ON TOPOLOGICAL FULL GROUPS OF Z%ACTIONS

M. CHORNYI, K. JUSCHENKO, V. NEKRASHEVYCH

ABSTRACT. We give new examples of simple finitely generated groups arising
from actions of free abelian groups on the Cantor sets. As particular examples,
we discuss groups of interval exchange transformations, and a group naturally
associated with the Penrose tilings. Many groups in this class are amenable.

1. INTRODUCTION

The motivation of this paper is to present a new interesting source of finitely
generated simple groups, with interesting properties like non-elementary amenabil-
ity.

A group G is amenable if there exists a finitely additive translation invariant
probability measure on all subsets of G. This definition was given by John von
Neumann, [19], in a response to Banach-Tarski, and Hausdorff paradoxes. He
singled out the property of a group which forbids paradoxical actions.

The class of elementary amenable groups, denoted by EG, was introduced by
Mahlon Day in [6], as the smallest class of groups that contain finite and abelian
groups and is closed under taking subgroups, quotients, extensions and directed
unions. The fact that the class of amenable groups is closed under these operations
was already known to von Neumann, [I9], who noted at that at that time there
was no known amenable group which did not belong to FG.

No substantial progress in understanding this class has been made until the 80s,
when Chou, [5], showed that all elementary amenable groups have either polyno-
mial or exponential growth, and Rostislav Grigorchuk, [7] gave an example of a
group with intermediate growth. Grigorchuk’s group served as a starting point in
developing the theory of groups with intermediate growth, all of them being non-
elementary amenable. In the same paper Chou showed that every simple finitely
generated infinite group is not elementary amenable. In [I0] it was shown that the
topological full group of Cantor minimal system is amenable. By the results of
Matui, [I5], this group has a simple and finitely generated commutator subgroup,
in particular, it is not elementary amenable. This was the first example of infinite
simple finitely generated amenable group.

Currently there are only two sources of non-elementary amenable groups: groups
acting on rooted trees and topological full groups of Cantor minimal systems. In [8],
the author gives a unified approach to non-elementary amenability of groups acting
on rooted trees. Here we give more examples of non-elementary amenable groups
coming from topological full groups of Cantor minimal systems. In [24], Vorobets
showed that the commutator group of the interval exchange transformation group

This work was supported by a grant from the Simons Foundation (#429856, Volodymyr
Nekrashevych), NSF grant (DMS-1709480, Volodymyr Nekrashevych), NSF CAREER grant
(DMS1352173, Kate Juschenko).

1



2 M. CHORNYI, K. JUSCHENKO, V. NEKRASHEVYCH

is simple. However, this group is obviously uncountable, thus, can not be finitely
generated.

Theorem 1. Consider a minimal faithful action of Z¢ on a Cantor set conjugate to
the action on a closed Z%-invariant subset of X2 for some finite alphabet X. Then
the commutator subgroup of the topological full group [[Z]] is finitely generated.

We describe an explicit generating set, and give a simple direct proof, by extend-
ing the ideas of H. Matui’s result [I5] on Z-actions. Subsequent paper [18] gives a
less direct proof of the finite generation of special subgroups A(G) of the topological
full groups in the case of expansive action. The groups A(G) are closely related to
the derived subgroups of the full groups (in particular, they coincide in the case of
the actions of abelian groups), but precise relation is still not well understood.

It was proved in [I7], that the commutator subgroup of [[Z4]] is simple. This also
can be proved using [2] and [Proposition 3.18]LatremolierOrmes. The topological
full groups that correspond to interval exchange transformation group were stud-
ied in [13]. The authors prove that subgroups of rank equals to 2 are amenable.
These groups can be realized as topological full groups of minimal action of Z?2
on the Cantor set. Therefore, Theorem [1] in the combination with [I7], [I3] gives
more examples of simple finitely generated infinite amenable groups, and thus by
the result of Chou non-elementary amenable groups. Matui, [I7], showed that
([T1,...,Tw]] = [[T1,...,T,]] implies m = n. In particular, this implies that the
groups from the corollary are different from the one previously obtained in [10].

In the last section we associate a group P to the Penrose tiling. It is the group of
all permutations of the tiles defined by local rules. It has a natural minimal action
on the Cantor set. We show that with respect to this action, P is the topological full
group of an action of a finitely generated abelian group (isomorphic to Z*@(Z/57)).
Using our results about the topological full groups of free abelian groups we prove
the following.

Theorem 2. The derived subgroup of P is simple and finitely generated.

It is an open question to decide if the group P is amenable. Another interesting
open question is description of the defining relations in P.

2. A FINITE GENERATING SET OF THE DERIVED SUBGROUP OF [[Z9]]

Recall that an action of a group G on a set X is called faithful if only the
identity element of G acts identically on X. It is called free if g(z) = = for g € G
and x € X implies g = 1. Obviously, every free action is faithful. An action of G
on a topological space is minimal if all G-orbits are dense.

Lemma 3. Let G be an abelian group. If the action of G on a Cantor set C is
minimal and faithful, then it is free.

Proof. Suppose that g € G is a non-zero element. By faithfulness of the action,
there exists € C such that g(x) # x. Then there exists a neighborhood U of x
such that g(U)NU = . Let y € C be an arbitrary point. By minimality, there
exists h € G such that h(y) € U. Since U and g(U) are disjoint, the points h(y)
and gh(y) are different. Then g(y) = h='gh(y) # h=th(y) = y. It follows that g
has no fixed points in C. O
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Let us fix a minimal action of the free abelian group Z< on a closed shift-invariant
subset C C X2 of the full shift over a finite alphabet X. Then C is homeomorphic
to the Cantor set. We use the additive notation for the group Z%. If w : Z¢ — X
is a point of XZd7 then its image under the action of g € Z% is defined by the rule

g(w)(h) = w(h - g).

In other words, elements of X2 are labelings of the points of Z? by elements of
X, and the elements g € Z? act by shifting all the labels by g. Alternatively, we
may imagine the action of ¢ as the shift of the “origin of coordinates” in a given
sequence w by —g.

A patch © = (f, P) is a finite subset P C Z¢ together with a map f: P — X.
The set P is called the support of the patch. We say that an element w € X2 (a
74 -sequence) contains the patch (f, P) if w|p = f. The set W, of all sequences
containing a given patch 7 is a clopen subset of XZ* called the cylindrical set defined
by the patch, and the set of all such clopen subsets forms a basis of topology on
XZd7 by definition.

We say that two patches m = (f1, P1) and mo = (fa2, P2) are compatible if there
exists sequence w € C containing m; and 7. In other words, the patches are
compatible if the intersection of the associated cylindrical sets is non-empty. If the
patches m1 and 7o are compatible then there union w1 Uy is the patch (f, Py U Py)
where f|p, = f1 and f|p, = fo. Note that in terms of the cylindrical sets, we have
W7T1U7T2 = W7T1 N W‘n’g-

If 7 = (f,P) is a patch, and @ is a finite set containing P, then W, is equal
to the disjoint union of the sets W( 7.0y where f runs through the set of all maps

f:Q — X such that f|p = f. Note that some of these sets may be empty (if the
corresponding patch is not allowed for the elements of C).

If 7 = (f,P) is a patch and g € Z%, then we have g(W,) = Wy,, where
m+g = (f+9,P+g), where (f+g) : (P+g) — Xis given by (f+g)(h) = f(h—g),
in accordance with the definition of the action of Z¢ on X%°.

Lemma 4. Let A C Z% be a finite set not containing zero. Then there exists
B C Z% such that for every w € C and every g € A the patches (w|g, B) and
((w+ g)|B, B) are not compatible.

Proof. Define the following metric on XZ". The distance |wy — we| is equal to 27 %
where R is the biggest number such that restrictions of w; and ws to the ball of
radius R in Z? with center in 0 (for example in the £, norm) coincide. The it is
enough to prove that there exists e such that |g(w) — w| > € for all g € A and
w € C. Namely, for every e there exists a finite set B C Z? such that for every
w € XZ* the set of all u € XZ* such that (u|g,B) = (w|p, B) is contained in the
e-neighborhood of w.

Suppose that it is not true, i.e., that for every ¢ > 0 there exist w and g € A
such that |g(w) — w| < e. Since A is finite, this implies that there exists g € A and
a sequence of points w, € C such that |g(w,) — w,| — 0 as n — co. Since C is
homeomorphic to the Cantor set, this implies that g has a fixed point, which is a
contradiction Lemma [3] O
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Let U C C be aclopen set, and g1, g2, g3 € Z% elements such that g, (U), g2(U), g3(U)
are pairwise disjoint. Denote by Tt (g, 4,.45) the element of [[Z%]] given by

(92 —g1)(w) ifwe g(U);

T (w) = (95 — g2)(w) if w € g2(U);

Olo1.92.92) (91— g3)(w) if w € g3(U);
w ifwé g1 (U)Uge(U)Ugs(U).

g1,92,95) Cyclically permutes g1(U), g2(U), and g3(U) in the

natural way. We will denote T5; (4, g..95) = T, ,(g1,g0,95)> TOT @ patch 7.

Lemma 5. Let Ay, As, Az, By, Ba, B3 be subsets of a set X such that only A1 and
By have non-empty intersection, while all the other pairs of subsets are disjoint.
Let a be a permutation of X acting trivially on X \ (A1 U Ay U As), and satisfying
a(A1) = Az, a(Az) = As, a(A3) = Ay, and a® = 1. Similarly, let b be a permutation
acting trivially on X \ (By U By U Bs) and satisfying b(B1) = Ba, b(B2) = Bs,
b(Bs) = Az, and b> = 1. Then [[b=1,a71], [b,a]] acts as a on the set (A; N By) U
a(A; N By)Ua?(A; N By) and identically outside of it.

See Figure [1] illustrating Lemma Note that we use the left action here, but

the usual commutator [g, h] = g~ th~1gh.

Proof. Let C = A; N By. Then the sets C,a(C),a?(C),b(C),b*(C) are pair-

wise disjoint. The permutations a and b act as cycles of length three permuting
C,a(C),a?(C) and C,b(C),b*(C), respectively. The element [[b~1, a™1], [b, a]] acts
then on these fives sets in the same way as the similar expression involving com-
mutators of the permutations a = (1,2,3) and b = (1,4,5) act on {1,2,3,4,5}.
We have [b,a] = b='a"tba = (1,5,3) and [b~',a71] = bab~la™! = (1,4,2), and

(bt a=t, [b,a]] = (1,4,2)71(1,5,3)71(1,4,2)(1,5,3) = (1,2,3) = a.
The set A’ = (A1 \ C)Ua(A;\C)Ua?(A;\ C) is a-invariant, and b acts trivially

on it. It follows that the restriction of [b~!,a™!] and [b,a]] to A’ is equal to the
restriction of [1,a™!] and [1, a], which are trivial. It follows that [[b=!, a™1], [b, a]]
acts trivially on A’. The same argument shows that [[b=1,a~1], [b,a]] acts trivially

on (Bl\C)Ub<B1\C)Ub2(Bl\C) O

Tr

As a corollary, we get the following relation between the elements of the form

91.92,94)- (Compare with [I5, Lemma 5.3].)
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Corollary 6. Let m, m be patches, gi,ga, h1,ho be elements of Z* such that
w1, T + g1, 71 + g2, 72, ™o + hy, T + hy are pairwise incompatible except for the
pair w1 and we. Then

HT;;(O,hl,hg)’ T7:1%(07g1792)]’ [T7r2,(0,h1,h2)> T7T1-,(0791,92)]] = TTF1U7T2~,(0,91,92)'

We will use the usual ¢; metric on Z¢, i.e., the word metric associated with the
standard generating set of Z?¢. Denote by B(R) the ball of radius R with the center
in 0 € Z% for this metric.

By Lemma there exists Ry such that for every w € C the patches 7 =
(B(R1),w|(r,)) and 7 + g are incompatible for every g € 7%, g # 0, of length < 3.

Let {e1,ea,...,eq} be the standard generating set of Z?. Denote by Tx the set
of elements of [[Z4)]" of the form Ty (o, —c,), where 7 runs through the set of all
patches of the form (B(R),w|g(g)) for w € C.

Proposition 7. If R > Ry + 2, then the group generated by Tg contains Try1.

Proof. Denote S = {#e1,+es,...,F+eq}. Let A C Z¢ be a finite subset containing
B(R; +2), and let w € C. Define the patches py = (w|a, A), pr = (w|a4n, A+ h),
for h € S. Note that the patch p; contains the patch (w|p(g,), B(R1)) and that
pn—h = ((w— )|, A).

Let us apply Corollary [6] for m1 = po, 72 = pn, 91 = ¢, 92 = —g, h1 = h,
ho = 2h, where g, h are different elements of S. Since py and pp both contain the
patch (w|p(r,), B(R1)), the patches 1,71 + g1, T1 + g2, 72, T2 + hy, and w3 + ho
are pairwise incompatible, except for m; and 7o, which are both patches of w. It
follows that we can apply Corollary [6] hence

-1 -1
HTph,(o,h,Qh)7 Tp07(07g7—g)]’ [Tph;(07h72h)’ Tpm(O,g,—g)” = TooUpn,(0,9,—9)-

Note that T}, (0,n,2n) = Tp),—h,(=n,0,8) = Tp—n,(0,h,—n)-

Let us apply now Corollary [6] to 71 = po — g, T2 = pg — 9, 91 = —29, g2 = —9,
hi1 = h, ho = —h. The patches m; and m are patches of w — g, and contain
((w — g)|B(Ry), B(R1)). It follows that, in the same way as above, we can apply
Corollary [6] and get

-1 -1
[[Tpg—%(O,h,—h)’ Tpo—g,(O,—Qg,—g)]’ [Tpgfg,(O,hﬁh)’ Tp0797(0,72gﬁg)]] = Tlpo—g)U(pn—9),(0,~29,~9)-
Recall that pg—g = ((w—g)|a, A) and that we have T),; _g 0,—29,—g) = Tpo,(g,—g,0) =
Tpy.(0.9.—g)- We also have Ty, —g)U(pn—9).(0.~29.~9) = LpoUpn.(0.9.~9)-

We have shown that the group generated by the set

{Tﬂ7(0,g7_g) g€ S = (w|a,A),weC}
contains the set
{Tr.0,9-9) : 9€ S, 7= (wlavarn, AUA+h),we C,heS}
Since B(R + 1) = U,,cg B(R) + h, this finishes the proof of the proposition. O

It follows that the group generated by Tg, 2 contains Tg for every R > Ry + 2.
For every cylindrical set U C C there exists R such that U is equal to the disjoint
union of cylindrical sets W, such that 7 is a patch with support B(R). It follows
that every element of the form T (g, —¢;) can be written as a product of elements
Tr (0,e;,—¢;) Such that ' is a patch with support B(R) for some R big enough.
Consequently, the group generated by Tr,+2 contains all elements of the form
T (0,e0,—e1)-
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The proof of Theorem [I]is finished by the following, since the set Tr, 42 is finite.

Proposition 8. The derived subgroup of the full group of the action of Z¢ on C is
generated by the set of all elements of the form Ty (0.c, —e;), where v =1,2,....d,
and 7 is a finite patch such that Ty (., —e;) 15 defined.

Proof. Tt is known, see [16], that the derived subgroup of [[Z9]] is simple and is
contained in every non-trivial normal subgroup of [[Z4]].

Consider the set 7 C [[Z%]] of all elements elements of order three permuting
cyclically three disjoint clopen subsets Uy, Us, Us of C and acting identically outside
their union. The set 7 is obviously invariant under conjugation by elements of [[Z4]],
hence the group generated by 7 is normal. On the other hand, we have T C [[Z9]]/,
as every element of 7 is equal to the commutator of two transformations: one
permuting U; with Us, and the other permuting Us with Us. Consequently, T
generates [[Z%]]'.

For every element T' € T permuting cyclically clopen sets Uy, Us, Us, there exists
partitions of U; into cylindrical sets such that 7' maps a piece of the partition to a
piece of the partition, and restriction of T' to every piece of the partitions is equal
to the restriction of an element of Z®. It follows that T is a product of a finite
set of elements of the form Tr (4, g,.4,)- It remains to show that we can generate
all elements of the form T7 (4, g, 4,) by elements of the form T g, —e,)- It is well
known that the alternating group A, is generated by cycles (k,k + 1,k + 2). It
follows that the group generated by 77 (0.e;,—¢;) contains the set of elements of the
form T} (g, g2.95)» Where g; belong to one direct factor of Z<.

Let us prove the following technical lemma.

Lemma 9. Let Xq = {z1...2q4|7; € {a,b,c}, 1 < i < d} be the 3%-element set
of d-letter words over the alphabet {a,b,c}, and let Sx, be the symmetric group of
permutations of X4. Denote the alternating subgroup of even permutations of Xy
by Ax,. Consider the set By of all elements of the type (XaY XbY XcY) € Sx,,
where X and'Y are arbitrary (possibly, empty) words such that | X|+ Y| =d— 1.
Then Ax, is generated by the set By.

Proof. The lemma can be proved by induction on d.
For d = 2, we use the well-known fact that Ag is generated by 3-cycles {(123), (234),...,(789)}.
To apply this fact, we need to show that all 7 elements (aa ab ac), (ab ac ba),
(ac ba bb), (ba bb be), (bb be ca), (be ca cb), (ca ¢b cc) are generated by By. This
can be checked by hand:

e (aa ab ac) € By;

e (ab ac ba) = (aa ba ca)(aa ab ac)(aa ca ba);
e (ac ba bb) = (ac cc be)(ba bb be)(ac be cc);

o (ba bb be) € By;

e (bb be ca) = (aa ba ca)(ba bb be)(aa ca ba);
e (bc ca cb) = (ac cc be)(ca cb cc)(ac be ce);

o (ca cb cc) € By.

Suppose the statement holds for d = k and consider the case d = k+1. Since the
alternating group is generated by 3-cycles, it’s sufficient to show that every 3-cycle
is generated by Bgi1. Assume we have a cycle (Ax By Cz), where A, B,C € X
are pairwise distinct, and z,y, z € {a, b, ¢}, not necessarily distinct. We know the
following:



ON TOPOLOGICAL FULL GROUPS OF Z%-ACTIONS 7

e (Ax Bz Cx), (Ay By Cy), (Az Bz Cz) are generated by Bj11. Indeed, we
can take the elements of By generating (A B C) and append the needed
letter to each of them.

o (Ax Ay Az), (Bx By Bz), (Cx Cy Cz) are in By by definition.

Then, applying the induction base for the set {A, B,C} x {a,b, c}, we conclude
that (Az By Cz) is also generated by By1.

In case A, B,C are not distinct, we can use a slightly modified version of the
proof above. If, for example, A = B (which automatically implies = # y), we
can take an arbitrary word D € X} distinct from A and C' in order to apply the
induction base to {A,C, D} x {a,b,c}. Clearly, the 3-cycle (Az Ay Cz) will belong
to Xk+1

The induction step is complete. [

Lemma@ implies that the group generated by all elements of the form T’ (4, g, .95)>
where g; belong to one factor of Z%, contains all elements of the form T (g1,92,93) >

where g; € Z% are now arbitrary. This finishes the proof of the proposition and
Theorem [II O

3. TOPOLOGICAL FULL GROUP AND INTERVAL EXCHANGE GROUP

One of classical situations where topological full groups of abelian group appear
naturally are finitely generated groups of interval exchange transformations. An
interval exchange transformation is a bijection f : [0,1) — [0,1) such that [0, 1)
can be partitioned into a finitely many half-intervals [a,b) on which f is equal to
a translation x — = + t. It is easy to see that the set of all interval exchange
transformations is a group. Let us describe subgroups of this group isomorphic to
topological full groups of minimal actions of Z¢.

Let ag,aq,...,aq be irrational numbers such that 1, a1, as,...,aq are linearly

independent over Q. Then the additive groups (a1, as, ..., aq) and H = {aq, as,...,aq) /7

are isomorphic to Z?. The group H is a subgroup of the circle R/Z, and hence acts
on it in the natural way. By the classical Kronecker’s theorem, the action of each
subgroup {(«;) on R/Z is minimal, hence the action of H on R/Z is also minimal.

Let us lift H as a set to [0, 1] by the natural quotient map [0,1] — R/Z, and let
W C [0,1] be the obtained set.

Let us replace each number ¢ € W C [0,1] by two copies: ¢_¢ and ¢;o. Here
we identify 0_¢ with 1 and 04¢ with 0, 1_o with 1 and 1, with 0, according to
the natural cyclic order on R/Z (seen also as the quotient of the interval [0, 1]).
Denote by Ry the obtained set (equal to the disjoint union of [0,1] \ W and the
set of doubled points W). The set Ry is ordered in the natural way (we assume
that g_o < g40), and the order is linear (total).

Let us introduce the order topology on Rp. Recall, that it is the topology
generated by the open intervals (a,b) = {x € Ry : a <z < b}.

Lemma 10. The space Ry is homeomorphic to the Cantor set.

Proof. We use the following formulation of Brouwer’s theorem: A topological space
is a Cantor space if and only if it is non-empty, compact, totally disconnected,
metrizable and has no isolated points. Note that by classical metrization theorems,
we can replace metrizability by Hausdorffness and second countability.

The space Ry is obviously non-empty, has no isolated points. For any a,b €
W N [0,1] such that a < b, we have [a4+9,b_0] = (a—o,b40), hence the intervals
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(a—o,byo) are clopen. The set of such intervals is a basis of topology, since the set
W is dense. We also see that the space Ry is second countable and Hausdorff.
Let A C Ry be an arbitrary subset. Let us show that sup A and inf A exist,
which will imply compactness. Let A be the image of A in [0,1]. We know that
sup A,inf A € [0,1] exist. If sup A ¢ W, then the corresponding element of Ry is
also a supremum of A. If sup A € W, then sup A = sup A_g, unless sup /L_g € A,
in which case sup A = sup A+o. Infima are treated in the same way. O

The action of H on R/Z naturally lifts to an action on Ry: we just set h(gyo) =
h(q)+0 and h(g—o) = h(q)—o.

Denote by IETy the topological full group of the action (H, Ry). For every
element g € IETy there exists a finite partition of Ry into clopen subsets such
that the action of g on each of the subsets coincides with a translation by an
element of H. Clopen subsets of Ry are finite unions of intervals of the form
(at0,b_¢) for a,b € H. Tt follows that g is an interval exchange transformation: it
splits the interval [0, 1] into a finite number of intervals and then rearranges them.
The endpoints of the intervals belong to W. Conversely, every interval exchange
transformation such that the endpoints of the subintervals belong to W is lifted to
an element of IETy.

We have proved the following.

Lemma 11. The group IETy is naturally isomorphic to the group of all interval
exchange transformations of [0, 1] such that the endpoints of the intervals into which
[0,1] is split belong to H.

Theorem [I| now implies the following.
Theorem 12. The derived subgroup of IETy is simple and finitely generated.

A two-dimensional version of an interval exchange transformation group is con-
sidered in the next section.

4. PENROSE TILING GROUP

Let us describe another classical situation, where minimal actions of free abelian
groups appear: Penrose tilings. A relation between Penrose tilings and minimal
actions of free abelian groups is well known, see the works [22] 23] 2T [] for this
and other dynamical properties of Penrose tilings and their generalizations. We
describe here this relation and give a natural interpretation of the associated topo-
logical full group (as a group of permutations of the set of tiles, and as a group of
rearrangements of a polygon).

There are several versions of the Penrose tiling [20], let us describe one of them.
The tiles are two types of rhombi of equal side length 1. The angles of one rhombus
are 72° and 108°. The angles of the other are 36° and 144°. We call these rhombuses
“thick” and “thin”, respectively. Mark a vertex of angle 72° in the thick rhombus,
and a vertex of angle 144° of the thin rhombus. Mark the sides adjacent to the
marked vertex by single arrows pointing towards the marked vertex. Mark the
other edges by double arrows, so that in the thick rhombus they point away from
the unmarked vertex of angle 72° and in the thin rhombus they point towards the
unmarked vertex of angle 144°, see Figure [2] A Penrose tiling is a tiling of the
whole plane by such rhombi, where markings of the edges match (adjacent tiles
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FI1GURE 3. Penrose tiling

must have same number of arrows pointing in the same direction). See Figure|3|for
an example of a patch of a Penrose tiling.

There are uncountably many different (up to translation and rotation) Penrose
tilings. Each of them is aperiodic, i.e., does not admit a translational symmetry.

Let us identify R? with C, and consider all Penrose tilings by rhombi such that
their sides are parallel to the lines e*™/5R, k € Z. A pointed Penrose tiling is a
Penrose tiling with a marked vertex of a tile. Let T be the set of all such pointed
Penrose tilings, up to translations (two pointed tilings correspond to the same
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element of 7 if and only if there exists a translation mapping one tiling to the
other and the marked vertex of one tiling to the marked vertex of the other). We
sometimes identify a tiling with the set of vertices of its tiles. Note that the tiling
is uniquely determined by the set of the vertices of the tiles.

Let us introduce a topology on 7T in the following way. Let A C T be a finite set
of vertices of a Penrose tiling T (a patch), and let v € A. The corresponding open
set Ua , is the set of all pointed tilings (T, u) such that A+« — v C T. In other
words, a pointed tiling (7', u) belongs to Uy , if we can see the pointed patch (A, v)
around u as a part of T. Then the natural topology on 7 is given by the basis of
open sets of the form Uy ,, for all finite pointed patches (A, v) of Penrose tilings. It
follows from the properties of Penrose tilings that the space T is homeomorphic to
the Cantor set, and that for every Penrose tiling 7' the set of pointed tilings (7', v)
is dense in 7. The space T is called sometimes transversal.

Consider a patch A with two marked vertices vi,vo € A. Then we have a
natural homeomorphism Fy4 ,, v, : Uay, —> Uay, mapping (T,u) € Ua,, to
(T,u+ve —v1) € Ua p,- The homeomorphism Fy ,, ,, moves in every patch A the
marking from the vertex v; to the vertex vy. It is easy to see that F ,, v, is a
homeomorphism between clopen subsets of T .

Definition 13. The topological full group of Penrose tilings is the group P of
homeomorphisms of T that are locally equal to the homeomorphisms of the form
FA,’U1,’U2 .

The set of all pointed tilings (7', v) obtained from a given tiling T is dense in
T (see the remark after Proposition and invariant under the action of the
topological full group. It follows that every element of the full group is uniquely
determined by the permutation it induces on the set of vertices of the tiling. In
terms of permutations of 7" the full group can be defined in the following way.

We say that a map o : T — T, where T is a tiling, is defined by local rules if
there exists R such that for every = € T the value of z — a(z) depends only on the
set Bg N (T — x), where Bg is the disc of radius R around the origin (0,0) € R2.

The following is straightforward.

Proposition 14. A permutation o : T — T is induced by the element of the full
group if and only if a is defined by a local rule. Consequently, the full group is
isomorphic to the group of all permutations of T defined by local rules.

It is well known (starting from the original results of R. Penrose) that any two
Penrose tilings are locally isomorphic, i.e., that an isomorphic copy of any finite
patch of one tiling is contained in any other Penrose tiling. It follows that the
topological full group acts minimally. We will also reprove this fact below (it
follows directly from Corollary .

Let us describe a more explicit model of the space 7 and the full group P using
a description of the Penrose tilings given in the papers [3 [4].

Denote ¢ = e%, and let

4 4
P = ancj 1N S Z,Zn]‘ =0, = (1 - C)Z[C]
=0 Jj=0
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be the group generated by the vectors on the sides of the regular pentagon S =
{1,¢,¢%,¢3,¢*}. Note that 5 =4 — ¢ — (%2 — ¢® — ¢* € P. As an abelian group, P
is isomorphic to Z*.

Denote by £ the set of lines of the form (R +w, for j =0,1,...,4 and w € P.
It is easy to see that for any two intersecting lines l1,lo € £ and any generator
z€{1—¢,¢—¢2%¢%—(3,¢3 — ¢} there exists 2 € P such that 2’ is parallel to Iy
and Iy + 2z =l + 2’. It follows that for any pair of intersecting lines l1,l> € L the
intersection point I3 NIy belongs to P. Consequently, a point £ € C belongs either
to 0, 1, or to 5 lines from L. If £ € C does not belong to any line | € £, then we
call ¢ regular.

Similarly to the case of interval exchange transformations, let us double each
line [ € L. Let C be the obtained space and let @ : C — C be the corresponding
quotient map. If ¢ € C is regular, then Q! (&) consists of a single point. If ¢ € C\ P
belongs to a line [ € £, then Q~!(¢) consists of two points associated with each of
the two half-planes into which [ separates C. Every point £ € P has 10 preimages
in C associated with each of the ten sectors into which the lines from £ passing
through £ separate the plane. A sequence &, of points of C converges to a point
¢ € C if and only if the sequence Q(&,) converges to Q(£) and the sequence &,
eventually belongs (if Q(£) is not regular) to the associated closed half-plane or
sector. The space C is locally compact and totally disconnected. Polygons with
sides belonging to lines from £ form a basis of topology of C.

The group P acts on C in the natural way, so that the action is projected by
Q@ to the action of P on C by translations. Therefore, sums of the form £ + a, for
€ €C and a € P, are well defined.

Let us describe, following [3] [4], how a Penrose tiling is associated with a point
€ € C. We will usually denote & = Q(g) Suppose that £ is regular. The vertices of
the corresponding tiling 7 will be the points of the form Z?:o k;¢7, where k; € Z
are such that

4

4 4
D ki Dok +g) € U Va),
j=0 j=0 s=1
where V] is the pentagon with vertices ¢/, V5 is the pentagon with vertices (7 +
¢t V3 = Vs, and V4 = —V;. (Note that we have changed £ to —¢ comparing
with [3 [4].)

If ¢ is singular, then we can find a sequence &, of regular points converging in C
to &, and then the tiling T¢ is the limit of the tilings T .

Let v = Z?:o n;¢¥ € P and v = Z?:o n;¢’. Then z € Tg if and only if
x—v € Tg,,- It follows that action of P on C preserves the associated tilings
up to translations. In fact, it is not hard to show that two tilings Tél and ng are
translations of each other if and only if & and & belong to one P-orbit, see [3, 4].

Note that sides of the pentagons V] = Vi — s are contained in lines from the
collection £, hence they are naturally identified with compact open subsets of C.
See Figure {4 for the pentagons V. Denote by V' = U;l:l(s, VI).

For every (s,£) € V' the point s =s5+0-C+0-¢2+0-¢>+0-¢* belongs to the
tiling T¢. We say that the pointed tiling (T, s) corresponds to the point (s, ) € V.

Let z = Z?:O kj¢l € Tz, and let s = Zj:o k;. Then the numbers v' = z — s and
v = Z?:O kjczj — s belong to P, and the map y — y — v’ is a bijection Tg — TE—JFU.
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FIGURE 4. Pentagons V;

This maps moves x to the marked vertex s = x — (z — s) of the tiling corresponding
to (s, é + v). Consequently, every pointed tiling, up to translation, corresponds to
a point of V'. Tt is easy to see that every pointed Penrose tiling is represented by
a unique point of V', so that we get a bijection between V' and the space T. It
follows from the results of [3 4] that this bijection is a homeomorphism, and we
get the following description of the action of the group P on 7.

Proposition 15. The group P acts on V' 2T locally by translations by elements
of P. In other words, for every a € P there exists a partition of V' into disjoint
clopen subsets (s;,U;) such that o acts on each of them by a translation a(s;,x) =
(sh,x + &) for some s; € {1,2,3,4} and §; € P.

Let us find some elements t; € P such that V! + ¢; are pairwise disjoint, and
denote by V" C C the union of the sets V' = V! 4+ ¢;. Then it follows from
Proposition [L5] that P is the group of all transformations V” — V" that are
locally equal to translations by elements of P.

Let us say that two clopen sets Uy, U, C C are equidecomposable if there exists
a homeomorphism ¢ : U; — Us locally equal to translations by elements of P. If
U is any clopen subset which is equidecomposable with V", then P is equal to the
group of all transformations of U that are locally translations by elements of P.

Proposition 16. The set V" is equidecomposable with the parallelogram F with
vertices 0, w1 = (% — (3, wy = 5(1 — (% — 3+ ¢(*), w1 + wo.

Proof. Let us cut the pentagons V! into triangles as it is shown on Figure

The obtained triangles can be grouped into pairs of triangles T, T such that T’
is obtained from T by a rotation by 27 (and translation). Such pairs can be put
together to form parallelograms, as it is shown on Figure [6}

Figure [6] also shows that each such parallelogram is equidecomposable with its
rotation by 7/5. It follows that each parallelogram is equidecomposable with its
rotation by any angle of the form kx/5. Consequently, every parallelogram formed
by the acute-angled triangles is equidecomposable with the parallelogram with the
set of vertices {0,¢% — (3,1 — (2,1 — (3}, and each parallelogram formed by the
obtuse-angled triangles is equidecomposable with the parallelogram with the set of
vertices {0,¢%—¢3,¢*—¢3, (2 —2¢3+¢*}. We get 5 parallelograms of each kind. We
can put all the obtained parallelograms together to form the parallelogram F. O

The parallelogram F', seen as a subset of C, is the fundamental domain of the
group (wy,ws) < P. It is easy to check that P/{wy,ws) is isomorphic to Z? @ Z/5Z.
The space of orbits C/(wy,ws) is naturally homeomorphic to the parallelogram F
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F1GURE 5. Cutting pentagons V; into triangles

FI1GURE 6. Equidecomposability of parallelograms

(and hence to the spaces V' and T). We have then the following corollary of
Propositions [I5] and [T6]

Corollary 17. The group P is isomorphic to the full topological group of the action
of P/{wy,ws) on the Cantor set C/{wy,ws).

Proposition 18. The derived subgroup of P is simple and finitely generated.

Proof. We can not apply Theorem [I| directly, since P/{w1,w2) is not a free abelian
group. But it is easy to extend it to non-free finitely generated abelian groups.
Instead of giving a general argument, let us show how this can be done in this
particular example (the general case is analogous).
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Let us cut the parallelogram F' C C into five clopen parallelograms Fy = Fy +
kws/5, k= 0,1,...,4, where Fy is the parallelogram spanned by w; = ¢% — ¢3 and
we /5 =1—(?—(¢3+ (% Denote by P; the subgroup of P consisting of the elements
acting identically on all parallelograms Fj except for k = [. Then Py is naturally
identified with the full topological group of the action of P/ (w1, ws/5) = Z? acting
on the Cantor set C/{wy,ws/5). The action is minimal and is conjugate to the
action of a Z2-shift, hence the derived subgroup of Py is finitely generated, by
Theorem The groups P; are just obtained by conjugating Py by the parallel
translations z +— z + lwy/5, hence the derived subgroups of P; are also finitely
generated.

Let us partition Fj into two non-empty disjoint clopen sets Ay and By. Let
Ay = Ag + kws/5 and By = By + kws/5 be the corresponding partitions of Fj.
Let S be the set of the elements of P equal to the length three cycles of the form
(Ak,, Aky, A, ) and (Byg, , Bk, , Bk, ), where the clopen sets are mapped to each other
using the corresponding parallel translations by multiples of ws /5. It follows from
Lemmathat the group generated by Ui:o [Pk, Pr]US contains restrictions of the
elements of S to arbitrary clopen subsets of the parallelogram F. Then it is easy
to see (for example, using Lemma@) that the group generated by Ui:o [Pk, Pr]US
contains all elements of the form Ty, (4, g,,g5)- This implies, in the same way as in
the proof of Theorem |1} that the derived subgroup of P is generated by the union
of S with a finite generating set of the derived subgroups of Py. (Note that P
is conjugate to Py by the element (Ag, Ak, A;)(Bo, B, Bi), where | € {1,2,3,4} is
any index different from k.) (I
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