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1. Introduction

Smale spaces were introduced by D. Ruelle (see [33]) as generalizations of Anosov
diffeomorphisms and basic sets of Axiom-A diffeomorphisms. They were also extensively
studied before as “spaces with hyperbolic canonical coordinates” by R. Bowen [4,5].

A Smale space is a compact metric space X with a homeomorphism f : X — X
such that there exists a local direct product structure on X with respect to which f
is expanding in one and contracting in the other direction. For example, every Anosov
diffeomorphism of a compact manifold is a Smale space. Restrictions of Axiom-A home-
morphisms to the basic sets are also examples of Smale spaces. For more on Smale spaces,
see [33,30,31].

Smale spaces are classical objects of the theory of dynamical systems, but many basic
questions about them (and even about Anosov diffeomorphisms) remain to be open.

For example, it seems that the following question is open.

Question 1.1. Ts it true that if (X, f) is a Smale space such that X is connected and
locally connected, then (X, f) is topologically conjugate to an Anosov diffeomorphism?

Many well studied examples of Smale spaces are such that one or both of the factors of
the local direct product structure are totally disconnected, e.g., the shifts of finite type,
the Smale solenoid (see [10, Section 1.9]), Williams attractors, etc. See more examples
in [38,2]. See also [37], where it is proved that all such Smale spaces are inverse limits of
iterations of one self-map, i.e., are natural generalizations of solenoids.

Note that a question similar to Question 1.1 for expanding maps has a positive answer.
Namely, the following theorem is proved in [24, Theorem 6.1.6] and [25, Theorem 5.9]
using Gromov’s theorem on groups of polynomial growth [17].

Theorem 1.2. Let f : X — X be a self-covering map of a locally connected and connected
compact metric space. Suppose that there exists a covering map w: X — X such that f
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can be lifted by w to an expanding homeomorphism of X. (This is true, for example, if
fi+ X — X is locally expanding and X is semi-locally simply connected.) Then (X, f)
is topologically conjugate to an expanding infra-nilmanifold endomorphism.

Here an infra-nilmanifold endomorphism is a map ¢ : G\L — G\L, where L is a
simply connected nilpotent Lie group, G is a subgroup of the affine group Aut(L) x L
acting on L freely, properly, and co-compactly, and ¢ is induced by an automorphism
® : L — L. If the automorphism & is expanding, i.e., if all eigenvalues of D® have
absolute value greater than one, then we say that the corresponding endomorphism ¢
is expanding. If D® has no eigenvalues of absolute value one, then we say that ¢ is
hyperbolic.

Note, that the case when f: X — X in Theorem 1.2 is an expanding endomorphism
of a Riemannian manifold, is a result of M. Gromov [17] (based on results of M. Shub [34]).

All known examples of Anosov diffeomorphisms, and hence apparently all known
examples of locally connected Smale spaces are hyperbolic automorphisms of infra-
nilmanifolds. See [35], and Problem 3 in the additional list of problems in [36]. It was
proved by A. Manning in [22] that every Anosov diffeomorphism of an infra-nilmanifold
is topologically conjugate to a hyperbolic automorphism of an infra-nilmanifold. Another
result in this direction is a theorem of J. Franks [14] and S.E. Newhouse [28] stating that
if (X, f) is an Anosov diffeomorphism such that stable or unstable manifolds of X" are
one-dimensional, then (X, f) is topologically conjugate to a hyperbolic linear automor-
phism of the torus R™/Z™.

One of the main obstacles for proving that every Anosov diffeomorphism is an au-
tomorphism of an infra-nilmanifold is showing that the foliations of X into stable and
unstable manifolds when lifted to the universal covering X of X come from a direct

product decomposition of X.

Definition 1.3. We say that a Smale space (X, f) is splittable if there exists a covering
map 7 : M — X and a direct product decomposition M = A x B of M such that 7
maps plaques {a} x B and A x {b} of the direct product decomposition of M bijectively
to stable and unstable leaves of X.

Here a stable (resp. unstable) leaf of X is the equivalence class with respect to the
equivalence relation limy, o d(f™(x), f*(y)) = 0 (resp. lim,— oo d(f™(2), f"(y))).

If X is locally connected and connected, then every splitting is a Galois covering with
a finitely generated group of deck transformations, see Proposition 5.5.

One of the main results of our paper is the following theorem.

Theorem 1.4. Let (X, f) be a Smale space such that X is connected and locally connected.
Suppose that it has a splitting with a virtually nilpotent group of deck transformations.
Then (X, f) is topologically conjugate to a hyperbolic infra-nilmanifold automorphism.
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Note that we do not assume in Theorem 1.4 that X" is even locally simply connected.
On the other hand, when restricted to the class of Anosov diffeomorphisms, it is a weaker
statement than the result of [22]. It is not clear what should be the statement generalizing
A. Manning’s result in the class of locally connected Smale spaces.

M. Brin in [6,7] gave a “pinching” condition on the Mather spectrum of an Anosov
diffeomorphism (X, f) (i.e., spectrum of the operator induced by f on the Banach space of
vector fields on X') ensuring that (X, f) has a splitting with a virtually nilpotent group of
deck transformations. In the case of Anosov diffeomorphisms the splitting map = : M —
X is necessarily the universal covering map, so that the group of deck transformations is
the fundamental group of X. M. Brin and A. Manning proved then in [9] that all Anosov
diffeomorphisms satisfying the Brin’s pinching condition are hyperbolic automorphisms
of infra-nilmanifolds.

We generalize the results of M. Brin and A. Manning. Of course, we can not use
the original pinching condition, since we do not have vector fields on Smale spaces. We
find, however, a purely topological condition, which follows from Brin’s condition in the
case of Anosov diffeomorphism. In fact, we even improve the Brin’s spectral pinching
condition for Anosov diffeomorphisms.

Here is an informal description of our condition. Consider a finite covering R of X
by sufficiently small open rectangles (i.e., such that their diameters are smaller than
the expansivity constant). The covering will induce coverings of the stable and unstable
leaves by the plaques of the elements of R. Define, for an stable leaf V and z,y €
V', the combinatorial distance dg(z,y) equal to the smallest length m of a chain z €
Ro,R1,...,Ryn 2 y, RN Rix1 # 0, of plaques of the elements of R (which can be
infinite). Then dg (f~"(x), f~™(y)) grows exponentially for x # y, if it is finite. We say
that ag > 0 and a; > 0 are stable lower and upper exponents if there exists C' > 1 such
that

C™le™™ <dp(f7"(x), f"(y) < Ce™™

for all stably equivalent z,y such that the distance between x and y inside their stable
leaf belongs to some fixed interval [e1, ea] for 0 < €1 < €3. Stable upper and lower critical
exponents are the infimum and the supremum of all stable upper and lower exponents,
respectively. We prove that the stable critical exponents are uniquely determined by the
topological conjugacy class of the Smale space and are positive and finite (if the Smale
space is locally connected and connected). The unstable upper and lower critical expo-
nents are defined in the similar way (they are stable upper and lower critical exponents
of (X, f~1)). For more details, see Sections 3 and 4.

Note that if the stable or unstable leafs of (X, f) are not locally connected, then the
corresponding upper exponents are infinite, since the metric dg(x,y) will be infinite for
some z,y (as we assume that the covering R consists of small rectangles).
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Theorem 1.5. Suppose that (X, f) is a Smale space such that X is connected and locally
connected. Let ag,a1,bg, b1 be the stable lower and upper, and the unstable lower and
upper critical exponents, respectively. If

agp bo

— 4= >1
ay bl

then (X, f) is topologically conjugate to a hyperbolic infra-nilmanifold automorphism.

We show that the Brin’s pinching condition on the Mather spectrum of an Anosov
diffeomorphism implies our condition on the critical exponents.

As another application of Theorem 1.4, we show that the theorem of J. Franks and
S.E. Newhouse on co-dimension one Anosov diffeomorphisms is true for all locally con-
nected Smale spaces.

Theorem 1.6. Let (X, f) be a Smale space such that X is connected and locally connected,
and either stable or unstable leaves of (X, f) are homeomorphic (with respect to their
intrinsic topology) to R. Then (X, f) is topologically conjugate to a hyperbolic linear
automorphism of a torus R™/Z™.

Here intrinsic topology of a leaf is the direct limit topology coming from decomposition
of a leaf into the union of plaques of rectangles of X.

Theorem 1.6, for example, rules out basic sets of Axiom-A diffeomorphisms such that
the stable leaves are homeomophic to R, while the unstable leaves are locally connected
but not homeomorphic to manifolds (e.g., are locally homeomorphic to the Sierpinski
carpet).

Remark. A more general notion of an endomorphism of an infra-nilmanifold is discussed
in [13,12]. Tt is also noted there that some of the results of [14] and [34] are based on a
false result. The proof of Theorem 1.4 shows that it is enough to consider the narrower
notion of an automorphism of an infra-nilmanifold in the classification of Smale spaces
and Anosov diffeomorphisms up to topological conjugacy. We do not use the results
of [14] (except for his proof of Theorem 2.2, which we repeat for our setting). The results
of [34] are not used in the proof of Theorem 1.2, where also the narrower notion of an
endomorphism of an infra-nilmanifold is used, see [24, Theorem 6.1.6].

Structure of the paper In Section 2, we collect basic facts and definitions related to
Smale spaces, and fix the related notations.

We study lower exponents of a Smale space, and a family of metrics associated with
lower exponents in Section 3. We also recall their properties of the SRB measures on
leaves of Smale spaces.

Locally connected Smale spaces are studied in Section 4. We show that the following
conditions for a Smale space (X, f) are equivalent (see Theorem 4.1):
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1

(1) The space X is locally connected.

(2) All stable and unstable leaves of X’ are locally connected.
(3)

(4)

3
4

All stable and unstable leaves of X' are connected.
X has finite stable and unstable upper exponents.

In Section 5 we study splittings of locally connected Smale spaces. We show that for
any splitting 7 : M — X of a locally connected Smale space there exists a well defined
group of deck transformations G, that G is finitely generated, and that there exists a lift
F: M — M of f to M, which is unique up to compositions with elements of G.

The lift F defines then, for any point xg € M, an automorphism ¢ of G by the rule

F(g(x0)) = ¢(9)(F(x0))-

Question 1.7. Does the pair (G, ¢) uniquely determine the topological conjugacy class of
(X, )7

We do not know the answer to this question, but we show that we can reconstruct
(X, f) after adding an extra piece of information to (G, ¢).

Definition 1.8. Let 7 : M — X be a splitting of a locally connected and connected
Smale space (X, f). Let W, and W_ be stable and unstable plaques of a fixed point
xg of a lift of f. We say that ¥, ,X_ C G are coarse stable and unstable plaques if the
Hausdorff distances between X (x¢) and Wy and between ¥_ (o) and W_ are finite.

Here the distance in M is measured with respect to a G-invariant metric.

Theorem 1.9. The quadruple (G, ¢, X4, X_) uniquely determines the topological conju-
gacy class of (X, f).

We prove Theorem 1.9 by representing W, and W_ as boundaries of Gromov hy-
perbolic graphs constructed using the quadruple. These graphs are quasi-isometric to
Cayley graphs of the Ruelle groupoids associated with the Smale space. A general theory
of Cayley graphs of hyperbolic groupoids is developed in [27]. We hope that these new
techniques will be helpful in future studies of hyperbolic dynamics.

We get the following corollary of Theorem 1.9.

Theorem 1.10. Let (X;, f;) for i = 1,2 be connected and locally connected Smale spaces.
Let w; : M; — X; be splittings, and let F; : M; — M; be lifts of f;. Suppose that F;
have fixed points, and that the groups of deck transformations of m; are both isomorphic to
a group G. If there exists a continuous map ® : My — Ma such that ®(g(z)) = g(®(z))
and ©(F1(z)) = Fo(®(x)) for all x € My and g € G, then the Smale spaces (X1, f1) and
(Xs, f2) are topologically conjugate.
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Section 6 is devoted to the proof of Theorem 1.4. As the first step we prove the
following.

Proposition 1.11. Let m : M — X be a splitting of a locally connected and connected
Smale space (X, f) such that the group G of deck transformations is torsion free nilpotent.
Then f has a fized point, and the associated automorphism ¢ : G — G is hyperbolic
(i.e., its unique extension ® to a simply connected nilpotent Lie group containing G as
a lattice is hyperbolic).

We prove both statements of Proposition 1.11 by induction on the nilpotency class of
G. We show at first that the automorphism ¢ induces a hyperbolic automorphism of the
center Z(G) =2 Z™ of G. Then we construct an action of R” on M naturally extending
the action of Z™, using the direct product structure on M. The action induces an action
of the torus R™/Z™ on X and agrees with the local product structure, metric on X,
and the dynamics, in such a way that the map induced by f on (R™/Z™)\X is a Smale
space with a splitting with the group of deck transformations isomorphic to G/Z(G).
This provides us the necessary inductive steps to prove Proposition 1.11. We use after
that the arguments of [14, Theorem 2.2], Theorem 1.10, and some additional algebraic
arguments to prove Theorem 1.4.

Theorem 1.5 generalizing the Brin’s pinching condition to Smale spaces is proved in
Section 7. We prove at first that every Smale space satisfying conditions of Theorem 1.5
has a splitting (Theorem 7.2). Then we prove that the group of deck transformations of
the splitting is virtually nilpotent (Theorem 7.3) using Gromov’s theorem on groups of
polynomial growth. Both proofs are similar to the original proofs of M. Brin, except that
in the proof of Theorem 7.2 we use results of Section 3 on lower exponents of a Smale
space, which allows us to get a better pinching condition, and to prove the theorem for
all locally connected Smale space, and not only for Anosov diffeomorphisms.

In Section 8, we show how our condition on critical exponents is related to M. Brin’s
pinching condition on the Mather spectrum of a diffeomorphism. We show that M. Brin’s
condition implies the condition of Theorem 1.5.

Section 9 is devoted to the proof Theorem 1.6 on co-dimension one Smale spaces. We
prove it using Theorem 1.4 and the ideas of the proof of Theorem 1.5.

Acknowledgments. I started writing this paper during a visit to Institut Mittag-Leffler
(Djursholm, Sweden) as a participant of the semester “Geometric and Analytic Aspects
of Group Theory” in March of 2012. T am very grateful to the Institute for excellent
conditions for work and to the organizers of the semester for inviting me. I am also
grateful to the anonymous referee, who found an error in the first version of the paper
and helped to improve the exposition.
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2. Smale spaces
2.1. Local product structures

Definition 2.1. A direct product structure on a topological space R is defined by a con-
tinuous map [-,-] : R X R — R satisfying

(1) [z,2] = for all z € R;
(2) [[z,y], 2] = [z, 2] and [z, [y, 2]] = [, 7] for all z,y, z € R.

We call a space with a direct product structure on it a rectangle.

If R= A x B is a decomposition of R into a direct product of two topological spaces,
then the corresponding direct product structure is given by the operation

[(z1,91), (x2,y2)] = (21,92). (1)

Let R be a rectangle. For x € R the corresponding plaques are the sets
Pl(RaI):{yER : [x,y]:a:}, PQ(R7I>:{y€R : [x,y]:y} (2)

See Fig. 1. If R = A x B with the corresponding direct product structure (1), then the
plaques are given by

Py (R, (a,b)) = A x {b}, Py(R, (a,b)) = {a} x B.
The map P (R,z) X P2(R,2) — R given by

(Y1, 92) = [y1,92]

is a homeomorphism.

For any pair z,y € R the natural maps P,(R,z) — Pi(R,y) and Py(R,x) —
P5(R,y) given by z — [y, z] and z — [z, y], respectively, are called holonomy maps inside
R, and are homeomorphisms.

These homeomorphism agree with the homeomorphisms P (R, z) x Py(R,z) — R,
so that we get a canonical decomposition of R into the direct product of two spaces A
and B, which can be identified with P; (R, z) and Py(R, x), respectively.

Definition 2.2. Let X be a topological space. A local product structure on X is given by
a covering R of X by open sets R with a direct product structure [, -]z on each of them,
such that for any R1, Re € R, and for every x € X there exists a neighborhood U of x
such that [y1,y2]r, = [y1,y2]R, for all y1,y2 € U N Ry N Rs.

Two coverings of X’ by open rectangles define the same local product structures if their
union defines a local product structure, i.e., satisfied the above compatibility condition.
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[z, 9] Y
Pl(R, I)/’\' xT [’%I]

Pa(R, :1;)‘

Fig. 1. Rectangle.

If X is a space with a local direct product structure, then an open subset R C X
with a direct product structure [-,-] is a (sub-)rectangle of X if the union of {R} with
a covering defining the local product structure satisfies the compatibility conditions of
Definition 2.2.

Definition 2.3. We say that a continuous map f : Xy — X, between spaces with lo-
cal product structures preserves the local product structures if every point of X; has
a rectangular neighborhood U such that f(U) is a rectangle of Xo, and f([z,y]v) =

[f(z), f(W)] ) for all z,y € U.

Definition 2.4. Let X be a space with a local product structure. We say that a metric
d on X agrees with the local product structure if for every point x € X there exists an
open rectangular neighborhood R = A x B of x and metrics d4 and dp on A and B,
respectively, such that the restriction of d to R is bi-Lipschitz equivalent to the metric

dr((z1,91), (22,92)) = da(z1,22) + dB(y1,y2).

If a metric d agrees with the local product structure, then for every point z € X
there exists a rectangular neighborhood R of x such that all holonomy maps inside R
are bi-Lipschitz with respect to the metric d with a fixed Lipschitz constant (depending
only on R). Conversely, it is easy to see that a metric d agrees with the local product
structure if for every z € X there exists a rectangular neighborhood R of x such that
the holonomies inside R are uniformly bi-Lipschitz, and d(y, z) is bi-Lipschitz equivalent

to d([z,y], [z, 2]) + d([y, ], [z, z])-
2.2. Smale spaces

Definition 2.5. A Smale space is a compact metrizable space X together with a home-
omorphism f : X — X such that there exists a metric d on X, constants A € (0,1)
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and C > 0, and a local product structure on X such that f preserves the local product
structure and for every x € X there exists a rectangular neighborhood R of x such that
for all n > 0 and y, z € P;(R, z) we have

d(f"(y), ["(2)) < CAX"d(y, 2),

and for all n > 0 and y, z € Py(R,x) we have

d(f " (), F7" () < CX"d(y, 2).

We will denote P;(R,z) = Py (R, z) and Py(R,x) = P_(R,x).

Examples of Smale spaces are Anosov diffeomorphisms of compact manifolds, restric-
tions of Axiom-A diffeomorphisms to their basic sets, shifts of finite type, spaces of
substitutional tilings, etc. See [31] for more examples. Note that pseudo-Anosov diffeo-
morphisms are not Smale spaces.

Definition 2.6. A homeomorphism f : X — X of a compact space X is said to
be ezpansive if there exists a neighborhood U of the diagonal in X x X such that
(f™(z), f"(y)) € U for all n € Z implies z = y.

Note that if U satisfies the conditions of the definition, then {(z,y) € X2
(x,y), (y,z) € U} also satisfies the conditions of the definition. Consequently, we may
assume that U is symmetric.

Proposition 2.7. Fvery Smale space is an expansive dynamical system.

Proof. We can find a finite covering R of X by rectangles satisfying the conditions of
Definition 2.5. Let € > 0 be a Lebesgue’s number of the covering. There exists § > 0
such that for any points z,y € X such that d(z,y) < § and any rectangle R € R such
that z,y € R we have d(z, [z,y]) < C~'e and d(y, [z,y]) < C~'e.

Let 2,y € X be such that d(f™(x), f"(y)) < § for alln € Z. Then for every n € Z there
exists a rectangle R,, € R such that f™(x), f"(y) € Ry,. Then d(f"(z), [["(z), f*(y)]) <
C~le. Note that f™(x) and [f"(z), f*(y)] belong to one plaque P_(R,,, f"(x)). It follows
that d(f"~"(z), [f*~*(x), f* M (y)]) < CARA(f"(2), [f"(2), [ (y)]) < CAFCTe = Nre
for all k > 0 and all n € Z. In particular, d(z, [z,y]) < A\Fe for all k > 0, i.e., z = [z,9].
It is shown in the same way that y = [z, y], which implies that 2 = y. Therefore, the set
U C X x X equal to the set of pairs (z,y) such that d(z,y) < ¢ satisfies the conditions
of Definition 2.6. O

Definition 2.8. A log-scale on a set X is a function £: X x X — R U {oo} satisfying the
following conditions:

(1) l(z,y) = L(y,x) for all z,y € X;
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(2) £(z,y) = oo if and only if x = y;
(3) there exists A > 0 such that

é(l‘, Z) > min{ﬁ(x,y),ﬁ(y, Z)} -A
for all z,y,z € X.

We say that two log-scales £1, {5 are bi-Lipschitz equivalent if the difference |¢; (x,y) —
ly(x,y)| is uniformly bounded for all x # y.

Let us describe the natural class of metrics on expansive dynamical systems defined
in [15], using log-scales.

Let (X, f) be an expansive dynamical system. Let U be a symmetric neighborhood
of the diagonal, satisfying the conditions of Definition 2.6. Define ¢(z,y) for z,y € X to
be maximal n such that (f*(x), f*(y)) € U for all k € [—n,n].

Lemma 2.9. The defined function £ is a log-scale. It does not depend, up to bi-Lipschitz
equivalence, on the choice of U.

We call ¢ the standard log-scale of the expansive dynamical system.

Proof. We have ¢(x,y) = {(y,z), since we assume that U is symmetric. We also have
l(x,y) = oo if and only if = y, by Definition 2.6.

It remains to show that there exists A such that £(z,2) > min{l(z,y),£(y,z)} — A
for all z,y,z € X.

Since a compact set has a unique uniform structure consisting of all neighborhoods
of the diagonal (see [3]), there exists a neighborhood of the diagonal V' C X2 such that
(z,y),(y,2z) € V implies (x,z) € U.

Note that the sets U, = {(z,y) : {(x,y) > n} =(i—_, f*(U) are neighborhoods of
the diagonal, U,4+1 C U, for all n, and (,~,; Un is equal to the diagonal. In particular,
by compactness of X, there exists A > 0 such that Ua C V.

Denote by V,, = ,__,, f¥(V) the set of pairs (z,y) such that (f*(z), f*(y)) € V for
all k= —n,...,n. Then (z,y), (y, 2) € V,, implies (z, z) € U,.

Then for every n > A we have U,, C V,,_a, since the conditions that (f*(x), f¥(y)) €
U for all |k| < n implies (f*(z), f*(y)) € Ua C V for all |k| <n— A.

Let min{¢(z,y),£(y, 2)} = m. Then (z,y), (y,z) € Uy, C Viu—na, hence (z, 2) € Up—a,
ie, l(x,z) >m— A.

Let us show that ¢ does not depend on the choice of U. Let U’ and U” be two
neighborhoods of the diagonal, satisfying the conditions of Definition 2.6. Then, as above,
there exists C' > 0 such that U, C U” and U/. C U’. By the same arguments as above,
we conclude that U}, » C U; and U}/, C Uj, for all n > 0. But this implies that the
values of the log-scales defined by U’ and U” differ from each other not more than by
C. O
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It is proved in [27, Lemma 5.4.2] that for every Smale space (X, f) the log-scale £
agrees with the local product structure on X.

Definition 2.10. Let (X, f) be an expansive dynamical system, and let ¢ be the stan-
dard log-scale. We say that z,y € X are stably equivalent (denoted = ~y y) if
(f™(x), f"(y)) — +oo as n — +oo. They are unstably equivalent (denoted z ~_ y)
itl(f~"(x), f~™(y)) = +oo as n — +oo. We call stable and unstable equivalence classes
stable and unstable leaves.

Note that ¢(x,,yn) — oo is equivalent to d(z,,y,) — 0 for any pair of sequences
ZTn,Yn € X and for any metric d on &.

Two points z,y € X are stably equivalent if and only if (f™(x), f*(y)) € U for all n
big enough. Denote, for x € X and n € Z, by W,, 4 (x) the set of points y € X such that
(f¥(x), f*(y)) € U for all k > —n. Similarly, we denote by W,, _(x) the set of points
y € X such that (f*(z), f¥(y)) € U for all k < n.

Then W, 4(z) and W, _(x) are decreasing sequences of sets, and Wi(z) =
Unen Wen,t () and W_(z) = U,eny Won,—(2) are equal to the stable and unstable
leaves of x, respectively.

Note that foralln € N,z € X, % € {+, -}, and y1,y2 € W, () we have £(y1,y2) > n.

If W is a stable leaf, then we denote, for y1,y2 € W, by €4 (y1,y2) or Ly (y1,y=2) the
biggest ng such that (f"(y1), f"(y2)) € U for all n > —ny.

The following properties of ¢ follow directly from the definitions.

e Ly1,y2) < €1 (y1,y2) for all stably equivalent y1, yo;
o if y1,yo are stably equivalent and ¢4 (y1,y2) > 0, then £(y1,y2) = €4 (y1, y2);
o for all stably equivalent y1,ys we have

e (f(yn), f(y2) = Lo (yr1,y2) + 1. (3)

Similarly, if W is an unstable leaf, then ¢_(y1,y2) = fw(y1,y2), for y1,ys € W, is
the biggest ng such that (f™(y1), f"(y2)) € U for all n < ng. We also have £(y1,y1) <
- (y1,92), L(y1,y2) = L—(y1,y2) if £_(y1,92) > 0, and

C(f(y1), f(y2)) = €-(y1,92) — 1 (4)
for all pairs y1,y2 of unstably equivalent points.

Lemma 2.11. Let W be a stable or unstable leaf. Then the corresponding function €4 or
{_ is a log-scale on W.

Proof. If ¢ (x,y), ¢+ (y, 2), ¢+ (x,2) are all positive, then they are equal to the corre-
sponding values of ¢, hence, by Lemma 2.9, £ (z, z) > min(¢y(x,y), ¢+ (y, 2)) — A, for A
not depending on x,y, 2.
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If they are not positive, then we can find n > 0 such that ¢.(f"(x), f"(y)) =
Co(,y) +m, G (FM W), F(2)) = £(9,2) +m, and £ (f7(2), f7(2)) = €4 (2, 2) +n are
positive, and applying the above argument for f"(z), f*(y), and f™(z) conclude that
li(z,2) +n > min({4(z,y) + n, 04 (y,2) + n) — A, which is equivalent to ¢4 (z,z) >
min(€+(m7y)’£+(yvz)) -A. D

We call the log-scales ¢4 and ¢_ the internal log-scales on the respective leaf.

The internal topology on a leaf is the topology defined by the corresponding log-
scale /4 or ¢_. Here topology defined by a log-scale £ on a set X is given by the basis
B(n,z) ={y € X : {(x,y) > n} of neighborhoods of points x € X. Note that B(n,x)
is not necessarily open or closed.

Equivalently, the internal topology of a leaf W is equal to the direct limit topology of
representation of W as the union of the sequence W_,, .(x) for n € N and x € W.

Note also that leaves of a Smale space are locally compact, since neighborhoods of
points of a leaf are continuous images of neighborhoods of points of X.

2.3. Irreducible Smale spaces

Let (X, f) be a Smale space. A point x € X is said to be non-wandering if for every
neighborhood U of x there exists a positive integer n such that f*(U) NU # 0. The set
of non-wandering points is obviously f-invariant and closed.

We say that (X, f) is irreducible if for every pair of open sets U,V C X there exists
a positive integer n such that f*(U) NV # (. We say that it is mizing if for every pair
of open sets U,V C X there exists N such that f*(U)NV # 0 for all n > N.

Smale spaces were introduced by D. Ruelle [33] as purely topological generalizations
of basic sets of Axiom-A diffeomorphisms. Note, however, that general Smale spaces may
have non-empty wandering sets. For example, every shift of finite type is a Smale space,
but shifts of finite type may have wandering points.

On the other hand, the Smale’s Spectral Decomposition Theorem [35, Theorems 6.2,
6.6] holds for Smale spaces.

Theorem 2.12. Let (X, f) be a Smale space. Then the dynamical system (NW(X), f),
where NW(X) is the set of non-wandering points, is a Smale space. The set NW(X)
can be decomposed into a finite disjoint union of closed f-invariant sets Xy, Xa,..., X,
such that (X;, f) is an irreducible Smale space without wandering points.

We write X; < X if there exists a wandering point x € X such that the set of the
accumulation points of f"(x), n > 0, is contained in X;, and the set of the accumula-

tion points of f™*(x), n < 0, is contained in X;. Then < is a partial order on the set
{X17"'7Xn}'

The sets X1, ..., X, are called irreducible components of the Smale space (X, f).
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A proof of the above theorem is similar to the proof of the classical Smale’s spectral
decomposition theorem, and can be found in [31]. We also have the following relation
between the notions of an irreducible and mixing Smale spaces, see [31].

Theorem 2.13. Suppose that (X, f) is an irreducible Smale space. Then X can be de-
composed into a finite union X = Ay U As U --- U Ay of disjoint clopen sets cyclically
permuted by f and such that (A;, f*¥) are mizing Smale spaces.

3. Lower exponents
3.1. Lower exponents of log-scales

We say that d is a metric associated with a log-scale ¢, if there exist constants o > 0
and C' > 1 such that

C*lefozf(x,y) < d(.ﬁ,y) < C«efaf(m,y).

The number « is called the exponent of the metric. Topology defined by an associated
metric obviously coincides with the topology defined by the log-scale.

Note that if d is a metric associated with ¢ of exponent «, then for any 0 < r < 1
the function (d(z,y))" is a metric associated with ¢ of exponent ra. It follows that the
set of exponents « for which there exists a metric associated with a given log-scale is an
interval of the form (0, o) or (0, apl, where g € [0, 00]. We will see later that ag > 0
(see also [27]). The number «yg is the metric critical exponent of the log-scale.

Let X be a set with a log-scale ¢. Let I';,, for n € R, be the graph with the set of
vertices X in which two points x,y are connected by an edge if and only if ¢(x,y) > n.
Denote then by d,, the combinatorial distance in I',, (we assume that d,,(z,y) = co if =
and y belong to different connected components of T',,).

Proposition 3.1. Let A be such as in Definition 2.8. There exist C > 0 such that
dp(z,y) > Ce®n—L£(z.y))
log 2

Jorall z,y € X and all n € N, where o = =%=.

Proof. If (xg,x1,x2) is a path in T, then ¢(zg, z2) > n — A, hence (xg,x2) is a path in
Iy-a. It follows that d,—a(2,y) < 3(dn(2z,y) + 1). In other terms:

dn+A(x7y) > an(l',y) -1
If {(x,y) = m, then d,,11(x,y) > 2, and hence

i1 pra(w,y) > 2570 = 2571 9h=2 g =gk oy
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| n—fl(z,y)—1
Note that d,,(x,y) > dn(z,y) whenever m > n. It follows that for k = L%J >

7"4(21’)71 — 1 we have
dn(2,Y) > dy(zy)+14ka (T, y) > 2.
Consequently,
dp () > o(n—L(z,y)=1-A)/A _ crpa(n—E(z.y))

for all z,y € X and n € R, where C' = 2(-1-2)/4 and o = lr‘fz. O

Definition 3.2. We say that « is a lower exponent of a log-scale £ if there exists C > 0
such that

dn(z,y) > Ce®(n—t(z,y))

for all z,y € X and n € Z. The supremum of all lower exponents is called the lower
critical exponent.

The proof of the following proposition is straightforward.

Proposition 3.3. Let {1 and {5 be bi-Lipschitz equivalent log-scales on X. A number a > 0
s a lower exponent of {1 if and only if it is a lower exponent of {s.

Theorem 3.4. The metric critical exponent of a log-scale £ is equal to its lower critical
exponent. In particular, the metric critical exponent is positive.

Proof. Let d be a metric on X of exponent « associated with ¢, and let C; > 1 be such
that

Cl—lefaé(a:,y) < d(l’,y) < Olefozf(m,y)

for all z,y € X.
Then for every n the inequality ¢(x,y) > n implies d(x,y) < Cre”*", hence

d(z,y) < Cidp(x,y)e”*"
for all x,y. It follows that
dp(z,y) > C7 N d(m,y)e® > O 2e0n—at®y)

for all xz,y € X and n € N, i.e., a is a lower exponent.
Let a be a lower exponent. Let 8 be an arbitrary number such that o > 8 > 0. It is
enough to show that there exists a metric on X of exponent 3 associated with /.
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Define, for z,y € X, dg(z,y) as the infimum of ) ;" e~ Pli—1.2:) gyer all sequences
To = T,T1,T2,...,Tm =Y. The function dg(x,y) obviously satisfies the triangle inequal-
ity, is symmetric, and

dg(z,y) < e PlEY)

for all z,y € X.
It remains to prove that there exists a constant Cs such that for any sequence xy =
T,T1,T2,...,T,m =Yy We have

Z e Blwi-1,zi) > 026*55(03-,?!).

i=1

Let C be such that 0 < C < 1 and d,,(z,y) > Ce*~4@¥) for all z,y € X and all n.
B(log C—2aA)

a—p

Let us prove our statement by induction on m for Cy = exp (
The statement is true for m = 1, since Cs < 1. Suppose that we have proved it for all
k < m, let us prove it for m.

Lemma 3.5. Let xo,21,...,2Z, be a sequence such that {(x;,xiy1) > n for all i =

0,1,...,m —1. Let ng < n. Then there exists a sub-sequence Yo = T, Y1, .- -, Yt—1, Yt
Ty of the sequence x; such that

no — 2A < L(y;, Yit1) < Mo
foralli=0,1,...,t—1.

Proof. Let us construct the subsequence y; by the following algorithm. Define yy = x.
Suppose we have defined y; = x, for r < m. Let s be the largest index such that s > r
and £(z,,xs) > ng. Note that since £(z,, x, 1) > n > ng, such s exists.

If s < m, then (z,,z511) < ng, and

U2, xs11) > min{l(z,, zs), l(Ts,Ts+1)} — A > min{ng, l(xs,zs41)} — A =ng — A.
Define then y;+1 = xs+1. We have

no — A < (Y, yiy1) < no-

If s +1 = m, we stop and get our sequence yo, ..., ys, for t =7+ 1.
If s = m, then £(x,, xm) = L(y;, Tm) > no, and

(Yi—1, Trm) = min{l(yi—1,¥i), (Y, Tm)} — A > min{ng — A, np} — A =ng —2A

and
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Uyi—1,Tm) < ng,

since y; was defined and was not equal to z,,. Then we redefine y; = x,, and stop the
algorithm.

In all the other cases we repeat the procedure. It is easy to see that at the end we get
a sequence y; satisfying the conditions of the lemma. 0O

Let zg = =z, 21,...,z,,, = y be an arbitrary sequence of points of X. Let ng be the
minimal value of ¢(z;, z;11). Let yo = x,y1, ...,y = y be a sub-sequence of the sequence
x; satisfying conditions of Lemma 3.5.

Suppose at first that

2aA — log C
a—p3

Remember that ng = ¢(z;,2;11) for some i, hence

no < l(z,y) +

Zefﬁf(m—hﬂ?i) > e~ B0 5 exp <—6€($,y) _ ﬂ(QO&ﬁ_;Og C>> — 0267[35(1:,.7;)’
=1

and the statement is proved.

Suppose now that ng > ¢(z,y) + %, which is equivalent to

(a = B)ng — (a = B)l(z,y) — 2aA +1logC > 0. (5)

If t =1, then ng — 2A < 4(x,y) < ng, hence

2aA — 26A 2aA —log C

</ 2A =/ g = R

no > (xay)+ (x7y)+ a—ﬂ < (‘r7y)+ Ck—ﬁ )

since log C' < 0 < 2A. But this contradicts our assumption.
Therefore t > 1, and the inductive assumption implies
m t—1
Zefﬁe(xi—lvl’i) > Z 026*5f(yi>yi+1) > tC’Qe*ﬁno.

i=1 i=0

We have t > dp,—oa(z,y) > Ce®(no—2A—L(z.y)) hence

Zefﬂf(xi_l,x,;) 2 CCQefﬂnOJFD‘nO*QO‘A*O‘Z(mvy) —
i=1
Cy exp (log C — fng + ang — 20A — al(z,y)) =
Coexp (—B(,y) + (a — B)ng — (o — B)E(z,y) — 20A +log C) > Coe ),

by (5). O
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3.2. Lower exponents of Smale spaces

Definition 3.6. Let (X, f) be a Smale space. A number « > 0 is a stable (resp. unstable)
lower exponent of the Smale space if there exists a constant C' > 0 such that for any
stable (resp. unstable) leaf W and any x,y € W we have

dn(337 y) > Cea(n—fw(%y))

for the internal log-scale on . The supremum of the stable (resp. unstable) lower
exponents is called the stable (resp. unstable) lower critical exponent.

Note that by Proposition 3.1 lower stable and unstable exponents exist and are positive
for any Smale space. Proposition 3.3 implies that the lower critical exponents of a Smale
space depend only on the topological conjugacy class of the Smale space.

Proposition 3.7. Let [ € R. A number a > 0 is a lower stable (resp. unstable) exponent
of (X, f) if and only if there exists C; > 0 such that for every stable (resp. unstable) leaf
W and for every two points x,y € W such that by (x,y) <1 we have

dp(z,y) > Cre™" (6)
for alln.

Proof. Let us assume that W is a stable leaf (the proof for an unstable leaf is the same).
If « is a lower exponent and C' is as in Definition 3.6, then for any z,y € W such that
Ly (z,y) <1 we have
dp(z,y) > Ce(n=tw(@y) > Ce=al . gon

and we can take C) = Ce~.

Suppose now that C; > 0 is such that d,(z,y) > Cie®™ for all x,y belonging to one
stable leaf W and such that ¢y (z,y) > I.

Let x and y be arbitrary stably equivalent points of X'. Let Wy be their stable leaf.
Denote ng = fw, (,y). Then fy (f1="0(z), f1="0(y)) = I, where W is the stable leaf of
fimo(z) ~4 f7m0(y). Consequently,

dn(f177 (2), [0 (y)) = Cre®”

for all n.

The map z +— f/="0(z) transforms every path in I',,(W;) to a path in Ty, (W),
where Wy and W; are the stable leaves of 2z and f!="0(z), see (3).

It follows that

dn(xa y) > dn-i-l—no (fl—no ($)7 fl_no (y)) > Clea(n+l_n0) = C'lel . ea(n—ﬁwo (m,y)),
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which shows that « is a lower exponent. O
3.8. Metric properties of leaves

Let (X, f) be a Smale space, and let £, £, , and £_ be the standard log-scale on X', and
the internal log-scales on the stable and unstable leaves of X. Let U be a neighborhood
of the diagonal satisfying the conditions of Definition 2.6.

The following theorem describes the classical theory of Bowen-Margulis measure on
Smale spaces, see [5]. See its exposition in [26], which is notationally close to our paper.

Denote by d, dy, and d_ metrics associated with the log-scales ¢, ¢, and ¢_, respec-
tively. Denote by B, (r,z) the ball of radius r, with respect to the metric d., with center
in x, where * € {+, —}.

Theorem 3.8. Suppose that (X, f) is mizing. There exists a number n > 0 (called the
entropy of (X, f)), and a family of Radon measures j4 and p_ on the stable and unstable
leaves of X satisfying the following properties.

(1) There exists a number C > 1 such that
O~/ < (B, (ry ) < Cr/e

forallr >0, x € X, and x € {+, —}, where a, is the exponent of the metric d..
(2) The measures are preserved under holonomies.
(3) The measures are quasi-invariant with respect to f, and %T) =, % =e .
It follows from condition (1) of the theorem, that u; and p_ are equivalent to the
Hausdorfl measures of the metrics d; and d_ of dimension - and -, respectively.

Lt a_?
4. Locally connected Smale spaces and upper exponents

4.1. Connectivity

The aim of this section is to prove the following description of locally connected Smale
spaces.

Theorem 4.1. Let (X, f) be a Smale space. The following conditions are equivalent.

(1) The space X is locally connected.

(2) All stable and unstable leaves are locally connected.

(3) All stable and unstable leaves are connected.

(4) All stable and unstable leaves are locally path connected.
(5) All stable and unstable leaves are path connected.
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(6) The graphs To(W') are connected for every (stable or unstable) leaf W.
(7) The graphs T',,(W) are connected for every leaf W and every n.
(8) There exist a > 0 and C > 0 such that for every leaf W we have

dn(z,y) < Ce®n—tw(z,y))
for all z,y € W and all n > by (z,vy).

Recall that for a stable or unstable leaf W, we denote by T',,(W) the graph with the
set of vertices W in which two vertices z,y are connected by an edge if and only if
lw (x,y) > n, where £y is the corresponding (¢4 or £_) internal log-scale on .

Let us start by proving equivalence of conditions (1) and (2).

Proposition 4.2. Let (X, f) be a Smale space. The space X is locally connected if and
only if each leaf is locally connected.

Proof. Each point x € X has a neighborhood homeomorphic to the direct product of
the neighborhoods of x in the corresponding stable and unstable leaves. It follows that
if  has bases of connected neighborhoods in the leaves, then = has a basis of connected
neighborhoods in X.

In the other direction, if x has a basis of connected neighborhoods in X', then for any
rectangular neighborhood R of z there exists a connected neighborhood U C R of z. Its
projection onto the direct factors of R will be connected, hence the point x has bases of
connected neighborhoods in its leaves. O

Proposition 4.3. If every stable leaf of (X, f) is locally connected, then every stable leaf
of (X, f) is connected.

Proof. For every point z € X there exists a connected neighborhood U of z in its
stable leaf and a rectangular neighborhood R of x in X’ such that Py (R,x) = U. Then
each plaque of R will be homeomorphic to U, hence will be connected. It follows that
every point of X has a rectangular neighborhood R such that all its stable plaques are
connected. Since X is compact, there exists a finite covering R = {R;} of X by open
rectangles with connected stable plaques.

Let W be a stable leaf, and let x,y € W. By Lebesgue’s covering lemma, there exists n
such that f”(z) and f™(y) belong to one plaque V of a rectangle R; € R. Then f~™(V)
is a connected subset of W containing x and y. We have shown that any two points of
W belong to one connected component of W, i.e., that W is connected. O

Let R = {R;}icr be a finite covering of X’ by open rectangles. Let R be the set of
all stable plaques of elements of R.
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Every stable leaf W is a union UT6R+,TCW T of stable plaques contained in W. Each
plaque is an open subset of W and the internal topology on W coincides with the direct
limit topology of the union of the plaques.

Denote by I', (W) the graph with the set of vertices W in which two vertices are
connected by an edge if they belong to one set of the form f*(7T"), T € R.

The map f : W — f(W) induces isomorphisms I'y, (W) — T, 11 (f(W)) and
L,(W) — I 1 (f(W)), see (3) and (4) for the first isomorphism.

Lemma 4.4. There exists a number ko such that if z,y € W are adjacent in T,,(W), then
they are adjacent in T, (W), and if x,y € W are adjacent in I',,(W), then they are
adjacent in Tp_g, (W).

Proof. There exists k1 such that for every plaque V € R, and every pair z,y € V
we have (f*(x), f*(y)) € U for all k > ki (where U is a neighborhood of the diagonal
defining ¢, ¢, , and £_). If z,y € W are connected by an edge in I, (W), then z,y € f™(T)
for T € R, hence (f*="(x), f¥="(y)) € U for all k > ki, hence £, (z,y) > n — ki, i.e.,
x and y are connected by an edge in T'y,_g, (W).

By Lebesgue’s covering lemma, there exists ko such that if z,y € W are such that
by (z,y) > ko, then z and y belong to one plaque V' € R. Then every edge of 'y, (W)
is an edge in I'j(W). Consequently, every edge of I',,(W) is an edge in I',,_,(W). O

Proposition 4.5. The following conditions are equivalent.

(1) The graph T'o(W) is connected for every stable leaf W.
(2) The graph T, (W) is connected for every stable leaf W and for everyn € Z.
(3) The graph T{(W) is connected for every stable leaf W.
(4) The graph T, (W) is connected for every stable leaf W and for everyn € Z.

Proof. Since the map f* : W — f¥(W) induces isomorphisms T, (W) —
Lok (f*(W)) and T}, (W) — T (f¥(W)), (1) is equivalent to (2), and (3) is equiva-
lent to (4).

Let ko be as in Lemma 4.4. If all graphs T',,(W) are connected, then all graphs
I, (W) 2T, (W) are connected. If all graphs I', (W) are connected, then all graphs
Ik (W) DT (W) are connected. This shows that all conditions (1)—(4) are equivalent
to each other. O

Proposition 4.6. If a stable leaf W is connected, then the graph T (W) is connected for
every n.

Proof. Suppose that W is a connected stable leaf. Let A be a connected component of
I (W). Let W4 be the union of the plaques V' € R containing vertices of A. It follows
from the definition of the graph I'((WW) that every plaque V € R is either contained
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in Wy, or is disjoint with it. Consequently, W4 is clopen, which implies that W = Wy,
hence A = W, and I'y(W) is connected. O

Proposition 4.7. Suppose that the graphs T'),(W) are connected for all stable leaves W
and all n. Then there exists A > 1 such that any two adjacent vertices in To(W) are on
distance at most A in Ty (W).

Proof. Let FE be the closure in X' x X of the set pairs of points (x, y) such that there exists
a plaque V € R such that z,y € V. It is easy to see that F is compact. It contains the
set of edges of every graph I'j(WW), and is contained in the stable equivalence relation.

Any pair of points z,y such that (z,y) € F is connected by a path in T')(W), as
all graphs I') (W) are connected. It means that there exists a sequence of rectangles
Ry,...,R, € R, and a sequence of points xz; € R; such that z and x; belong to the
same stable plaque of Rp, y and x,, belong to the same stable plaque of R,, and the
stable plaque of x; in R; intersects with the stable plaque of x;1 in R;11. This sequence
Ry, ..., R, will define a path in T")(W) connecting any two points (z’,y’) belonging to
a neighborhood of (z,y) in E. It follows then from compactness of F that we can find
a finite upper bound on the length of a path connecting any two points of E, which
finishes the proof. 0O

Recall that d,,(z,y) is the distance in the graph T',,(W).

Proposition 4.8. Suppose that all graphs T, (W) are connected. Then there exist positive
constants a and C' such that for any two points x,y € W we have

dn(z,y) < Cle(n—tw(z,y))
for alln > by (z,y).
Proof. Let A and kg be as in Propositions 4.7 and 4.4, and let z,y € W be arbitrary.

Denote ng =y (z,Y). The points « and y are connected by an edge in I'y,, (W), hence
they are connected by an edge in I" (W). Tt follows from Proposition 4.7 that for

no—ko
every k > 0, distance between z and y in I', _, ., (W) is not greater than AF . As the

set of edges of I', _, . (W) is contained in the set of edges of I',,, 2k, +(W), we have
dny—210+4 (2, y) < A,
for all £ > 0. Consequently,
dp(z,y) < AP0 +2k0 — pg2k0 | gn—tw (2.y)

for all n > by (z,y) — 2ko. O
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Proposition 4.9. Suppose that all graphs T (W) are connected. Let d be a metric on W
associated with lyy . There exists a constant C' such that for any two points x,y € W
there exists a curve v : [0,1] — W connecting x to y and such that the diameter the
range of v is not larger than Cd(x,y).

Proof. Let A and kg be as in Propositions 4.7 and 4.4. Let Cy; > 1 and a > 0 be such
that Cl_le_aeW(x’y) <d(z,y) < Cre=w (@) for all z,y € W.
Take arbitrary z,y € W. Let ng = fw (z,y). Then x and y are adjacent in T (W),

nofk()
hence they are connected by a path v1 : {& = 211, 21,2,...,21,m; = y} of length at most
A in F’/ﬂo—ko-l-l(W)' Each pair of points 1 ;, 21 ;41 is connected by a path of length at

most A in I, ;o (W). We get then a path 2 = {& = 221,%2,2,...,%1,m,} of length
at most A2 in F’nO_ ko2 (W), containing ;. We get then inductively defined sequence of
paths v, = {z = p1,Zn2,...,Tnm, =y} in F;OikOJrn(W) such that each next path ~,
is obtained from ~,_; by inserting at most A — 1 points between each pair of neighbors
of vy,.

Every pair of points x,, !

3J no—ko+n
ng — 2ko + n, hence d(xy, j, Tn, j+1) < Cre~*(ntno=2ko) Tp particular, for every point t;

of Y41 there exists a point ty of v, such that d(t1,ts) < AC e~ *(nH1+no=2ko),
It follows that the diameter of the set -, is not greater than

Ty j+1is adjacent in T’ (W), hence by (Tp j, Tnjt1) =

Clefa(nofmco)+22Aclefa(i+n072ko) <

=1

20y Ae—(mo=2ko) L _
1—e@
20, Ae?ko 20% Ae?oko
17_ . e—afw(w,y) S 17_ . d(x’y)
1—e@ 1—e@
Since d(zn j, Tn j41) < Cre~®mo=2kotn) the closure of JO7, v, is the image of a
continuous curve connecting x to y. Diameter of the image of the curve is not greater

202A62ak:0
than ='——— -d(z,y). O

Let us summarize now the proof of Theorem 4.1. The equivalence of (1) and (2)
is shown in Proposition 4.2. The implication (2)=-(3) is given in Proposition 4.3. The
equivalence of (6) and (7) is contained in Proposition 4.5. Proposition 4.6 shows then
that (3) implies (6). Proposition 4.8 proves that (7) implies (8). Condition (8) obviously
implies (7). Proposition 4.9 shows that (7) implies path connectivity and local path
connectivity of the leaves, i.e., that (7) implies (4) and (5). The implications (3)=-(1),
(5)=(3), and (4)=-(2) are obvious. This finishes the proof of Theorem 4.1.
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4.2. Local product structure on locally connected Smale spaces

Proposition 4.10. Let R be a sub-rectangle of a Smale space (X, f). If R is connected
and locally connected, then the direct product structure on R compatible with the local
product structure on X is unique.

Proof. Suppose that, on the contrary, there exist two different direct product structures
[-,-]1 and [, ]2, both compatible with the local product structure on X'.

By Definition 2.2, there exists a covering R of X by open rectangles such that for any
UeRand x,y € RNU we have [z,yly = [z,y]1 = [z,y]2. Then for every U € R the
intersection U N R is a (possibly empty) sub-rectangle of R with respect to both direct
product structures; and restrictions of the direct products structures [-,];, 7 = 1,2, onto
U N R coincide.

Since R is connected, all plaques of R (with respect to both direct products structures)
are connected. Let P, be a stable plaque of (R,[-,-];1). Let z,y € Py. Since P, is
connected, there exists a sequence of points zg = z,z1,...,2, = y and a sequence of
rectangles Uy, Uy, ...,U, € R such that z; € U;, and U; N U;;1 N Py # 0. The set
U; N Py is a plaque of the rectangle U; N R, hence it is a subset of the stable plaque
of (R, ]2). We get a sequence U; N Py of subsets of plaques of (R,[-,]2) such that
(U; N PL) N (Usp1 N Py) # 0. But it means that U; N Py are subsets of one plaque of
(R, [, "]2)- We have shown that if two points belong to one stable plaque of (R, [, ]1),
then they belong to one stable plaque of (R, [, ]2). The converse is proved in the same
way. Consequently, the stable plaques of R with respect to [-,-]; are the same as the
stable plaques of R with respect to [-,-]2. The same statement is obviously true for the
unstable plaques, which implies that the direct product structures [-,-]; and [-, ]2 on R
coincide. O

4.3. Upper exponents

Definition 4.11. A positive number o > 0 is a stable (resp. unstable) upper exponent of
the Smale space if there exists C' > 0 such that for any stable (resp. unstable) leaf W
and every pair of points x,y € W we have

dn(z,7) < Ce(n—tw(z,y))
for all n > by (z,y).

Note that changing ¢y to a bi-Lipschitz equivalent log-scale, one does not change
the set of upper exponents, i.e., this notion is well defined and depends only on the
topological conjugacy class of the Smale space (see Lemma 2.9).

By Theorem 4.1 a finite upper exponent exists if A" is locally connected.

The proof of the next proposition is analogous to the proof of Proposition 3.7.
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Proposition 4.12. Fiz ]l € R. A number a > 0 is a stable (resp. unstable) upper exponent
if and only if there exists a constant C; > 0 such that for any stable (resp. unstable) leaf
W and any x,y € W such that by (x,y) > | we have

dp(z,y) < Cre™”
for alln > 0.
5. Splittings of Smale spaces
5.1. Groups of deck transformations

Definition 5.1. Let (X, f) be a Smale space. A splitting of (X, f) is a covering map
m: M — X, where M is a space with a (global) direct product structure, such that

(1) m preserves the local product structures on M and X, see Definition 2.3;

(2) restriction of 7 onto every plaque P;(M,z) of M is a homeomorphism with the
stable leaf W (n(z)), and restriction of 7 onto every plaque P2(M,x) of M is a
homeomorphism with the unstable leaf W_(m(x)), with respect to their intrinsic
topology.

Proposition 5.2. If there exists a splitting of a Smale space (X, f), then the Smale space
is irreducible and the set of non-wandering points of (X, f) is equal to X. If, in addition,
X is connected, then (X, f) is mizing.

Proof. The proof is the same as, for example, the proof of Theorem 5 in [11]. Suppose
that 7 : M — X is a splitting. Let X;, X5 C X be irreducible components of (X, f),
see Theorem 2.12. Take z1,22 € M such that n(zq) € A} and 7(x2) € Xy. Consider
the point [z1,22] € M. Then n([z1,22]) € Wi(m(z1)) N W_(7(x2)). It follows that the
set of the accumulation points of f™(mw([x1,z2])) for n > 0 belongs to X7, and the set
of the accumulation points of f"(m([x1,z2])) for n < 0 belongs to X, hence Xy < X;.
But we will also have X} < X, by considering [x2,z1], which implies X} = X», by
Theorem 2.12. Consequently, (X, f) has no wandering points and is irreducible. The rest
of the proposition follows from Theorem 2.13. O

Proposition 5.3. Suppose that X is connected and locally connected. Let my : My — X
and my 1 Mo — X be splittings of (X, f). If x1 € My and xo € My are such that
m1(x1) = mo(x2), then there exists a unique homeomorphism F : M1 — Ms preserving
the local product structures such that my = o o F' and F(x1) = x4.

Proof. Since the leaves of locally connected Smale spaces are connected and locally
connected, the spaces M; are connected and locally connected.

Please cite this article in press as: V. Nekrashevych, Locally connected Smale spaces, pinched spectrum,
and infra-nilmanifolds, Adv. Math. (2020), https://doi.org/10.1016/j.aim.2020.107385




YAIMA:107385

26 V. Nekrashevych / Advances in Mathematics sss (sees) seesee

Denote x = mi(x1) = ma(x2). Restriction of m; onto the plaques Pj(M,,z;) and
Py(M, ;) are homeomorphisms with the leaves W, (z) and W_(z), respectively. There-
fore, the only possible way to define F' is by the equality

F([yl?yQ}Ml) = [21722]M27

where y; € Pi(Mq,21), y2 € Pa(Mq,x1) are arbitrary, while z; € P;(Mag,x3), 22 €
Py(May, z5) are uniquely determined by the condition 71(y1) = ma(21) and m1(y2) =
ma(22).

The defined map F' is a homeomorphism, since it is a direct product of two homeo-
morphisms. Consequently, moo0 F': M7 — X is a covering map. Since F' and 7 preserve
the local product structures of M; and X, their composition 75 o F' preserves the local
product structures, i.e., the image of the direct product structure on M; by F' defines
the same local product structure on My as the direct product structure [-, | am,. By the
same arguments as in the proof of Proposition 4.10, the direct product structure on My
is uniquely determined by the corresponding local product structure. Consequently, F
preserves the direct product structures, i.e., F([y1,y2]m,) = [F(y1), F(y2)]m, for all
y1,y2 € My. It follows that if m(y) = ma(F(y)) for y € My, then m = 72 0 F on
a rectangular neighborhood of y. Consequently, the set of points y € M;j such that
m1(y) = m2(F(y)) is open and closed, it contains x, hence it is equal to M;. O

We assume now that (X, f) is a locally connected and connected Smale space.

Let m : M — X be a splitting. Let G be the set of all homeomorphisms g : M — M
preserving the direct product structure on M and such that 7 = 7 o F. Then G is
obviously a group. By Proposition 5.3 (for the case m; = m3), the action of the group
on M is free and transitive on 7~ !(z) for every z € X. We call G the group of deck
transformations of the splitting. It acts properly on M, since every point of M has a
neighborhood U such that 7(U) is evenly covered, i.e., such that g(U) N U = § for all
not-trivial g € G.

Note that if 7 : M — X is a splitting, then o f is also a splitting. Choose z1, x5 € M
such that fon(z1) = 7(x2), and apply Proposition 5.3 to 71 = fom and m = 7. We get
that there exists a unique homeomorphism F' : M — M preserving the direct product
structure such that F(x1) =29 and mo F = fo.

Definition 5.4. Let 7 : M — & be a splitting. We say that a homeomorphism F :
M — M preserving the direct product structure is a lift of f if mo FF' = fom.

It follows from the above arguments that lifts of f exist, and if F} and F5 are two
lifts, then F, 'Fy and FyF, ! belong to G.

It also follows that for every g € G, and every lift F of f, we have F~'gF € G. The
map g — F~1gF is an automorphism of G. We say that it is induced by f. Any two
automorphisms induced by f on G differ from each other by an inner automorphism.
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Proposition 5.5. The group of deck transformations of a splitting of a connected and
locally connected Smale space is finitely generated.

Proof. Let m : M — X be a splitting. Consider a finite covering & of X by open
connected evenly covered by 7 subsets. Let Uyq be the union of the sets of connected
components of 7~ (U) for all U € U. Then U, is a covering of M. Since M is connected,
every two elements U,V € Un, are connected with each other by a chain of elements
Uy=U,U,...,U, =V such that U;NU;;1 # 0. It follows that there exists a connected
finite union V' of elements of Uy such that 7(V) = X. Note that V is compact.

Let S be the set of elements g € G such that g(V)NV # (. It is finite, since the action
of G on M is proper.

Let g € G and 2 € V. Since M is connected and M = {J .5 g(V), there exists a
sequence g; € G, i = 0,1,...,k such that go = 1, g = g, and ¢;(V) N gix1(V) # 0
for all i = 0,1,...,k — 1. Note that g;(V) N gi11(V) # 0 implies V N g; 'gir1(V) # 0,
hence g;lgiﬂ € S. We see that g = galg1 ~gflgz . ~gk:119k is a product of k elements
of S. O

5.2. Splittable Smale spaces and hyperbolic graphs

A connection between Smale spaces and Gromov hyperbolic graphs described in this
subsection is a particular case of the theory of Cayley graphs of hyperbolic groupoids,
described in [27]. Since the theory for Smale spaces is simpler than the general case, and
in order to make our paper more self-contained, we describe them directly.

Let (X, f) be a Smale space with locally connected and connected space X, and let
m: M — X be a splitting. We denote by [-, -] the local product structures on M and
X. Let G be the group of deck transformations of the splitting. Let F': M — M be a
lift of f.

Let d be a metric on X associated with the standard log-scale ¢. We will denote by
dy and d_ metrics on the stable and unstable leaves of X associated with the respective
standard log-scales ¢, and ¢_. We assume that exponents of the metrics d, d, and d_
are equal (by taking them sufficiently small). Then we have the following corollary of [27,
Lemma 7.8], see also [15].

Proposition 5.6. There exist constants €, L > 1 such that for every point x € X and every

rectangle R contained in the e-neighborhood of x the restriction of d to R is L-bi-Lipschitz
equivalent to the metric given by

dx(yhyQ) = d+([y1,17], [y27x]) + d—([xvyl]’ [‘Tva])'

Let € > 0 be such that it satisfies the conditions of Proposition 5.6 and for every
x € X the e-neighborhood of x is evenly covered by 7.
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Define then da(x,y) as the infimum of the sum Z?Z)l d(m(x;), m(x41)) over all
sequences I, T1,...,ZTy, such that xg = z, x,, = y, and d(7(x;), 7(x;41)) < € for all
i=0,1,...,m—1.

Then d g is a G-invariant metric on M such that day(z,y) = d(w(x), w(y)) for all 2,y
such that da(z,y) < e.

The map 7 bijectively identifies the plaques W, (x) and W_(z) of M with their images
Wi (m(z)) and W_(n(z)), respectively. We obtain the metrics d4 and d_ on W, (z) and
W_(x), respectively. Then Proposition 5.6 holds when we replace X by M and d by d .

Let R C M be an open relatively compact rectangle such that | J e g(R) = M. Let
W be a stable plaque of M. Denote by Q,, (W, R), for n € Z, the set of elements g € G
such that of F(g(R)) intersects W,.

Denote by Z(W,, R) the graph with the set of vertices J, .z Qn(Wy, R) x {n} in
which two vertices are connected by an edge if and only if they are either of the form
(g91,n), (g2,n), where g1(R)Nga(R) # 0, or of the form (g1,n), (g2,n+1), where g1 (R)N
F(g2(R)) # 0. In other words, we connect two vertices of Z(W,, R) if and only if they
belong to the same or neighboring levels Q, (W, R) and the corresponding rectangles
intersect.

Theorem 5.7. The graph Z = Z(W_,, R) is Gromov hyperbolic. There exists a point w €
OE such that all paths of the form (g, —n) € E, n > 0, converge to w. The correspondence
mapping the limit in OZ of a path (gn,n), n > 0 to the limit of the intersections of
F™(gn(R)) with Wy induces a homeomorphism between =\ {w} and W, .

Proof. Cousider two vertices (g,0) and (h,0). Let m be the distance between them in
Qo(W4, R).

Let (gx, —k) and (hg,—k) for & > 0 be arbitrary paths in E such that gy = ¢g and
ho = h.

There exists € > 0 such that for every x € M there exist g € G such that the ball of
radius € with center x is contained in g(R). It follows that for every m € N there exists
Ny, > 0 such that for any path (ao,0), (al, ) s (@m,0) of length m in Qo(W4, R)
there exists ¢ € G such that FNm (ao( NU---U FN’" (am(R)NWL C g(R)NW,. It
follows that (gn,,, —Nm) and (hn,, , —Np)

It follows now from [27, Theorem 2.10] that the graph = is Gromov hyperbolic, that

= are on distance at most 2 in Q_y,_ (W4, R).
the level function (g(R),n) — n is a Busemann function of a point w € 9=, and that
every path (g,,n) for n > 0 converges to a point of 9= \ w, whereas every path of the
form (g,,—n), n > 0, converges to w.

Lemma 5.8. Every point of 02\ w is the limit of a sequence of the form (gn,n).
Proof. Note that since (g,n) — n is a Busemann function associated with w € 9=, every

point £ € 0= \ w is the limit of a sequence of the form (g,,n) (which is not necessarily
a path). For every n > 0 there exists a path (hy, k), kK < n, such that h,, , = g,. All
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these paths converge to w, and by the above arguments, for any ni,ns, distance from
(hny ke k) t0 (P, i, k) is not more than 2 for all k smaller than some k(ni, na). Moreover,
k(ni,n2) — oo as ny,ne — oo. It follows then by compactness arguments (since = has
bounded valency) that there exists a path (h,,n), n > 0, converging to §&. O

Let (gn,n), for n > 0, be a path in E. The sets V,, = F"(g,(R)) N W, are compact,
their diameters decrease exponentially, and we have V;, NV, 41 # 0 for every n. It follows
that the sequence V,, converges (in the Hausdorff metric) to a point € W,.. Let us show
that the map A : lim,—00(gn,n) — lim, oo F™(gn(R)) is a homeomorphism between
0\ w and W.

The arguments basically repeat the proof of [27, Theorem 6.9]. Let us show that the
map is well defined. If (g,,n) and (h,,n) converge to the same limit in =, then the
distance between g, and h,, in Q, (W, R) is uniformly bounded. But this implies that
the Hausdorff distance between F™(g,(R)) and F™(hy,(R)) is exponentially decreasing,
hence lim, oo F™(gn(R)) = lim, o F"(h,(R)). The same argument shows that the
map A is continuous, since if &; and &; are close to each other, then the sequences (g, n)
and (h,,n) are close to each other for an initial interval n = 0,..., L, where L is big.
But then the limits lim,_,oc F™(gn(R)) and lim,,_, o F™(h,(R)) are close to each other.

The map A is onto, since for every point x € W, there exists a path (g,,n) defined
by the condition F"(g,(R)) > x.

Using Lebesgue’s covering lemma, we show that if x and y are close to each other,
then there exists a sequence (g, n) such that F"(g,(R)) D {z,y} foralln =0,...,L,
where L is big. This shows that A~! exists and is continuous. O

Suppose now that the map F' : M — M has a fixed point xqg. Let ¢ : G — G be the
automorphism defined by the condition F(g(z¢)) = ¢(g)(zo). Let W and W_ be the
stable and the unstable plaques of M containing zg. Let R, Q, (W, R), and Z(W,, R)
be as above. We assume that R is connected and zy € R.

Note that F™(g(R)) N W4 # 0 is equivalent to g(R) N F~"(Wy) = g(R)N Wy # 0. It
follows that the set Q, (W, R) does not depend on n.

The graph Z(W,, R) is isomorphic then to the graph with the set of vertices
Qo(W, R)xZ in which two vertices are connected by an edge if and only if they are either
of the form (g1,n) and (g2, n), where g1, g2 € Qo(W4, R) and g1 (R)Ng2(R) # 0, or of the
form (g1,n) and (g2, n+1), where g1, g2 € Qo(Wy, R) and F"(g1(R))NEF" 1 (go(R)) # 0,
which is equivalent to g1(R) N ¢(g2)(F(R)) # 0. Note that (g,n) — (g,n + 1) is an au-
tomorphism of Z(W, R).

Let A C G be a finite set containing the identity, and let S be a finite generating
set of G. We assume that S contains all elements g € G such that RN g(R) # 0 or
RNg(F(R)) # (0 and that A C S.

Let Qf C G be any set such that Qo(W,, R) C Q) C Qo(W4, R)A.

Denote then by Z' the graph with the set of vertices ), x Z with edges of two kinds:
vertical and horizontal. The horizontal edges connect two vertices (g1,n), (g2, n) if and

Please cite this article in press as: V. Nekrashevych, Locally connected Smale spaces, pinched spectrum,
and infra-nilmanifolds, Adv. Math. (2020), https://doi.org/10.1016/j.aim.2020.107385




YAIMA:107385

30 V. Nekrashevych / Advances in Mathematics sss (sees) seesee

only if gflgg € S. The vertical edges connect a vertex (g1,n) to a vertex (go,n + 1) if
and only if g; ' ¢ (g2) € S.

Note that if g1 (R) N ga(R) # 0, then RN gy ga(R) # 0. If g1(R) N F(ga(R)) # 0, then
g1(R) N é(g2)(F(R)) # 0, hence RN gy ¢(g2)(F(R)) # 0. Tt follows that Z(W, R) is a
sub-graph of Z'.

Proposition 5.9. The inclusion Z2(Wy, R) — =’ is a quasi-isometry.
Proof. Let us prove at first the following lemmas.

Lemma 5.10. There exists ny > 0 such that ¢~ (Qo(W4, R)) C Qo(W4, R).
For every such ny there exists Dy, such that distance from (g,n) to (¢~ (g),n+mnq)
in E(W4, R) is less than Dy, .

Proof. By Lebesgue’s covering lemma, there exists ¢ > 0 such that for every x € M
there exists g € G such that the e-neighborhood of z is contained in g(R). It follows
that if distance from x to W, is less than ¢, then there exists g € Qo(W,, R) such that
z € g(R).

There exists an upper bound (equal to the diameter of R) on the distance from
g(zg) to W4 for all g € Qo(W,, R). Consequently, there exists n; > 0 such that
o™ (QO(WJM R)) - QU(W+7 R)

Let us prove the second part of the lemma. Let (g,n) € E(W,,R), and let « €
g(R) N Wy. Choose for k = 1,...,ny, hy € Qo(W,,R) such that F~%(z) € hi(R).
Then F~1(z) € h1(R) and = € g(R), hence F(hi(R)) N g(R) # 0, which implies that
(g,n) is connected to (hy,n +1). Similarly, F~*(z) € hy(R) and F~*+1(2) € hy11(R),
hence F(hg+1(R)) N hi(R) # 0, so that (hg,n + k) is connected to (hgt1,m + k +
1). We have g(x¢) € g(R), hence F~"(z) € hy,(R) and F~"(z),¢ " (g)(xo) €
F~"(g(R)) = ¢ ™ (g)(F ™ (R)). The set F~™ (g(R)) is connected, hence there exists a
path fi1, fo, ..., fm in Qo(W4, R) x {n+nq} connecting (hn,,n+n1) to (¢~ (g),n+ny).
Since F~™(R) is relatively compact, there exists a uniform bound M such that we
may assume that m < M. It follows that the distance in Z(Wy, R) from (g,n) to
(¢~™(g),n + ny) is not more than ny +m —1. O

Lemma 5.11. For every finite set B C G there exists D > 0 such that if gflgg e B
for g1,92 € Qo(W4, R), then the distance between (g1,n) and (g2, n) in Z(Wx, R) is not
greater than D.

Proof. Let Rp be a compact connected rectangle of M containing B(x). Note that it
follows from Proposition 5.6 that there exists a uniform upper bound on the d_-diameter
of the unstable plaques of Rp. Then it is also a uniform upper bound on the d_-distance
from W4 to a point of g(Rp) for g € Qo(W4, R).

It follows that for every e > 0 there exists ny > 0 such that for every g € Qo(W5, R)
the set F~"2(g(Rp)) belongs to the e-neighborhood of W, hence (if € is small enough)
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it is covered by the sets h(R) for h € Qy(W4, R). Since F~"2(g(Rp)) is connected, for
every two points x,y € g(Rp) there exists a sequence hy, ha, ..., hy, € Qo(W,, R) such
that F="2(z) € hi(R), F~"2(y) € hp(R), hi(R) N hiz1(R) #D foralli=1,...,m — 1,
and h; are pairwise different. Since F~"2(g(Rp)) = ¢~ (g)(F "2 (Rp)) belong to the
G-orbit of F~"2(Rp), there exists a uniform upper bound M (nz) on the length m — 1 of
the corresponding path hq, ..., Ay, in Qo(Wi, R) x {0}. We can choose ns bigger than
the number n; from Lemma 5.10.

Let g1,92 € Qo(W4, R) be such that gl_lgg € B. Since gl_lgg € B, g1(zg), 92(x0) €
g91(Rp). It follows that there exists a path hq, ..., h, € Qo(Wy, R) such that m < M,
and F~"(g1(z9)) € hi(R), F~"(g2(x0)) € hm(R). The last two conditions are
equivalent to ¢~ "2(¢g1)(x0) € h1(R) and ¢ "2(g2)(x0) € hm(R), which imply that
(¢7"2(g1),0) and (¢~ "™2(g2), 0) are connected to (h1,0) and (h,,,0), respectively, by hor-
izontal edges. By Lemma 5.10, we have a uniform bound on the distances from (g1, n) to
(¢7™2(g1),n + n1) and from (g2,n) to (¢~"2(g2),n + n1), which finishes the proof. 0O

The proof of the following lemma is analogous.

Lemma 5.12. For every finite set B C G there exists D > 0 such that if gl_lqb(gg) €B
for g1, g2 € Qo(W4, R), then the distance between (g1,mn) and (ga,n+ 1) in E(W,, R) is
not greater than D.

Let us go back to proving Proposition 5.9. The image of E(W_,, R) under the inclusion
map is a 1-net in Z'. Distance between vertices in Z(W,., R) is not less than the distance
between them in =’.

Let us show that there exists a constant D > 1 such that distance between
(91,m1), (g2, n2) in E(W4, R) is not more than D times the distance from (g1,n1) to
(92,m2) in Z'. Let (g1,n1) = v, v1,--.,0n = (g2,m2) be a geodesic path in E’. Since
E(W,4, R) is a net in E’, there exists a constant C' > 1 such that every such geodesic
path can be replaced by a path (g1,71),v],...,v,_1, (92, n2), where v, € Z(W,, R), and
distance from v} to v},_; in Z’ is bounded from above by C. Moreover, we may assume
that each v belongs to the same level Q;, as v;. Then v; and v;,; either belong to one
level, or to two neighboring levels. Then Lemmas 5.11 and 5.12 finish the proof. O

Definition 5.13. Let G be the group of deck transformations of the splitting 7 : M — X,
and let F': M — M be a lift of f with a fixed point zg. A set ¥ C G is a coarse stable
(resp. unstable) plaque if the stable plaque W, (zg) (resp. unstable plaque W_(x¢)) and
the set X are of finite Hausdorff distance from each other.

Recall that two subsets A, As of a metric space (X,d) are of a finite Hausdorff
distance from each other if there exists D > 0 such that for every z € A; there exists
y € Ay, and for every y € As there exists x € Ay such that d(z,y) < D.
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Theorem 5.14. Let (X, f) be a connected and locally connected Smale space. Suppose that
there exists a splitting m : M — X and a lift F : M — M of f with a fived point
xg. Let ¢ be the associated automorphism of G, and let ¥ and ¥ be coarse stable and
unstable plaques of xo. Then (X, f) is uniquely determined, up to topological conjugacy
by the quadruple (G, ¢,5,%_).

Proof. The dynamical system (X, f) is uniquely determined by the G-space M and the
map F': M — M. The group G acts on the plaques W and W_ by the actions

g:x=gla),a],  grwe [z g(@)],

respectively. The action of G on M = W, x W_ is reconstructed from these actions by
the formula

g(x) = [lg(z), 2], [z, g(2)]].

Similarly, the map F' : M — M is determined by the action of F' on W, and W_,
since

F(lz,y]) = [F(x), F(y)].

Consequently, it is enough to show that the quadruple (G, ¢, X1, X _) uniquely deter-
mines the dynamical systems (W,., G), (W, F), (W_,G), and (W_, F), up to topological
conjugacy. Let us prove that the triple (G, ¢, %) uniquely determines the dynamical
systems (W4, G) and (W, F'). The same proof will show that (G, ¢, ¥_) uniquely de-
termines (W_,G) and (W_, F).

Let R C M be a relatively compact open rectangle such that o € R and UgeG g(R) =
M. Let Qo(W,, R) be, as before, the set of elements g € G such that g(R) N Wy # 0.

For a set ¥ C G and a finite generating set S of G, denote by =Z(X, S) the graph with
the set of vertices ¥ x Z in which two vertices are adjacent either if they are of the form
(g,n) and (gs,n) for g,gs € X and s € S, or of the form (g,n) and (¢~!(gs),n + 1) for
9,0 1(gs) € ¥ and s € S. Note that the map (g,n) — (g,n + 1) is an automorphism of
=%, 9).

If A is big enough, then ¥ A contains Qo(W,, R). Then, by Proposition 5.9, the
identical embedding Z(W,, R) — Z(X1A4,S) is a quasi-isometry, provided S is big
enough. It follows then from Theorem 5.7 that (X1 A,S) is Gromov hyperbolic, and
that the boundary of Z(X4 A, S) minus the common limit w of quasi-geodesic paths of
the form (g,,—n), n > 1, is homeomorphic to W, . Moreover, it follows directly from
Theorem 5.7 that the natural homeomorphism ® : 92(X; A, S) \ w — W, maps the
limit of a sequence (g,,n) € E(X4+A4,S5) to the limit of the sequence [F" (g, (o)), o] =
[¢"(9n)(w0), zo] € Wi
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Consequently, the homeomorphism ® conjugates F' : W, — W, with the map on
the boundary of E(X 1 A, S) induced by the automorphism (g, n) — (g,n+1). This shows
that the dynamical system (F, W, ) is uniquely determined by (G, ¢, X4).

It remains to show that for every g € G the homeomorphism g : x — [g(z), zo] of W,
is uniquely determined by (G, ¢, ¥ ) and g.

Let £ be the limit of a sequence (g,,,n) € Z(X1 A, S), where s, = g, ¢(gn+1) € S for
all n > 0. Note that every point of 92(X 1 A, S) can be represented this way, provided S
is big enough (see Theorem 5.7).

There exists € > 0 such that for every z € M there exists ¢ € G such that the
e-neighborhood of x is contained in g(R). Let € W,. Choose for every n > 0 an
element g, € G such that the e-neighborhood of F~"(z) is contained in g,(R). Then
z is contained in F"(g,(R)). In particular, F"(g,(R)) N F" " (gn11(R)) # 0, i.e., the
sequence (gn,n) is a path in E(W,, R), and its limit in 0=(W,, R) is mapped by the
natural homeomorphism to x.

The rectangles gF™ (g, (R)) contain g(z) for all n. Since F' is expanding in the unstable
direction, the sets gF"(g,(R)) intersects W, i.e., o~ "(g)gn € Qo(Wy, R), for all n big
enough.

The limit of the intersections of gF"(g,(R)) with W, is equal to [zg, g(z)]. It follows
that (¢~™(g)gn,n), where n is big enough, is a path in Z(W,, R) converging to the point
of 9=Z(W,, R) corresponding to [zg, g(z)] € W4, i.e., to the image of x under the action
of g on W,.

Note that the left multiplication by g preserves the distances between the vertices
of the graph Z(X1 A4,5) (when the images of the vertices belong to the graph). It also
follows from the classical properties of Gromov hyperbolic graphs that there exists a
constant A; such that if two paths (g,,n) and (h,,n) of 2(X;+A,S) converge to the
same point of the boundary, then the distance between (g,,n) and (h,,n) is less than
Ay for all n big enough.

It follows that the action of g on W, can be modeled on the boundary of Z(X A, S)
by the following rule. Take a path (g,,n) € Z(X;+A,S) converging to a point £ €
0=(X4+A,5). If (ggn, n) for n big enough belong to Z(X 4 A, 5), then its limit is g(£). Since
E(W4,R) C E(X4+A,S), this rule will determine the action of g on 0=(34 A, S)\{w}. O

Theorem 5.15. Let (X1, f1) and (Xa, f2) be connected and locally connected Smale spaces.
Suppose that there exist fixed points of f; and splittings m; : M; — X;. Let G; be the
groups of deck transformations of the splittings. Let F; be lifts of f;, with fixed points
x; € M. If there exists a continuous map ® : My — My and an isomorphism VU :
G1 — G2 such that ®(x1) = z2, and

O(Fi(z)) = F2(®(2)),  2(Fi(g(z))) = F2(d(9)(®(2)))
for all x € My and g € Gy, then (X1, f1) and (Xa, fa) are topologically conjugate.

Note that we do not require ® to be a homeomorphism.
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Proof. The map ® is proper as an equivariant map between two proper actions (see, for
instance [25, Lemma 5.2]).

Let U be a compact neighborhood of z2 € Ma. Then (J, <1 Nys, Fo(U) is equal to
the unstable plaque W_(z3) in My. Similarly, - -

UNeetoy=e"UJ N EO)
n>1k>n

n>1k>n

is equal to the unstable plaque W_(x1) in M. It follows that ®~H(W_(x3)) = W_(z1).
Similarly, ®~1(W, (22)) = Wy (z1).

Let Ky be a compact subset of My such that Ky and K; = & 1(K) are G-
transversals, i.e., intersect every Gj-orbit. They exist, since the actions of G; are co-
compact, proper, and the map ® is continuous and proper.

Then go(K2) N W_(x3) # 0 for g € G is equivalent to U1 (go) (K1) N W_(x1) # 0.
The same is true for the stable plaques W (x1) and W (z3). It follows that the sets
Yiw = {0:(K) N Wi(x;) # 0} for x € {+,—} and ¢ € {1,2} are coarse stable and
unstable plaques for which we can use Theorem 5.14 to show that (X7, f1) and (X2, f2)
are topologically conjugate. O

In fact, it follows from Theorem 5.7 and the proof of Theorem 5.15 that any continuous
map & satisfying the conditions of Theorem 5.15 is a homeomorphism.

6. Smale spaces with virtually nilpotent splitting

Let L be a simply connected nilpotent Lie group. Let G be a finitely generated sub-
group of Aut L x L such that the action of G on L is free, proper, and co-compact.
Here we identify the elements of A with the transformations g — «(g) - h of L, where
a € Aut L and h € L.

Let F' € Aut L be a hyperbolic automorphism of L (i.e., such that its differential
DF at the identity of L has no eigenvalues of absolute value one). Then F' induces
an automorphism ¢ of Aut x L by conjugation. Suppose that G is invariant under this
automorphism. Then F' induces an Anosov homeomorphism f : G\L — G\L. Such
homeomorphisms are called hyperbolic infra-nilmanifold automorphisms.

The aim of this section is to prove the following description of locally connected Smale
spaces that have a splitting with a virtually nilpotent group of deck transformation.

Theorem 6.1. Let (X, f) be a Smale space such that X is connected and locally con-
nected, and there exists a splitting m : M — X with a virtually nilpotent group of deck
transformations. Then (X, f) is topologically conjugate to a hyperbolic infra-nilmanifold
automorphism.
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gh(R) = hg(R)

Y [z, y]

h(R)

Fig. 2. Central elements.

Proof. Let (X, f) satisfy conditions of the theorem. Let us assume at first that the group
G of deck transformations is nilpotent and torsion free.

Let F be alift of f, and let F'(z9) = x1. Then the map g — ¢(g) defined by F(g(xg)) =
¢(g)(z1) is an automorphism of G.

Denote by Z(G) the center of G, i.e., the set of elements of G that commute with
every element of G.

The group Z(G) is obviously abelian and torsion free. It is finitely generated, since all
subgroups of a finitely generated nilpotent group are finitely generated (see [32, 5.2.17]).
Consequently, Z(G) is isomorphic to Z? for some d.

Lemma 6.2. Let g € Z(G). There exist positive constants D_ and Dy such that for every
stable (resp. unstable) plague V of M and any x € V, y € g(V) we have d_(z, [z,y]) <
D_ (resp. dy(z,[y,z]) < Dy).

Proof. Let us prove the lemma for stable plaques. Note that [x,y] is equal to the intersec-
tion of g(V) with W_(z), and so does not depend on the choice of y € g(V'). Therefore, it
is enough to show that d_(z, [z, g(x)]) is bounded for all x € M, see Fig. 2. Let R C M
be a compact rectangle such that 7(R) = X. Let D be an upper bound on the value of
d_(z,[z,y]) for x € R and y € g(R). It is finite, since there exists a compact rectangle
P such that P > RU g(R) (see also Proposition 5.6).

For every © € M there exists h € G such that h(x) € R. Then d_(z,[z,g(z)]) =
d_(h(z), [h(x), hg(w)]) = d_(h(z), [h(x), gh(z)]) < D. D

Denote for g € Z(G)

D_(g) = sup d_(z,[z,9(x)]),  Di(g) = sup dy(z,[g(x),z]),
reM reEM

which are finite by Lemma 6.2. Note that we obviously have

D4 (g192) < Dy (g1) + D1 (g2), D_(g192) < D_(g1) + D_(g2) (7)

for all g1,¢92 € Z(G).
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Let A € (0,1) and C' > 1 be such that for any two stably (resp. unstably) equivalent
points x,y € X we have

dy (f"(2), [ (y)) < CN"dy (2, y)

(resp. d—(f~™(x), f™(y)) < CAN*d_(z,y)) for all n > 0. Then the same estimates will
hold for F and z,y € M belonging to one stable (resp. unstable) plaque.
Note that the center Z(G) is characteristic (i.e., invariant under automorphisms of

G), hence ¢(Z(Q)) = Z(G).
Proposition 6.3. For every g € Z(G) and n > 0 we have
D (6"(9)) <CA"Dy(g),  D-(¢"(9)) < CA"D_(g).

Proof. Let us prove the first inequality. The second is proved the same way.
Let V be an unstable plaque of M, and let z € V and y € ¢™(g)(V') be such that x
and y belong to the same stable plaque. It is enough to prove that di (z,y) < CA"D4(g).
The points F~"(x) and F~"(y) belong to one stable plaque, and F~"(z) € F~"(V),
Fr(y) € F(g"(g)(V)) = g(F~"(V)), hence d.(F~"(z), F~"(y)) < D4 (g). But this
implies d4 (z,y) < CA"d4(z,y). O

Proposition 6.4. For every finite set S C Z(G) there exists a constant Dg > 0 satisfying
the following condition. For every finite set A C Z(G) there exists ng such that for all
n>no, 91,92 € " (A)d"1(9)p""2(S) - - ¢(S)S, and every unstable plaque V we have

d+(£L’, [y,x]) < DS
forallx € g1(V) and y € g2(V).

Proof. Let Ag and A4 be upper bounds on D, (g) for g € S and g € A, respectively.
Then, by (7) and Proposition 6.3, we have, for all h € A, g; € S, and all n big enough,

Dy (¢™(h)¢" " (g1) ++ d(gn—1)gn) <
CAg
1-=X

CA" AL +CN" "4+ A+ 1D)Ag < 1+

It follows that we can take Dg = 2 + %. |

Proposition 6.5. The restriction of the automorphism ¢ to Z(G) = Z.% is hyperbolic, i.e.,
has no eigenvalues of absolute value 1.

Proof. Suppose that on the contrary, there exists an eigenvalue cosa + i¢sina of ¢ of
absolute value 1. Suppose at first that o ¢ 7 - Z. Then there exists a two-dimensional
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subspace L < R? and a Euclidean structure on it such that ¢ acts on L as a rotation by
the angle a. Denote K = {(z;)%, € R? : |z;| < 1}, and let S be the set of elements
g € Z(G) = Z% such that ¢(K) N (K +g) # 0 or ¢~ (K) N (K + g) # 0. The set S is
obviously finite.

Let R > 0 be arbitrary, and consider the circle v of radius R in L with center in the
origin. Then ¢ () = 7. Let Ar be the set of elements g € Z(G) such that K +gnNvy # 0.
It is finite and non-empty. Note that union of the sets Ag for all R > 0 is infinite.

Let h be an arbitrary element of A, and let x € K+hN~y. Then ¢~ (x) € v, and there
exists g € Z¢ such that ¢~'(z) € K 4+ g. Then g € Ap, and = € ¢(K) + ¢(g) N K + h.
It follows that K + h — ¢(g) N ¢(K) # 0, so that h — ¢(g) € S. We see that h =
d(g) + (h—¢(g9)) € ¢(ARr) + S. We have proved that Ag C ¢p(Ag) + S. It is proved the
same way that Az C ¢~(Ag) + S. By induction we conclude that

AR C ¢"(AR) +¢" 1 (S)+ -+ () + S
and
AR C o "(Ar) +¢ V(&) + - +o7(S) + S

for all n > 1.

Fix an arbitrary point xg € M. Since ¢"(Ag)+¢" 1(S)+- - ¢(S)+S D Ag for all n,
it follows from Proposition 6.4 that there exists Dg > 0, not depending on R, such that
d4 (o, [g(x0), x0]) < Dg and d_(zo, [0, g(z0)]) < Dg for all g € Ag. It follows that g(zo)
belongs to the rectangle [B, B_], where By are the balls of radius Dg with center in z
in the corresponding plaque containing z. Note that the set {g € G : g(x¢) € [By+, B_]}
is finite, does not depend on R, and contains Ag. But this is a contradiction.

The case when the eigenvalue is equal to £1 is similar (with one-dimensional space
L). O

Let E, (resp. E_) be the sum of the root subspaces of R? of the eigenvalues \ of ¢
such that [A| < 1 (resp. |A| > 1). We have R = E, ® E_. Denote by Py and P_ = 1— P,
the projections onto F; and E_, respectively.

Denote K = {(z;)L, € R? : |z;] < 1}. Let S C Z(G) be a finite set containing all
elements g € Z(G) such that K 4+ g N (¢(K) U ¢~ (K)) # 0.

Proposition 6.6. For every point © € E there exists a sequence g; € S, 1=1,2,..., and
an element go € Z(G) such that

= lim Py(6"(gn) + 6" (gar) + o+ 60n) + 0)-

There exists a finite set N C Z(G) such that an equality
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HILH;O P+(¢n(gn) + ¢n—1(gn71) et (b(gl) + gO) =

Lim Py (¢"(gh) + 6" H(gn1) + -+ d(g1) + g0)

holds for g;,g; € S, i > 1, and go, g, € Z(G) if and only if there exists a sequence hy,, € N
such that

¢"(gn) + 0" M gno1) o+ B(gh) + 9o = 0" (hn + gn) + " (gn—1) + -+ B(g1) + 90
for all n big enough.

Proof. The sets K + g cover R? for g € Z(G) = Z¢, and the group Z(G) is ¢-invariant,
hence for every x € E; and n > 0 there exists h,, € Z(G) such that x € ¢"(K) + h,,. We
have then ¢" (K )+h,_1N¢" (K )+h, # 0, hence ¢~ (K)NK+¢~"(hyp)—¢ " (hp—1) #
which implies that ¢~ "(h,,) — ¢ (hpn—1) = gn € S, i.e., by, = ¢"(gn) + hp—1. It follows
that there exists a sequence g; € S such that h, = ¢™(gn)+¢" (gn_1)+---+(g91)+ho.

Note that since x € ¢"(K) + hy,, we have || Py (hy,) — x| < CA™ for some constant C.
It follows that = = lim,, oo Py (hy).

Note that the set of all limits lim, oo Py (0" (gn) + 6" 1 (gn-1) + - + ¢(g1)) for all
choices of g; € S is a bounded subset Ty of F.

Suppose that

Tim P (6"(gn) + 6" gn-1) + -+ 6(g1) + ) =
Jim_ P(8"(9) + 6" (1) + -+ 0(91) + )
for g;,9; € S and h,h' € Z(G).

Then for every n > 0 we have

Py(¢™(gn)+¢" (gn-1)+- -+ 0(g1)+h) = Pr(0"(9r) + " (gh—1)+- -+ (g +h') =
(Pr(8™ (ghs1)) + Pr(6" 2 (ghga)) + ) —
(P4 (0" H(gn41)) + Pr(¢" 2 (gnro)) + ) € ¢" (T4 — T).

It follows that
Pi((gn+ ¢ (gno1) + -+ " V(g) +¢7"(h)—
(gn+¢ Ngn )+ -+ " V(g + ¢ "(1) € Ty — T

Since ¢! is contracting on E_, there exists a compact set 7_ C E_ such that for
any h and any sequence g; € S we have

P(gn+ 6" (gn-1) +--+ 0" D(g1) + 97" (h) € T

Please cite this article in press as: V. Nekrashevych, Locally connected Smale spaces, pinched spectrum,
and infra-nilmanifolds, Adv. Math. (2020), https://doi.org/10.1016/j.aim.2020.107385




YAIMA:107385

V. Nekrashevych / Advances in Mathematics ess (sees) seeses 39

for all n big enough.
It follows that for all n big enough the difference

(gn + ¢ (gno1) + -+~ " D(g1) + 67(h))—
(g + ¢ Hghy) + -+ V(g)) + o7 (H))

belongs to a bounded set T = (Ty — T )@ (T_ —T_), hence we can take N = TNZ?. O

Fix a stable plaque W, = W, (x¢) of M. The group G acts on W by = — [g(z), 2],
since GG preserves the direct product structure of M.

Let v € RY, and denote vy = P, (v) and v_ = P_(v). Using Proposition 6.6, find a
sequence g; € S, 1 > 1, and gy € Z(G) such that

v = lim Po(8"(g0) ++++ 6(01) + 90)

and define for z € W,

vi(2) = lim [(¢"(gn) +- - + &(91) + 90) (@), 2]- (8)

n—oo

We also define for x € W_, where W_ is an unstable plaque:

v—(z) = lim [z, (67" (ga) + -+ 6~ (1) + 90) (@), (9)

n—o0

where g; € S, for i > 1, and go € Z(G) are such that

v = lim P (¢7"(gn) + -+ 67 (91) + g0)-
(Replacing in Proposition 6.6 ¢ by ¢~ and E,, P, by E_, P_, we see that such a
sequence g, exists.)

Proposition 6.7. The limit (8) exists and depends only on vy and x. The limit (9) exists
and depends only on v_ and x.

Proof. Tt follows directly from (7), Propositions 6.3 and 6.6. O

Theorem 6.8. The limits (8) and (9) define continuous actions of Ey and E_ on W, =
W, (x0) and W_ = W_(xg), respectively. Their direct sum is a continuous action of R¢
on M. This action satisfies the following conditions:

(1) it is free and proper;
(2) its restriction onto Z(G) = Z¢ < R? coincides with the original action of Z(G) on
M;
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(3) it preserves the direct product structure, i.e., v([z,y]) = [v(x),v(y)] for all v € RY
and x,y € M;

(4) F(v(x)) = ¢(v)(F(x)) for all x € M and v € RY;

(5) the action commutes with G, i.e., v(g(x)) = g(v(x)) for allxz € M, g € G, and
v € RY;

(6) if g(z) = v(z) for g € G and v € RY, then g =v € Z(G).

Proof. The fact that conditions (8) and (9) define actions follows directly from the fact
that the limits do not depend on S and the choice of the sequences g;.

Let us prove that the action is continuous. It is enough to prove that the action of
E. on W, is continuous. We have to show that for every v; € E,, x € W, , and € > 0
there exists ¢ > 0 such that if v, € E; and y € W, are such that ||v; — v2]| < § and
di(z,y) <0, then dy(v1(z),v2(y)) < e.

Take an arbitrary e > 0. For every n there exists d1(n) and a sequence gy € H, g; € S,
i > 1, such that vy = lim;, o0 Py (g0 + ¢(91) + -+ + ™ (gm)) and all points v in the
d1(n)-neighborhood of v; can be represented as limits ve = lim,, oo Py (ho + ¢(h1) +
w4 @™ (hy)) for hg € Z(G), and h; € S, ¢ > 1, such that h; = g; for i = 0,1,...,n
(see the proof of Proposition 6.6 and use Lebesgue’s covering lemma). There exists d2(n)
such that if y € W, is such that d4 (z,y) < d2(n), then

dy([(g0 + &(g1) + -+ + " (gn)) (@), 2], [(90 + @(g1) + - + " (90)) (W), ¥]) < €/2,

since the function y — [(go + ¢(g91) + -+ + ¢"(gn))(y),y] is continuous. There exist
constants C' > 0 and A € (0, 1) such that

dy (u(2), [(90 + d(g1) + -+ ¢"(gn))(2), 2]) < CA"

for all z € Wy and u € Ey such that u = lim,,—, 00 Py (g0 + ¢(g1) + -+ + ¢™(gm)) for
go € Z(G) and g; € S for i > 1.

Take n > —%. Then for all vo € E; and y € W such that |jv; — ve|| < d1(n)

and d4 (z,y) < d2(n) we have

dy(v1(z),v2(y)) <
dy (v1(2), [(go + &(91) + -+ + 0" (9n) (@), 2])+
dy([(90 + ¢(g1) + -+ + ¢"(gn) (), 2], [(90 + ¢(g1) + -+ + ¢" (9n) (1), y])+
dy(v2(y), [(90 + D(g1) + -+ ¢"(gn) (W), y]) S €/d+€/2+€/d =€
Which shows that the action of £ on W, is continuous.

The same arguments (using Proposition 6.3 and inequalities (7)) as in the proof of
the criterion of equality of two limits in Proposition 6.6 show that an equality

lim [(¢™(gn) + -+ - ¢(91) + g0)(x), 2] = lim [(¢"(gy,) + -+~ &(g1) + go) (), 2]

n— oo n—oo
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for g;,9; € S,4>1, and go, gy € Z(G) is equivalent to the equality

Jim Py (6™(ga) + -+ &(g1) + 90) = lim Py (¢"(gp,) + -+~ ¢(g1) + g0)-

This (and a similar statement for P_ and the action on W_) shows that the action of
R? is free.

Let us show that the action is proper. Let B C M be a compact set. We have to
show that the set {v € R? : v(B) N B # (0} is compact. It is closed, since the action is
continuous.

Denote K = {(z;)4, € R? : |z;] < 1}. Then for every v € R there exists h €
Z(G) = Z% such that v — h € K. The set K(B) = {v(z) : = € B,v € K} is compact,
since the action is continuous and the sets B and K are compact. The action of G on
M is proper, hence the set A of elements h € Z(G) such that h(K(B))N B # 0 is finite.

Suppose that 2 € B and v € R? are such that v(z) € B. There exists h € Z(G) such
that v — h € K. Then v(z) = (h+ v — h)(x) € h(K(B)) N B, hence h € A, so that
v € K + A. But the set K + A is compact, which proves that the action of R? on M is
proper.

The proof of statements (2)—(5) is straightforward, using the fact that the action does
not depend on the choice of S.

Let us prove the last statement. Suppose that g(z) = v(x) for g € G and v € R4,
Then g leaves invariant the orbit R?(z) of z. Let Gy be the group of all elements leaving
the R?(x) invariant. The action of Z(G) on R%(z) is co-compact, the action of G on M
is proper, hence the index of Z(G) in G; is finite, i.e., the image of Gy in G/Z(G) is
finite. But G/Z(G) is torsion free (see [32, 5.2.19]). Consequently, G; = Z(G). Since the
action of R? on R%(z) is free, this implies that g = v € Z(G). O

Proposition 6.9. If G is abelian, then the action of R? on M is transitive (i.e., has
exactly one orbit).

Proof. It is enough to show that for every point x € W, there exists a sequence g; € S,
i > 1, and an element gy € G such that

T = 7}313@[(05”(%) + -+ ¢(g1) + 90)(w0), o). (10)

The action of G on M is co-compact, hence there exists a relatively compact open
rectangle R C M containing ¢ and such that | J, . h(R) = M.

Then for every z € W, and every n > 0 there exists h,, € G such that = € h,,(F"(R)).
Assume that S is big enough so that it contains all elements h € G such that h(R) N
(F(C)U F~Y(C)) # 0. Then the same arguments as in the proof of Proposition 6.6
show that there exists a sequence g; € S, i > 1, and an element gy € G for which (6.6)
holds. O
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Theorem 6.10. Let (X, f) be a locally connected and connected Smale space which has
a splitting with a free abelian group of deck transformations G = Z¢. Let ¢ be the
automorphism of G induced by a lift of f. Then (X, f) is topologically conjugate to the

hyperbolic automorphism of the torus R?/Z% induced by ¢. In particular, (X, f) has a
fixed point.

Proof. By Proposition 6.9, the action of R? on M defined in Theorem 6.8 is transitive.
Fix a basepoint 2o € M, define py : R — M by v — v(zg). The map pg is a
homeomorphism, since it is continuous, bijective, and proper. Denote vy = pg Y(F(x0)),
i.e., vo € RY is such that vy(z¢) = F(z0).
Then the map ¢g = paleo :R? — R? satisfies

do(v) = pg ' (F(v(20)) = py ' (6(v)(F(20))) = py ' ((¢(v) + v0)(20)) = d(v) + vo.

The linear operator 1 — ¢ is invertible, since ¢ is hyperbolic. Therefore, there exists
wo € R? such that wg — ¢(wg) = vo, i.e., dpo(wo) = ¢(wo) + v = wp. Define then

p1(v) = po(v + wo).
We have then
F(p1(v)) = F(po(v +wo)) = po(do(v +wo)) =
po(@(v + wo) + vo) = po(P(v) + ¢(wo) + vo) = po(P(v) + wo) = p1(d(v)).
The statement of the theorem follows now directly from Theorem 6.8. O
Let us go back to the case when G is torsion free nilpotent.

Proposition 6.11. The action of R on M is uniformly locally Lipschitz, i.e., there exist
€ >0 and C > 1 such that for every v € R and all z,y € M such that dy(z,y) < € we
have

dpm(v(z),0(y)) < Cdpm(z,y).

Note that Proposition 6.11 implies that C~ d(z,y) < da(v(z),v(y)) for all z,y €
M such that dp(z,y) < C e

Proof. By Theorem 6.8, G maps R%orbits to R%orbits.

Let K = {(z;)%, € R : |z;| < 1}, and let R C M be a relatively compact rectangle
such that 7(R) = X'. Let € > 0 and C' > 1 be such that

Cdpm(w,y) < dy(w, [y, 7)) + d_(x, [2,y]) < Cdm(z,y) (11)
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for all z,y € M such that da(z,y) < €, see Subsection 5.2, where the metric dyq is
defined. We also assume that € is sufficiently small so that for all z,y € M such that
dam(z,y) < € there exists g € G such that g(x),g(y) € R.

Let ¢ is such that da(v(z),v(y)) < € for all v € K and all z,y € R such that
dam(z,y) < 8. It exists, since the action of R? is continuous, and the set K and the
closure of R are compact. For all z,5 € M such that dy(z,y) < 0 and all v € RY
there exists ¢ € G and h € Z(G) such that g(x),¢(y) € R, and v + h € K. Then

dam(g(x), g(y)) < 6, hence

dpm(v(@),v(y)) =dm(g™" -v-g(z),g
dpm((h+v)(g()), (R +v)(g(y))) <e

We have shown that for all 2,y € M such that da(x,y) < 0 and all v € R? we have
dp(v(2),0(y)) < e

Let 2,y € M be such that da(z,y) < e. Let n be the biggest positive integer such
that d (F~"(x), F~"([y,x])) < C~14. Then n is equal, up to an additive constant, to
—logdy(x, [y, x])/ay, where oy is the exponent of d.

We have then d (v(F~"(x)),v(F~"([y,z])) < e for allv € R%. Applying F", and using
the fact that ¢ is an automorphism of RY, we get that dy (u(x),u([y,z])) < Cre™ "+ <
Cody (x, [y, x]) for all u € RY, where Cy,Cy are constant (not depending on x,%).

In the same way we prove that d_(u(z),u([z,9])) < Csd_(z,[z,y]) for all u € R?, if
dpm(z,y) < e. It follows then from (11) that there exist e > 0 and Cy4 > 0 such that
if 2,y € M are such that day(x,y) < €1, then da(u(x),u(y)) < Cidm(z,y) for all
uweRL O

Let M be the quotient of M by the R%-action defined in Theorem 6.8. We denote for
x € M by T the R%orbit of z. Since G maps R%-orbits to R%-orbits, the action of G on
M induces a well-defined action of G on M. Denote G = G/Z(G), it is a torsion-free
finitely generated nilpotent group of nilpotency class one less than the class of G. By
Theorem 6.8, Z(G) is equal to the kernel of the action of G' on M, and the action of G
on M is free.

The action of R% on M descends to a free action of R¢/Z% on X, whose orbits are
the images of the R%orbits under the map 7 : M — X. Let @ : M — X be the
corresponding map induced by 7 : M — X.

Denote, for Z,57 € M

6(z,y) =inf{z1 €Z,y1 €7 : dm(z1,51)}-
Lemma 6.12. There exist € > 0,C > 1 and a G-invariant metric d on M such that
C716(z,y) < d(z,7) < CH(z,7)

for all x,y such that 6(Z,7) < e.
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Proof. The function & is G-invariant, since the metric du is G-invariant. Note that
§(Z,y) > 0 for all T # 7, since the quotient map 7 : (M,dr) — (X,d) is a local
isometry, the images of T and 7 in X are compact, hence distance between any two
points of 7(Z) and 7(y) are bounded from below.

Let € be as in Proposition 6.11. Define d(Z,%) as infimum of Y §(%;,Z;41) over all
sequences T = Ty, ..., T, = g such that §(T;,T; 1) < e. Note that by Proposition 6.11
there exists C' > 1 such that §(Z,7) < C'Y_ §(F;, Tiy1), hence

§(z,y) < Cd(z,7)

for all 7,7 € M. We also have

U

(z,9) < 0(z,7)
for all 7,y such that §(Z,7) <e. O

Proposition 6.13. The topology defined by the metric d coincides with the quotient topol-
ogy on M. The map 7™ : M — X is uniformly locally bi-Lipschitz with respect to d and
the metric on X coming from the Hausdorff distance between compact subsets of X.

Proof. By Proposition 6.11 and the definition of d, there exist C' > 1 and ¢ > 0 such
that if d(Z,y) < ¢, then for every y € ¥ there exists z € T such that da(x,y) < Ce.
Suppose that U C M is open with respect to d. Let U C M be the preimage of U. Then
for every Z € U there exists € > 0 such that the e-neighborhood of  (with respect to d)
is contained in U. Let 7 be such that d(z,7) < C~le. Then for every y € 7 there exists
x € T such that da(z,y) < e. It follows that the e-neighborhood of the set Z contains
the set g. It follows that U is open in M.

Suppose that U C M is an R%invariant open subset of M. Then for every x € U
there exists € > 0 such that the e-neighborhood of x is contained in U. Suppose that
7 C U is such that d(Z,7) < C~'e/2. Then there exists y € ¥ such that dy(z,y) < e.
Then y € U, hence § C U, since U is R%invariant. We have shown that every set that
is open in the quotient topology is also open with respect to d.

The statement about the Hausdorff distance also follows directly from the definition
of d and Proposition 6.11 (and the fact that 7 : M — X is a local isometry). 0O

Note that v(z) = [vy(z),v—(z)], where vy = P, (v) and v— = P_(v). It follows that
for any v,u € R? and z,y € M we have

[v(@), u(y)] = [v4(2), u—(y)] = [(v4 +u)(2), (v4 +u)(Y)] = (v4 +u)([z,y])

i.e., the value of [z, y] depends only on T and 7. It follows that the function [Z,7] = [z, ]
is well defined and satisfies the equalities (1) and (2) of Definition 2.1. We will prove
that it is continuous in the next proposition.
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We also have a well defined homeomorphism F(Z) = F(x), by condition (4) of Theo-
rem 6.8.

Lemma 6.14. The metric d agrees with the local product structure on M. In particular,
the map [-,+] is continuous.

Proof. We know that the metric das on M agrees with the local product structure on
M, since it is locally isometric to the standard metric on X. Let Z, 7 be points of M
such that §(Z,7) is small. Let us prove that

6(z,y) = 6(z, [z,9]) + (v, [z, 7)) (12)

for all T and 7 that are close enough to each other. (Here F; < F5 means that there
exists a constant C' > 1 such that C~1F; < F, < CF}.)

There exist points z € T and y € T such that da(x,y) < 26(T, 7). Since d agrees with
the local product structure on M, we have

We have §(Z, [Z,7]) < dm(z, [z,y]) and §(7, [Z,7]) < dm(y, [z, y]), hence there exists
a constant C; > 1 such that

8(z,y) > C; 1 (0(z, [2,7]) + 6(¥, [Z,7]))-

On the other hand, since § is equivalent to a metric (see Lemma 6.12), there exists Cy > 1
such that

5(Ta y) S C2(5(Ta [fa y]) + 5(?7 [Ta y]))a
by the triangle inequality. This proves (12).

Lemma 6.15. There exist C > 1 and € > 0 such that if T,7 € M are such that [T,7] =T
(i.e., T and 7§ belong to the same stable plaque of M) and §(T,7) < e, then there exist
x €T and y €Y such that [x,y] =z and dp(z,y) < CI(Z, 7).

Proof. Let x,y belong to one stable plaque of M. There exist € > 0 and C > 1 (not
depending on z,y) such that if dy([z, g(2)], [y, h(y)]) < € for g,h € G, then

dm([z, g()]; [y, h(y)]) >
C™Hdm([z, 9(2)], [y, 9W)]) + dm [y, 9], [y, h(w)])) =
Cr ([, ()], [y, 9(w))),

see Fig. 3.
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Fig. 3. Distance between plaques.

It follows that
inf{dy(v(z),u(y)) : v,u€ E_} > C  inf{dap(v(z),v(y)) : veE E_}, (13)

if the left hand side of the inequality is less than e.

We always can find x; € T and y; € § such that da(z1,y1) < 26(Z, 7). Then [z1,y1] =
v(zy) for some v € R

Note that [z1,y1] and 7 belong to the same unstable plaque of M, hence v € E_.
Then [v(z1),y1] = [x1,y1] = v(21), i.e., the points v(x1) and y; belong to the same stable
plaque.

It follows from (13) that

inf{dm (uv(z1),u(y1)) : ue E_} <
Cinf{dm(uv(z1), w(y1)) : vy,w € E_} < Cdp(z1,91) <
2C0(z, 7).

It follows that there exists a pair of points ' € T,y € ¥ such that 2’ and y’ belong
to the same stable plaque, and dy(2',y’) < 2Co(z,y). O

Let 7,5 € M be such that §(%,7) is small, and [7,7] = 7. Let Tz € M be a point
close to Z. Using Lemma 6.15, find « € T and y € § such that [z,y] = z and dp(z,y) <
C14(%,7). By Proposition 6.11, there exists o € Ty such that da(z,z2) < C20(T,T2).
We conclude from this, and from the fact that d agrees with the local product structure
on M, that there exists a constant Cs > 1 such that if dy(x,y) and §(Z,T2) are small
enough, we have

dp ([, zo], [y, wa]) < Cadra(z,y)-

Consequently,

8([7,%2), [7,72]) < dm([x, 2], [y, 72]) < Cadm(z,y) < C3C4(T,7).
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It follows that the maps Wi(Z1) — Wi(T2) : T — [T, T2] are locally Lipschitz with
respect to the metric d. Since the inverses of these maps are also maps of the same form,
they are in fact locally bi-Lipschitz. This shows that the local product structure on M
agrees with d. O

Proposition 6.16. The dynamical system (X, f), where f is the map induced by F is a
connected and locally connected Smale space. The quotient map M — X is a splitting
with the group of deck transformations G.

Proof. It follows from Theorem 6.8 that f : X — X is a well defined homeomorphism.
The plaques of the direct product structure of M are continuous images of plaques of
M, hence they are connected. The map F is a lift of f.

The map 7 : M — X is uniformly locally bi-Lipschitz with respect to d and the
Hausdorff distance on X, by Proposition 6.13. It follows that the Hausdorff distance
agrees with the quotient topology on X and that 7 is a covering.

It follows from Proposition 6.13, Lemma 6.14, and the fact that G preserves the direct
product structure on M, that the image under 7 of the local product structure on M is
a well defined local product structure on X.

Suppose that Z,% € M are such that [Z,7] = (i.e., T and 7 belong to the same stable
plaque of M). By Lemma 6.15, there exist € T and y € ¥ belonging to the same stable
plaque of M. Note also that it follows from Lemmas 6.12 and 6.14 that there exists a
constant C' > 1, not depending on T and 7, such that we can find z, y satisfying

provided d(Z,7) is small enough.

Then dp(F™(x), F™(y)) < CA*dpm(zx,y) for some fixed C > 1 and A € (0,1). It
follows that there exists a constant Cy > 1 such that for any two points Z,7 € M such
that [Z,7] = 7, and d(Z,7) is small enough we have d(F"(z),F " (§)) < CoA"d(Z,7) for
all n. Analogous statement about the unstable plaques of M is proved in the same way.

The map 7 : M — X is locally bi-Lipschitz with respect to d and the Hausdorff
distance on X. It follows that the images of the stable and unstable plaques of M are
stable and unstable leaves of (X, f).

Suppose that 7,7 € M are such that 7(Z) = 7(¥), i.e., the R%orbits T and 7 are
mapped to the same set in X. Then there exist « € T and y € § such that w(z) = 7 (y),
i.e., there exists g € G such that g(x) = y. Then g(Z) = 7. Since the action of G on
M is free, we conclude that G is the group of deck transformations of the splitting
TM-—X. O

Proposition 6.17. If a connected and locally connected Smale space (X, f) has a splitting
with a nilpotent torsion free group of deck transformations, then f has a fized point.
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Proof. We argue by induction on the nilpotency class. We know that the statement is
true for abelian groups of deck transformations, see Theorem 6.10. The Smale space
(X, f) is a locally connected Smale space with the group of deck transformations G of
lower class. Therefore, by the inductive hypothesis, f has a fixed point. Its preimage in
X is an f-invariant torus 7' C X equal to an orbit of the R?/Z%-action. It follows from
the definition of the action of R? on M that T is locally closed with respect to the local
product operation [-, -], hence (T, f) is a Smale space, and f restricted to this torus is a
hyperbolic automorphism, hence it has a fixed point (see Theorem 6.10). O

If G is a torsion-free finitely generated nilpotent group, then there exists a unique
simply connected nilpotent Lie group L such that G is isomorphic to a co-compact
lattice in L, see [21]. Moreover, every automorphism of G is uniquely extended to L. The
Lie group L is called the Malcev completion of G.

Let G be a finitely generated torsion free nilpotent group, and let ¢ be its automor-
phism. We say that ¢ : G — G is hyperbolic if its unique extension ¢ : L — L to the
Malcev completion is hyperbolic, i.e., if the automorphism D¢ of the Lie algebra of L
has no eigenvalues on the unit circle.

Proposition 6.18. Let (X, f) be a connected and locally connected Smale space with a
splitting w : M — X with a torsion free nilpotent group of deck transformations G. Let
¢ be an automorphism of G induced by a lift F' of f which has a fized point in M. Then
¢ is hyperbolic.

Proof. Let us prove our proposition by induction on the nilpotency class of G. It is true
for abelian groups, by Proposition 6.5.

Suppose that we have proved the proposition for all nilpotent groups of class n.
Suppose that nilpotency class of G is n + 1. By Proposition 6.16 and the inductive
hypothesis, the automorphism of G induced by ¢ is hyperbolic.

Let 29 € M be the fixed point of F. Then Z, € M is a fixed point of F. The image
of Tp in X is an f-invariant torus T, such that (T, f) is topologically conjugate to a
hyperbolic automorphism of the torus.

The map 7 : Top — T is its splitting with the group of deck transformations equal to
Z(G) = Z4. Tt follows then from Proposition 6.5 that the restriction of ¢ onto Z(G) is
hyperbolic.

We see that restriction of ¢ : L — L onto Z(L) and the automorphism induced by
¢ on L/Z(L) both are hyperbolic, hence ¢ itself is hyperbolic. O

Theorem 6.19. Let (X, f) be a connected and locally connected Smale space with a split-
ting m : M — X with a torsion free nilpotent group of deck transformations G. Let ¢
be an automorphism of G induced by a lift of f. Let fr, : G\L — G\L be the diffeomor-
phism induced by ¢. Then (X, f) and (G\L, fL) are topologically conjugate.
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Proof. Let F' be a lift of f to M with a fixed point zy. Extend the automorphism
¢ : G — G to an automorphism ¢ : . — L of the Lie group.

Proposition 6.20. There exists a G-equivariant map h : M — L such that poh = ho F
and h(zg) = 1.

Proof. Let us show at first that there exists a G-equivariant map hg : M — L. The
space X is a quotient of the Cantor set under a finite-to-one map (see [4,16]) with an
upper bound on the cardinality of its fibers. It follows then from Hurewicz formula [20]
that X has finite topological dimension.

By a theorem of Alexandroff [1], X is homeomorphic to an inverse limit of simplicial
complexes, which are nerves of finite open coverings of X. We can make the elements of
the coverings sufficiently small, so that they can be lifted to a G-invariant covering of M.
It follows that M is an inverse limit of a sequence of simplicial complexes with G-actions
and G-equivariant maps between them. In particular, there exists a G-equivariant map
A from M to a simplicial complex A with a GG action on it. Since L is homeomorphic to
R™, there exists a G-equivariant map B : A — L. Composition hg = B o A is then a
G-equivariant map from M to L.

Let us show now that there exists a G-equivariant map h : M — L such that
¢oh =hoF. We will use the arguments of [14, Theorem 2.2], which we repeat here for
the sake of completeness, and since our setting is slightly different.

Consider the space @ of all continuous maps v : X — L such that y(7(zg)) = 1 with
the topology of uniform convergence on X. It is a nilpotent group (of the same class as
L) with respect to pointwise multiplication. Define ®o(y) = ¢! oy o f. Then ®; is a
continuous automorphism of the group Q.

Let £ be the Lie algebra of L, and let exp : £ — L be the exponential map. It is a
diffeomorphism, since L is simply connected and nilpotent. Let 9 be the Banach space

of continuous maps X — £ mapping 7(zg) to zero. Then Log : v + exp~!

oy is a
homeomorphism of ) with 9.

Let Ty : @ — @Q be defined by Ty(y) = ®o(y)y~*. Let us show that Tj is a homeo-
morphism. We show at first that it is a local homeomorphism at the identity (i.e., the
constant map z +— 1), using the homeomorphism Log : @ — £ and computing the
derivative of T = Log oTy o Log™*. Denote ® = Log o®q o Log™*.

We have exp od¢p = ¢ o exp, where d¢ is the derivative of ¢ : L — L at the identity.

It follows that dp~' oexp™ = exp L o¢™!, and for every v € Q we have

®(7) = Logo®g o Log ' (v) =

1

exp lop toexpoyo f=dp loexp toexpoyof=

d(b*l ovyo f.

It follows that ® : Q — £ is linear.
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For every v € Q, we have

T(y) = LogoTy o Log ™' (7) =
exp” ! (To(expoy)) = exp ™! (®g(expoy) - (expoy) ') =
exp” ! (expo®(y) - (expoy) ') =
Log(Log™ ! (®(7)) - Log ™' (y)™") = Log(Log ™" (®()) - Log ™! (—7)),

since (Log™ ! (y(2))) ™! = (exp(y(z))) ™! = exp(—y(z)) for all z € X.
Let us compute the derivative of T' at zero. If v € Q, then

1 T -1 -1 _
lim - T'(ty) = lim = Log(Log™ (®(t7)) Log™ (=t7)) = 2(v) — 7,

by the Campbell-Hausdorf formula.

Since d¢ is hyperbolic, there exist a direct sum decomposition £ = £ & £_ and
constants C' > 0 and 0 < A < 1 such that ||d¢™(v)|| < CA™|lv|| for all n > 0 and v € £,
and ||d¢~"(v)]] < CA™||v|| for all n > 0 and v € £_. Define

for x € {+,—}. Since £, and £_ are d¢-invariant, the spaces Q; and Q_ are -
invariant. We obviously have Q = Q, ®Q_, || 2" (7)|| < CA"||v|| for n > 0, v € Q4, and
|2~ ()| < CA™||v|| for n > 0, v € Q_. It follows that ® — I is invertible.

This shows that T is a local homeomorphism at zero. Consequently, T is a local
homeomorphism at the identity of Q. Let us show that Ty is surjective. Let Z1(Q) =
Z(Q) C Z2(Q) C -+ C Z,(Q) = Q be the upper central series of Q. Let us prove
by induction on ¢ that Tp(Q) D Z;(Q). It is easy to see that To(v1v2) = To(71)To(V2)
for all 1,72 € Z(Q). Since Ty is a local homeomorphism at the identity and Z(Q)
is generated by any neighborhood of the identity (as any connected topological group,
see [29, Theorem 15, p. 76], this implies that Z(Q) C To(Q).

Suppose that we have proved that Z;(Q) C To(Q). Let To(v1),To(y2) € Zit1(Q).
Then

To(v1)To(v2) = ®o(1)7: ' Ro(y2)ys ' =

Do (71)Po(72) - (Po(r2) "7 " Ro(2)75 Tav2) s s P

We have

v =@ (v2) T 20 (12)75 e = 2 H(@o(12)7e ) T H(@o(h2)vs D =
Y5 To(v2) Tt To(v2)rive = 5 HTo (), 11]2 € Zi(Q)
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(here [To(v2),71] is the commutator, and has nothing to do with the direct product
decomposition). By the inductive hypothesis, there exists v3 € @ such that v = Ty (y3).
Then

To(71)To(v2) = o(71)Po(12)Po(v3)v5 72 "1 = To(m7273) € To(Q).

Since Z;11(Q) is connected, hence generated by any neighborhood of the identity, it
follows that Z;11(Q) C T(Q).

Since ® — [ is invertible, the only fixed point of ® is 0. Consequently, the only fixed
point of ®q is the unit of Q. If T(v1) = T(72), then q)o(’yl)vl_l = @0(72)72_1, hence
Do(v5 ' 71) = 75 y1. But then 41 = 7o, as the identity is the only fixed point of ®q.

We have proved that T : Q — @ is a homeomorphism. Let hg : M — L be any
G-equivariant map. Consider the map

F(@) = (97" ohgo F(x))™" - ho(x).

It is easy to see that for every g € G we have

F(g(w)) =7(z),

i.e., 7 is constant on G-orbits, hence it descends to a continuous map v : X — L, which
is an element of Q. There exists 7' € @Q such that T'(y’) = . Then Fy(v')(y")~! = 7,

which means that 7'(f(z)) = ¢(y(z)) - ¢(v'(2)).
Then the map h(x) = ho(z) - v/'(7(x)) is G-equivariant, and

h(F(x)) = ho(F(x)) -7/ (f (x(x))

which finishes the proof of the proposition. O
Theorem 5.15 shows now that (X, f) and (G\L, f1) are topologically conjugate. O

Let us finish the proof of Theorem 6.1. Let (X, f) be a connected and locally connected
Smale space, and let m : M — X be its splitting with a virtually nilpotent group of
deck transformations G. Let F be a lift of f to M. Let ¢ be the automorphism induced
by F on G.

Every finitely generated virtually nilpotent group G contains a torsion free nilpotent
subgroup Gy of finite index (see [19, 17.2.2]). For every g € G and n € Z the sub-
group g~ 1¢"(Go)g has the same index in G as Gg. There exists only a finite number of
subgroups of given index in a finitely generated group. Taking then intersection of all
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subgroups of the form g='¢"(Go)g for n € Z and g € G, we get a normal ¢-invariant
torsion free nilpotent subgroup G of finite index in G. It will be finitely generated as a
finite index subgroup of a finitely generated group.

Then G1\M together with the map f; induced by F' is a Smale space. It is a finite
covering of X'| and its group of deck transformations is G;. Then, by Proposition 6.17,
f1 has a fixed point, hence we may assume that F' has a fixed point zy. We assume then
that ¢ : G — G is given by ¢(g)(zo) = F(g(x0))-

Let L be the Malcev completion of G;. Extend ¢ : G; — G to an automorphism
¢ : L — L. Then, by Theorem 6.19, there exists a homeomorphism ¢ : L — M
conjugating the actions of G; on M and L, and such that ® o FF = ¢ o L. Note that
®(1) = zg, ®(L4) = Wy, and O(L_) = W_, where Ly = W, (1),L_ = W_(1) are
the stable and unstable plaques of the identity element of L, and Wy = W (xg), W_ =
W_(zp) are the stable and unstable plaques of xg.

Note that Ly = {g € L : limy,400¢"(g) = 1} and L = {g € L
lim,, o, ¢™(g) = 1} are closed subgroups of L (they are closed since they are plaques
of a splitting). The stable plaques of L are the left cosets of L ; the unstable plaques of
L are the left cosets of L_.

Consider the action of G on L obtained by conjugating by ® the action of G on M.
The action of its subgroup G; < G will coincide with the natural action of G; < L on L
by left multiplication.

The Smale space (X, f) is then topologically conjugate to the homeomorphism induced
by ¢ on G\ L.

Proposition 6.21. The group G acts on L by affine transformations.

Proof. The action of G; < GG on L coincides with the natural left action of G; on L as
a subgroup of L. The action of G on G by conjugation can be uniquely extended to an
action of G on L by automorphism. Denote by a4(h) for g € G and h € L the image of

h under the automorphism of L equal to the extension of the automorphism h +— ghg™!

of G1~
Let g € G. Then a, = g(1) = ®7!(g(zo)) is an element of L. Let us prove that the
action of g on L is given by the formula

9(x) = ag(@) - ag.

Consider the map Ay(z) = a, 'ay(x)ay : L — L. Note that if h € G, then Ay = Ay,
since apg = hg(1) = hay and apy(z) = hagy(z)h =t It follows that there is a finite number
of possibilities for A,, since Gy has finite index in G. Note also that ¢(ay) = ¢(g(1)) =
6(9)(1) and ¢(ay(2)) = arg(e) (B(x)), 50 that G(Ay(x)) = Ag(e)(6(2).

Suppose that © € Ly. Then ¢"(z) — 1 as n — oo. Since the set of possible maps of
the form Agn () is finite and they are continuous, we have

¢"(Ay(7)) = Agn(g)(0"(x)) — 1,
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i.e., Ag(x) € L. Consequently, the maps A, preserve L.
If =,y belong to one stable plaque, then x='y € L, hence

Ag(xily) = (ag(x)ag)fl(ozg(y)ag) €Ly

Consequently, the affine map x — «a4(x)a, preserves the stable plaques of L. It is proved
in the same way that it preserves the unstable plaques, hence it preserves the local
product structure.

Let h € Gy. Then g(hLy) = ghg~'(g(L+)) = ay(h)agLy, since g(Ly) is the stable
plaque agL4 of the point a, = g(1). By the same argument, g(hL_) = a4(h)agsL_ for
all h € Gl.

Let R C L be a relatively compact open rectangle such that G;\R = G1\L and 1 € R.
Then for every @ € L_ and every n € N there exists g, € Gy such that © € ¢" (g, R).
Note that then distance from x to ¢" (g, L+ ) is exponentially decreasing with n. It follows
that the union of the stable plaques of the form AL, for h € G is dense in L. Similarly,
the union of the unstable plaques of the form hL_ for h € G; is also dense in L.

The actions of the maps z — g(x) and x — a4 (z)ay on the stable and unstable plaques
of the form hL. for h € G coincide. Both maps are continuous on L and preserve the
direct product structure, hence they are equal. O

This finishes the proof of Theorem 6.1. O
7. Smale spaces with pinched spectrum
7.1. Splitting

Definition 7.1. Let (X, f) be a Smale space such that X is connected and locally con-
nected. Let ag, a; be the stable lower and upper critical exponents, and let by, b1 be the
unstable lower and upper critical exponents.

We say that the Smale space has pinched spectrum if

L
a1 b1

Theorem 7.2. A Smale space with pinched spectrum is splittable.

Proof. Choose numbers ag, a1, By, 81 such that 0 < ag < ag < a1 < ay, 0 < By < by <
b1 < 1, and

Let dy and d_ be metrics associated with the internal log-scales ¢4 and ¢_ on the
stable and unstable leaves of the exponents «g and Sy, respectively. All distances inside
the leaves will be measured using these metrics.
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Fig. 4. Splitting.

Let R be a finite covering of X by small open rectangles. We assume (making the rect-
angles small enough) that the holonomies inside the rectangles R € R are bi-Lipschitz.
Then it follows from equalities (3) and (4) in Section 2 that the holonomies inside f*(R)
for all R € R and k € Z are bi-Lipschitz with a common Lipschitz constant L > 1.

There exists € > 0 such that for any = € X there exists a rectangle R € R such that
the e-neighborhood of z in W, (z) (with respect to d;) and the e-neighborhood of z in
W_(x) (with respect to d_) are contained in R. Then for some constant ¢ > 0 and for
every k € Z, x € X there exists R € R such that the ce~*°*-neighborhood of = in W (z)
is contained in f*(R), and the ce®*-neighborhood of x in W_(z) is contained in f*(R).

Choose zy € X. Let us construct a splitting 7, : Wi (o) x W_(z¢) — X. Let x €
W, (z0), and let n be a positive integer. Since oy is a stable upper exponent, there exists
a sequence xo,T1,...,Tm, = « of points of W, (xg) such that my; < Cyeor(n—t-(zo,x))
and ¢4 (x;, ;1) > n, for some constant Cf.

Passing to d, we get that

mq § ng+(.%‘07.’13)a1/a0€aln, d+($i, l‘i+1) S Cge_aon.

For every k € Z there exist rectangles R; 1 € R such that the ce~**_neighborhood of
z; in W (x;) = Wy (x0) and the ceok-neighborhood of z; in W_(z;) belong to f*(R;1).
If ce=@0% > Cye~*0" then R; 1 contains x;_; and x;41. The last inequality is equivalent
to k < n — rq for some constant r; € Z. Choose k1 = n — rq, and find a sequence of
rectangles R; 1 satisfying the above conditions for k = k. (See Fig. 4.)

Let y € W_(2¢) be such that d_(xg,y) < ce®* = Cye®™ (where Oy = ce™®0m).
Denote zg = 3, 21 = [fL‘l,ZO}f}cl(Royl), 2y = [xg,zl]fkl(me etc. If all points zg, ..., 2Zm,
are defined, then we say that y can be continued to z, and denote 7., (x,y) = 2z, . Note
that zy can be continued to x and my, (2o, z) = .

If y can be continued to x, then, in the above notation,

di(zi, zit1) < Ldy (x4, 2i41) < Cse™ 0",
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hence
dy (Y, Ty (2,)) < Csmye™ " < Cdy (o, 7)1/ @0 elc1—00n,
Let ko be such that
ce®okz > C’6d+(ggo795)0“1/0!0e(Oq—%)n7 (14)

so that for every point z € X there exists a rectangle R € R such that the
Cody (g, x)*1/*0el@1=a0)n peighborhood of z in Wy (z) is contained in f~*2(R), and
the ce~Pok2_neighborhood of z in W_(2) is also contained in f~*2(R).
Inequality (14) follows from an inequality
a1 — QO

o
ko > —;logd+(x0,a:) +——n+s
5 Qo

for some constant s. Consequently, we can take

ko = O%longr(xo,x)—l- un+31, (15)
Qg (%))
where s; > 0 is bounded from above.
Let no be such that £_(z1,2) > no implies d_(z1,20) < ce P2 There exists a
constant ro (not depending on ks) such that we can take ny = ko +7o. Let y € W_(x0).
There exists a sequence Yo = o, Y1,Y2, - - - Ym, = Y such that

ma < Crd_(y, z9)"/Poefine, d_(yi, yir1) < ce”Pom2 < ce=Fokz,

Choose a sequence of rectangles R;» € R such that the ce~Po"2-neighborhood of y;
in W_(y;) = W_(zg), and the ce®®"2-neighborhood of y; in W, (y;) are contained in
[ (R).

Suppose that y; can be continued to z. Then dy(yi,7s(z,vi)) < ce®okz <
ce®™  hence my,(z,y;) € f " (Riz2). Define then a sequence zp; = Yiy1, 215 =
[xl,Zovi}fkl(Row Zo = [IQ,ZLi]f}cl(Rl), etc. Each of the points z;; will be defined, pro-
vided d_(zj_1,4,2;-1) < cePok1 We have an estimate

d_ (Zj—l,i7$j—1) < Cg(d_(xo, yl) + d_(yl’ yQ) + .- 4d_ (yj—Qayj—l)) <
C’g’ﬁ’bzceiﬁo]€2 < Cyd_ (y,xo)ﬁl/ﬁoe(ﬁlfﬁo)kg

(We used that ny = ko + 71 for some constant r7.)
It follows that y can be continued to x if

ng_(%xo)ﬁl/ﬁoe(ﬁl—ﬁo)l@ < ceﬂokl7
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ie., if

(B1 — Bo)ka + %log d_(y,z0) + 52 < fon

for some constant ss.
Replacing ko by the value given in (15), we get that y can be continued to x if

a1 — Qg

(B1 — Bo) ( n+ % log d+(9307$)> + 3_(1)10g d_(y,zo0) + s3 < fon (16)

Qo 0

for some constant ss. If

(B1 = Bo)(a1 — o)

Qg

< BO) (17)

then taking n big enough, we can guarantee that inequality (16) is satisfied. Inequal-
ity (17) is equivalent to

(B1 — Bo)(a1 — ap) < apfo,
i.e., to

fraq < Boaq + Brag <= &0 + @ > 1.
aq B

It follows that if the Smale space has pinched spectrum, then every point y € W_(xq)
can be continued to every x € W, (xg), and we can define 7., : Wy (x¢) x W_(z) using
the rules described above.

Let us show that the map 7y, : Wi(xg) x W_(z9) —> X is well defined, i.e., does
not depend on the choice of the rectangles R; 1 (we did not use the rectangles R; o in
the definition of 7y, ).

It follows from the construction that the map y — 7, (z,y) is equal to composition
of holonomy maps of a sequence of rectangles R; 1 € f¥*(R) for some positive k;.

We also showed that for every y, the germ of the map y — 7y, (x,y) is equal to a
germ of a holonomy in a rectangle R;, € f~"2(R) for some positive ns.

Note also that given such a sequence R; ; € f¥1(R) we can find a sequence R, € f™(R)
such that m is arbitrarily big and the map y — m,,(x, y) defined by the original sequence
R, ,; is a restriction of the maps defined by the new sequence Rj.

Suppose that h; : W_(zg) — W_(z) for ¢ = 1,2 are compositions of holonomies
defined using two sequences R ;, and R’1Z We may assume that both sequences belong
to f¥1(R) for some fixed ki. Let y belong to the domain of both maps h;. We may
assume (taking ki big enough) that x and y belong to connected components of the
domains of h;. Then there exists a connected chain of rectangles Rp; € f~"2(R), for
some ny > 0, such that the restrictions of h; to the corresponding plaques of Ry ; are
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equal to holonomies in Ry ;. It follows then from hq(z¢) = ha(zo) = x that hq1(y) = ha(y).
Consequently, 7, is well defined. The map 7, is obviously a local homeomorphism.
Note that if R € R is such that zy € R, then 7, : Py (R,x0) x P_(R,z9) — R
coincides with [-, | g.
Let (a,b) € W, (zg) x W_(z0) be an arbitrary point, and let x; = 7, (a,b). Then it
follows from the definition of the maps 7, and their uniqueness that

T (x,y) = Ty (Trxo (x7b)77r’£0 (avy))' (18)

It follows that m,, is onto, since its range contains every rectangle R € R intersecting
it. It also follows that the map =, is a covering, since every point of W, (z¢) x W_(z)
has a neighborhood mapped homeomorphically by 7, to an element of R.

Another corollary of (18) is that 7, homeomorphically maps the plaques of W, (x¢) x
W_(x) to the leaves of X, since 7., maps the direct factors of W, (z1) x W_(z1) iden-
tically onto the leaves W (x1) and W_(z1). This finishes the proof of the theorem. O

7.2. Polynomial growth

Theorem 7.3. Let (X, f) be a Smale space with pinched spectrum. Then the group of deck
transformations of the splitting of (X, f) has polynomial growth.

Proof. Our proof essentially repeats the proof of the main theorem of [7]. Let R be a
finite covering of X by open connected rectangles. Let 7 : M — X be the splitting
constructed in Theorem 7.2, where M = W, (z0) X W_ (). Denote by R the union of
the sets of connected components of 7~(R) for R € R.

Consider the graph I' with the set of vertices identified with R in which two vertices
are connected if the corresponding sets have non-empty intersection. It is easy to show
(see the proof of Proposition 5.5) that the graph = is quasi-isometric to the Cayley graph
of the group G of deck transformations of m and has the same growth rate as G.

Let B(r) be the set of elements of R that are on distance at most r in I' from a vertex
R € R such that (zo,z0) € R.

Let 0 < ag < ag < a1 < a7 and 0 < By < by < by < B such that ag/a1 + fo/B1 > 1.
Denote by d; and d_ the metrics of exponents g and Sy on the corresponding leaves
of X and plaques of W (xg) x W_(zg). (Every plaque of M is identified with a leaf of
X by m.)

Take R € B(r). Choose a sequence Ry > (zg,x0), R1,..., Rm = R of elements of R
forming a chain in I" of length m < r.

We will denote by [-,-] the direct product structure on W, (z¢) x W_(x¢). Let D_
and D be the suprema of the d_- and d-diameters of the sets [y, UR;] and [UR;,y] for
all y € UR; (see Fig. 5).

There exist constants C1,Cy not depending on r, and a number n = n(r) such that
[n —log D_/By| < C1, and for every point y € M there exists a rectangle V € f™*(R)

Please cite this article in press as: V. Nekrashevych, Locally connected Smale spaces, pinched spectrum,
and infra-nilmanifolds, Adv. Math. (2020), https://doi.org/10.1016/j.aim.2020.107385




YAIMA:107385

58 V. Nekrashevych / Advances in Mathematics sss (sees) seesee

[y, UR;]

[URhy]

Ty

Fig. 5. Growth estimation

such that the Coe~*™-neighborhood of y in the stable plaque of y (with respect to d)
and the set [y, UR;] are both contained in V.

It follows that we can find a sequence of rectangles V; € f™(R) of length at most
C3e™™ such that V;NV;;q # 0, the first rectangle in the sequence contains a given point
of R;_1 N R;, while the last one contains a given point of R; N R;41.

Consequently, we can find a sequence of rectangles Vg, ..., V; € f*(R) of length at
most

C3Tea1n S C’47’Dfl/ﬁ°

such that V; NV, # 0, 29 € Vy, V;,, contains a point z € R = R,,, and for every V;
there exists a point z; € V; such that [z;, UR;] C V;. Moreover, we may assume that the
chain V; covers any given in advance three point y1,y2,y3 € UR,;.

It follows that the d-distance from [y, y2] to [ys, y2] is bounded from above by

a]—aqg

C5’)"Dg1/'80 LT on < CG,),,DiM,BoD:ao/,Bo = CerD_ Bo

It follows that

aj—ag

D, < CerD_™ |

and, by the same argument,

B1—Bo
D_<CwrD, "
Combining the inequalities, we get
B1—Bo al,;UaO 14 oo (a1 —ag)(B1—Bg)
D+<CGT(C7TD+a0 ) = (Cgr fo D, *ofo ,

hence
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a1 4 B1_ B

By a1 —ag
Dio Bo  «oBo §08r1+ Bo .

Notethatg—;qtﬁ—;f“lﬁl :O“—Bl(%Jr@fl) > 0, hence

aoBo apfo \ a1 B1

D+ S C'g?"p+

f — (14— (a4 b1 b -t
Ot P+ + Bo ag + 0 aofBo :
Similarly,

D_ S Cg’l“pi

)

aopBo

In particular (taking Cijp = max(Cs,C9) and p = max(py,p—)) we have that
d—([zo, ], z0) and dy ([, zo], xo) are less than Cyor? for any @ € Upep(,) R

Let py and p— be the measures satisfying the conditions of Theorem 3.8 (note
that (X, f) is mixing by Proposition 5.2). Let p be their direct product on M =
Wi (zo) x W_(xg). Since the measures pu; and p— on the leaves of X are invariant
under holonomies, G acts by measure preserving transformations on M. It follows that
there exist positive constants A; and Ay such that

ABrI<p| | R| <AB@).
ReB(r)

By the proven above, the set | B(r) R is contained in the direct product of the balls
of radius Cyor? with center in 2o in W, (z¢) and W_(zg). By condition (1) of Theorem 3.8
volumes of these balls are bounded from above by C(C1or?)"/®0 and C(Cyor?)" 5o for
some constant C. It follows that |B(r)| is bounded above by a polynomial in r. O

By the Gromov’s theorem on groups of polynomial growth [17], G is virtually nilpo-
tent. Theorem 6.1 now implies the following description of Smale spaces with pinched
spectrum.

Theorem 7.4. Every connected and locally connected Smale space with pinched spectrum
1s topologically conjugate to an infra-nilmanifold automorphism.

8. Mather spectrum of Anosov diffeomorphisms

Let f: X — X be a diffeomorphism of a compact Riemann manifold X'. It induces
a linear operator f, on the Banach space of continuous vector fields by

fo(X)(@) =Df o X(f(x)).
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By a theorem of J. Mather [23], f is an Anosov diffeomorphism if and only if the spectrum
of f1 does not intersect the unit circle. It belongs then to the set

{zeC : M <zl <X}U{zeC : ua<|z| <}

where 0 < A\ < Ay < 1 < pg < p1. The tangent bundle TX is decomposed into a direct
sum W*@ W™ such that there exists a constant C' > 1 such that for all vectors vy € W*#,
v_ € W, and for every positive integer n we have

CTN[Te || < |IDf oyl < CX3 16|
and
sl T- || < (IDFT-|| < Cpttl|o-|l.

For more detail, see [23,6,7]. Every Anosov diffeomorphism is a Smale space, see [10,
Proposition 5.10.1]. Stable and unstable leaves of (X, f) are manifolds, and the vectors
of W* and W™ are tangent to the stable and unstable leaves, respectively.

Proposition 8.1. Let \1, Ao, 1, 2 be as above. Then log ps and log uy are unstable lower
and upper exponents of (X, f), and —logAs and —log Ay are stable lower and upper
exponents of (X, f).

Proof. It is easy to show that for every fixed ko the metrics dy, on leaves W, (zo)
and W_(z() are quasi-isometric to the restrictions of the Riemannian metric of X onto
Wi(zg) and W_(zg), with the quasi-isometry constants depending only on k¢ (and
(X, f)). For every stable leaf W, of (X, f) and all z,y € W, n € Z,

do(f™" (), 7" (y)) = dn(z, ).
It follows that there exist constants C; > 1, A > 0 such that
CT L (f7 (@), /7" (W) = A < da(a,y) < Crdy (F 7" (@), 7(9)) + A,
where (Zr is the Riemannian metrics on the stable leaves.

If v is a curve in the stable leaf connecting f~"(x) to f~"(y), then f™(y) is a curve
connecting = to y, and

0 7+ = f o]
hence

C~ A7 length(v) < length(f"(y)) < CA3 length(y),
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and
CTN} - e (f (), /() < di(w,y) < OXF - du(f7"(2), S (9):
It follows that
CTYC My (z,y) - A" — A < dy(z,y) < C10dy (z,y) - A" + A
for all stably equivalent z,y and all positive n. Then, by Propositions 3.7 and 4.12,
—log Ay and —log Ay are upper and lower exponents.

The case of unstable leaves is proved in the same way. O

M. Brin considers in [6-9] Anosov diffeomorphisms such that either

log e  log Ay
1 19
" log 11 ~ log A2 (19)
or
log A 1
14822 08/ (20)

log A1 = log o’

Note that since }gg# and % are both greater than one, each of the inequalities (19)
g H2 og X2

and (20) implies

log Ay log o
log A1 log

> 1. (21)

For instance, in the case of (19):

logAi | logpy -, logun _ logm <loguz 1) L logu logh
log Ay~ log p2 logpz  loguz \log log iz log Az

o log log A c
Multiplying by lgé ,’ﬁ . lgg 52, we get (21).
Note that if ag and ay are stable lower and upper critical exponents, and by and by
are unstable lower and upper critical exponents of the Smale space, then —log A2 < ay,

and —log Ay > ay, log us < by, and log pg > by, so that

logps ~ ap’ log A1 — by’

log 2 < % log Ao < bo

and therefore

@er_o S log e 1ogA2.
a1 by “logur  log A\
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Consequently, each of the conditions (19), (20) implies the inequality

a b

L

aq b1
which is the condition of Theorems 7.2 and 7.3. In particular, we conclude that Theo-
rem 7.4 is a generalization of the results of [9].

9. Co-dimension one Smale spaces

We say that a Smale space is of co-dimension one if its stable or unstable leaves are
homeomorphic to R with respect to their intrinsic topology.

It was proved by Franks [14, Theorem 6.3] and Newhouse [28] that every co-dimension
one Anosov diffeomorphism is topologically conjugate to a linear Anosov diffeomorphism
of a torus. Here we prove this statement for all locally connected and connected Smale
spaces.

Theorem 9.1. A locally connected and connected co-dimension one Smale space is topo-
logically conjugate to a co-dimension one hyperbolic automorphism of a torus R¢/Z%.

Proof. Let us prove at first that every co-dimension one locally connected and connected
Smale space f: X — X is splittable and irreducible. We assume that the stable leaves
of X are homeomorphic to R.

Let d4 (z,y) and d_(x,y) be the metrics on the stable and unstable leaves of X" asso-
ciated with the natural log-scales and some exponents, as in the proof of Theorem 7.2.
Let d,(z,y) be the distance inside the stable leaves of X defined in 3. Changing the
log-scale £ used in the definition of d,,(z,y) to a bi-Lipschitz equivalent one (e.g., chang-
ing the entourage U in the definition of ¢) will change d,, to a metric d, satisfying
L=Yd,(x,y) — C < d, (z,y) < Ld,(z,y) + C. In other words, the identity map will be a
quasi-isometry.

In particular, up to quasi-isometry, the metric d,, can be defined in the following way.
Fix a finite cover R of X by small open rectangles, such that the stable direction of every
rectangle R; € R is homeomorphic to R (equivalently, to an open interval in R). We
will denote f*(R) = {f"(R) : R € R}. By the Lebesgue covering lemma there exists
09 > 0 such that for every x € X there exists R € R such that the g-neighborhoods of
x in its stable and unstable leaves belong to R.

Then d,(z,y) is equal (up to linear lower and upper bounds) to the smallest number
k such that there exists a sequence of stable plaques Py, Py, ..., Py of rectangles R; from
fn(R) such that P; N Pi+1 75 @, z € Py, Y € Py.

Fix e > 0. For every n > 1, let D,, be the smallest value of d,,(x,y) for stably equiva-
lent 2,y and such that d(x,y) > €. Let  and y be some points realizing the minimum D,,.
Let Ro, R1,...,Rp € f™(R) be a sequence of rectangles as in the previous paragraph,
were L™'D,, — C < D' < LD,, + C for some fixed L and C.
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Note that it follows from the inequality d,—a(z,y) < 3(dy(z,y) + 1) for some A >0
(see the beginning of the proof of Proposition 3.3) and the fact that f* induces an
isomorphism T, (W) — T,y x(f*(W)) that there exist positive constants k and [ such
that d,,(f*(z), f¥(y)) < dn(z,y). Consequently, d(f*(zy), f*(yn)) < e It follows (as f
is bi-Lipschitz) that there exists a constant C7 > 0 such that d(z,,y,) < Cie for all n.
We may assume that Cie < §g by choosing € small enough.

Consider the composition of the holonomies between the unstable plaques of the rect-
angles R; defined by the intersections R; N R;11 and seen as a homeomorphism from
a neighborhood U, C W_(xz) of = to a neighborhood U, C W_(y) of y. Suppose that
' € Uy, and let y' € U, be its image under the composition. Then we get a chain
of intersecting stable plaques of the rectangles R; starting from the plaque of z’ and
ending in the plaque of y'. It follows that d,,(z',y") < L'd,(z,y) + A’ for some fixed
L', A’. Applying an appropriate iteration f* (where s depends only on L’ and A’) we
get d, (f(2"), f°(y')) < dn(x,y), which implies that d(f*(x’), f*(y’)) < e. Consequently,
there exists a constant r > 0 (not depending on n) such that d(z',y") < r.

We are using now arguments similar to the arguments of the proof of Theorem 7.2.
By the Lebesgue covering condition for the rectangles R; and the fact that f~! uni-
formly expands the unstable leaves, we get that the rectangles R; contain Csexp(an)-
neighborhoods in the unstable direction of their intersections with the stable leaf of
xz and y. If 2’ € U,y € Uy are as in the previous paragraph, then there exists a
rectangle R € f~™(R) containing 2’ and ¢’ in one stable plaque and such that the
d1-neighborhood of 2’ in the unstable direction belongs to R (where m and hence §;
do not depend on n, x, and y). Then the holonomy of the unstable leaf from 2’ to ¢’
extends to this neighborhood (but may be not contained in U, ). The smallest number
of steps of size at most ¢ from z to a point z € W_(z) is bounded from above by a
function of the form Csd(z,z)P + C; (where p depends on the ratio of the exponent
of the metric and the upper exponent of the unstable direction, see the proof of The-
orem 7.2). The holonomy inside the rectangles R € f~°(R) are uniformly Lipschitz. It
follows that when we apply the holonomies between the unstable directions coming from
the intersections R; N R;y1, one by one, then the distances between the images of x and
z are bounded from above by a function of the form Csd(x,z)P 4+ Cs. It follows that
z € U, if Csd(z,2)P + Cs < Cqexp(an). Consequently, the holonomy from x to y can
be extended to a ball with center in x of exponentially big in n radius.

Let x,,yn be the points realizing the minimum D,. Choose a strictly increasing
sequence ny such that each of the sequence z, and y, converge to points x,y. Since
d(xn,yn) < Cie for all n, such a sequence exists and the points x, y are stably equivalent
with € < d(z,y) < Cie. The holonomy from the unstable plaque of z,, to the unstable
plaque of z is a bi-Lipschitz map with the same bi-Lipschitz constant L defined on an
exponentially big in ny ball inside W_(x,, ), the same is true for y and y,,. By the
proven above, the holonomy from W_(z,,) to W_(y,,) is defined on an exponentially
big ball with center in z,, . It follows that the holonomy between the unstable leaves of
x and y is everywhere defined.

Please cite this article in press as: V. Nekrashevych, Locally connected Smale spaces, pinched spectrum,
and infra-nilmanifolds, Adv. Math. (2020), https://doi.org/10.1016/j.aim.2020.107385




YAIMA:107385

64 V. Nekrashevych / Advances in Mathematics sss (sees) seesee

Note that we have not used the fact that the Smale space is of co-dimension one so far.
We have shown that for every locally connected Smale space there exist two different sta-
bly equivalent points x and y such that local holonomies between their unstable plaques
can be extended to a global holonomy of their unstable leaves W_(x) and W_(y). In the
case when the stable leaves are one-dimensional, this is enough to show splittability of
the Smale space. It is unclear, however, what we can deduce from this fact in the general
case.

Namely, let z and y be as above. Then for every point ' € W_(z) there exists NV and a
chain of rectangles R, Ry, ..., Rp € fV(R) such that 2’,2 € Ry, y € Rp, RiNR; 11 # 0,
and the composition of all the holonomies between the unstable plaques of R; defined
by the intersections R; N R;11 is a holonomy from U_(z) C W_(z) to U_(y) such that
x,2’ € U_(z) and y € U_(y).

The stable directions of R; are open sub-intervals of the stable leaf of = and y
such that z and y are contained in the initial and the final intervals, and every
two neighboring intervals intersect. It follows that these intervals cover the interval
I C W, (z) with the endpoints z and y. Consequently, there exists a local product
preserving map 7w : I X W_(x) — X identical on I and W_(z). Denote by m, the
map f~"omo fr: f7(I) x W_(f~"(x)) — X. It is also local product preserving and
identical on f~"(I) x W_(f~"(x)). Note that the diameter of f~"(I) inside W, (f~"(z))
grows exponentially with n > 0.

Let ¢ be an interior point of the interval I. Let mj be a sequence of positive in-
tegers converging to infinity such that the limit ¢ = limg oo f~™*(¢) exists. The
maps T, : f (1) x W_(f~™(t)) — X as k — oo will converge to a splitting
Wi{t)x W_(t') — X.

Consequently, f : X — X is irreducible (see Proposition 5.2). Let p4 be the measure
on stable leaves described in Theorem 3.8. The group G of deck transformations of a
splitting of X acts on a stable leaf W, (z9) = R by the transformations x — [g(x), xo].
This action preserves the measure py. Let us identify (Wi (zg),u+) and R with the
Lebesgue measure by a measure-preserving homeomorphism. Since G acts by measure-
preserving transformations, the corresponding action of G on R is by transformations of
the form z — +x + a for a € R.

The action of G on W, (zp) is free, since otherwise an unstable leaf is not mapped
homeomorphically onto its image in X'. But this implies that G acts on R by translations,
hence it is torsion-free abelian. Therefore, by Proposition 5.5 and Theorem 6.10, (X, f) is
topologically conjugate to a hyperbolic automorphism of the torus R?/Z< for some d. O

Note that the proof of Franks-Newhouse theorem due to K. Hiraide [18] also uses the
measure g4 on the stable leave.

References

[1] P. Alexandroff, Uber Gestalt und Lage abgeschlossener Mengen beliebiger Dimension, Ann. Math.

(2) 30 (1928-1929) 101-187.

Please cite this article in press as: V. Nekrashevych, Locally connected Smale spaces, pinched spectrum,
and infra-nilmanifolds, Adv. Math. (2020), https://doi.org/10.1016/j.aim.2020.107385



http://refhub.elsevier.com/S0001-8708(20)30413-8/bib1EDC42FAACE95C9082F21C74D2E22731s1
http://refhub.elsevier.com/S0001-8708(20)30413-8/bib1EDC42FAACE95C9082F21C74D2E22731s1

ARTICLE IN PRESS

V. Nekrashevych / Advances in Mathematics ess (sees) seesee 65

[2] J.E. Anderson, I.F. Putnam, Topological invariants for substitution tilings and their associated
C*-algebras, Ergod. Theory Dyn. Syst. 18 (1998) 509-537.

[3] N. Bourbaki, Eléments de mathématique. Topologie générale. Chapitres 1 & 4, Hermann, Paris,
1971.

[4] R. Bowen, Markov partitions for Axiom A diffeomorphisms, Am. J. Math. 92 (1970) 725-747.

[5] R. Bowen, Periodic points and measures for Axiom A diffeomorphisms, Trans. Am. Math. Soc. 154
(1971) 377-397.

[6] M. Brin, Nonwandering points of Anosov diffeomorphisms, Dokl. Akad. Nauk SSSR 235 (4) (1977)
737-740.

[7] M. Brin, A fundamental group of a manifold that admits an Anosov diffeomorphism, Dokl. Akad.
Nauk SSSR 239 (6) (1978) 1276-1278.

[8] M. Brin, On the spectrum of Anosov diffeomorphisms, Isr. J. Math. 36 (3—4) (1980) 201-204.

[9] M. Brin, A. Manning, Anosov diffeomorphisms with pinched spectrum, in: Dynamical Systems and
Turbulence, Warwick 1980, Coventry, 1979/1980, in: Lecture Notes in Math., vol. 898, Springer,
Berlin, 1981, pp. 48-53.

[10] M. Brin, G. Stuck, Introduction to Dynamical Systems, Cambridge University Press, Cambridge,
2002.

[11] M.I. Brin, Nonwandering points of Anosov diffeomorphisms, in: Dynamical Systems, Vol. I—
Warsaw, in: Astérisque, vol. 49, Soc. Math. France, Paris, 1977, pp. 11-18.

[12] K. Dekimpe, What an infra-nilmanifold endomorphism really should be ..., preprint, arXiv:1008.
4500v2, 2011.

[13] K. Dekimpe, What is ... an infra-nilmanifold endomorphism?, Not. Am. Math. Soc. 58 (5) (2011)
688-689.

[14] J.M. Franks, Anosov diffeomorphisms, in: Global Analysis, Berkeley, 1968, in: Proc. Symp. Pure
Math., vol. 14, Amer. Math. Soc., 1970, pp. 61-93.

[15] D. Fried, Métriques naturelles sur les espaces de Smale, C. R. Acad. Sci. Paris Sér. I Math. 297 (1)
(1983) 77-79.

[16] D. Fried, Finitely presented dynamical systems, Ergod. Theory Dyn. Syst. 7 (1987) 489-507.

[17] M. Gromov, Groups of polynomial growth and expanding maps, Publ. Math. THES 53 (1981) 53-73.

[18] K. Hiraide, A simple proof of the Franks-Newhouse theorem on codimension-one Anosov diffeomor-
phisms, Ergod. Theory Dyn. Syst. 21 (3) (2001) 801-806.

[19] M.I. Kargapolov, Ju.l. Merzljakov, Fundamentals of the Theory of Groups, Graduate Texts in
Mathematics, vol. 62, Springer-Verlag, New York, Heidelberg, Berlin, 1979.

[20] K. Kuratowski, Topologie, vol. II, Warszawa, 1961.

[21] A.I. Malcev, On a class of homogeneous spaces, Izv. Akad. Nauk SSSR, Ser. Mat. 13 (1949) 9-32.

[22] A. Manning, There are no new Anosov diffeomorphisms on tori, Am. J. Math. 96 (1974) 422-429.

[23] J.N. Mather, Characterization of Anosov diffeomorphisms, in: Nederl. Akad. Wetensch. Proc. Ser.
A 71, Indag. Math. 30 (1968) 479-483.

[24] V. Nekrashevych, Self-Similar Groups, Mathematical Surveys and Monographs, vol. 117, Amer.
Math. Soc., Providence, RI, 2005.

[25] V. Nekrashevych, Combinatorial models of expanding dynamical systems, Ergod. Theory Dyn. Syst.
34 (2014) 938-985.

[26] V. Nekrashevych, Hyperbolic groupoids: metric and measure, Groups Geom. Dyn. 8 (3) (2014)
883-932.

[27] V. Nekrashevych, Hyperbolic groupoids and duality, Mem. Am. Math. Soc. 237 (1122) (2015),
v+105.

[28] S.E. Newhouse, On codimension one Anosov diffeomorphisms, Am. J. Math. 92 (1970) 761-770.

[29] L.S. Pontryagin, Topological Groups, Translated from the second Russian edition by Arlen Brown,
Gordon and Breach Science Publishers, Inc., New York, 1966.

[30] I.F. Putnam, C*-algebras from Smale spaces, Can. J. Math. 48 (1996) 175-195.

[31] I.F. Putnam, Lecture Notes on Smale Spaces, Univ. of Victoria, 2015, http://www.math.uvic.ca/
faculty/putnam/In/Smale spaces.pdf.

[32] D.J.S. Robinson, A Course in the Theory of Groups, second ed., Graduate Texts in Mathematics,
vol. 80, Springer-Verlag, New York, 1996.

[33] D. Ruelle, Thermodynamic Formalism, Addison Wesley, Reading, 1978.

[34] M. Shub, Expanding Maps, Global Analysis, Proc. Sympos. Pure Math., vol. 14, American Math.
Soc., Providence, Rhode Island, 1970, pp. 273-276.


http://refhub.elsevier.com/S0001-8708(20)30413-8/bibFCC047D5612268B3BFC54B8A89BDAAFCs1
http://refhub.elsevier.com/S0001-8708(20)30413-8/bibFCC047D5612268B3BFC54B8A89BDAAFCs1
http://refhub.elsevier.com/S0001-8708(20)30413-8/bib8ECBB581AD257408E3470F95FFF6589Fs1
http://refhub.elsevier.com/S0001-8708(20)30413-8/bib8ECBB581AD257408E3470F95FFF6589Fs1
http://refhub.elsevier.com/S0001-8708(20)30413-8/bibF901FF76754C513F9B6B1AFB77C4A93Fs1
http://refhub.elsevier.com/S0001-8708(20)30413-8/bibAEC42170FC5891511FA3CE4C0B3B05C0s1
http://refhub.elsevier.com/S0001-8708(20)30413-8/bibAEC42170FC5891511FA3CE4C0B3B05C0s1
http://refhub.elsevier.com/S0001-8708(20)30413-8/bib015FBB41094092FDC6576E4E296EA4B6s1
http://refhub.elsevier.com/S0001-8708(20)30413-8/bib015FBB41094092FDC6576E4E296EA4B6s1
http://refhub.elsevier.com/S0001-8708(20)30413-8/bib385280BAC24D105E96951EC42AA75BE1s1
http://refhub.elsevier.com/S0001-8708(20)30413-8/bib385280BAC24D105E96951EC42AA75BE1s1
http://refhub.elsevier.com/S0001-8708(20)30413-8/bibB067EA87395100F5CE91B3B54A0E4001s1
http://refhub.elsevier.com/S0001-8708(20)30413-8/bib37CAD137D09AAEBCFD6153E95D36540Es1
http://refhub.elsevier.com/S0001-8708(20)30413-8/bib37CAD137D09AAEBCFD6153E95D36540Es1
http://refhub.elsevier.com/S0001-8708(20)30413-8/bib37CAD137D09AAEBCFD6153E95D36540Es1
http://refhub.elsevier.com/S0001-8708(20)30413-8/bib67E10BCE19912421CBBB70486EBC6EC9s1
http://refhub.elsevier.com/S0001-8708(20)30413-8/bib67E10BCE19912421CBBB70486EBC6EC9s1
http://refhub.elsevier.com/S0001-8708(20)30413-8/bib3110C24DF7C9EC7FF2A29069468F108Ds1
http://refhub.elsevier.com/S0001-8708(20)30413-8/bib3110C24DF7C9EC7FF2A29069468F108Ds1
http://refhub.elsevier.com/S0001-8708(20)30413-8/bib98731674906EED4CF4B20EADB948C2FEs1
http://refhub.elsevier.com/S0001-8708(20)30413-8/bib98731674906EED4CF4B20EADB948C2FEs1
http://refhub.elsevier.com/S0001-8708(20)30413-8/bib51CC61AA88711735942A431AA036BE4Ds1
http://refhub.elsevier.com/S0001-8708(20)30413-8/bib51CC61AA88711735942A431AA036BE4Ds1
http://refhub.elsevier.com/S0001-8708(20)30413-8/bib90C649C67E8B48681108548B1579D2E9s1
http://refhub.elsevier.com/S0001-8708(20)30413-8/bib90C649C67E8B48681108548B1579D2E9s1
http://refhub.elsevier.com/S0001-8708(20)30413-8/bib03A6A3AF49178992A836D5EB72A53803s1
http://refhub.elsevier.com/S0001-8708(20)30413-8/bib03A6A3AF49178992A836D5EB72A53803s1
http://refhub.elsevier.com/S0001-8708(20)30413-8/bibD49871076683379F83CCD47441D34A0Cs1
http://refhub.elsevier.com/S0001-8708(20)30413-8/bib582370A1834B2CBFD7CEFB036AD7FB44s1
http://refhub.elsevier.com/S0001-8708(20)30413-8/bib709130257B08FB6DD4443C3436E35F82s1
http://refhub.elsevier.com/S0001-8708(20)30413-8/bib709130257B08FB6DD4443C3436E35F82s1
http://refhub.elsevier.com/S0001-8708(20)30413-8/bib5887EEDEDB998DF30D94340B3EDF5C4Es1
http://refhub.elsevier.com/S0001-8708(20)30413-8/bib5887EEDEDB998DF30D94340B3EDF5C4Es1
http://refhub.elsevier.com/S0001-8708(20)30413-8/bibFFE64AB7B6B3961F1B3E7BF6B9654683s1
http://refhub.elsevier.com/S0001-8708(20)30413-8/bibD29B9753B33DECB21060CC1175B21C97s1
http://refhub.elsevier.com/S0001-8708(20)30413-8/bibBB4B0139E1BFA567BEC1A0D343E9E22As1
http://refhub.elsevier.com/S0001-8708(20)30413-8/bibB108614E179EF0BDDEDBA3555915AC19s1
http://refhub.elsevier.com/S0001-8708(20)30413-8/bibB108614E179EF0BDDEDBA3555915AC19s1
http://refhub.elsevier.com/S0001-8708(20)30413-8/bibC7B99276916D83C2ECA28E44167F9BE8s1
http://refhub.elsevier.com/S0001-8708(20)30413-8/bibC7B99276916D83C2ECA28E44167F9BE8s1
http://refhub.elsevier.com/S0001-8708(20)30413-8/bib772DACD76C653907C11D2B4DF2905EC1s1
http://refhub.elsevier.com/S0001-8708(20)30413-8/bib772DACD76C653907C11D2B4DF2905EC1s1
http://refhub.elsevier.com/S0001-8708(20)30413-8/bibD20FA94B082872E0AD6C85067A17885Cs1
http://refhub.elsevier.com/S0001-8708(20)30413-8/bibD20FA94B082872E0AD6C85067A17885Cs1
http://refhub.elsevier.com/S0001-8708(20)30413-8/bib8EFEFC1AF78D906CA58F9FF068F27ECAs1
http://refhub.elsevier.com/S0001-8708(20)30413-8/bib8EFEFC1AF78D906CA58F9FF068F27ECAs1
http://refhub.elsevier.com/S0001-8708(20)30413-8/bib1F4D3CBEB50C292254381B3C51D73F35s1
http://refhub.elsevier.com/S0001-8708(20)30413-8/bib50DB77A58A03A712EC8DEEB7A88B20C0s1
http://refhub.elsevier.com/S0001-8708(20)30413-8/bib50DB77A58A03A712EC8DEEB7A88B20C0s1
http://refhub.elsevier.com/S0001-8708(20)30413-8/bib26B8D5AA7A040F78A3CA781B506EDC6As1
http://www.math.uvic.ca/faculty/putnam/ln/Smale_spaces.pdf
http://www.math.uvic.ca/faculty/putnam/ln/Smale_spaces.pdf
http://refhub.elsevier.com/S0001-8708(20)30413-8/bibAF7A158CB1B057F55938060F23177ADFs1
http://refhub.elsevier.com/S0001-8708(20)30413-8/bibAF7A158CB1B057F55938060F23177ADFs1
http://refhub.elsevier.com/S0001-8708(20)30413-8/bibD09A89D6C27201CB76837F4C2E569972s1
http://refhub.elsevier.com/S0001-8708(20)30413-8/bib7E9E4E4459CD46B7EBDC58F6763B7BAEs1
http://refhub.elsevier.com/S0001-8708(20)30413-8/bib7E9E4E4459CD46B7EBDC58F6763B7BAEs1

ARTICLE IN PRESS

66 V. Nekrashevych / Advances in Mathematics ess (sees) seesee

[35] S. Smale, Differentiable dynamical systems, Bull. Am. Math. Soc. 73 (1967) 747-817.

[36] S. Smale, Mathematical Problems for the Next Century: Mathematics: Frontiers and Perspectives,
Amer. Math. Soc., Providence, RI, 2000, pp. 271-294.

[37] S. Wieler, Smale spaces via inverse limits, Ergod. Theory Dyn. Syst. 34 (6) (2014) 2066—2092.

[38] R.F. Williams, Expanding attractors, Publ. Math. THES (43) (1974) 169-203.


http://refhub.elsevier.com/S0001-8708(20)30413-8/bib8F71E2881AEB7ACCFBFCF3CE6B1CC100s1
http://refhub.elsevier.com/S0001-8708(20)30413-8/bib0A24A1A302FDD1EA59A670DF67FC5906s1
http://refhub.elsevier.com/S0001-8708(20)30413-8/bib0A24A1A302FDD1EA59A670DF67FC5906s1
http://refhub.elsevier.com/S0001-8708(20)30413-8/bibEA3FA64ECE1A079DDC457FC118FA83B9s1
http://refhub.elsevier.com/S0001-8708(20)30413-8/bibABD9A9CA834C93835C331764FE9679CEs1

	Locally connected Smale spaces, pinched spectrum, and infra-nilmanifolds
	1 Introduction
	2 Smale spaces
	2.1 Local product structures
	2.2 Smale spaces
	2.3 Irreducible Smale spaces

	3 Lower exponents
	3.1 Lower exponents of log-scales
	3.2 Lower exponents of Smale spaces
	3.3 Metric properties of leaves

	4 Locally connected Smale spaces and upper exponents
	4.1 Connectivity
	4.2 Local product structure on locally connected Smale spaces
	4.3 Upper exponents

	5 Splittings of Smale spaces
	5.1 Groups of deck transformations
	5.2 Splittable Smale spaces and hyperbolic graphs

	6 Smale spaces with virtually nilpotent splitting
	7 Smale spaces with pinched spectrum
	7.1 Splitting
	7.2 Polynomial growth

	8 Mather spectrum of Anosov diffeomorphisms
	9 Co-dimension one Smale spaces
	References


