 14~39% for rainfed
487  soybean, which are higher than other studies (e.g., 9~24% in Egli and Hatfield, 2014; 10~30% in
488  Grassini et al., 2015), especially for the rainfed soybean, which agrees with the overestimation in
489 1L, IN and OH.
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4.2 Uncertainties in crop model parameters

The development of LSMs has expanded from its initial purpose to provide reliable lower
boundary conditions for the coupled climate and weather models by including terrestrial
biogeochemical processes, land use change, and dynamic vegetation growth (Bonan et al., 2011).
Many LSMs adopt the Farquhar-Ball-Berry scheme to simulate the coupled Ileaf-level
photosynthesis and stomatal conductance (Farquhar and von Caemmerer, 1982; Ball et al., 1987;
Collatz et al., 1991; Collatz et al., 1992; Niu et al.,, 2011; Oleson et al., 2013). Those
biophysiological models require a variety of plant-specific parameters, such as the minimum
stomatal conductance, respiration rate, and rubisco capacity (V.,,25), and they are usually
measured under field experimental conditions. Bonan et al. (2011) reviewed the past literatures on
PSN-stomata parameterization in LSMs and found that V_,,,»5 is the most critical parameter in
modeling plant photosynthesis. This parameter characterizes the maximum carbon assimilation
rate and is measured in laboratory conditions, given sufficient radiation upon leaf level and CO,
concentration at 25 °C. Bonan et al. (2011) concluded that the leaf-level measured V_,,,,»5, when
scaled up to LSM model grid cell, could lead to higher photosynthetic rates when nitrogen was
non-limiting (such as for cropland systems). Furthermore, the V,,,,s parameter is little
constrained and remains model dependent over LSMs.

Table S1 in Appendix B provides a synthesis of the parameters used in several studies. The wide
range of Vs values (from 30 to 101 umol m=2 s~1) and different treatments of product-
limiting pathway in PSN calculation (K, ) demonstrate a significant uncertainty in specifying the
model-dependent PSN parameters. Hence, calibration of the PSN parameters becomes critical, but
has been usually conducted at field scales using measurements of moisture and carbon fluxes. The
Noah-MP-Crop model (Liu et al. 2016) uses the generic crop PSN parameters, which don’t
distinguish C3 and C4 crops. To incorporate corn-specific PSN parameters into Noah-MP-Crop
parameter table, we performed a calibration for C4 corn using the LAI and biomass data in the
Ameriflux Bol site in Bondville, IL. The calibrated values are listed at the bottom row of Table
S1, noted as “Adjust”, meaning they are calibrated and subject to adjustment. The main result of
the calibration is to reduce overestimated rain-fed corn yield by reducing V,,,,,»5 from the default
value (80 umolm=2s71) to a lower value (60 umol m=2 s~1). The calibration results are
presented in Figure S2. As for soybean, the default crop parameters for C3 was used in this study.

He et al. (2019) provides a global rubisco capacity map from satellite-observed solar-induced
chlorophyll fluorescence (SIF) record. Through data assimilation methods, the 11-year record of
SIF shows both spatial and temporal variation of V,,,,»5 in world’s major crop production regions.
Future efforts of incorporating the spatial map of V_,,,»5 into ESMs and LSMs would be highly
useful to address the wide range of this model parameter.
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4.3 Crop Model parameter uncertainties — planting/harvesting management

Representing dynamic crop phenology in LSMs is critical for predicting the energy, water, and
carbon budgets in croplands and may even influence the atmospheric boundary layer, especially
in areas with large cropland coverage (Betts, 2005; Ma et al.,, 2012). In some LSMs, the
determination of planting and harvesting, as well as plant growth stages are calibrated against field
data. Therefore, these calibration efforts are local and there are few studies quantifying the impacts
of planting on simulating crop phenology over a large region. For example, in the CLM4-Crop,
the planting is activated by three temperature thresholds, a 20-year averaged GDD threshold, a
threshold of 10-day running mean of air temperature, and a threshold of daily minimum
temperature (Levis et al., 2012). Chen et al. (2018) evaluated the CLM4-Crop over multiple
Ameriflux sites over the U.S. corn belt and found there is an early season overestimate of LAI,
due to a too-early start of planting. A modified simulation with locally-accurate planting dates
showed improvement in simulating energy and water fluxes, as well as the NEE.

In Noah-MP-Crop, the planting and harvesting date are prescribed parameters to reflect the spatial
and year-to-year variation of planting/harvesting date for Bol and Ne3 sites in Liu et al. (2016).
In this study, the BULK IRR simulation with an early and spatially-invariant planting date
overestimated the crop yield and irrigation amount for corn and soybean, consistent with the results
of Chen et al. (2018). By contrast, the STATE IRR simulation with spatially-varying and delayed
planting dates effectively mitigated those overestimations (Figure 6). Figure 7 shows that the
northern states in the corn belt are relatively more affected by delayed planting date than the
southern states, and this north-to-south gradient is evident within each state as well.

Although the state-level planting/harvesting date applied in STATE IRR represented to some
degree of their spatial variations, uncertainties still exist. The USDA usual planting/harvesting date
report gives the most active window for planting and harvesting through the survey of last 20 years.
In the STATE and STATE IRR simulation, the middle date of the window time is selected for
each state. However, applying the single planting/harvesting date on state-level is still unrealistic.
Figure 7 shows the spatial variations of the modeled crop yield sensitivities to delay in planting
date and the range of these crop yield responses are calculated in Table 3.

To better constrain the crop growing seasons, it is necessary to incorporate the spatially detailed
crop calendars. For example, the planting and harvesting windows can be dynamically modeled
based on field workability, considering snow cover and rainfall, and crop biological requirement
for heat and moisture (Ilizumi et al., 2018). Dynamically modeling the crop calendar will likely to
reduce the uncertainties of specifying crop growing seasons in future crop model development,
especially in regions where agricultural management data are sparse.
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4.4 Crop Model Parameter Uncertainties — convert leaf mass to LAI

Figure 12 shows the reciprocal of measured leaf mass per unit area (LMA, g/m?) from Nel and
Ne2 from 2001 to 2007, which demonstrates significant in-season variations for both corn and
soybean. For corn, this reciprocal decreases from 0.03 at the early growing stage to 0.01 m?/g at
the end of the growing season. This characterizes a general corn leaf growth feature: extensive leaf
growth (larger LAI) at the beginning of the growing season with small amount of mass, and later
growing thicker (more mass) with slight increase in LAI. The inverse of LMA for soybean has less
variability and the values are generally higher than for corn during the growing season (ranging
from 0.018 to 0.029 m?/g).

The ranges of LMA are listed in Table 3 as compared to the default constant value of BIO2LAI in
Noah-MP-Crop that has the same physical meaning as the 1/LMA and is used to convert the
prognosed leaf mass to diagnosed LAI. BIO2LALI is set as constants for corn (0.015) and soybean
(0.030). Such a constant conversion coefficient is used in other LSMs too, e.g., the specific leaf
area parameter (SLA) in CLM (Oleson et al., 2013). The substantial seasonal variations of 1/LMA
in Figure 12 points to the challenges of using a constant BIO2LAI throughout the entire crop
growing season, and a time-varying conversion coefficient is needed in future model development.

Figure 12. The reciprocal of the measured leaf mass per area (LMA) from two Ameriflux sites, US-Nel and US-Ne2.
The inverse of LMA is the same as BIO2LAI parameter in the Noah-MP-Crop model. The black boxes in US-Ne2
indicates soybean years.



ESSOAr | https://doi.org/10.1002/essoar.10502980.1 | Non-exclusive | First posted online: Tue, 5 May 2020 11:20:37 | This content has not been peer reviewed.

587
588
589
590
591
592

593
594
595

4.5 Summary of the uncertainties in validating crop modeling

Table 3 summarizes the aforementioned uncertainties and provides the default values in Noah-
MP-Crop and the ranges of uncertainties of three parameters: yield gaps (between USDA-report
actual yield and modeled yield), model parameters (V,,,,25, planting date, and BIO2LAI). The
uncertainty associated with mechanical drying after harvest mentioned in Section 2 are also include
in Table 3.

Table 3. Summary of the sources of uncertainties in conducting crop modeling and validating model outputs.
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5. Conclusion

This study evaluated the performance of Noah-MP-Crop’s joint modeling of crop and irrigation at
in the Central U.S. By incorporating spatial datasets of high-resolution crop and irrigation fraction,
and state-level planting/harvesting date, the crop model can be applied to regional scale. The
impacts of irrigation on crop yield are assessed from field to regional scale as well as under
nitrogen sufficient and stressed conditions. Also, several uncertainties including model parameters,
yield gaps, and discrepancies between available datasets are assessed.

The results showed that in the U.S corn-belt the bulk simulation (with uniform planting/harvesting
date and no irrigation) captured the magnitude and spatial variation of corn yield against the USDA
county-level report (RMSE = 28.1% for the whole domain). But in the heavily irrigated region,
for example in Nebraska, the yield was much underestimated (RMSE = 48.7% in the irrigated
region). Adding irrigation modeling capability effectively improved yield simulation over irrigated
region (RMSE=23.1%). The RMSEs for soybean over the whole domain and irrigated region are
28.4% and 20.5%, respectively. The irrigation improvements on soybean yield are relatively small
compared to that for corn. Noticeable overestimation of yield for corn and soybean still exist in
Northeast of the domain in Indiana and Ohio, which may be attributed to early planting biases and
the yield gap between actual yield and modeled yield.

Homogeneous transitioning of the crop model parameters from field to regional scale, two
simulations with state-level planting/harvesting date were conducted. These spatially-varied
planting/harvesting dates were in general later than the uniform planting dates. The delayed
planting dates across states resulted in reduction in modeled yield and irrigation amount, which
improved the overestimated yield bias associated with early planting bias. A spatial analysis also
showed that the modeled yield in northern states was more sensitive to delayed planting than in
southern states for rainfed corn and soybean. This north-to-south gradient was evident within each
northern state as well (IL, IN, IO, MN, WI). This indicates that using one single value for
planting/harvesting date for each state is still an over-simplified assumption, which is inadequate
to address the complex decision of agricultural management. Comprehensive datasets of cropping
calendar at high-resolution are needed for future crop model development.

Dynamic modeling of crop growth and irrigation application is challenging and there are many
uncertainties. Several sources of uncertainties were identified, including yield gaps, model
parameters associated with photosynthetic rubisco capacity and planting date, and discrepancies
between different observation data. The rubisco capacity (V.,x25), 1S a significant source of
uncertainty and we calibrated it according to single-point simulation in Bondville for corn (C4
corn).

Fertilization has been identified as a source of uncertainties in previous studies (Leng et al., 2016).
In this study, it was assumed that the crops are not nitrogen-stressed. To investigate the impacts of
irrigation on crop yield under nitrogen-stress, two sets of additional simulations are conducted
which halved the nitrogen concentration. When nitrogen concentration is reduced to half, nitrogen
stress could cut crop yield by 48.6% and 73.8% for corn and soybean, respectively (comparing
0.5N with STATE). The irrigation improvements on crop yields under nitrogen stress are restricted
(comparing 0.5N and 0.5N_IRR), with 32% and 1% increase for corn and soybean. These numbers
are much less than under sufficient nitrogen condition (comparing STATE and STATE IRR, 93%
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for corn and 27% for soybean). This concludes that the manifestation of irrigation improvement
on crop yield relies on sufficient nitrogen concentration.

The present study contributed to the knowledge of simulating crop yield and irrigation water
amount in one of the world’s most productive agriculture regions and investigated the impacts of
irrigation on crop yields. The irrigation effects on crop yield under no nutrition-stress condition is
addressed in this study, which was often ignored in previous research. However, other sources of
uncertainties arise from crop model photosynthesis and phenology parameters, yield gap and unit
conversion. To mitigate these uncertainties, we demonstrated that calibrating the crop rubisco
capacity parameters and constraining the growing season with spatially-varying
planting/harvesting date can improve crop simulation results. Finally, future efforts should be
dedicated to incorporating spatially detailed rubisco capacity parameters and crop calendar to
better constrain the crop growth dynamics.
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Tables and Figures
Table 1. Description of the Numerical Experiments.
# Experiment Dynamic  Dynamic  Planting/ Nitrogen Note
Crop Irrigation Harvest Concentration
1 BULK Yes No Uniform Sufficient Baseline simulation
date
2 BULK IRR Yes Yes Uniform Sufficient
(calibrated) date
3 STATE Yes No State- Sufficient To test the impacts
level planting/harvest date at
4 STATE IRR Yes Yes State- Sufficient state-level
(calibrated) level
5 0.5N Yes No State- Reduced by half  To assess the impacts of
level nitrogen-stress
6 0.5N _IRR Yes Yes State- Reduced by half
(calibrated) level
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660 Table 2. Summary of the model performance in simulating county-level corn and soybean yield from 2000-2004 (5
661 growing seasons) as compared to USDA report data for the whole domain and only irrigated regions (in parentheses).

Experiment Cultivar RMSE RMSE R?
[bu/ac] [% relative to USDA]

BULK Corn 38.3 (72.0) 28.1% (48.7%)  0.70 (0.23)
Soybean 11.4 (8.9) 28.4% (20.5%)  0.84 (0.83)
BULK_IRR Corn 32.2 (34.1) 23.6% (23.1%)  0.79 (0.72)
Soybean 11.3 (8.5) 28.1% (19.61)  0.86 (0.91)
STATE Corn 35.9 (70.6) 26.3% (47.8%)  0.71 (0.24)
Soybean 10.9 (8.2) 27.1% (18.9%)  0.80 (0.83)
STATE_IRR Corn 29.4 (33.0) 21.5% (22.3%)  0.80 (0.71)
Soybean 10.6 (7.3) 26.4% (16.8%)  0.82 (0.90)
0.5N Corn 65.4 (78.6) 47.9% (53.2%)  0.71 (0.51)
Soybean 23 (17) 57.4% (46.2%)  0.50 (0.38)
0.5N_IRR Corn 64.1 (68.8) 47.0% (46.7%)  0.74 (0.72)
Soybean 22 (17) 57.0% (44.8%)  0.50 (0.37)

662
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Table 3. Summary of the sources of uncertainties in conducting crop modeling and validating model outputs.

17~28% for rainfed corn
15~32% for irrigated soybean
14~39% for rainfed soybean

Uncertainty Default setting Range Unit
source
Yield gap [-] 13~25% for irrigated corn % relative to potential

yield for irrigated corn
and water-limited yield
for rainfed corn.

Model parameter,

80 for generic

30~101 for corn

umolm=2s~1

Vemx2s crop parameter 80~101 for soybean

Model parameter, | 111 for corn -0.04~-1.22 bu/ac/day delayed after
planting date* 130 for soybean -0.06~-0.72 the default date

Model parameter, | 0.015 for corn 0.010~0.030 m?/g
BIO2LAI 0.030 for soybean | 0.018~0.029

Handling loss in
mechanical drying

[-]

0.04 ~ 5.22 9% for corn

% relative to final
standard yield at 15.5%
moisture content
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Figure 1. Planted-area fractions for (a) corn and (b) soybean in the Central U.S. domain derived from the USDA-
NASS CropScape dataset.
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Figure 2. USDA-NASS state-level planting and harvest dates in Julian day for corn and soybean.
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697 Figure 7. The impacts of delayed planting date on modeled yield (bu/ac/day) for (a) corn and (b) soybean.
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Figure 10. Timeseries of LAl and harvested grain in Nel and Ne2 sites from 2000 to 2005. Nel is irrigated continuous
corn site and Ne2 is irrigated maize-soybean rotation; black boxes in Ne2 indicate soybean years.
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713 Figure 11. Bar plots of yield (five-year average) for (a) corn and (b) soybean from USDA survey and six simulations

714 in this study. The red and blue bars represent the crop yields in the whole domain and in the irrigated region,
715  respectively.
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719  The inverse of LMA is the same as BIO2LAI parameter in the Noah-MP-Crop model. The black boxes in US-Ne2

720  indicates soybean years.
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722 Appendix A

723 Field Crops Usual Planting and Harvesting Dates (October 2010)

724  USDA, National Agricultural Statistics Service

725  https://usda.library.cornell.edu/concern/publications/vm40xr56k

726

727  Corn for Grain Usual Planting and Harvesting Dates — States

State code Usual planting dates Usual harvesting date
Begin | Most active End Middle | Begin | Most active End Middle
day day

Illinois IL Aprl4 | Apr21-May23 | Jun5 | 127 Sep 14 | Sep 23-Nov 5 | Nov 20 | 288
Indiana IN Apr20 | Mayl-Junl Jun 10 | 137 Sep 15 | Oct 1-Nov 10 | Nov 25 | 294
Iowa 10 Aprl9 | Apr25-Mayl18 | May26 | 127 Sep 21 | Oct5-Nov9 | Nov 2l | 296
Michigan MI | Apr21 | Mayl-May27 |Jun6 | 134 Sep 5 Oct10-Nov25 | Dec 10 | 306
Minnesota MN | Apr22 | Apr26-Mayl9 | May29 | 128 Sep 27 | Oct 8- Nov 8 | Nov 23 | 297
Missouri MO | Apr3 | Aprll-May27 |Jun 12 | 124 Aug 29 | Sep 8-Nov 3 | Dec 22 | 279
Nebraska NE | Aprl9 | Apr27-Mayl5 | May21 | 126 Sep 18 | Oct4 -Nov10 | Nov 20 | 296
Ohio OH | Aprl8 | Apr 24-May24 | May30 | 129 Spe27 | Octl1-Nov20 | Dec 1 304
South Dakota | SD | Apr26 | May2-May27 | Jun 10 | 135 Sep24 | Oct 6-Nov 16 | Dec 3 300
Wisconsin WI | Apr26 | May -May27 Jun6 | 135 Oct 2 Octl14-Nov17 | Nov 28 | 304

728

729

730  Soybean Usual Planting and Harvesting Dates - States

State code Usual planting dates Usual harvesting date
Begin | Most active End Middle | Begin | Most active End Middle
day day

Arkansas AR | Aprl9 | MayS5-Jun22 Jun5 149 Sep 10 | Sep29-Nov13 | Nov 26 | 294
Illinois IL May2 | May8-Junl2 Jun24 | 145 Sep 19 | Sep26-Oct26 | Nov7 | 284
Indiana IN Mayl | May5-Junl0 Jun25 | 143 Sep 20 | Octl-Novl Nov 10 | 289
Iowa 10 May?2 | May8-Jun2 Junl6 | 140 Sep 21 | Sep28-Oct20 | Oct 31 | 282
Michigan MI | May2 | Mayl1-Jun9 Junl8 | 145 Sep 25 | Oct3-Nov3 Nov 13 | 291
Minnesota MN | May2 | May8-Jun2 Junl3 | 140 Sep 20 | Sep27-Oct20 | Oct 31 | 281
Missouri MO | May2 | Mayl3-Jun24 | Jul4 154 Sep25 | Oct3-Nov8 Nov 23 | 294
Mississippi MS | Aprl9 | Apr26-May31 | Junl7 | 133 Sepl0 | Sep13-Oct31 | Nov9 | 280
Nebraska NE | May5 | Mayl1-May31 | Jun8 141 Sep23 Sep29-Oct24 | Nov2 | 284
Ohio OH | Apr26 | May3-May30 | JunlO | 136 Spel7 | Sep24-Oct21 | Nov5 | 288
South Dakota | SD | May8 | Mayl15-Junll | Jun21 | 148 Sep22 | Sep28-Oct24 | Nov3 | 284
Tennessee TN | May5 | Mayl5-Jun25 | Jul5 155 Spe25 | Oct5-Nov20 | Nov 30 | 301

731
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732
733
734
735
736

737

Appendix B

Parameters used in photosynthesis-stomata sub-model

Table S1 A synthesis of photosynthesis parameters used for C4 corn. In this study, we used the
Adjust parameters for C4 corn parameters are the same as in the Noah-MP (2011).

Referen K, Vemxzs (umolm™2s71) QE25 (4 m| b (umolm=2s™] Ry
ce (umolm=2s~1
)
Noah- [ 4000 *V,,, 80 006 |9 2000 1.0 (carbon)
MP
(2011)
Collatz 0.7, 39 0.04 |3 80000 0.8,0.021 *
(1992) 18000* |/
‘/me
Bonan | 4000 * 1V, 33 (C4 grass) 0.04 5 2000 0.82 (C4
(1996) grass,
carbon)

Sellers 20000+ 30 (C4 grass) 0.05 4 40000 0.025 * V.
(1996) | Vo (PSN)
CLM4 | 4000 * V., 52 (C4 grass) 0.04 |4 40000 -
Bonan 20000 52 (C4 grass; CLM4) 0.05 4 40000 0.025 * Vo
(2011) /% 57 (crop; CLM4) (PSN)

78 (C4 grass;

Kattge2009)

101 (C3 crop;

Kattge2009)

CLM4. 20000+ 52 (C4 grass) 0.05 |4 40000 0.025 * Vo
5 /5 101 (corn) (PSN)
Adjust 20000+ 60 (corn) 0.05 4 40000 0.8 (carbon)

‘/me
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|’740 Figure S1. Monthly-averaged water stress factor, S, from STATE IRR simulation from August
741  to October. The blue regions show that the western lowa, southwest Minnesota and eastern South
742 Dakota are under water stress while the irrigation fraction (Figure 3a) in these regions are small.
743 These suggest that while irrigation and rainfall are not significant water source, the water input
744  from perched shallow water table might be the neglected component for the crop model.
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762
63  Figure S2. Calibration results for corn rubisco capacity V.25, ranging from 40 to 100
64  umolm=2s~1, using the Ameriflux site Bol biomass data in 2001, 2003, and 2005. The V25 =
65 60 umolm™2s~1 (black dashed line) is the parameter value used in our regional simulations.
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