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1. Introduction

Smale spaces were introduced by D. Ruelle (see [33]) as generalizations of Anosov 
diffeomorphisms and basic sets of Axiom-A diffeomorphisms. They were also extensively 
studied before as “spaces with hyperbolic canonical coordinates” by R. Bowen [4,5].

A Smale space is a compact metric space X with a homeomorphism f : X −→ X
such that there exists a local direct product structure on X with respect to which f
is expanding in one and contracting in the other direction. For example, every Anosov 
diffeomorphism of a compact manifold is a Smale space. Restrictions of Axiom-A home-
morphisms to the basic sets are also examples of Smale spaces. For more on Smale spaces, 
see [33,30,31].

Smale spaces are classical objects of the theory of dynamical systems, but many basic 
questions about them (and even about Anosov diffeomorphisms) remain to be open.

For example, it seems that the following question is open.

Question 1.1. Is it true that if (X , f) is a Smale space such that X is connected and 
locally connected, then (X , f) is topologically conjugate to an Anosov diffeomorphism?

Many well studied examples of Smale spaces are such that one or both of the factors of 
the local direct product structure are totally disconnected, e.g., the shifts of finite type, 
the Smale solenoid (see [10, Section 1.9]), Williams attractors, etc. See more examples 
in [38,2]. See also [37], where it is proved that all such Smale spaces are inverse limits of 
iterations of one self-map, i.e., are natural generalizations of solenoids.

Note that a question similar to Question 1.1 for expanding maps has a positive answer. 
Namely, the following theorem is proved in [24, Theorem 6.1.6] and [25, Theorem 5.9]
using Gromov’s theorem on groups of polynomial growth [17].

Theorem 1.2. Let f : X −→ X be a self-covering map of a locally connected and connected 
compact metric space. Suppose that there exists a covering map π : X̃ −→ X such that f
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can be lifted by π to an expanding homeomorphism of X̃ . (This is true, for example, if 
f : X −→ X is locally expanding and X is semi-locally simply connected.) Then (X , f)
is topologically conjugate to an expanding infra-nilmanifold endomorphism.

Here an infra-nilmanifold endomorphism is a map φ : G\L −→ G\L, where L is a 
simply connected nilpotent Lie group, G is a subgroup of the affine group Aut(L) � L

acting on L freely, properly, and co-compactly, and φ is induced by an automorphism 
Φ : L −→ L. If the automorphism Φ is expanding, i.e., if all eigenvalues of DΦ have 
absolute value greater than one, then we say that the corresponding endomorphism φ
is expanding. If DΦ has no eigenvalues of absolute value one, then we say that φ is 
hyperbolic.

Note, that the case when f : X −→ X in Theorem 1.2 is an expanding endomorphism 
of a Riemannian manifold, is a result of M. Gromov [17] (based on results of M. Shub [34]).

All known examples of Anosov diffeomorphisms, and hence apparently all known 
examples of locally connected Smale spaces are hyperbolic automorphisms of infra-
nilmanifolds. See [35], and Problem 3 in the additional list of problems in [36]. It was 
proved by A. Manning in [22] that every Anosov diffeomorphism of an infra-nilmanifold 
is topologically conjugate to a hyperbolic automorphism of an infra-nilmanifold. Another 
result in this direction is a theorem of J. Franks [14] and S.E. Newhouse [28] stating that 
if (X , f) is an Anosov diffeomorphism such that stable or unstable manifolds of X are 
one-dimensional, then (X , f) is topologically conjugate to a hyperbolic linear automor-
phism of the torus Rn/Zn.

One of the main obstacles for proving that every Anosov diffeomorphism is an au-
tomorphism of an infra-nilmanifold is showing that the foliations of X into stable and 
unstable manifolds when lifted to the universal covering X̃ of X come from a direct 
product decomposition of X̃ .

Definition 1.3. We say that a Smale space (X , f) is splittable if there exists a covering 
map π : M −→ X and a direct product decomposition M = A × B of M such that π
maps plaques {a} ×B and A ×{b} of the direct product decomposition of M bijectively 
to stable and unstable leaves of X .

Here a stable (resp. unstable) leaf of X is the equivalence class with respect to the 
equivalence relation limn→+∞ d(fn(x), fn(y)) = 0 (resp. limn→−∞ d(fn(x), fn(y))).

If X is locally connected and connected, then every splitting is a Galois covering with 
a finitely generated group of deck transformations, see Proposition 5.5.

One of the main results of our paper is the following theorem.

Theorem 1.4. Let (X , f) be a Smale space such that X is connected and locally connected. 
Suppose that it has a splitting with a virtually nilpotent group of deck transformations. 
Then (X , f) is topologically conjugate to a hyperbolic infra-nilmanifold automorphism.
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Note that we do not assume in Theorem 1.4 that X is even locally simply connected. 
On the other hand, when restricted to the class of Anosov diffeomorphisms, it is a weaker 
statement than the result of [22]. It is not clear what should be the statement generalizing 
A. Manning’s result in the class of locally connected Smale spaces.

M. Brin in [6,7] gave a “pinching” condition on the Mather spectrum of an Anosov 
diffeomorphism (X , f) (i.e., spectrum of the operator induced by f on the Banach space of 
vector fields on X ) ensuring that (X , f) has a splitting with a virtually nilpotent group of 
deck transformations. In the case of Anosov diffeomorphisms the splitting map π : M −→
X is necessarily the universal covering map, so that the group of deck transformations is 
the fundamental group of X . M. Brin and A. Manning proved then in [9] that all Anosov 
diffeomorphisms satisfying the Brin’s pinching condition are hyperbolic automorphisms 
of infra-nilmanifolds.

We generalize the results of M. Brin and A. Manning. Of course, we can not use 
the original pinching condition, since we do not have vector fields on Smale spaces. We 
find, however, a purely topological condition, which follows from Brin’s condition in the 
case of Anosov diffeomorphism. In fact, we even improve the Brin’s spectral pinching 
condition for Anosov diffeomorphisms.

Here is an informal description of our condition. Consider a finite covering R of X
by sufficiently small open rectangles (i.e., such that their diameters are smaller than 
the expansivity constant). The covering will induce coverings of the stable and unstable 
leaves by the plaques of the elements of R. Define, for an stable leaf V and x, y ∈
V , the combinatorial distance dR(x, y) equal to the smallest length m of a chain x ∈
R0, R1, . . . , Rm � y, Ri ∩ Ri+1 �= ∅, of plaques of the elements of R (which can be 
infinite). Then dR(f−n(x), f−n(y)) grows exponentially for x �= y, if it is finite. We say 
that α0 > 0 and α1 > 0 are stable lower and upper exponents if there exists C > 1 such 
that

C−1eα0n ≤ dR(f−n(x), f−n(y)) ≤ Ceα1n

for all stably equivalent x, y such that the distance between x and y inside their stable 
leaf belongs to some fixed interval [ε1, ε2] for 0 < ε1 < ε2. Stable upper and lower critical 
exponents are the infimum and the supremum of all stable upper and lower exponents, 
respectively. We prove that the stable critical exponents are uniquely determined by the 
topological conjugacy class of the Smale space and are positive and finite (if the Smale 
space is locally connected and connected). The unstable upper and lower critical expo-
nents are defined in the similar way (they are stable upper and lower critical exponents 
of (X , f−1)). For more details, see Sections 3 and 4.

Note that if the stable or unstable leafs of (X , f) are not locally connected, then the 
corresponding upper exponents are infinite, since the metric dR(x, y) will be infinite for 
some x, y (as we assume that the covering R consists of small rectangles).



JID:YAIMA AID:107385 /FLA [m1L; v1.292; Prn:27/08/2020; 14:36] P.5 (1-66)
V. Nekrashevych / Advances in Mathematics ••• (••••) •••••• 5
Theorem 1.5. Suppose that (X , f) is a Smale space such that X is connected and locally 
connected. Let a0, a1, b0, b1 be the stable lower and upper, and the unstable lower and 
upper critical exponents, respectively. If

a0

a1
+ b0

b1
> 1

then (X , f) is topologically conjugate to a hyperbolic infra-nilmanifold automorphism.

We show that the Brin’s pinching condition on the Mather spectrum of an Anosov 
diffeomorphism implies our condition on the critical exponents.

As another application of Theorem 1.4, we show that the theorem of J. Franks and 
S.E. Newhouse on co-dimension one Anosov diffeomorphisms is true for all locally con-
nected Smale spaces.

Theorem 1.6. Let (X , f) be a Smale space such that X is connected and locally connected, 
and either stable or unstable leaves of (X , f) are homeomorphic (with respect to their 
intrinsic topology) to R. Then (X , f) is topologically conjugate to a hyperbolic linear 
automorphism of a torus Rn/Zn.

Here intrinsic topology of a leaf is the direct limit topology coming from decomposition 
of a leaf into the union of plaques of rectangles of X .

Theorem 1.6, for example, rules out basic sets of Axiom-A diffeomorphisms such that 
the stable leaves are homeomophic to R, while the unstable leaves are locally connected 
but not homeomorphic to manifolds (e.g., are locally homeomorphic to the Sierpinski 
carpet).

Remark. A more general notion of an endomorphism of an infra-nilmanifold is discussed 
in [13,12]. It is also noted there that some of the results of [14] and [34] are based on a 
false result. The proof of Theorem 1.4 shows that it is enough to consider the narrower 
notion of an automorphism of an infra-nilmanifold in the classification of Smale spaces 
and Anosov diffeomorphisms up to topological conjugacy. We do not use the results 
of [14] (except for his proof of Theorem 2.2, which we repeat for our setting). The results 
of [34] are not used in the proof of Theorem 1.2, where also the narrower notion of an 
endomorphism of an infra-nilmanifold is used, see [24, Theorem 6.1.6].

Structure of the paper In Section 2, we collect basic facts and definitions related to 
Smale spaces, and fix the related notations.

We study lower exponents of a Smale space, and a family of metrics associated with 
lower exponents in Section 3. We also recall their properties of the SRB measures on 
leaves of Smale spaces.

Locally connected Smale spaces are studied in Section 4. We show that the following 
conditions for a Smale space (X , f) are equivalent (see Theorem 4.1):
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(1) The space X is locally connected.
(2) All stable and unstable leaves of X are locally connected.
(3) All stable and unstable leaves of X are connected.
(4) X has finite stable and unstable upper exponents.

In Section 5 we study splittings of locally connected Smale spaces. We show that for 
any splitting π : M −→ X of a locally connected Smale space there exists a well defined 
group of deck transformations G, that G is finitely generated, and that there exists a lift 
F : M −→ M of f to M, which is unique up to compositions with elements of G.

The lift F defines then, for any point x0 ∈ M, an automorphism φ of G by the rule 
F (g(x0)) = φ(g)(F (x0)).

Question 1.7. Does the pair (G, φ) uniquely determine the topological conjugacy class of 
(X , f)?

We do not know the answer to this question, but we show that we can reconstruct 
(X , f) after adding an extra piece of information to (G, φ).

Definition 1.8. Let π : M −→ X be a splitting of a locally connected and connected 
Smale space (X , f). Let W+ and W− be stable and unstable plaques of a fixed point 
x0 of a lift of f . We say that Σ+, Σ− ⊂ G are coarse stable and unstable plaques if the 
Hausdorff distances between Σ+(x0) and W+ and between Σ−(x0) and W− are finite.

Here the distance in M is measured with respect to a G-invariant metric.

Theorem 1.9. The quadruple (G, φ, Σ+, Σ−) uniquely determines the topological conju-
gacy class of (X , f).

We prove Theorem 1.9 by representing W+ and W− as boundaries of Gromov hy-
perbolic graphs constructed using the quadruple. These graphs are quasi-isometric to 
Cayley graphs of the Ruelle groupoids associated with the Smale space. A general theory 
of Cayley graphs of hyperbolic groupoids is developed in [27]. We hope that these new 
techniques will be helpful in future studies of hyperbolic dynamics.

We get the following corollary of Theorem 1.9.

Theorem 1.10. Let (Xi, fi) for i = 1, 2 be connected and locally connected Smale spaces. 
Let πi : Mi −→ Xi be splittings, and let Fi : Mi −→ Mi be lifts of fi. Suppose that Fi

have fixed points, and that the groups of deck transformations of πi are both isomorphic to 
a group G. If there exists a continuous map Φ : M1 −→ M2 such that Φ(g(x)) = g(Φ(x))
and Φ(F1(x)) = F2(Φ(x)) for all x ∈ M1 and g ∈ G, then the Smale spaces (X1, f1) and 
(X2, f2) are topologically conjugate.
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Section 6 is devoted to the proof of Theorem 1.4. As the first step we prove the 
following.

Proposition 1.11. Let π : M −→ X be a splitting of a locally connected and connected 
Smale space (X , f) such that the group G of deck transformations is torsion free nilpotent. 
Then f has a fixed point, and the associated automorphism φ : G −→ G is hyperbolic 
(i.e., its unique extension Φ to a simply connected nilpotent Lie group containing G as 
a lattice is hyperbolic).

We prove both statements of Proposition 1.11 by induction on the nilpotency class of 
G. We show at first that the automorphism φ induces a hyperbolic automorphism of the 
center Z(G) ∼= Zn of G. Then we construct an action of Rn on M naturally extending 
the action of Zn, using the direct product structure on M. The action induces an action 
of the torus Rn/Zn on X and agrees with the local product structure, metric on X , 
and the dynamics, in such a way that the map induced by f on (Rn/Zn)\X is a Smale 
space with a splitting with the group of deck transformations isomorphic to G/Z(G). 
This provides us the necessary inductive steps to prove Proposition 1.11. We use after 
that the arguments of [14, Theorem 2.2], Theorem 1.10, and some additional algebraic 
arguments to prove Theorem 1.4.

Theorem 1.5 generalizing the Brin’s pinching condition to Smale spaces is proved in 
Section 7. We prove at first that every Smale space satisfying conditions of Theorem 1.5
has a splitting (Theorem 7.2). Then we prove that the group of deck transformations of 
the splitting is virtually nilpotent (Theorem 7.3) using Gromov’s theorem on groups of 
polynomial growth. Both proofs are similar to the original proofs of M. Brin, except that 
in the proof of Theorem 7.2 we use results of Section 3 on lower exponents of a Smale 
space, which allows us to get a better pinching condition, and to prove the theorem for 
all locally connected Smale space, and not only for Anosov diffeomorphisms.

In Section 8, we show how our condition on critical exponents is related to M. Brin’s 
pinching condition on the Mather spectrum of a diffeomorphism. We show that M. Brin’s 
condition implies the condition of Theorem 1.5.

Section 9 is devoted to the proof Theorem 1.6 on co-dimension one Smale spaces. We 
prove it using Theorem 1.4 and the ideas of the proof of Theorem 1.5.
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(Djursholm, Sweden) as a participant of the semester “Geometric and Analytic Aspects 
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2. Smale spaces

2.1. Local product structures

Definition 2.1. A direct product structure on a topological space R is defined by a con-
tinuous map [·, ·] : R×R −→ R satisfying

(1) [x, x] = x for all x ∈ R;
(2) [[x, y], z] = [x, z] and [x, [y, z]] = [x, z] for all x, y, z ∈ R.

We call a space with a direct product structure on it a rectangle.

If R = A ×B is a decomposition of R into a direct product of two topological spaces, 
then the corresponding direct product structure is given by the operation

[(x1, y1), (x2, y2)] = (x1, y2). (1)

Let R be a rectangle. For x ∈ R the corresponding plaques are the sets

P1(R, x) = {y ∈ R : [x, y] = x}, P2(R, x) = {y ∈ R : [x, y] = y}. (2)

See Fig. 1. If R = A × B with the corresponding direct product structure (1), then the 
plaques are given by

P1(R, (a, b)) = A× {b}, P2(R, (a, b)) = {a} ×B.

The map P1(R, x) × P2(R, x) −→ R given by

(y1, y2) �→ [y1, y2]

is a homeomorphism.
For any pair x, y ∈ R the natural maps P1(R, x) −→ P1(R, y) and P2(R, x) −→

P2(R, y) given by z �→ [y, z] and z �→ [z, y], respectively, are called holonomy maps inside 
R, and are homeomorphisms.

These homeomorphism agree with the homeomorphisms P1(R, x) × P2(R, x) −→ R, 
so that we get a canonical decomposition of R into the direct product of two spaces A
and B, which can be identified with P1(R, x) and P2(R, x), respectively.

Definition 2.2. Let X be a topological space. A local product structure on X is given by 
a covering R of X by open sets R with a direct product structure [·, ·]R on each of them, 
such that for any R1, R2 ∈ R, and for every x ∈ X there exists a neighborhood U of x
such that [y1, y2]R1 = [y1, y2]R2 for all y1, y2 ∈ U ∩R1 ∩R2.

Two coverings of X by open rectangles define the same local product structures if their 
union defines a local product structure, i.e., satisfied the above compatibility condition.
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Fig. 1. Rectangle.

If X is a space with a local direct product structure, then an open subset R ⊂ X
with a direct product structure [·, ·] is a (sub-)rectangle of X if the union of {R} with 
a covering defining the local product structure satisfies the compatibility conditions of 
Definition 2.2.

Definition 2.3. We say that a continuous map f : X1 −→ X2 between spaces with lo-
cal product structures preserves the local product structures if every point of X1 has 
a rectangular neighborhood U such that f(U) is a rectangle of X2, and f([x, y]U ) =
[f(x), f(y)]f(U) for all x, y ∈ U .

Definition 2.4. Let X be a space with a local product structure. We say that a metric 
d on X agrees with the local product structure if for every point x ∈ X there exists an 
open rectangular neighborhood R = A × B of x and metrics dA and dB on A and B, 
respectively, such that the restriction of d to R is bi-Lipschitz equivalent to the metric

dR((x1, y1), (x2, y2)) = dA(x1, x2) + dB(y1, y2).

If a metric d agrees with the local product structure, then for every point x ∈ X
there exists a rectangular neighborhood R of x such that all holonomy maps inside R
are bi-Lipschitz with respect to the metric d with a fixed Lipschitz constant (depending 
only on R). Conversely, it is easy to see that a metric d agrees with the local product 
structure if for every x ∈ X there exists a rectangular neighborhood R of x such that 
the holonomies inside R are uniformly bi-Lipschitz, and d(y, z) is bi-Lipschitz equivalent 
to d([x, y], [x, z]) + d([y, x], [z, x]).

2.2. Smale spaces

Definition 2.5. A Smale space is a compact metrizable space X together with a home-
omorphism f : X −→ X such that there exists a metric d on X , constants λ ∈ (0, 1)
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and C > 0, and a local product structure on X such that f preserves the local product 
structure and for every x ∈ X there exists a rectangular neighborhood R of x such that 
for all n ≥ 0 and y, z ∈ P1(R, x) we have

d(fn(y), fn(z)) ≤ Cλnd(y, z),

and for all n ≥ 0 and y, z ∈ P2(R, x) we have

d(f−n(y), f−n(z) ≤ Cλnd(y, z).

We will denote P1(R, x) = P+(R, x) and P2(R, x) = P−(R, x).
Examples of Smale spaces are Anosov diffeomorphisms of compact manifolds, restric-

tions of Axiom-A diffeomorphisms to their basic sets, shifts of finite type, spaces of 
substitutional tilings, etc. See [31] for more examples. Note that pseudo-Anosov diffeo-
morphisms are not Smale spaces.

Definition 2.6. A homeomorphism f : X −→ X of a compact space X is said to 
be expansive if there exists a neighborhood U of the diagonal in X × X such that 
(fn(x), fn(y)) ∈ U for all n ∈ Z implies x = y.

Note that if U satisfies the conditions of the definition, then {(x, y) ∈ X 2 :
(x, y), (y, x) ∈ U} also satisfies the conditions of the definition. Consequently, we may 
assume that U is symmetric.

Proposition 2.7. Every Smale space is an expansive dynamical system.

Proof. We can find a finite covering R of X by rectangles satisfying the conditions of 
Definition 2.5. Let ε > 0 be a Lebesgue’s number of the covering. There exists δ > 0
such that for any points x, y ∈ X such that d(x, y) < δ and any rectangle R ∈ R such 
that x, y ∈ R we have d(x, [x, y]) < C−1ε and d(y, [x, y]) < C−1ε.

Let x, y ∈ X be such that d(fn(x), fn(y)) < δ for all n ∈ Z. Then for every n ∈ Z there 
exists a rectangle Rn ∈ R such that fn(x), fn(y) ∈ Rn. Then d(fn(x), [fn(x), fn(y)]) <
C−1ε. Note that fn(x) and [fn(x), fn(y)] belong to one plaque P−(Rn, fn(x)). It follows 
that d(fn−k(x), [fn−k(x), fn−k(y)]) ≤ Cλkd(fn(x), [fn(x), fn(y)]) < CλkC−1ε = λkε

for all k ≥ 0 and all n ∈ Z. In particular, d(x, [x, y]) < λkε for all k ≥ 0, i.e., x = [x, y]. 
It is shown in the same way that y = [x, y], which implies that x = y. Therefore, the set 
U ⊂ X × X equal to the set of pairs (x, y) such that d(x, y) < δ satisfies the conditions 
of Definition 2.6. �
Definition 2.8. A log-scale on a set X is a function � : X ×X −→ R ∪{∞} satisfying the 
following conditions:

(1) �(x, y) = �(y, x) for all x, y ∈ X;
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(2) �(x, y) = ∞ if and only if x = y;
(3) there exists Δ > 0 such that

�(x, z) ≥ min{�(x, y), �(y, z)} − Δ

for all x, y, z ∈ X.

We say that two log-scales �1, �2 are bi-Lipschitz equivalent if the difference |�1(x, y) −
�2(x, y)| is uniformly bounded for all x �= y.

Let us describe the natural class of metrics on expansive dynamical systems defined 
in [15], using log-scales.

Let (X , f) be an expansive dynamical system. Let U be a symmetric neighborhood 
of the diagonal, satisfying the conditions of Definition 2.6. Define �(x, y) for x, y ∈ X to 
be maximal n such that (fk(x), fk(y)) ∈ U for all k ∈ [−n, n].

Lemma 2.9. The defined function � is a log-scale. It does not depend, up to bi-Lipschitz 
equivalence, on the choice of U .

We call � the standard log-scale of the expansive dynamical system.

Proof. We have �(x, y) = �(y, x), since we assume that U is symmetric. We also have 
�(x, y) = ∞ if and only if x = y, by Definition 2.6.

It remains to show that there exists Δ such that �(x, z) ≥ min{�(x, y), �(y, z)} − Δ
for all x, y, z ∈ X .

Since a compact set has a unique uniform structure consisting of all neighborhoods 
of the diagonal (see [3]), there exists a neighborhood of the diagonal V ⊂ X 2 such that 
(x, y), (y, z) ∈ V implies (x, z) ∈ U .

Note that the sets Un = {(x, y) : �(x, y) ≥ n} =
⋂n

k=−n fk(U) are neighborhoods of 
the diagonal, Un+1 ⊆ Un for all n, and 

⋂
n≥1 Un is equal to the diagonal. In particular, 

by compactness of X , there exists Δ > 0 such that UΔ ⊂ V .
Denote by Vn =

⋂n
k=−n f

k(V ) the set of pairs (x, y) such that (fk(x), fk(y)) ∈ V for 
all k = −n, . . . , n. Then (x, y), (y, z) ∈ Vn implies (x, z) ∈ Un.

Then for every n > Δ we have Un ⊂ Vn−Δ, since the conditions that (fk(x), fk(y)) ∈
U for all |k| ≤ n implies (fk(x), fk(y)) ∈ UΔ ⊂ V for all |k| ≤ n − Δ.

Let min{�(x, y), �(y, z)} = m. Then (x, y), (y, z) ∈ Um ⊂ Vm−Δ, hence (x, z) ∈ Um−Δ, 
i.e., �(x, z) ≥ m − Δ.

Let us show that � does not depend on the choice of U . Let U ′ and U ′′ be two 
neighborhoods of the diagonal, satisfying the conditions of Definition 2.6. Then, as above, 
there exists C > 0 such that U ′

C ⊂ U ′′ and U ′′
C ⊂ U ′. By the same arguments as above, 

we conclude that U ′
n+C ⊂ U ′′

n and U ′′
n+C ⊂ U ′

n for all n ≥ 0. But this implies that the 
values of the log-scales defined by U ′ and U ′′ differ from each other not more than by 
C. �
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It is proved in [27, Lemma 5.4.2] that for every Smale space (X , f) the log-scale �
agrees with the local product structure on X .

Definition 2.10. Let (X , f) be an expansive dynamical system, and let � be the stan-
dard log-scale. We say that x, y ∈ X are stably equivalent (denoted x ∼+ y) if 
�(fn(x), fn(y)) → +∞ as n → +∞. They are unstably equivalent (denoted x ∼− y) 
if �(f−n(x), f−n(y)) → +∞ as n → +∞. We call stable and unstable equivalence classes 
stable and unstable leaves.

Note that �(xn, yn) → ∞ is equivalent to d(xn, yn) → 0 for any pair of sequences 
xn, yn ∈ X and for any metric d on X .

Two points x, y ∈ X are stably equivalent if and only if (fn(x), fn(y)) ∈ U for all n
big enough. Denote, for x ∈ X and n ∈ Z, by Wn,+(x) the set of points y ∈ X such that 
(fk(x), fk(y)) ∈ U for all k ≥ −n. Similarly, we denote by Wn,−(x) the set of points 
y ∈ X such that (fk(x), fk(y)) ∈ U for all k ≤ n.

Then Wn,+(x) and Wn,−(x) are decreasing sequences of sets, and W+(x) =⋃
n∈N W−n,+(x) and W−(x) =

⋃
n∈N W−n,−(x) are equal to the stable and unstable 

leaves of x, respectively.
Note that for all n ∈ N, x ∈ X , ∗ ∈ {+, −}, and y1, y2 ∈ Wn,∗(x) we have �(y1, y2) ≥ n.
If W is a stable leaf, then we denote, for y1, y2 ∈ W , by �+(y1, y2) or �W (y1, y2) the 

biggest n0 such that (fn(y1), fn(y2)) ∈ U for all n ≥ −n0.
The following properties of �+ follow directly from the definitions.

• �(y1, y2) ≤ �+(y1, y2) for all stably equivalent y1, y2;
• if y1, y2 are stably equivalent and �+(y1, y2) > 0, then �(y1, y2) = �+(y1, y2);
• for all stably equivalent y1, y2 we have

�+(f(y1), f(y2)) = �+(y1, y2) + 1. (3)

Similarly, if W is an unstable leaf, then �−(y1, y2) = �W (y1, y2), for y1, y2 ∈ W , is 
the biggest n0 such that (fn(y1), fn(y2)) ∈ U for all n ≤ n0. We also have �(y1, y1) ≤
�−(y1, y2), �(y1, y2) = �−(y1, y2) if �−(y1, y2) > 0, and

�−(f(y1), f(y2)) = �−(y1, y2) − 1 (4)

for all pairs y1, y2 of unstably equivalent points.

Lemma 2.11. Let W be a stable or unstable leaf. Then the corresponding function �+ or 
�− is a log-scale on W .

Proof. If �+(x, y), �+(y, z), �+(x, z) are all positive, then they are equal to the corre-
sponding values of �, hence, by Lemma 2.9, �+(x, z) ≥ min(�+(x, y), �+(y, z)) −Δ, for Δ
not depending on x, y, z.
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If they are not positive, then we can find n ≥ 0 such that �+(fn(x), fn(y)) =
�+(x, y) + n, �+(fn(y), fn(z)) = �+(y, z) + n, and �+(fn(x), fn(z)) = �+(x, z) + n are 
positive, and applying the above argument for fn(x), fn(y), and fn(z) conclude that 
�+(x, z) + n ≥ min(�+(x, y) + n, �+(y, z) + n) − Δ, which is equivalent to �+(x, z) ≥
min(�+(x, y), �+(y, z)) − Δ. �

We call the log-scales �+ and �− the internal log-scales on the respective leaf.
The internal topology on a leaf is the topology defined by the corresponding log-

scale �+ or �−. Here topology defined by a log-scale � on a set X is given by the basis 
B(n, x) = {y ∈ X : �(x, y) ≥ n} of neighborhoods of points x ∈ X. Note that B(n, x)
is not necessarily open or closed.

Equivalently, the internal topology of a leaf W is equal to the direct limit topology of 
representation of W as the union of the sequence W−n,∗(x) for n ∈ N and x ∈ W .

Note also that leaves of a Smale space are locally compact, since neighborhoods of 
points of a leaf are continuous images of neighborhoods of points of X .

2.3. Irreducible Smale spaces

Let (X , f) be a Smale space. A point x ∈ X is said to be non-wandering if for every 
neighborhood U of x there exists a positive integer n such that fn(U) ∩ U �= ∅. The set 
of non-wandering points is obviously f -invariant and closed.

We say that (X , f) is irreducible if for every pair of open sets U, V ⊂ X there exists 
a positive integer n such that fn(U) ∩ V �= ∅. We say that it is mixing if for every pair 
of open sets U, V ⊂ X there exists N such that fn(U) ∩ V �= ∅ for all n ≥ N .

Smale spaces were introduced by D. Ruelle [33] as purely topological generalizations 
of basic sets of Axiom-A diffeomorphisms. Note, however, that general Smale spaces may 
have non-empty wandering sets. For example, every shift of finite type is a Smale space, 
but shifts of finite type may have wandering points.

On the other hand, the Smale’s Spectral Decomposition Theorem [35, Theorems 6.2, 
6.6] holds for Smale spaces.

Theorem 2.12. Let (X , f) be a Smale space. Then the dynamical system (NW (X ), f), 
where NW (X ) is the set of non-wandering points, is a Smale space. The set NW (X )
can be decomposed into a finite disjoint union of closed f -invariant sets X1, X2, . . . , Xn

such that (Xi, f) is an irreducible Smale space without wandering points.
We write Xi ≺ Xj if there exists a wandering point x ∈ X such that the set of the 

accumulation points of fn(x), n ≥ 0, is contained in Xj, and the set of the accumula-
tion points of fn(x), n ≤ 0, is contained in Xi. Then ≺ is a partial order on the set 
{X1, . . . , Xn}.

The sets X1, . . . , Xn are called irreducible components of the Smale space (X , f).
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A proof of the above theorem is similar to the proof of the classical Smale’s spectral 
decomposition theorem, and can be found in [31]. We also have the following relation 
between the notions of an irreducible and mixing Smale spaces, see [31].

Theorem 2.13. Suppose that (X , f) is an irreducible Smale space. Then X can be de-
composed into a finite union X = A1 � A2 � · · · � Ak of disjoint clopen sets cyclically 
permuted by f and such that (Ai, fk) are mixing Smale spaces.

3. Lower exponents

3.1. Lower exponents of log-scales

We say that d is a metric associated with a log-scale �, if there exist constants α > 0
and C > 1 such that

C−1e−α�(x,y) ≤ d(x, y) ≤ Ce−α�(x,y).

The number α is called the exponent of the metric. Topology defined by an associated 
metric obviously coincides with the topology defined by the log-scale.

Note that if d is a metric associated with � of exponent α, then for any 0 < r < 1
the function (d(x, y))r is a metric associated with � of exponent rα. It follows that the 
set of exponents α for which there exists a metric associated with a given log-scale is an 
interval of the form (0, α0) or (0, α0], where α0 ∈ [0, ∞]. We will see later that α0 > 0
(see also [27]). The number α0 is the metric critical exponent of the log-scale.

Let X be a set with a log-scale �. Let Γn, for n ∈ R, be the graph with the set of 
vertices X in which two points x, y are connected by an edge if and only if �(x, y) ≥ n. 
Denote then by dn the combinatorial distance in Γn (we assume that dn(x, y) = ∞ if x
and y belong to different connected components of Γn).

Proposition 3.1. Let Δ be such as in Definition 2.8. There exist C > 0 such that

dn(x, y) ≥ Ceα(n−�(x,y))

for all x, y ∈ X and all n ∈ N, where α = log 2
Δ .

Proof. If (x0, x1, x2) is a path in Γn, then �(x0, x2) ≥ n − Δ, hence (x0, x2) is a path in 
Γn−Δ. It follows that dn−Δ(x, y) ≤ 1

2 (dn(x, y) + 1). In other terms:

dn+Δ(x, y) ≥ 2dn(x, y) − 1.

If �(x, y) = m, then dm+1(x, y) ≥ 2, and hence

dm+1+kΔ(x, y) ≥ 2k+1 − 2k−1 − 2k−2 − · · · − 1 = 2k + 1
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Note that dm(x, y) ≥ dn(x, y) whenever m ≥ n. It follows that for k =
⌊
n−�(x,y)−1

Δ

⌋
≥

n−�(x,y)−1
Δ − 1 we have

dn(x, y) ≥ d�(x,y)+1+kΔ(x, y) > 2k.

Consequently,

dn(x, y) ≥ 2(n−�(x,y)−1−Δ)/Δ = Ceα(n−�(x,y))

for all x, y ∈ X and n ∈ R, where C = 2(−1−Δ)/Δ and α = ln 2
Δ . �

Definition 3.2. We say that α is a lower exponent of a log-scale � if there exists C > 0
such that

dn(x, y) ≥ Ceα(n−�(x,y))

for all x, y ∈ X and n ∈ Z. The supremum of all lower exponents is called the lower 
critical exponent.

The proof of the following proposition is straightforward.

Proposition 3.3. Let �1 and �2 be bi-Lipschitz equivalent log-scales on X. A number α > 0
is a lower exponent of �1 if and only if it is a lower exponent of �2.

Theorem 3.4. The metric critical exponent of a log-scale � is equal to its lower critical 
exponent. In particular, the metric critical exponent is positive.

Proof. Let d be a metric on X of exponent α associated with �, and let C1 > 1 be such 
that

C−1
1 e−α�(x,y) ≤ d(x, y) ≤ C1e

−α�(x,y)

for all x, y ∈ X.
Then for every n the inequality �(x, y) ≥ n implies d(x, y) ≤ C1e

−αn, hence

d(x, y) ≤ C1dn(x, y)e−αn

for all x, y. It follows that

dn(x, y) ≥ C−1
1 d(x, y)eαn ≥ C−2

1 eαn−α�(x,y),

for all x, y ∈ X and n ∈ N, i.e., α is a lower exponent.
Let α be a lower exponent. Let β be an arbitrary number such that α > β > 0. It is 

enough to show that there exists a metric on X of exponent β associated with �.
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Define, for x, y ∈ X, dβ(x, y) as the infimum of 
∑m

i=1 e
−β�(xi−1,xi) over all sequences 

x0 = x, x1, x2, . . . , xm = y. The function dβ(x, y) obviously satisfies the triangle inequal-
ity, is symmetric, and

dβ(x, y) ≤ e−β�(x,y)

for all x, y ∈ X.
It remains to prove that there exists a constant C2 such that for any sequence x0 =

x, x1, x2, . . . , xm = y we have

m∑
i=1

e−β�(xi−1,xi) ≥ C2e
−β�(x,y).

Let C be such that 0 < C < 1 and dn(x, y) ≥ Ceα(n−�(x,y)) for all x, y ∈ X and all n. 
Let us prove our statement by induction on m for C2 = exp

(
β(logC−2αΔ)

α−β

)
.

The statement is true for m = 1, since C2 < 1. Suppose that we have proved it for all 
k < m, let us prove it for m.

Lemma 3.5. Let x0, x1, . . . , xm be a sequence such that �(xi, xi+1) ≥ n for all i =
0, 1, . . . , m − 1. Let n0 ≤ n. Then there exists a sub-sequence y0 = x0, y1, . . . , yt−1, yt =
xm of the sequence xi such that

n0 − 2Δ ≤ �(yi, yi+1) < n0

for all i = 0, 1, . . . , t − 1.

Proof. Let us construct the subsequence yi by the following algorithm. Define y0 = x0. 
Suppose we have defined yi = xr for r < m. Let s be the largest index such that s > r

and �(xr, xs) ≥ n0. Note that since �(xr, xr+1) ≥ n ≥ n0, such s exists.
If s < m, then �(xr, xs+1) < n0, and

�(xr, xs+1) ≥ min{�(xr, xs), �(xs, xs+1)} − Δ ≥ min{n0, �(xs, xs+1)} − Δ = n0 − Δ.

Define then yi+1 = xs+1. We have

n0 − Δ ≤ �(yi, yi+1) < n0.

If s + 1 = m, we stop and get our sequence y0, . . . , yt, for t = i + 1.
If s = m, then �(xr, xm) = �(yi, xm) ≥ n0, and

�(yi−1, xm) ≥ min{�(yi−1, yi), �(yi, xm)} − Δ ≥ min{n0 − Δ, n0} − Δ = n0 − 2Δ

and



JID:YAIMA AID:107385 /FLA [m1L; v1.292; Prn:27/08/2020; 14:36] P.17 (1-66)
V. Nekrashevych / Advances in Mathematics ••• (••••) •••••• 17
�(yi−1, xm) < n0,

since yi was defined and was not equal to xm. Then we redefine yi = xm and stop the 
algorithm.

In all the other cases we repeat the procedure. It is easy to see that at the end we get 
a sequence yi satisfying the conditions of the lemma. �

Let x0 = x, x1, . . . , xm = y be an arbitrary sequence of points of X. Let n0 be the 
minimal value of �(xi, xi+1). Let y0 = x, y1, . . . , yt = y be a sub-sequence of the sequence 
xi satisfying conditions of Lemma 3.5.

Suppose at first that

n0 < �(x, y) + 2αΔ − logC
α− β

.

Remember that n0 = �(xi, xi+1) for some i, hence

m∑
i=1

e−β�(xi−1,xi) ≥ e−βn0 > exp
(
−β�(x, y) − β(2αΔ − logC)

α− β

)
= C2e

−β�(x,y),

and the statement is proved.
Suppose now that n0 ≥ �(x, y) + 2αΔ−logC

α−β , which is equivalent to

(α− β)n0 − (α− β)�(x, y) − 2αΔ + logC ≥ 0. (5)

If t = 1, then n0 − 2Δ ≤ �(x, y) < n0, hence

n0 ≤ �(x, y) + 2Δ = �(x, y) + 2αΔ − 2βΔ
α− β

< �(x, y) + 2αΔ − logC
α− β

,

since logC < 0 < 2βΔ. But this contradicts our assumption.
Therefore t > 1, and the inductive assumption implies

m∑
i=1

e−β�(xi−1,xi) ≥
t−1∑
i=0

C2e
−β�(yi,yi+1) > tC2e

−βn0 .

We have t ≥ dn0−2Δ(x, y) ≥ Ceα(n0−2Δ−�(x,y)), hence

m∑
i=1

e−β�(xi−1,xi) ≥ CC2e
−βn0+αn0−2αΔ−α�(x,y) =

C2 exp (logC − βn0 + αn0 − 2αΔ − α�(x, y)) =

C2 exp (−β�(x, y) + (α− β)n0 − (α− β)�(x, y) − 2αΔ + logC) ≥ C2e
−β�(x,y),

by (5). �
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3.2. Lower exponents of Smale spaces

Definition 3.6. Let (X , f) be a Smale space. A number α > 0 is a stable (resp. unstable) 
lower exponent of the Smale space if there exists a constant C > 0 such that for any 
stable (resp. unstable) leaf W and any x, y ∈ W we have

dn(x, y) ≥ Ceα(n−�W (x,y))

for the internal log-scale on W . The supremum of the stable (resp. unstable) lower 
exponents is called the stable (resp. unstable) lower critical exponent.

Note that by Proposition 3.1 lower stable and unstable exponents exist and are positive 
for any Smale space. Proposition 3.3 implies that the lower critical exponents of a Smale 
space depend only on the topological conjugacy class of the Smale space.

Proposition 3.7. Let l ∈ R. A number α > 0 is a lower stable (resp. unstable) exponent 
of (X , f) if and only if there exists Cl > 0 such that for every stable (resp. unstable) leaf 
W and for every two points x, y ∈ W such that �W (x, y) ≤ l we have

dn(x, y) ≥ Cle
αn (6)

for all n.

Proof. Let us assume that W is a stable leaf (the proof for an unstable leaf is the same). 
If α is a lower exponent and C is as in Definition 3.6, then for any x, y ∈ W such that 
�W (x, y) ≤ l we have

dn(x, y) ≥ Ceα(n−�W (x,y)) ≥ Ce−αl · eαn,

and we can take Cl = Ce−αl.
Suppose now that Cl > 0 is such that dn(x, y) ≥ Cle

αn for all x, y belonging to one 
stable leaf W and such that �W (x, y) ≥ l.

Let x and y be arbitrary stably equivalent points of X . Let W0 be their stable leaf. 
Denote n0 = �W0(x, y). Then �W (f l−n0(x), f l−n0(y)) = l, where W is the stable leaf of 
f l−n0(x) ∼+ f l−n0(y). Consequently,

dn(f l−n0(x), f l−n0(y)) ≥ Cle
αn

for all n.
The map z �→ f l−n0(z) transforms every path in Γn(W1) to a path in Γn+l−n0(W2), 

where W1 and W2 are the stable leaves of z and f l−n0(z), see (3).
It follows that

dn(x, y) ≥ dn+l−n0(f l−n0(x), f l−n0(y)) ≥ Cle
α(n+l−n0) = Cle

l · eα(n−�W0 (x,y)),



JID:YAIMA AID:107385 /FLA [m1L; v1.292; Prn:27/08/2020; 14:36] P.19 (1-66)
V. Nekrashevych / Advances in Mathematics ••• (••••) •••••• 19
which shows that α is a lower exponent. �
3.3. Metric properties of leaves

Let (X , f) be a Smale space, and let �, �+, and �− be the standard log-scale on X , and 
the internal log-scales on the stable and unstable leaves of X . Let U be a neighborhood 
of the diagonal satisfying the conditions of Definition 2.6.

The following theorem describes the classical theory of Bowen-Margulis measure on 
Smale spaces, see [5]. See its exposition in [26], which is notationally close to our paper.

Denote by d, d+, and d− metrics associated with the log-scales �, �+, and �−, respec-
tively. Denote by B∗(r, x) the ball of radius r, with respect to the metric d∗, with center 
in x, where ∗ ∈ {+, −}.

Theorem 3.8. Suppose that (X , f) is mixing. There exists a number η > 0 (called the
entropy of (X , f)), and a family of Radon measures μ+ and μ− on the stable and unstable 
leaves of X satisfying the following properties.

(1) There exists a number C > 1 such that

C−1rη/α∗ ≤ μ∗(B∗(r, x)) ≤ Crη/α∗

for all r ≥ 0, x ∈ X , and ∗ ∈ {+, −}, where α∗ is the exponent of the metric d∗.
(2) The measures are preserved under holonomies.
(3) The measures are quasi-invariant with respect to f , and df∗(μ+)

dμ+
= eη, df∗(μ−)

dμ−
= e−η.

It follows from condition (1) of the theorem, that μ+ and μ− are equivalent to the 
Hausdorff measures of the metrics d+ and d− of dimension η

α+
and η

α−
, respectively.

4. Locally connected Smale spaces and upper exponents

4.1. Connectivity

The aim of this section is to prove the following description of locally connected Smale 
spaces.

Theorem 4.1. Let (X , f) be a Smale space. The following conditions are equivalent.

(1) The space X is locally connected.
(2) All stable and unstable leaves are locally connected.
(3) All stable and unstable leaves are connected.
(4) All stable and unstable leaves are locally path connected.
(5) All stable and unstable leaves are path connected.
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(6) The graphs Γ0(W ) are connected for every (stable or unstable) leaf W .
(7) The graphs Γn(W ) are connected for every leaf W and every n.
(8) There exist α > 0 and C > 0 such that for every leaf W we have

dn(x, y) ≤ Ceα(n−�W (x,y))

for all x, y ∈ W and all n ≥ �W (x, y).

Recall that for a stable or unstable leaf W , we denote by Γn(W ) the graph with the 
set of vertices W in which two vertices x, y are connected by an edge if and only if 
�W (x, y) ≥ n, where �W is the corresponding (�+ or �−) internal log-scale on W .

Let us start by proving equivalence of conditions (1) and (2).

Proposition 4.2. Let (X , f) be a Smale space. The space X is locally connected if and 
only if each leaf is locally connected.

Proof. Each point x ∈ X has a neighborhood homeomorphic to the direct product of 
the neighborhoods of x in the corresponding stable and unstable leaves. It follows that 
if x has bases of connected neighborhoods in the leaves, then x has a basis of connected 
neighborhoods in X .

In the other direction, if x has a basis of connected neighborhoods in X , then for any 
rectangular neighborhood R of x there exists a connected neighborhood U ⊂ R of x. Its 
projection onto the direct factors of R will be connected, hence the point x has bases of 
connected neighborhoods in its leaves. �
Proposition 4.3. If every stable leaf of (X , f) is locally connected, then every stable leaf 
of (X , f) is connected.

Proof. For every point x ∈ X there exists a connected neighborhood U of x in its 
stable leaf and a rectangular neighborhood R of x in X such that P+(R, x) = U . Then 
each plaque of R will be homeomorphic to U , hence will be connected. It follows that 
every point of X has a rectangular neighborhood R such that all its stable plaques are 
connected. Since X is compact, there exists a finite covering R = {Ri} of X by open 
rectangles with connected stable plaques.

Let W be a stable leaf, and let x, y ∈ W . By Lebesgue’s covering lemma, there exists n
such that fn(x) and fn(y) belong to one plaque V of a rectangle Ri ∈ R. Then f−n(V )
is a connected subset of W containing x and y. We have shown that any two points of 
W belong to one connected component of W , i.e., that W is connected. �

Let R = {Ri}i∈I be a finite covering of X by open rectangles. Let R+ be the set of 
all stable plaques of elements of R.
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Every stable leaf W is a union 
⋃

T∈R+,T⊂W T of stable plaques contained in W . Each 
plaque is an open subset of W and the internal topology on W coincides with the direct 
limit topology of the union of the plaques.

Denote by Γ′
n(W ) the graph with the set of vertices W in which two vertices are 

connected by an edge if they belong to one set of the form fn(T ), T ∈ R+.
The map f : W −→ f(W ) induces isomorphisms Γn(W ) −→ Γn+1(f(W )) and 

Γ′
n(W ) −→ Γ′

n+1(f(W )), see (3) and (4) for the first isomorphism.

Lemma 4.4. There exists a number k0 such that if x, y ∈ W are adjacent in Γn(W ), then 
they are adjacent in Γ′

n−k0
(W ), and if x, y ∈ W are adjacent in Γ′

n(W ), then they are 
adjacent in Γn−k0(W ).

Proof. There exists k1 such that for every plaque V ∈ R+ and every pair x, y ∈ V

we have (fk(x), fk(y)) ∈ U for all k ≥ k1 (where U is a neighborhood of the diagonal 
defining �, �+, and �−). If x, y ∈ W are connected by an edge in Γ′

n(W ), then x, y ∈ fn(T )
for T ∈ R+, hence (fk−n(x), fk−n(y)) ∈ U for all k ≥ k1, hence �+(x, y) ≥ n − k1, i.e., 
x and y are connected by an edge in Γn−k1(W ).

By Lebesgue’s covering lemma, there exists k2 such that if x, y ∈ W are such that 
�W (x, y) ≥ k2, then x and y belong to one plaque V ∈ R+. Then every edge of Γk2(W )
is an edge in Γ′

0(W ). Consequently, every edge of Γn(W ) is an edge in Γn−k2(W ). �
Proposition 4.5. The following conditions are equivalent.

(1) The graph Γ0(W ) is connected for every stable leaf W .
(2) The graph Γn(W ) is connected for every stable leaf W and for every n ∈ Z.
(3) The graph Γ′

0(W ) is connected for every stable leaf W .
(4) The graph Γ′

n(W ) is connected for every stable leaf W and for every n ∈ Z.

Proof. Since the map fk : W −→ fk(W ) induces isomorphisms Γn(W ) −→
Γn+k(fk(W )) and Γ′

n(W ) −→ Γ′
n+k(fk(W )), (1) is equivalent to (2), and (3) is equiva-

lent to (4).
Let k0 be as in Lemma 4.4. If all graphs Γn(W ) are connected, then all graphs 

Γ′
n−k0

(W ) ⊇ Γn(W ) are connected. If all graphs Γ′
n(W ) are connected, then all graphs 

Γn−k0(W ) ⊇ Γ′
n(W ) are connected. This shows that all conditions (1)–(4) are equivalent 

to each other. �
Proposition 4.6. If a stable leaf W is connected, then the graph Γ′

n(W ) is connected for 
every n.

Proof. Suppose that W is a connected stable leaf. Let A be a connected component of 
Γ′

0(W ). Let WA be the union of the plaques V ∈ R+ containing vertices of A. It follows 
from the definition of the graph Γ′

0(W ) that every plaque V ∈ R+ is either contained 
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in WA, or is disjoint with it. Consequently, WA is clopen, which implies that W = WA, 
hence A = W , and Γ′

0(W ) is connected. �
Proposition 4.7. Suppose that the graphs Γ′

n(W ) are connected for all stable leaves W
and all n. Then there exists A ≥ 1 such that any two adjacent vertices in Γ′

0(W ) are on 
distance at most A in Γ′

1(W ).

Proof. Let E be the closure in X×X of the set pairs of points (x, y) such that there exists 
a plaque V ∈ R+ such that x, y ∈ V . It is easy to see that E is compact. It contains the 
set of edges of every graph Γ′

0(W ), and is contained in the stable equivalence relation.
Any pair of points x, y such that (x, y) ∈ E is connected by a path in Γ′

1(W ), as 
all graphs Γ′

n(W ) are connected. It means that there exists a sequence of rectangles 
R1, . . . , Rn ∈ R, and a sequence of points xi ∈ Ri such that x and x1 belong to the 
same stable plaque of R1, y and xn belong to the same stable plaque of Rn, and the 
stable plaque of xi in Ri intersects with the stable plaque of xi+1 in Ri+1. This sequence 
R1, . . . , Rn will define a path in Γ′

1(W ) connecting any two points (x′, y′) belonging to 
a neighborhood of (x, y) in E. It follows then from compactness of E that we can find 
a finite upper bound on the length of a path connecting any two points of E, which 
finishes the proof. �

Recall that dn(x, y) is the distance in the graph Γn(W ).

Proposition 4.8. Suppose that all graphs Γ′
n(W ) are connected. Then there exist positive 

constants α and C such that for any two points x, y ∈ W we have

dn(x, y) ≤ Ceα(n−�W (x,y))

for all n ≥ �W (x, y).

Proof. Let A and k0 be as in Propositions 4.7 and 4.4, and let x, y ∈ W be arbitrary. 
Denote n0 = �W (x, Y ). The points x and y are connected by an edge in Γn0(W ), hence 
they are connected by an edge in Γ′

n0−k0
(W ). It follows from Proposition 4.7 that for 

every k ≥ 0, distance between x and y in Γ′
n0−k0+k(W ) is not greater than Ak. As the 

set of edges of Γ′
n0−k0+k(W ) is contained in the set of edges of Γn0−2k0+k(W ), we have

dn0−2k0+k(x, y) ≤ Ak,

for all k ≥ 0. Consequently,

dn(x, y) ≤ An−n0+2k0 = A2k0 ·An−�W (x,y)

for all n ≥ �W (x, y) − 2k0. �
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Proposition 4.9. Suppose that all graphs Γ′
n(W ) are connected. Let d be a metric on W

associated with �W . There exists a constant C such that for any two points x, y ∈ W

there exists a curve γ : [0, 1] −→ W connecting x to y and such that the diameter the 
range of γ is not larger than Cd(x, y).

Proof. Let A and k0 be as in Propositions 4.7 and 4.4. Let C1 > 1 and α > 0 be such 
that C−1

1 e−α�W (x,y) ≤ d(x, y) ≤ C1e
−α�W (x,y) for all x, y ∈ W .

Take arbitrary x, y ∈ W . Let n0 = �W (x, y). Then x and y are adjacent in Γ′
n0−k0

(W ), 
hence they are connected by a path γ1 : {x = x1,1, x1,2, . . . , x1,m1 = y} of length at most 
A in Γ′

n0−k0+1(W ). Each pair of points x1,i, x1,i+1 is connected by a path of length at 
most A in Γ′

n0−k0+2(W ). We get then a path γ2 = {x = x2,1, x2,2, . . . , x1,m2} of length 
at most A2 in Γ′

n0−k0+2(W ), containing γ1. We get then inductively defined sequence of 
paths γn = {x = xn,1, xn,2, . . . , xn,mn

= y} in Γ′
n0−k0+n(W ) such that each next path γn

is obtained from γn−1 by inserting at most A − 1 points between each pair of neighbors 
of γn.

Every pair of points xn,j, xn,j+1 is adjacent in Γ′
n0−k0+n(W ), hence �W (xn,j , xn,j+1) ≥

n0 − 2k0 + n, hence d(xn,j , xn,j+1) ≤ C1e
−α(n+n0−2k0). In particular, for every point t1

of γn+1 there exists a point t2 of γn such that d(t1, t2) < AC1e
−α(n+1+n0−2k0).

It follows that the diameter of the set γn is not greater than

C1e
−α(n0−2k0) + 2

n∑
i=1

AC1e
−α(i+n0−2k0) <

2C1Ae−α(n0−2k0) · 1
1 − e−α

=

2C1Ae2αk0

1 − e−α
· e−α�W (x,y) ≤ 2C2

1Ae2αk0

1 − e−α
· d(x, y).

Since d(xn,j , xn,j+1) ≤ C1e
−α(n0−2k0+n), the closure of 

⋃∞
n=1 γn is the image of a 

continuous curve connecting x to y. Diameter of the image of the curve is not greater 
than 2C2

1Ae2αk0

1−e−α · d(x, y). �

Let us summarize now the proof of Theorem 4.1. The equivalence of (1) and (2) 
is shown in Proposition 4.2. The implication (2)⇒(3) is given in Proposition 4.3. The 
equivalence of (6) and (7) is contained in Proposition 4.5. Proposition 4.6 shows then 
that (3) implies (6). Proposition 4.8 proves that (7) implies (8). Condition (8) obviously 
implies (7). Proposition 4.9 shows that (7) implies path connectivity and local path 
connectivity of the leaves, i.e., that (7) implies (4) and (5). The implications (3)⇒(1), 
(5)⇒(3), and (4)⇒(2) are obvious. This finishes the proof of Theorem 4.1.
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4.2. Local product structure on locally connected Smale spaces

Proposition 4.10. Let R be a sub-rectangle of a Smale space (X , f). If R is connected 
and locally connected, then the direct product structure on R compatible with the local 
product structure on X is unique.

Proof. Suppose that, on the contrary, there exist two different direct product structures 
[·, ·]1 and [·, ·]2, both compatible with the local product structure on X .

By Definition 2.2, there exists a covering R of X by open rectangles such that for any 
U ∈ R and x, y ∈ R ∩ U we have [x, y]U = [x, y]1 = [x, y]2. Then for every U ∈ R the 
intersection U ∩ R is a (possibly empty) sub-rectangle of R with respect to both direct 
product structures; and restrictions of the direct products structures [·, ·]i, i = 1, 2, onto 
U ∩R coincide.

Since R is connected, all plaques of R (with respect to both direct products structures) 
are connected. Let P+ be a stable plaque of (R, [·, ·]1). Let x, y ∈ P+. Since P+ is 
connected, there exists a sequence of points x0 = x, x1, . . . , xn = y and a sequence of 
rectangles U0, U1, . . . , Un ∈ R such that xi ∈ Ui, and Ui ∩ Ui+1 ∩ P+ �= ∅. The set 
Ui ∩ P+ is a plaque of the rectangle Ui ∩ R, hence it is a subset of the stable plaque 
of (R, [·, ·]2). We get a sequence Ui ∩ P+ of subsets of plaques of (R, [·, ·]2) such that 
(Ui ∩ P+) ∩ (Ui+1 ∩ P+) �= ∅. But it means that Ui ∩ P+ are subsets of one plaque of 
(R, [·, ·]2). We have shown that if two points belong to one stable plaque of (R, [·, ·]1), 
then they belong to one stable plaque of (R, [·, ·]2). The converse is proved in the same 
way. Consequently, the stable plaques of R with respect to [·, ·]1 are the same as the 
stable plaques of R with respect to [·, ·]2. The same statement is obviously true for the 
unstable plaques, which implies that the direct product structures [·, ·]1 and [·, ·]2 on R
coincide. �
4.3. Upper exponents

Definition 4.11. A positive number α > 0 is a stable (resp. unstable) upper exponent of 
the Smale space if there exists C > 0 such that for any stable (resp. unstable) leaf W
and every pair of points x, y ∈ W we have

dn(x, y) ≤ Ceα(n−�W (x,y))

for all n ≥ �W (x, y).

Note that changing �W to a bi-Lipschitz equivalent log-scale, one does not change 
the set of upper exponents, i.e., this notion is well defined and depends only on the 
topological conjugacy class of the Smale space (see Lemma 2.9).

By Theorem 4.1 a finite upper exponent exists if X is locally connected.
The proof of the next proposition is analogous to the proof of Proposition 3.7.
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Proposition 4.12. Fix l ∈ R. A number α > 0 is a stable (resp. unstable) upper exponent 
if and only if there exists a constant Cl > 0 such that for any stable (resp. unstable) leaf 
W and any x, y ∈ W such that �W (x, y) ≥ l we have

dn(x, y) ≤ Cle
αn

for all n ≥ 0.

5. Splittings of Smale spaces

5.1. Groups of deck transformations

Definition 5.1. Let (X , f) be a Smale space. A splitting of (X , f) is a covering map 
π : M −→ X , where M is a space with a (global) direct product structure, such that

(1) π preserves the local product structures on M and X , see Definition 2.3;
(2) restriction of π onto every plaque P1(M, x) of M is a homeomorphism with the 

stable leaf W+(π(x)), and restriction of π onto every plaque P2(M, x) of M is a 
homeomorphism with the unstable leaf W−(π(x)), with respect to their intrinsic 
topology.

Proposition 5.2. If there exists a splitting of a Smale space (X , f), then the Smale space 
is irreducible and the set of non-wandering points of (X , f) is equal to X . If, in addition, 
X is connected, then (X , f) is mixing.

Proof. The proof is the same as, for example, the proof of Theorem 5 in [11]. Suppose 
that π : M −→ X is a splitting. Let X1, X2 ⊂ X be irreducible components of (X , f), 
see Theorem 2.12. Take x1, x2 ∈ M such that π(x1) ∈ X1 and π(x2) ∈ X2. Consider 
the point [x1, x2] ∈ M. Then π([x1, x2]) ∈ W+(π(x1)) ∩W−(π(x2)). It follows that the 
set of the accumulation points of fn(π([x1, x2])) for n ≥ 0 belongs to X1, and the set 
of the accumulation points of fn(π([x1, x2])) for n ≤ 0 belongs to X2, hence X2 ≺ X1. 
But we will also have X1 ≺ X2 by considering [x2, x1], which implies X1 = X2, by 
Theorem 2.12. Consequently, (X , f) has no wandering points and is irreducible. The rest 
of the proposition follows from Theorem 2.13. �
Proposition 5.3. Suppose that X is connected and locally connected. Let π1 : M1 −→ X
and π2 : M2 −→ X be splittings of (X , f). If x1 ∈ M1 and x2 ∈ M2 are such that 
π1(x1) = π2(x2), then there exists a unique homeomorphism F : M1 −→ M2 preserving 
the local product structures such that π1 = π2 ◦ F and F (x1) = x2.

Proof. Since the leaves of locally connected Smale spaces are connected and locally 
connected, the spaces Mi are connected and locally connected.
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Denote x = π1(x1) = π2(x2). Restriction of πi onto the plaques P1(Mi, xi) and 
P2(Mi, xi) are homeomorphisms with the leaves W+(x) and W−(x), respectively. There-
fore, the only possible way to define F is by the equality

F ([y1, y2]M1) = [z1, z2]M2 ,

where y1 ∈ P1(M1, x1), y2 ∈ P2(M1, x1) are arbitrary, while z1 ∈ P1(M2, x2), z2 ∈
P2(M2, x2) are uniquely determined by the condition π1(y1) = π2(z1) and π1(y2) =
π2(z2).

The defined map F is a homeomorphism, since it is a direct product of two homeo-
morphisms. Consequently, π2◦F : M1 −→ X is a covering map. Since F and π2 preserve 
the local product structures of Mi and X , their composition π2 ◦ F preserves the local 
product structures, i.e., the image of the direct product structure on M1 by F defines 
the same local product structure on M2 as the direct product structure [·, ·]M2 . By the 
same arguments as in the proof of Proposition 4.10, the direct product structure on M2
is uniquely determined by the corresponding local product structure. Consequently, F
preserves the direct product structures, i.e., F ([y1, y2]M1) = [F (y1), F (y2)]M2 for all 
y1, y2 ∈ M1. It follows that if π1(y) = π2(F (y)) for y ∈ M1, then π1 = π2 ◦ F on 
a rectangular neighborhood of y. Consequently, the set of points y ∈ M1 such that 
π1(y) = π2(F (y)) is open and closed, it contains x, hence it is equal to M1. �

We assume now that (X , f) is a locally connected and connected Smale space.
Let π : M −→ X be a splitting. Let G be the set of all homeomorphisms g : M −→ M

preserving the direct product structure on M and such that π = π ◦ F . Then G is 
obviously a group. By Proposition 5.3 (for the case π1 = π2), the action of the group 
on M is free and transitive on π−1(x) for every x ∈ X . We call G the group of deck 
transformations of the splitting. It acts properly on M, since every point of M has a 
neighborhood U such that π(U) is evenly covered, i.e., such that g(U) ∩ U = ∅ for all 
not-trivial g ∈ G.

Note that if π : M −→ X is a splitting, then π◦f is also a splitting. Choose x1, x2 ∈ M
such that f ◦π(x1) = π(x2), and apply Proposition 5.3 to π1 = f ◦π and π2 = π. We get 
that there exists a unique homeomorphism F : M −→ M preserving the direct product 
structure such that F (x1) = x2 and π ◦ F = f ◦ π.

Definition 5.4. Let π : M −→ X be a splitting. We say that a homeomorphism F :
M −→ M preserving the direct product structure is a lift of f if π ◦ F = f ◦ π.

It follows from the above arguments that lifts of f exist, and if F1 and F2 are two 
lifts, then F−1

1 F2 and F1F
−1
2 belong to G.

It also follows that for every g ∈ G, and every lift F of f , we have F−1gF ∈ G. The 
map g �→ F−1gF is an automorphism of G. We say that it is induced by f . Any two 
automorphisms induced by f on G differ from each other by an inner automorphism.
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Proposition 5.5. The group of deck transformations of a splitting of a connected and 
locally connected Smale space is finitely generated.

Proof. Let π : M −→ X be a splitting. Consider a finite covering U of X by open 
connected evenly covered by π subsets. Let UM be the union of the sets of connected 
components of π−1(U) for all U ∈ U . Then UM is a covering of M. Since M is connected, 
every two elements U, V ∈ UM are connected with each other by a chain of elements 
U0 = U, U1, . . . , Un = V such that Ui ∩Ui+1 �= ∅. It follows that there exists a connected 
finite union V of elements of UM such that π(V ) = X . Note that V is compact.

Let S be the set of elements g ∈ G such that g(V ) ∩V �= ∅. It is finite, since the action 
of G on M is proper.

Let g ∈ G and x0 ∈ V . Since M is connected and M =
⋃

g∈G g(V ), there exists a 
sequence gi ∈ G, i = 0, 1, . . . , k such that g0 = 1, gk = g, and gi(V ) ∩ gi+1(V ) �= ∅
for all i = 0, 1, . . . , k − 1. Note that gi(V ) ∩ gi+1(V ) �= ∅ implies V ∩ g−1

i gi+1(V ) �= ∅, 
hence g−1

i gi+1 ∈ S. We see that g = g−1
0 g1 · g−1

1 g2 · · · g−1
k−1gk is a product of k elements 

of S. �
5.2. Splittable Smale spaces and hyperbolic graphs

A connection between Smale spaces and Gromov hyperbolic graphs described in this 
subsection is a particular case of the theory of Cayley graphs of hyperbolic groupoids, 
described in [27]. Since the theory for Smale spaces is simpler than the general case, and 
in order to make our paper more self-contained, we describe them directly.

Let (X , f) be a Smale space with locally connected and connected space X , and let 
π : M −→ X be a splitting. We denote by [·, ·] the local product structures on M and 
X . Let G be the group of deck transformations of the splitting. Let F : M −→ M be a 
lift of f .

Let d be a metric on X associated with the standard log-scale �. We will denote by 
d+ and d− metrics on the stable and unstable leaves of X associated with the respective 
standard log-scales �+ and �−. We assume that exponents of the metrics d, d+, and d−
are equal (by taking them sufficiently small). Then we have the following corollary of [27, 
Lemma 7.8], see also [15].

Proposition 5.6. There exist constants ε, L > 1 such that for every point x ∈ X and every 
rectangle R contained in the ε-neighborhood of x the restriction of d to R is L-bi-Lipschitz 
equivalent to the metric given by

dx(y1, y2) = d+([y1, x], [y2, x]) + d−([x, y1], [x, y2]).

Let ε > 0 be such that it satisfies the conditions of Proposition 5.6 and for every 
x ∈ X the ε-neighborhood of x is evenly covered by π.
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Define then dM(x, y) as the infimum of the sum 
∑m−1

i=0 d(π(xi), π(xi+1)) over all 
sequences x0, x1, . . . , xm such that x0 = x, xm = y, and d(π(xi), π(xi+1)) < ε for all 
i = 0, 1, . . . , m − 1.

Then dM is a G-invariant metric on M such that dM(x, y) = d(π(x), π(y)) for all x, y
such that dM(x, y) < ε.

The map π bijectively identifies the plaques W+(x) and W−(x) of M with their images 
W+(π(x)) and W−(π(x)), respectively. We obtain the metrics d+ and d− on W+(x) and 
W−(x), respectively. Then Proposition 5.6 holds when we replace X by M and d by dM.

Let R ⊂ M be an open relatively compact rectangle such that 
⋃

g∈G g(R) = M. Let 
W+ be a stable plaque of M. Denote by Ωn(W+, R), for n ∈ Z, the set of elements g ∈ G

such that of Fn(g(R)) intersects W+.
Denote by Ξ(W+, R) the graph with the set of vertices 

⋃
n∈Z Ωn(W+, R) × {n} in 

which two vertices are connected by an edge if and only if they are either of the form 
(g1, n), (g2, n), where g1(R) ∩g2(R) �= ∅, or of the form (g1, n), (g2, n +1), where g1(R) ∩
F (g2(R)) �= ∅. In other words, we connect two vertices of Ξ(W+, R) if and only if they 
belong to the same or neighboring levels Ωn(W+, R) and the corresponding rectangles 
intersect.

Theorem 5.7. The graph Ξ = Ξ(W+, R) is Gromov hyperbolic. There exists a point ω ∈
∂Ξ such that all paths of the form (gn, −n) ∈ Ξ, n ≥ 0, converge to ω. The correspondence 
mapping the limit in ∂Ξ of a path (gn, n), n ≥ 0 to the limit of the intersections of 
Fn(gn(R)) with W+ induces a homeomorphism between ∂Ξ \ {ω} and W+.

Proof. Consider two vertices (g, 0) and (h, 0). Let m be the distance between them in 
Ω0(W+, R).

Let (gk, −k) and (hk, −k) for k ≥ 0 be arbitrary paths in Ξ such that g0 = g and 
h0 = h.

There exists ε > 0 such that for every x ∈ M there exist g ∈ G such that the ball of 
radius ε with center x is contained in g(R). It follows that for every m ∈ N there exists 
Nm > 0 such that for any path (a0, 0), (a1, 0), . . . , (am, 0) of length m in Ω0(W+, R)
there exists g ∈ G such that FNm(a0(R)) ∪ · · · ∪ FNm(am(R)) ∩ W+ ⊂ g(R) ∩ W+. It 
follows that (gNm

, −Nm) and (hNm
, −Nm) are on distance at most 2 in Ω−Nm

(W+, R).
It follows now from [27, Theorem 2.10] that the graph Ξ is Gromov hyperbolic, that 

the level function (g(R), n) �→ n is a Busemann function of a point ω ∈ ∂Ξ, and that 
every path (gn, n) for n ≥ 0 converges to a point of ∂Ξ \ ω, whereas every path of the 
form (gn, −n), n ≥ 0, converges to ω.

Lemma 5.8. Every point of ∂Ξ \ ω is the limit of a sequence of the form (gn, n).

Proof. Note that since (g, n) �→ n is a Busemann function associated with ω ∈ ∂Ξ, every 
point ξ ∈ ∂Ξ \ ω is the limit of a sequence of the form (gn, n) (which is not necessarily 
a path). For every n ≥ 0 there exists a path (hn,k, k), k ≤ n, such that hn,n = gn. All 



JID:YAIMA AID:107385 /FLA [m1L; v1.292; Prn:27/08/2020; 14:36] P.29 (1-66)
V. Nekrashevych / Advances in Mathematics ••• (••••) •••••• 29
these paths converge to ω, and by the above arguments, for any n1, n2, distance from 
(hn1,k, k) to (hn2,k, k) is not more than 2 for all k smaller than some k(n1, n2). Moreover, 
k(n1, n2) → ∞ as n1, n2 → ∞. It follows then by compactness arguments (since Ξ has 
bounded valency) that there exists a path (hn, n), n ≥ 0, converging to ξ. �

Let (gn, n), for n ≥ 0, be a path in Ξ. The sets Vn = Fn(gn(R)) ∩W+ are compact, 
their diameters decrease exponentially, and we have Vn∩Vn+1 �= ∅ for every n. It follows 
that the sequence Vn converges (in the Hausdorff metric) to a point x ∈ W+. Let us show 
that the map Λ : limn→∞(gn, n) �→ limn→∞ Fn(gn(R)) is a homeomorphism between 
∂Ξ \ ω and W+.

The arguments basically repeat the proof of [27, Theorem 6.9]. Let us show that the 
map is well defined. If (gn, n) and (hn, n) converge to the same limit in ∂Ξ, then the 
distance between gn and hn in Ωn(W+, R) is uniformly bounded. But this implies that 
the Hausdorff distance between Fn(gn(R)) and Fn(hn(R)) is exponentially decreasing, 
hence limn→∞ Fn(gn(R)) = limn→∞ Fn(hn(R)). The same argument shows that the 
map Λ is continuous, since if ξ1 and ξ2 are close to each other, then the sequences (gn, n)
and (hn, n) are close to each other for an initial interval n = 0, . . . , L, where L is big. 
But then the limits limn→∞ Fn(gn(R)) and limn→∞ Fn(hn(R)) are close to each other.

The map Λ is onto, since for every point x ∈ W+ there exists a path (gn, n) defined 
by the condition Fn(gn(R)) � x.

Using Lebesgue’s covering lemma, we show that if x and y are close to each other, 
then there exists a sequence (gn, n) such that Fn(gn(R)) ⊃ {x, y} for all n = 0, . . . , L, 
where L is big. This shows that Λ−1 exists and is continuous. �

Suppose now that the map F : M −→ M has a fixed point x0. Let φ : G −→ G be the 
automorphism defined by the condition F (g(x0)) = φ(g)(x0). Let W+ and W− be the 
stable and the unstable plaques of M containing x0. Let R, Ωn(W+, R), and Ξ(W+, R)
be as above. We assume that R is connected and x0 ∈ R.

Note that Fn(g(R)) ∩W+ �= ∅ is equivalent to g(R) ∩F−n(W+) = g(R) ∩W+ �= ∅. It 
follows that the set Ωn(W+, R) does not depend on n.

The graph Ξ(W+, R) is isomorphic then to the graph with the set of vertices 
Ω0(W+, R) ×Z in which two vertices are connected by an edge if and only if they are either 
of the form (g1, n) and (g2, n), where g1, g2 ∈ Ω0(W+, R) and g1(R) ∩g2(R) �= ∅, or of the 
form (g1, n) and (g2, n +1), where g1, g2 ∈ Ω0(W+, R) and Fn(g1(R)) ∩Fn+1(g2(R)) �= ∅, 
which is equivalent to g1(R) ∩ φ(g2)(F (R)) �= ∅. Note that (g, n) �→ (g, n + 1) is an au-
tomorphism of Ξ(W+, R).

Let A ⊂ G be a finite set containing the identity, and let S be a finite generating 
set of G. We assume that S contains all elements g ∈ G such that R ∩ g(R) �= ∅ or 
R ∩ g(F (R)) �= ∅ and that A ⊂ S.

Let Ω′
0 ⊂ G be any set such that Ω0(W+, R) ⊂ Ω′

0 ⊂ Ω0(W+, R)A.
Denote then by Ξ′ the graph with the set of vertices Ω′

0 ×Z with edges of two kinds: 
vertical and horizontal. The horizontal edges connect two vertices (g1, n), (g2, n) if and 
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only if g−1
1 g2 ∈ S. The vertical edges connect a vertex (g1, n) to a vertex (g2, n + 1) if 

and only if g−1
1 φ(g2) ∈ S.

Note that if g1(R) ∩ g2(R) �= ∅, then R∩ g−1
1 g2(R) �= ∅. If g1(R) ∩F (g2(R)) �= ∅, then 

g1(R) ∩ φ(g2)(F (R)) �= ∅, hence R ∩ g−1
1 φ(g2)(F (R)) �= ∅. It follows that Ξ(W+, R) is a 

sub-graph of Ξ′.

Proposition 5.9. The inclusion Ξ(W+, R) ↪→ Ξ′ is a quasi-isometry.

Proof. Let us prove at first the following lemmas.

Lemma 5.10. There exists n1 > 0 such that φ−n1(Ω0(W+, R)) ⊂ Ω0(W+, R).
For every such n1 there exists Dn1 such that distance from (g, n) to (φ−n1(g), n +n1)

in Ξ(W+, R) is less than Dn1 .

Proof. By Lebesgue’s covering lemma, there exists ε > 0 such that for every x ∈ M
there exists g ∈ G such that the ε-neighborhood of x is contained in g(R). It follows 
that if distance from x to W+ is less than ε, then there exists g ∈ Ω0(W+, R) such that 
x ∈ g(R).

There exists an upper bound (equal to the diameter of R) on the distance from 
g(x0) to W+ for all g ∈ Ω0(W+, R). Consequently, there exists n1 > 0 such that 
φ−n1(Ω0(W+, R)) ⊂ Ω0(W+, R).

Let us prove the second part of the lemma. Let (g, n) ∈ Ξ(W+, R), and let x ∈
g(R) ∩ W+. Choose for k = 1, . . . , n1, hk ∈ Ω0(W+, R) such that F−k(x) ∈ hk(R). 
Then F−1(x) ∈ h1(R) and x ∈ g(R), hence F (h1(R)) ∩ g(R) �= ∅, which implies that 
(g, n) is connected to (h1, n + 1). Similarly, F−k(x) ∈ hk(R) and F−(k+1)(x) ∈ hk+1(R), 
hence F (hk+1(R)) ∩ hk(R) �= ∅, so that (hk, n + k) is connected to (hk+1, n + k +
1). We have g(x0) ∈ g(R), hence F−n1(x) ∈ hn1(R) and F−n1(x), φ−n1(g)(x0) ∈
F−n1(g(R)) = φ−n1(g)(F−n1(R)). The set F−n1(g(R)) is connected, hence there exists a 
path f1, f2, . . . , fm in Ω0(W+, R) ×{n +n1} connecting (hn1 , n +n1) to (φ−n1(g), n +n1). 
Since F−n1(R) is relatively compact, there exists a uniform bound M such that we 
may assume that m ≤ M . It follows that the distance in Ξ(W+, R) from (g, n) to 
(φ−n1(g), n + n1) is not more than n1 + m − 1. �
Lemma 5.11. For every finite set B ⊂ G there exists D > 0 such that if g−1

1 g2 ∈ B

for g1, g2 ∈ Ω0(W+, R), then the distance between (g1, n) and (g2, n) in Ξ(W+, R) is not 
greater than D.

Proof. Let RB be a compact connected rectangle of M containing B(x0). Note that it 
follows from Proposition 5.6 that there exists a uniform upper bound on the d−-diameter 
of the unstable plaques of RB. Then it is also a uniform upper bound on the d−-distance 
from W+ to a point of g(RB) for g ∈ Ω0(W+, R).

It follows that for every ε > 0 there exists n2 > 0 such that for every g ∈ Ω0(W+, R)
the set F−n2(g(RB)) belongs to the ε-neighborhood of W+, hence (if ε is small enough) 
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it is covered by the sets h(R) for h ∈ Ω0(W+, R). Since F−n2(g(RB)) is connected, for 
every two points x, y ∈ g(RB) there exists a sequence h1, h2, . . . , hm ∈ Ω0(W+, R) such 
that F−n2(x) ∈ h1(R), F−n2(y) ∈ hm(R), hi(R) ∩ hi+1(R) �= ∅ for all i = 1, . . . , m − 1, 
and hi are pairwise different. Since F−n2(g(RB)) = φ−n2(g)(F−n2(RB)) belong to the 
G-orbit of F−n2(RB), there exists a uniform upper bound M(n2) on the length m − 1 of 
the corresponding path h1, . . . , hm in Ω0(W+, R) × {0}. We can choose n2 bigger than 
the number n1 from Lemma 5.10.

Let g1, g2 ∈ Ω0(W+, R) be such that g−1
1 g2 ∈ B. Since g−1

1 g2 ∈ B, g1(x0), g2(x0) ∈
g1(RB). It follows that there exists a path h1, . . . , hm ∈ Ω0(W+, R) such that m < M , 
and F−n2(g1(x0)) ∈ h1(R), F−n2(g2(x0)) ∈ hm(R). The last two conditions are 
equivalent to φ−n2(g1)(x0) ∈ h1(R) and φ−n2(g2)(x0) ∈ hm(R), which imply that 
(φ−n2(g1), 0) and (φ−n2(g2), 0) are connected to (h1, 0) and (hm, 0), respectively, by hor-
izontal edges. By Lemma 5.10, we have a uniform bound on the distances from (g1, n) to 
(φ−n2(g1), n + n1) and from (g2, n) to (φ−n2(g2), n + n1), which finishes the proof. �

The proof of the following lemma is analogous.

Lemma 5.12. For every finite set B ⊂ G there exists D > 0 such that if g−1
1 φ(g2) ∈ B

for g1, g2 ∈ Ω0(W+, R), then the distance between (g1, n) and (g2, n + 1) in Ξ(W+, R) is 
not greater than D.

Let us go back to proving Proposition 5.9. The image of Ξ(W+, R) under the inclusion 
map is a 1-net in Ξ′. Distance between vertices in Ξ(W+, R) is not less than the distance 
between them in Ξ′.

Let us show that there exists a constant D > 1 such that distance between 
(g1, n1), (g2, n2) in Ξ(W+, R) is not more than D times the distance from (g1, n1) to 
(g2, n2) in Ξ′. Let (g1, n1) = v0, v1, . . . , vn = (g2, n2) be a geodesic path in Ξ′. Since 
Ξ(W+, R) is a net in Ξ′, there exists a constant C > 1 such that every such geodesic 
path can be replaced by a path (g1, n1), v′1, . . . , v′n−1, (g2, n2), where v′i ∈ Ξ(W+, R), and 
distance from v′i to v′n−1 in Ξ′ is bounded from above by C. Moreover, we may assume 
that each v′i belongs to the same level Ω′

n as vi. Then v′i and v′i+1 either belong to one 
level, or to two neighboring levels. Then Lemmas 5.11 and 5.12 finish the proof. �
Definition 5.13. Let G be the group of deck transformations of the splitting π : M −→ X , 
and let F : M −→ M be a lift of f with a fixed point x0. A set Σ ⊂ G is a coarse stable 
(resp. unstable) plaque if the stable plaque W+(x0) (resp. unstable plaque W−(x0)) and 
the set Σ are of finite Hausdorff distance from each other.

Recall that two subsets A1, A2 of a metric space (X, d) are of a finite Hausdorff 
distance from each other if there exists D > 0 such that for every x ∈ A1 there exists 
y ∈ A2, and for every y ∈ A2 there exists x ∈ A1 such that d(x, y) < D.
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Theorem 5.14. Let (X , f) be a connected and locally connected Smale space. Suppose that 
there exists a splitting π : M −→ X and a lift F : M −→ M of f with a fixed point 
x0. Let φ be the associated automorphism of G, and let Σ+ and Σ− be coarse stable and 
unstable plaques of x0. Then (X , f) is uniquely determined, up to topological conjugacy 
by the quadruple (G, φ, Σ+, Σ−).

Proof. The dynamical system (X , f) is uniquely determined by the G-space M and the 
map F : M −→ M. The group G acts on the plaques W+ and W− by the actions

g : x �→ [g(x), x], g : x �→ [x, g(x)],

respectively. The action of G on M ∼= W+ ×W− is reconstructed from these actions by 
the formula

g(x) = [[g(x), x], [x, g(x)]].

Similarly, the map F : M −→ M is determined by the action of F on W+ and W−, 
since

F ([x, y]) = [F (x), F (y)].

Consequently, it is enough to show that the quadruple (G, φ, Σ+, Σ−) uniquely deter-
mines the dynamical systems (W+, G), (W+, F ), (W−, G), and (W−, F ), up to topological 
conjugacy. Let us prove that the triple (G, φ, Σ+) uniquely determines the dynamical 
systems (W+, G) and (W+, F ). The same proof will show that (G, φ, Σ−) uniquely de-
termines (W−, G) and (W−, F ).

Let R ⊂ M be a relatively compact open rectangle such that x0 ∈ R and 
⋃

g∈G g(R) =
M. Let Ω0(W+, R) be, as before, the set of elements g ∈ G such that g(R) ∩W+ �= ∅.

For a set Σ ⊂ G and a finite generating set S of G, denote by Ξ(Σ, S) the graph with 
the set of vertices Σ ×Z in which two vertices are adjacent either if they are of the form 
(g, n) and (gs, n) for g, gs ∈ Σ and s ∈ S, or of the form (g, n) and (φ−1(gs), n + 1) for 
g, φ−1(gs) ∈ Σ and s ∈ S. Note that the map (g, n) �→ (g, n + 1) is an automorphism of 
Ξ(Σ, S).

If A is big enough, then Σ+A contains Ω0(W+, R). Then, by Proposition 5.9, the 
identical embedding Ξ(W+, R) ↪→ Ξ(Σ+A, S) is a quasi-isometry, provided S is big 
enough. It follows then from Theorem 5.7 that Ξ(Σ+A, S) is Gromov hyperbolic, and 
that the boundary of Ξ(Σ+A, S) minus the common limit ω of quasi-geodesic paths of 
the form (gn, −n), n ≥ 1, is homeomorphic to W+. Moreover, it follows directly from 
Theorem 5.7 that the natural homeomorphism Φ : ∂Ξ(Σ+A, S) \ ω −→ W+ maps the 
limit of a sequence (gn, n) ∈ Ξ(Σ+A, S) to the limit of the sequence [Fn(gn(x0)), x0] =
[φn(gn)(x0), x0] ∈ W+.
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Consequently, the homeomorphism Φ conjugates F : W+ −→ W+ with the map on 
the boundary of Ξ(Σ+A, S) induced by the automorphism (g, n) �→ (g, n +1). This shows 
that the dynamical system (F, W+) is uniquely determined by (G, φ, Σ+).

It remains to show that for every g ∈ G the homeomorphism g : x �→ [g(x), x0] of W+
is uniquely determined by (G, φ, Σ+) and g.

Let ξ be the limit of a sequence (gn, n) ∈ Ξ(Σ+A, S), where sn = g−1
n φ(gn+1) ∈ S for 

all n ≥ 0. Note that every point of ∂Ξ(Σ+A, S) can be represented this way, provided S
is big enough (see Theorem 5.7).

There exists ε > 0 such that for every x ∈ M there exists g ∈ G such that the 
ε-neighborhood of x is contained in g(R). Let x ∈ W+. Choose for every n ≥ 0 an 
element gn ∈ G such that the ε-neighborhood of F−n(x) is contained in gn(R). Then 
x is contained in Fn(gn(R)). In particular, Fn(gn(R)) ∩ Fn+1(gn+1(R)) �= ∅, i.e., the 
sequence (gn, n) is a path in Ξ(W+, R), and its limit in ∂Ξ(W+, R) is mapped by the 
natural homeomorphism to x.

The rectangles gFn(gn(R)) contain g(x) for all n. Since F is expanding in the unstable 
direction, the sets gFn(gn(R)) intersects W+, i.e., φ−n(g)gn ∈ Ω0(W+, R), for all n big 
enough.

The limit of the intersections of gFn(gn(R)) with W+ is equal to [x0, g(x)]. It follows 
that (φ−n(g)gn, n), where n is big enough, is a path in Ξ(W+, R) converging to the point 
of ∂Ξ(W+, R) corresponding to [x0, g(x)] ∈ W+, i.e., to the image of x under the action 
of g on W+.

Note that the left multiplication by g preserves the distances between the vertices 
of the graph Ξ(Σ+A, S) (when the images of the vertices belong to the graph). It also 
follows from the classical properties of Gromov hyperbolic graphs that there exists a 
constant Δ1 such that if two paths (gn, n) and (hn, n) of Ξ(Σ+A, S) converge to the 
same point of the boundary, then the distance between (gn, n) and (hn, n) is less than 
Δ1 for all n big enough.

It follows that the action of g on W+ can be modeled on the boundary of Ξ(Σ+A, S)
by the following rule. Take a path (gn, n) ∈ Ξ(Σ+A, S) converging to a point ξ ∈
∂Ξ(Σ+A, S). If (ggn, n) for n big enough belong to Ξ(Σ+A, S), then its limit is g(ξ). Since 
Ξ(W+, R) ⊂ Ξ(Σ+A, S), this rule will determine the action of g on ∂Ξ(Σ+A, S) \{ω}. �
Theorem 5.15. Let (X1, f1) and (X2, f2) be connected and locally connected Smale spaces. 
Suppose that there exist fixed points of fi and splittings πi : Mi −→ Xi. Let Gi be the 
groups of deck transformations of the splittings. Let Fi be lifts of fi, with fixed points 
xi ∈ Mi. If there exists a continuous map Φ : M1 −→ M2 and an isomorphism Ψ :
G1 −→ G2 such that Φ(x1) = x2, and

Φ(F1(x)) = F2(Φ(x)), Φ(F1(g(x))) = F2(ψ(g)(Φ(x)))

for all x ∈ M1 and g ∈ G1, then (X1, f1) and (X2, f2) are topologically conjugate.

Note that we do not require Φ to be a homeomorphism.
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Proof. The map Φ is proper as an equivariant map between two proper actions (see, for 
instance [25, Lemma 5.2]).

Let U be a compact neighborhood of x2 ∈ M2. Then 
⋃

n≥1
⋂

k≥n F
k
2 (U) is equal to 

the unstable plaque W−(x2) in M2. Similarly,

⋃
n≥1

⋂
k≥n

F k
1 (Φ−1(U)) = Φ−1

⎛
⎝⋃

n≥1

⋂
k≥n

F k
2 (U)

⎞
⎠

is equal to the unstable plaque W−(x1) in M1. It follows that Φ−1(W−(x2)) = W−(x1). 
Similarly, Φ−1(W+(x2)) = W+(x1).

Let K2 be a compact subset of M2 such that K2 and K1 = Φ−1(K) are Gi-
transversals, i.e., intersect every Gi-orbit. They exist, since the actions of Gi are co-
compact, proper, and the map Φ is continuous and proper.

Then g2(K2) ∩W−(x2) �= ∅ for g2 ∈ G2 is equivalent to Ψ−1(g2)(K1) ∩W−(x1) �= ∅. 
The same is true for the stable plaques W+(x1) and W+(x2). It follows that the sets 
Σi,∗ = {gi(Ki) ∩ W∗(xi) �= ∅} for ∗ ∈ {+, −} and i ∈ {1, 2} are coarse stable and 
unstable plaques for which we can use Theorem 5.14 to show that (X1, f1) and (X2, f2)
are topologically conjugate. �

In fact, it follows from Theorem 5.7 and the proof of Theorem 5.15 that any continuous 
map Φ satisfying the conditions of Theorem 5.15 is a homeomorphism.

6. Smale spaces with virtually nilpotent splitting

Let L be a simply connected nilpotent Lie group. Let G be a finitely generated sub-
group of AutL � L such that the action of G on L is free, proper, and co-compact. 
Here we identify the elements of A with the transformations g �→ α(g) · h of L, where 
α ∈ AutL and h ∈ L.

Let F ∈ AutL be a hyperbolic automorphism of L (i.e., such that its differential 
DF at the identity of L has no eigenvalues of absolute value one). Then F induces 
an automorphism φ of Aut �L by conjugation. Suppose that G is invariant under this 
automorphism. Then F induces an Anosov homeomorphism f : G\L −→ G\L. Such 
homeomorphisms are called hyperbolic infra-nilmanifold automorphisms.

The aim of this section is to prove the following description of locally connected Smale 
spaces that have a splitting with a virtually nilpotent group of deck transformation.

Theorem 6.1. Let (X , f) be a Smale space such that X is connected and locally con-
nected, and there exists a splitting π : M −→ X with a virtually nilpotent group of deck 
transformations. Then (X , f) is topologically conjugate to a hyperbolic infra-nilmanifold 
automorphism.
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Fig. 2. Central elements.

Proof. Let (X , f) satisfy conditions of the theorem. Let us assume at first that the group 
G of deck transformations is nilpotent and torsion free.

Let F be a lift of f , and let F (x0) = x1. Then the map g �→ φ(g) defined by F (g(x0)) =
φ(g)(x1) is an automorphism of G.

Denote by Z(G) the center of G, i.e., the set of elements of G that commute with 
every element of G.

The group Z(G) is obviously abelian and torsion free. It is finitely generated, since all 
subgroups of a finitely generated nilpotent group are finitely generated (see [32, 5.2.17]). 
Consequently, Z(G) is isomorphic to Zd for some d.

Lemma 6.2. Let g ∈ Z(G). There exist positive constants D− and D+ such that for every 
stable (resp. unstable) plaque V of M and any x ∈ V , y ∈ g(V ) we have d−(x, [x, y]) ≤
D− (resp. d+(x, [y, x]) ≤ D+).

Proof. Let us prove the lemma for stable plaques. Note that [x, y] is equal to the intersec-
tion of g(V ) with W−(x), and so does not depend on the choice of y ∈ g(V ). Therefore, it 
is enough to show that d−(x, [x, g(x)]) is bounded for all x ∈ M, see Fig. 2. Let R ⊂ M
be a compact rectangle such that π(R) = X . Let D be an upper bound on the value of 
d−(x, [x, y]) for x ∈ R and y ∈ g(R). It is finite, since there exists a compact rectangle 
P such that P ⊃ R ∪ g(R) (see also Proposition 5.6).

For every x ∈ M there exists h ∈ G such that h(x) ∈ R. Then d−(x, [x, g(x)]) =
d−(h(x), [h(x), hg(x)]) = d−(h(x), [h(x), gh(x)]) < D. �

Denote for g ∈ Z(G)

D−(g) = sup
x∈M

d−(x, [x, g(x)]), D+(g) = sup
x∈M

d+(x, [g(x), x]),

which are finite by Lemma 6.2. Note that we obviously have

D+(g1g2) ≤ D+(g1) + D+(g2), D−(g1g2) ≤ D−(g1) + D−(g2) (7)

for all g1, g2 ∈ Z(G).
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Let λ ∈ (0, 1) and C > 1 be such that for any two stably (resp. unstably) equivalent 
points x, y ∈ X we have

d+(fn(x), fn(y)) ≤ Cλnd+(x, y)

(resp. d−(f−n(x), f−n(y)) ≤ Cλnd−(x, y)) for all n ≥ 0. Then the same estimates will 
hold for F and x, y ∈ M belonging to one stable (resp. unstable) plaque.

Note that the center Z(G) is characteristic (i.e., invariant under automorphisms of 
G), hence φ(Z(G)) = Z(G).

Proposition 6.3. For every g ∈ Z(G) and n ≥ 0 we have

D+(φn(g)) ≤ CλnD+(g), D−(φ−n(g)) ≤ CλnD−(g).

Proof. Let us prove the first inequality. The second is proved the same way.
Let V be an unstable plaque of M, and let x ∈ V and y ∈ φn(g)(V ) be such that x

and y belong to the same stable plaque. It is enough to prove that d+(x, y) ≤ CλnD+(g).
The points F−n(x) and F−n(y) belong to one stable plaque, and F−n(x) ∈ F−n(V ), 

F−n(y) ∈ F−n(φn(g)(V )) = g(F−n(V )), hence d+(F−n(x), F−n(y)) ≤ D+(g). But this 
implies d+(x, y) ≤ Cλnd+(x, y). �
Proposition 6.4. For every finite set S ⊂ Z(G) there exists a constant DS > 0 satisfying 
the following condition. For every finite set A ⊂ Z(G) there exists n0 such that for all 
n ≥ n0, g1, g2 ∈ φn(A)φn−1(S)φn−2(S) · · ·φ(S)S, and every unstable plaque V we have

d+(x, [y, x]) < DS

for all x ∈ g1(V ) and y ∈ g2(V ).

Proof. Let ΔS and ΔA be upper bounds on D+(g) for g ∈ S and g ∈ A, respectively.
Then, by (7) and Proposition 6.3, we have, for all h ∈ A, gi ∈ S, and all n big enough,

D+(φn(h)φn−1(g1) · · ·φ(gn−1)gn) ≤

CλnΔA + C(λn−1 + · · · + λ + 1)ΔS < 1 + CΔS

1 − λ
.

It follows that we can take DS = 2 + 2CΔS

1−λ . �
Proposition 6.5. The restriction of the automorphism φ to Z(G) ∼= Zd is hyperbolic, i.e., 
has no eigenvalues of absolute value 1.

Proof. Suppose that on the contrary, there exists an eigenvalue cosα + i sinα of φ of 
absolute value 1. Suppose at first that α /∈ π · Z. Then there exists a two-dimensional 
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subspace L ≤ Rd and a Euclidean structure on it such that φ acts on L as a rotation by 
the angle α. Denote K = {(xi)di=1 ∈ Rd : |xi| < 1}, and let S be the set of elements 
g ∈ Z(G) = Zd such that φ(K) ∩ (K + g) �= ∅ or φ−1(K) ∩ (K + g) �= ∅. The set S is 
obviously finite.

Let R > 0 be arbitrary, and consider the circle γ of radius R in L with center in the 
origin. Then φ(γ) = γ. Let AR be the set of elements g ∈ Z(G) such that K + g ∩ γ �= ∅. 
It is finite and non-empty. Note that union of the sets AR for all R > 0 is infinite.

Let h be an arbitrary element of AR, and let x ∈ K+h ∩γ. Then φ−1(x) ∈ γ, and there 
exists g ∈ Zd such that φ−1(x) ∈ K + g. Then g ∈ AR, and x ∈ φ(K) + φ(g) ∩K + h. 
It follows that K + h − φ(g) ∩ φ(K) �= ∅, so that h − φ(g) ∈ S. We see that h =
φ(g) + (h − φ(g)) ∈ φ(AR) + S. We have proved that AR ⊂ φ(AR) + S. It is proved the 
same way that AR ⊂ φ−1(AR) + S. By induction we conclude that

AR ⊂ φn(AR) + φn−1(S) + · · · + φ(S) + S

and

AR ⊂ φ−n(AR) + φ−(n−1)(S) + · · · + φ−1(S) + S

for all n ≥ 1.
Fix an arbitrary point x0 ∈ M. Since φn(AR) +φn−1(S) + · · ·φ(S) +S ⊃ AR for all n, 

it follows from Proposition 6.4 that there exists DS > 0, not depending on R, such that 
d+(x0, [g(x0), x0]) < DS and d−(x0, [x0, g(x0)]) < DS for all g ∈ AR. It follows that g(x0)
belongs to the rectangle [B+, B−], where B± are the balls of radius DS with center in x0
in the corresponding plaque containing x0. Note that the set {g ∈ G : g(x0) ∈ [B+, B−]}
is finite, does not depend on R, and contains AR. But this is a contradiction.

The case when the eigenvalue is equal to ±1 is similar (with one-dimensional space 
L). �

Let E+ (resp. E−) be the sum of the root subspaces of Rd of the eigenvalues λ of φ
such that |λ| < 1 (resp. |λ| > 1). We have Rd = E+⊕E−. Denote by P+ and P− = 1 −P+
the projections onto E+ and E−, respectively.

Denote K = {(xi)di=1 ∈ Rd : |xi| < 1}. Let S ⊂ Z(G) be a finite set containing all 
elements g ∈ Z(G) such that K + g ∩ (φ(K) ∪ φ−1(K)) �= ∅.

Proposition 6.6. For every point x ∈ E+ there exists a sequence gi ∈ S, i = 1, 2, . . ., and 
an element g0 ∈ Z(G) such that

x = lim
n→∞

P+(φn(gn) + φn−1(gn−1) + · · · + φ(g1) + g0).

There exists a finite set N ⊂ Z(G) such that an equality
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lim
n→∞

P+(φn(gn) + φn−1(gn−1) + · · · + φ(g1) + g0) =

lim
n→∞

P+(φn(g′n) + φn−1(g′n−1) + · · · + φ(g′1) + g′0)

holds for gi, g′i ∈ S, i ≥ 1, and g0, g′0 ∈ Z(G) if and only if there exists a sequence hn ∈ N

such that

φn(g′n) + φn−1(g′n−1) + · · · + φ(g′1) + g′0 = φn(hn + gn) + φn−1(gn−1) + · · · + φ(g1) + g0

for all n big enough.

Proof. The sets K + g cover Rd for g ∈ Z(G) = Zd, and the group Z(G) is φ-invariant, 
hence for every x ∈ E+ and n ≥ 0 there exists hn ∈ Z(G) such that x ∈ φn(K) +hn. We 
have then φn−1(K) +hn−1∩φn(K) +hn �= ∅, hence φ−1(K) ∩K+φ−n(hn) −φ−n(hn−1) �= ∅
which implies that φ−n(hn) − φ−n(hn−1) = gn ∈ S, i.e., hn = φn(gn) + hn−1. It follows 
that there exists a sequence gi ∈ S such that hn = φn(gn) +φn−1(gn−1) +· · ·+φ(g1) +h0.

Note that since x ∈ φn(K) + hn, we have ‖P+(hn) − x‖ < Cλn for some constant C. 
It follows that x = limn→∞ P+(hn).

Note that the set of all limits limn→∞ P+(φn(gn) + φn−1(gn−1) + · · · + φ(g1)) for all 
choices of gi ∈ S is a bounded subset T+ of E+.

Suppose that

lim
n→∞

P+(φn(gn) + φn−1(gn−1) + · · · + φ(g1) + h) =

lim
n→∞

P+(φn(g′n) + φn−1(g′n−1) + · · · + φ(g′1) + h′)

for gi, g′i ∈ S and h, h′ ∈ Z(G).
Then for every n ≥ 0 we have

P+(φn(gn)+φn−1(gn−1)+ · · ·+φ(g1)+h)−P+(φn(g′n)+φn−1(g′n−1)+ · · ·+φ(g′1)+h′) =(
P+(φn+1(g′n+1)) + P+(φn+2(g′n+2)) + · · ·

)
−(

P+(φn+1(gn+1)) + P+(φn+2(gn+2)) + · · ·
)
∈ φn(T+ − T+).

It follows that

P+((gn + φ−1(gn−1) + · · · + φ−(n−1)(g1) + φ−n(h))−
(g′n + φ−1(g′n−1) + · · · + φ−(n−1)(g′1) + φ−n(h′))) ∈ T+ − T+.

Since φ−1 is contracting on E−, there exists a compact set T− ⊂ E− such that for 
any h and any sequence gi ∈ S we have

P−(gn + φ−1(gn−1) + · · · + φ−(n−1)(g1) + φ−n(h)) ∈ T−
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for all n big enough.
It follows that for all n big enough the difference

(gn + φ−1(gn−1) + · · · + φ−(n−1)(g1) + φ−n(h))−
(g′n + φ−1(g′n−1) + · · · + φ−(n−1)(g′1) + φ−n(h′))

belongs to a bounded set T = (T+−T+) ⊕(T−−T−), hence we can take N = T ∩Zd. �
Fix a stable plaque W+ = W+(x0) of M. The group G acts on W+ by x �→ [g(x), x], 

since G preserves the direct product structure of M.
Let v ∈ Rd, and denote v+ = P+(v) and v− = P−(v). Using Proposition 6.6, find a 

sequence gi ∈ S, i ≥ 1, and g0 ∈ Z(G) such that

v+ = lim
n→∞

P+(φn(gn) + · · · + φ(g1) + g0),

and define for x ∈ W+

v+(x) = lim
n→∞

[(φn(gn) + · · · + φ(g1) + g0)(x), x]. (8)

We also define for x ∈ W−, where W− is an unstable plaque:

v−(x) = lim
n→∞

[x, (φ−n(gn) + · · · + φ−1(g1) + g0)(x)], (9)

where gi ∈ S, for i ≥ 1, and g0 ∈ Z(G) are such that

v− = lim
n→∞

P−(φ−n(gn) + · · · + φ−1(g1) + g0).

(Replacing in Proposition 6.6 φ by φ−1 and E+, P+ by E−, P−, we see that such a 
sequence gn exists.)

Proposition 6.7. The limit (8) exists and depends only on v+ and x. The limit (9) exists 
and depends only on v− and x.

Proof. It follows directly from (7), Propositions 6.3 and 6.6. �
Theorem 6.8. The limits (8) and (9) define continuous actions of E+ and E− on W+ =
W+(x0) and W− = W−(x0), respectively. Their direct sum is a continuous action of Rd

on M. This action satisfies the following conditions:

(1) it is free and proper;
(2) its restriction onto Z(G) = Zd < Rd coincides with the original action of Z(G) on 

M;
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(3) it preserves the direct product structure, i.e., v([x, y]) = [v(x), v(y)] for all v ∈ Rd

and x, y ∈ M;
(4) F (v(x)) = φ(v)(F (x)) for all x ∈ M and v ∈ Rd;
(5) the action commutes with G, i.e., v(g(x)) = g(v(x)) for all x ∈ M, g ∈ G, and 

v ∈ Rd;
(6) if g(x) = v(x) for g ∈ G and v ∈ Rd, then g = v ∈ Z(G).

Proof. The fact that conditions (8) and (9) define actions follows directly from the fact 
that the limits do not depend on S and the choice of the sequences gi.

Let us prove that the action is continuous. It is enough to prove that the action of 
E+ on W+ is continuous. We have to show that for every v1 ∈ E+, x ∈ W+, and ε > 0
there exists δ > 0 such that if v2 ∈ E+ and y ∈ W+ are such that ‖v1 − v2‖ < δ and 
d+(x, y) < δ, then d+(v1(x), v2(y)) < ε.

Take an arbitrary ε > 0. For every n there exists δ1(n) and a sequence g0 ∈ H, gi ∈ S, 
i ≥ 1, such that v1 = limm→∞ P+(g0 + φ(g1) + · · · + φm(gm)) and all points v2 in the 
δ1(n)-neighborhood of v1 can be represented as limits v2 = limm→∞ P+(h0 + φ(h1) +
· · · + φm(hm)) for h0 ∈ Z(G), and hi ∈ S, i ≥ 1, such that hi = gi for i = 0, 1, . . . , n
(see the proof of Proposition 6.6 and use Lebesgue’s covering lemma). There exists δ2(n)
such that if y ∈ W+ is such that d+(x, y) < δ2(n), then

d+([(g0 + φ(g1) + · · · + φn(gn))(x), x], [(g0 + φ(g1) + · · · + φn(gn))(y), y]) < ε/2,

since the function y �→ [(g0 + φ(g1) + · · · + φn(gn))(y), y] is continuous. There exist 
constants C > 0 and λ ∈ (0, 1) such that

d+(u(z), [(g0 + φ(g1) + · · · + φn(gn))(z), z]) < Cλn

for all z ∈ W+ and u ∈ E+ such that u = limm→∞ P+(g0 + φ(g1) + · · · + φm(gm)) for 
g0 ∈ Z(G) and gi ∈ S for i ≥ 1.

Take n ≥ − log(ε/4C)
logλ . Then for all v2 ∈ E+ and y ∈ W+ such that ‖v1 − v2‖ < δ1(n)

and d+(x, y) < δ2(n) we have

d+(v1(x), v2(y)) ≤
d+(v1(x), [(g0 + φ(g1) + · · · + φn(gn)(x), x])+

d+([(g0 + φ(g1) + · · · + φn(gn)(x), x], [(g0 + φ(g1) + · · · + φn(gn)(y), y])+

d+(v2(y), [(g0 + φ(g1) + · · · + φn(gn)(y), y]) ≤ ε/4 + ε/2 + ε/4 = ε.

Which shows that the action of E+ on W+ is continuous.
The same arguments (using Proposition 6.3 and inequalities (7)) as in the proof of 

the criterion of equality of two limits in Proposition 6.6 show that an equality

lim [(φn(gn) + · · ·φ(g1) + g0)(x), x] = lim [(φn(g′n) + · · ·φ(g′1) + g′0)(x), x]

n→∞ n→∞
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for gi, g′i ∈ S, i ≥ 1, and g0, g′0 ∈ Z(G) is equivalent to the equality

lim
n→∞

P+(φn(gn) + · · ·φ(g1) + g0) = lim
n→∞

P+(φn(g′n) + · · ·φ(g′1) + g′0).

This (and a similar statement for P− and the action on W−) shows that the action of 
Rd is free.

Let us show that the action is proper. Let B ⊂ M be a compact set. We have to 
show that the set {v ∈ Rd : v(B) ∩ B �= ∅} is compact. It is closed, since the action is 
continuous.

Denote K = {(xi)di=1 ∈ Rd : |xi| ≤ 1}. Then for every v ∈ Rd there exists h ∈
Z(G) = Zd such that v − h ∈ K. The set K(B) = {v(x) : x ∈ B, v ∈ K} is compact, 
since the action is continuous and the sets B and K are compact. The action of G on 
M is proper, hence the set A of elements h ∈ Z(G) such that h(K(B)) ∩B �= ∅ is finite.

Suppose that x ∈ B and v ∈ Rd are such that v(x) ∈ B. There exists h ∈ Z(G) such 
that v − h ∈ K. Then v(x) = (h + v − h)(x) ∈ h(K(B)) ∩ B, hence h ∈ A, so that 
v ∈ K + A. But the set K + A is compact, which proves that the action of Rd on M is 
proper.

The proof of statements (2)–(5) is straightforward, using the fact that the action does 
not depend on the choice of S.

Let us prove the last statement. Suppose that g(x) = v(x) for g ∈ G and v ∈ Rd. 
Then g leaves invariant the orbit Rd(x) of x. Let G1 be the group of all elements leaving 
the Rd(x) invariant. The action of Z(G) on Rd(x) is co-compact, the action of G on M
is proper, hence the index of Z(G) in G1 is finite, i.e., the image of G1 in G/Z(G) is 
finite. But G/Z(G) is torsion free (see [32, 5.2.19]). Consequently, G1 = Z(G). Since the 
action of Rd on Rd(x) is free, this implies that g = v ∈ Z(G). �
Proposition 6.9. If G is abelian, then the action of Rd on M is transitive (i.e., has 
exactly one orbit).

Proof. It is enough to show that for every point x ∈ W+ there exists a sequence gi ∈ S, 
i ≥ 1, and an element g0 ∈ G such that

x = lim
n→∞

[(φn(gn) + · · · + φ(g1) + g0)(x0), x0]. (10)

The action of G on M is co-compact, hence there exists a relatively compact open 
rectangle R ⊂ M containing x0 and such that 

⋃
h∈G h(R) = M.

Then for every x ∈ W+ and every n ≥ 0 there exists hn ∈ G such that x ∈ hn(Fn(R)). 
Assume that S is big enough so that it contains all elements h ∈ G such that h(R) ∩
(F (C) ∪ F−1(C)) �= ∅. Then the same arguments as in the proof of Proposition 6.6
show that there exists a sequence gi ∈ S, i ≥ 1, and an element g0 ∈ G for which (6.6)
holds. �
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Theorem 6.10. Let (X , f) be a locally connected and connected Smale space which has 
a splitting with a free abelian group of deck transformations G ∼= Zd. Let φ be the 
automorphism of G induced by a lift of f . Then (X , f) is topologically conjugate to the 
hyperbolic automorphism of the torus Rd/Zd induced by φ. In particular, (X , f) has a 
fixed point.

Proof. By Proposition 6.9, the action of Rd on M defined in Theorem 6.8 is transitive.
Fix a basepoint x0 ∈ M, define ρ0 : Rd −→ M by v �→ v(x0). The map ρ0 is a 

homeomorphism, since it is continuous, bijective, and proper. Denote v0 = ρ−1
0 (F (x0)), 

i.e., v0 ∈ Rd is such that v0(x0) = F (x0).
Then the map φ0 = ρ−1

0 Fρ0 : Rd −→ Rd satisfies

φ0(v) = ρ−1
0 (F (v(x0)) = ρ−1

0 (φ(v)(F (x0))) = ρ−1
0 ((φ(v) + v0)(x0)) = φ(v) + v0.

The linear operator 1 − φ is invertible, since φ is hyperbolic. Therefore, there exists 
w0 ∈ Rd such that w0 − φ(w0) = v0, i.e., φ0(w0) = φ(w0) + v0 = w0. Define then

ρ1(v) = ρ0(v + w0).

We have then

F (ρ1(v)) = F (ρ0(v + w0)) = ρ0(φ0(v + w0)) =

ρ0(φ(v + w0) + v0) = ρ0(φ(v) + φ(w0) + v0) = ρ0(φ(v) + w0) = ρ1(φ(v)).

The statement of the theorem follows now directly from Theorem 6.8. �
Let us go back to the case when G is torsion free nilpotent.

Proposition 6.11. The action of Rd on M is uniformly locally Lipschitz, i.e., there exist 
ε > 0 and C > 1 such that for every v ∈ Rd and all x, y ∈ M such that dM(x, y) < ε we 
have

dM(v(x), v(y)) ≤ CdM(x, y).

Note that Proposition 6.11 implies that C−1dM(x, y) ≤ dM(v(x), v(y)) for all x, y ∈
M such that dM(x, y) ≤ C−1ε.

Proof. By Theorem 6.8, G maps Rd-orbits to Rd-orbits.
Let K = {(xi)di=1 ∈ Rd : |xi| ≤ 1}, and let R ⊂ M be a relatively compact rectangle 

such that π(R) = X . Let ε > 0 and C > 1 be such that

C−1dM(x, y) ≤ d+(x, [y, x]) + d−(x, [x, y]) ≤ CdM(x, y) (11)
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for all x, y ∈ M such that dM(x, y) < ε, see Subsection 5.2, where the metric dM is 
defined. We also assume that ε is sufficiently small so that for all x, y ∈ M such that 
dM(x, y) < ε there exists g ∈ G such that g(x), g(y) ∈ R.

Let δ is such that dM(v(x), v(y)) < ε for all v ∈ K and all x, y ∈ R such that 
dM(x, y) < δ. It exists, since the action of Rd is continuous, and the set K and the 
closure of R are compact. For all x, y ∈ M such that dM(x, y) < δ and all v ∈ Rd

there exists g ∈ G and h ∈ Z(G) such that g(x), g(y) ∈ R, and v + h ∈ K. Then 
dM(g(x), g(y)) < δ, hence

dM(v(x), v(y)) = dM(g−1 · v · g(x), g−1 · v · g(y)) =

dM((h + v)(g(x)), (h + v)(g(y))) < ε.

We have shown that for all x, y ∈ M such that dM(x, y) < δ and all v ∈ Rd we have 
dM(v(x), v(y)) < ε.

Let x, y ∈ M be such that dM(x, y) < ε. Let n be the biggest positive integer such 
that d+(F−n(x), F−n([y, x])) < C−1δ. Then n is equal, up to an additive constant, to 
− log d+(x, [y, x])/α+, where α+ is the exponent of d+.

We have then d+(v(F−n(x)), v(F−n([y, x])) < ε for all v ∈ Rd. Applying Fn, and using 
the fact that φ is an automorphism of Rd, we get that d+(u(x), u([y, x])) ≤ C1e

−nα+ ≤
C2d+(x, [y, x]) for all u ∈ Rd, where C1, C2 are constant (not depending on x, y).

In the same way we prove that d−(u(x), u([x, y])) < C3d−(x, [x, y]) for all u ∈ Rd, if 
dM(x, y) < ε. It follows then from (11) that there exist ε1 > 0 and C4 > 0 such that 
if x, y ∈ M are such that dM(x, y) < ε1, then dM(u(x), u(y)) < C4dM(x, y) for all 
u ∈ Rd. �

Let M be the quotient of M by the Rd-action defined in Theorem 6.8. We denote for 
x ∈ M by x the Rd-orbit of x. Since G maps Rd-orbits to Rd-orbits, the action of G on 
M induces a well-defined action of G on M. Denote G = G/Z(G), it is a torsion-free 
finitely generated nilpotent group of nilpotency class one less than the class of G. By 
Theorem 6.8, Z(G) is equal to the kernel of the action of G on M, and the action of G
on M is free.

The action of Rd on M descends to a free action of Rd/Zd on X , whose orbits are 
the images of the Rd-orbits under the map π : M −→ X . Let π : M −→ X be the 
corresponding map induced by π : M −→ X .

Denote, for x, y ∈ M

δ(x, y) = inf{x1 ∈ x, y1 ∈ y : dM(x1, y1)}.

Lemma 6.12. There exist ε > 0, C > 1 and a G-invariant metric d on M such that

C−1δ(x, y) ≤ d(x, y) ≤ Cδ(x, y)

for all x, y such that δ(x, y) < ε.
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Proof. The function δ is G-invariant, since the metric dM is G-invariant. Note that 
δ(x, y) > 0 for all x �= y, since the quotient map π : (M, dM) −→ (X , d) is a local 
isometry, the images of x and y in X are compact, hence distance between any two 
points of π(x) and π(y) are bounded from below.

Let ε be as in Proposition 6.11. Define d(x, y) as infimum of 
∑

δ(xi, xi+1) over all 
sequences x = x0, . . . , xn = y such that δ(xi, xi+1) < ε. Note that by Proposition 6.11
there exists C > 1 such that δ(x, y) ≤ C

∑
δ(xi, xi+1), hence

δ(x, y) ≤ Cd(x, y)

for all x, y ∈ M. We also have

d(x, y) ≤ δ(x, y)

for all x, y such that δ(x, y) < ε. �
Proposition 6.13. The topology defined by the metric d coincides with the quotient topol-
ogy on M. The map π : M −→ X is uniformly locally bi-Lipschitz with respect to d and 
the metric on X coming from the Hausdorff distance between compact subsets of X .

Proof. By Proposition 6.11 and the definition of d, there exist C > 1 and ε > 0 such 
that if d(x, y) < ε, then for every y ∈ y there exists x ∈ x such that dM(x, y) < Cε. 
Suppose that U ⊂ M is open with respect to d. Let U ⊂ M be the preimage of U . Then 
for every x ∈ U there exists ε > 0 such that the ε-neighborhood of x (with respect to d) 
is contained in U . Let y be such that d(x, y) < C−1ε. Then for every y ∈ y there exists 
x ∈ x such that dM(x, y) < ε. It follows that the ε-neighborhood of the set x contains 
the set y. It follows that U is open in M.

Suppose that U ⊂ M is an Rd-invariant open subset of M. Then for every x ∈ U

there exists ε > 0 such that the ε-neighborhood of x is contained in U . Suppose that 
y ⊂ U is such that d(x, y) < C−1ε/2. Then there exists y ∈ y such that dM(x, y) ≤ ε. 
Then y ∈ U , hence y ⊂ U , since U is Rd-invariant. We have shown that every set that 
is open in the quotient topology is also open with respect to d.

The statement about the Hausdorff distance also follows directly from the definition 
of d and Proposition 6.11 (and the fact that π : M −→ X is a local isometry). �

Note that v(x) = [v+(x), v−(x)], where v+ = P+(v) and v− = P−(v). It follows that 
for any v, u ∈ Rd and x, y ∈ M we have

[v(x), u(y)] = [v+(x), u−(y)] = [(v+ + u−)(x), (v+ + u−)(y)] = (v+ + u−)([x, y]),

i.e., the value of [x, y] depends only on x and y. It follows that the function [x, y] = [x, y]
is well defined and satisfies the equalities (1) and (2) of Definition 2.1. We will prove 
that it is continuous in the next proposition.
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We also have a well defined homeomorphism F (x) = F (x), by condition (4) of Theo-
rem 6.8.

Lemma 6.14. The metric d agrees with the local product structure on M. In particular, 
the map [·, ·] is continuous.

Proof. We know that the metric dM on M agrees with the local product structure on 
M, since it is locally isometric to the standard metric on X . Let x, y be points of M
such that δ(x, y) is small. Let us prove that

δ(x, y) � δ(x, [x, y]) + δ(y, [x, y]) (12)

for all x and y that are close enough to each other. (Here F1 � F2 means that there 
exists a constant C > 1 such that C−1F1 ≤ F2 ≤ CF1.)

There exist points x ∈ x and y ∈ y such that dM(x, y) ≤ 2δ(x, y). Since d agrees with 
the local product structure on M, we have

dM(x, y) � dM(x, [x, y]) + dM(y, [x, y]).

We have δ(x, [x, y]) ≤ dM(x, [x, y]) and δ(y, [x, y]) ≤ dM(y, [x, y]), hence there exists 
a constant C1 > 1 such that

δ(x, y) ≥ C−1
1 (δ(x, [x, y]) + δ(y, [x, y])).

On the other hand, since δ is equivalent to a metric (see Lemma 6.12), there exists C2 > 1
such that

δ(x, y) ≤ C2(δ(x, [x, y]) + δ(y, [x, y])),

by the triangle inequality. This proves (12).

Lemma 6.15. There exist C > 1 and ε > 0 such that if x, y ∈ M are such that [x, y] = x

(i.e., x and y belong to the same stable plaque of M) and δ(x, y) < ε, then there exist 
x ∈ x and y ∈ y such that [x, y] = x and dM(x, y) ≤ Cδ(x, y).

Proof. Let x, y belong to one stable plaque of M. There exist ε > 0 and C > 1 (not 
depending on x, y) such that if dM([x, g(x)], [y, h(y)]) < ε for g, h ∈ G, then

dM([x, g(x)], [y, h(y)]) ≥
C−1(dM([x, g(x)], [y, g(y)]) + dM([y, g(y)], [y, h(y)])) ≥

C−1dM([x, g(x)], [y, g(y)]),

see Fig. 3.
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Fig. 3. Distance between plaques.

It follows that

inf{dM(v(x), u(y)) : v, u ∈ E−} ≥ C−1 inf{dM(v(x), v(y)) : v ∈ E−}, (13)

if the left hand side of the inequality is less than ε.
We always can find x1 ∈ x and y1 ∈ y such that dM(x1, y1) ≤ 2δ(x, y). Then [x1, y1] =

v(x1) for some v ∈ Rd.
Note that [x1, y1] and x1 belong to the same unstable plaque of M, hence v ∈ E−. 

Then [v(x1), y1] = [x1, y1] = v(x1), i.e., the points v(x1) and y1 belong to the same stable 
plaque.

It follows from (13) that

inf{dM(uv(x1), u(y1)) : u ∈ E−} ≤
C inf{dM(uv(x1), w(y1)) : u,w ∈ E−} ≤ CdM(x1, y1) ≤

2Cδ(x, y).

It follows that there exists a pair of points x′ ∈ x, y′ ∈ y such that x′ and y′ belong 
to the same stable plaque, and dM(x′, y′) ≤ 2Cδ(x, y). �

Let x, y ∈ M be such that δ(x, y) is small, and [x, y] = x. Let x2 ∈ M be a point 
close to x. Using Lemma 6.15, find x ∈ x and y ∈ y such that [x, y] = x and dM(x, y) ≤
C1δ(x, y). By Proposition 6.11, there exists x2 ∈ x2 such that dM(x, x2) ≤ C2δ(x, x2). 
We conclude from this, and from the fact that dM agrees with the local product structure 
on M, that there exists a constant C3 > 1 such that if dM(x, y) and δ(x, x2) are small 
enough, we have

dM([x, x2], [y, x2]) ≤ C3dM(x, y).

Consequently,

δ([x, x2], [y, x2]) ≤ dM([x, x2], [y, x2]) ≤ C3dM(x, y) ≤ C3Cδ(x, y).
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It follows that the maps W+(x1) −→ W+(x2) : x �→ [x, x2] are locally Lipschitz with 
respect to the metric d. Since the inverses of these maps are also maps of the same form, 
they are in fact locally bi-Lipschitz. This shows that the local product structure on M
agrees with d. �
Proposition 6.16. The dynamical system (X , f), where f is the map induced by F is a 
connected and locally connected Smale space. The quotient map M −→ X is a splitting 
with the group of deck transformations G.

Proof. It follows from Theorem 6.8 that f : X −→ X is a well defined homeomorphism. 
The plaques of the direct product structure of M are continuous images of plaques of 
M, hence they are connected. The map F is a lift of f .

The map π : M −→ X is uniformly locally bi-Lipschitz with respect to d and the 
Hausdorff distance on X , by Proposition 6.13. It follows that the Hausdorff distance 
agrees with the quotient topology on X and that π is a covering.

It follows from Proposition 6.13, Lemma 6.14, and the fact that G preserves the direct 
product structure on M, that the image under π of the local product structure on M is 
a well defined local product structure on X .

Suppose that x, y ∈ M are such that [x, y] = x (i.e., x and y belong to the same stable 
plaque of M). By Lemma 6.15, there exist x ∈ x and y ∈ y belonging to the same stable 
plaque of M. Note also that it follows from Lemmas 6.12 and 6.14 that there exists a 
constant C > 1, not depending on x and y, such that we can find x, y satisfying

C−1d(x, y) ≤ dM(x, y) ≤ Cd(x, y),

provided d(x, y) is small enough.
Then dM(Fn(x), Fn(y)) ≤ CλndM(x, y) for some fixed C > 1 and λ ∈ (0, 1). It 

follows that there exists a constant C2 > 1 such that for any two points x, y ∈ M such 
that [x, y] = x, and d(x, y) is small enough we have d(Fn(x), Fn(y)) ≤ C2λ

nd(x, y) for 
all n. Analogous statement about the unstable plaques of M is proved in the same way.

The map π : M −→ X is locally bi-Lipschitz with respect to d and the Hausdorff 
distance on X . It follows that the images of the stable and unstable plaques of M are 
stable and unstable leaves of (X , f).

Suppose that x, y ∈ M are such that π(x) = π(y), i.e., the Rd-orbits x and y are 
mapped to the same set in X . Then there exist x ∈ x and y ∈ y such that π(x) = π(y), 
i.e., there exists g ∈ G such that g(x) = y. Then g(x) = y. Since the action of G on 
M is free, we conclude that G is the group of deck transformations of the splitting 
π : M −→ X . �
Proposition 6.17. If a connected and locally connected Smale space (X , f) has a splitting 
with a nilpotent torsion free group of deck transformations, then f has a fixed point.
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Proof. We argue by induction on the nilpotency class. We know that the statement is 
true for abelian groups of deck transformations, see Theorem 6.10. The Smale space 
(X , f) is a locally connected Smale space with the group of deck transformations G of 
lower class. Therefore, by the inductive hypothesis, f has a fixed point. Its preimage in 
X is an f -invariant torus T ⊂ X equal to an orbit of the Rd/Zd-action. It follows from 
the definition of the action of Rd on M that T is locally closed with respect to the local 
product operation [·, ·], hence (T, f) is a Smale space, and f restricted to this torus is a 
hyperbolic automorphism, hence it has a fixed point (see Theorem 6.10). �

If G is a torsion-free finitely generated nilpotent group, then there exists a unique 
simply connected nilpotent Lie group L such that G is isomorphic to a co-compact 
lattice in L, see [21]. Moreover, every automorphism of G is uniquely extended to L. The 
Lie group L is called the Malcev completion of G.

Let G be a finitely generated torsion free nilpotent group, and let φ be its automor-
phism. We say that φ : G −→ G is hyperbolic if its unique extension φ : L −→ L to the 
Malcev completion is hyperbolic, i.e., if the automorphism Dφ of the Lie algebra of L
has no eigenvalues on the unit circle.

Proposition 6.18. Let (X , f) be a connected and locally connected Smale space with a 
splitting π : M −→ X with a torsion free nilpotent group of deck transformations G. Let 
φ be an automorphism of G induced by a lift F of f which has a fixed point in M. Then 
φ is hyperbolic.

Proof. Let us prove our proposition by induction on the nilpotency class of G. It is true 
for abelian groups, by Proposition 6.5.

Suppose that we have proved the proposition for all nilpotent groups of class n. 
Suppose that nilpotency class of G is n + 1. By Proposition 6.16 and the inductive 
hypothesis, the automorphism of G induced by φ is hyperbolic.

Let x0 ∈ M be the fixed point of F . Then x0 ∈ M is a fixed point of F . The image 
of x0 in X is an f -invariant torus T , such that (T, f) is topologically conjugate to a 
hyperbolic automorphism of the torus.

The map π : x0 −→ T is its splitting with the group of deck transformations equal to 
Z(G) = Zd. It follows then from Proposition 6.5 that the restriction of φ onto Z(G) is 
hyperbolic.

We see that restriction of φ : L −→ L onto Z(L) and the automorphism induced by 
φ on L/Z(L) both are hyperbolic, hence φ itself is hyperbolic. �
Theorem 6.19. Let (X , f) be a connected and locally connected Smale space with a split-
ting π : M −→ X with a torsion free nilpotent group of deck transformations G. Let φ
be an automorphism of G induced by a lift of f . Let fL : G\L −→ G\L be the diffeomor-
phism induced by φ. Then (X , f) and (G\L, fL) are topologically conjugate.
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Proof. Let F be a lift of f to M with a fixed point x0. Extend the automorphism 
φ : G −→ G to an automorphism φ : L −→ L of the Lie group.

Proposition 6.20. There exists a G-equivariant map h : M −→ L such that φ ◦h = h ◦F
and h(x0) = 1.

Proof. Let us show at first that there exists a G-equivariant map h0 : M −→ L. The 
space X is a quotient of the Cantor set under a finite-to-one map (see [4,16]) with an 
upper bound on the cardinality of its fibers. It follows then from Hurewicz formula [20]
that X has finite topological dimension.

By a theorem of Alexandroff [1], X is homeomorphic to an inverse limit of simplicial 
complexes, which are nerves of finite open coverings of X . We can make the elements of 
the coverings sufficiently small, so that they can be lifted to a G-invariant covering of M. 
It follows that M is an inverse limit of a sequence of simplicial complexes with G-actions 
and G-equivariant maps between them. In particular, there exists a G-equivariant map 
A from M to a simplicial complex Δ with a G action on it. Since L is homeomorphic to 
Rn, there exists a G-equivariant map B : Δ −→ L. Composition h0 = B ◦ A is then a 
G-equivariant map from M to L.

Let us show now that there exists a G-equivariant map h : M −→ L such that 
φ ◦ h = h ◦ F . We will use the arguments of [14, Theorem 2.2], which we repeat here for 
the sake of completeness, and since our setting is slightly different.

Consider the space Q of all continuous maps γ : X −→ L such that γ(π(x0)) = 1 with 
the topology of uniform convergence on X . It is a nilpotent group (of the same class as 
L) with respect to pointwise multiplication. Define Φ0(γ) = φ−1 ◦ γ ◦ f . Then Φ0 is a 
continuous automorphism of the group Q.

Let L be the Lie algebra of L, and let exp : L −→ L be the exponential map. It is a 
diffeomorphism, since L is simply connected and nilpotent. Let Q be the Banach space 
of continuous maps X −→ L mapping π(x0) to zero. Then Log : γ �→ exp−1 ◦γ is a 
homeomorphism of Q with Q.

Let T0 : Q −→ Q be defined by T0(γ) = Φ0(γ)γ−1. Let us show that T0 is a homeo-
morphism. We show at first that it is a local homeomorphism at the identity (i.e., the 
constant map x �→ 1), using the homeomorphism Log : Q −→ Q and computing the 
derivative of T = Log ◦T0 ◦ Log−1. Denote Φ = Log ◦Φ0 ◦ Log−1.

We have exp ◦dφ = φ ◦ exp, where dφ is the derivative of φ : L −→ L at the identity. 
It follows that dφ−1 ◦ exp−1 = exp−1 ◦φ−1, and for every γ ∈ Q we have

Φ(γ) = Log ◦Φ0 ◦ Log−1(γ) =

exp−1 ◦φ−1 ◦ exp ◦γ ◦ f = dφ−1 ◦ exp−1 ◦ exp ◦γ ◦ f =

dφ−1 ◦ γ ◦ f.

It follows that Φ : Q −→ Q is linear.
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For every γ ∈ Q, we have

T (γ) = Log ◦T0 ◦ Log−1(γ) =

exp−1(T0(exp ◦γ)) = exp−1(Φ0(exp ◦γ) · (exp ◦γ)−1) =

exp−1(exp ◦Φ(γ) · (exp ◦γ)−1) =

Log(Log−1(Φ(γ)) · Log−1(γ)−1) = Log(Log−1(Φ(γ)) · Log−1(−γ)),

since (Log−1(γ(x)))−1 = (exp(γ(x)))−1 = exp(−γ(x)) for all x ∈ X .
Let us compute the derivative of T at zero. If γ ∈ Q, then

lim
t→0

1
t
T (tγ) = lim

t→0

1
t

Log(Log−1(Φ(tγ)) Log−1(−tγ)) = Φ(γ) − γ,

by the Campbell-Hausdorf formula.
Since dφ is hyperbolic, there exist a direct sum decomposition L = L+ ⊕ L− and 

constants C > 0 and 0 < λ < 1 such that ‖dφn(v)‖ ≤ Cλn‖v‖ for all n ≥ 0 and v ∈ L+, 
and ‖dφ−n(v)‖ ≤ Cλn‖v‖ for all n ≥ 0 and v ∈ L−. Define

Q∗ = {γ ∈ Q : γ(X ) ⊂ L∗},

for ∗ ∈ {+, −}. Since L+ and L− are dφ-invariant, the spaces Q+ and Q− are Φ-
invariant. We obviously have Q = Q+ ⊕Q−, ‖Φn(γ)‖ ≤ Cλn‖γ‖ for n ≥ 0, γ ∈ Q+, and 
‖Φ−n(γ)‖ ≤ Cλn‖γ‖ for n ≥ 0, γ ∈ Q−. It follows that Φ − I is invertible.

This shows that T is a local homeomorphism at zero. Consequently, T0 is a local 
homeomorphism at the identity of Q. Let us show that T0 is surjective. Let Z1(Q) =
Z(Q) ⊂ Z2(Q) ⊂ · · · ⊂ Zn(Q) = Q be the upper central series of Q. Let us prove 
by induction on i that T0(Q) ⊃ Zi(Q). It is easy to see that T0(γ1γ2) = T0(γ1)T0(γ2)
for all γ1, γ2 ∈ Z(Q). Since T0 is a local homeomorphism at the identity and Z(Q)
is generated by any neighborhood of the identity (as any connected topological group, 
see [29, Theorem 15, p. 76], this implies that Z(Q) ⊂ T0(Q).

Suppose that we have proved that Zi(Q) ⊂ T0(Q). Let T0(γ1), T0(γ2) ∈ Zi+1(Q). 
Then

T0(γ1)T0(γ2) = Φ0(γ1)γ−1
1 Φ0(γ2)γ−1

2 =

Φ0(γ1)Φ0(γ2) ·
(
Φ0(γ2)−1γ−1

1 Φ0(γ2)γ−1
2 γ1γ2

)
· γ−1

2 γ−1
1 .

We have

γ′ = Φ0(γ2)−1γ−1
1 Φ0(γ2)γ−1

2 γ1γ2 = γ−1
2 (Φ0(γ2)γ−1

2 )−1γ−1
1 (Φ0(γ2)γ−1

2 )γ1γ2 =

γ−1
2 T0(γ2)−1γ−1

1 T0(γ2)γ1γ2 = γ−1
2 [T0(γ2), γ1]γ2 ∈ Zi(Q)
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(here [T0(γ2), γ1] is the commutator, and has nothing to do with the direct product 
decomposition). By the inductive hypothesis, there exists γ3 ∈ Q such that γ′ = T0(γ3). 
Then

T0(γ1)T0(γ2) = Φ0(γ1)Φ0(γ2)Φ0(γ3)γ−1
3 γ−1

2 γ−1
1 = T0(γ1γ2γ3) ∈ T0(Q).

Since Zi+1(Q) is connected, hence generated by any neighborhood of the identity, it 
follows that Zi+1(Q) ⊂ T (Q).

Since Φ − I is invertible, the only fixed point of Φ is 0. Consequently, the only fixed 
point of Φ0 is the unit of Q. If T (γ1) = T (γ2), then Φ0(γ1)γ−1

1 = Φ0(γ2)γ−1
2 , hence 

Φ0(γ−1
2 γ1) = γ−1

2 γ1. But then γ1 = γ2, as the identity is the only fixed point of Φ0.
We have proved that T0 : Q −→ Q is a homeomorphism. Let h0 : M −→ L be any 

G-equivariant map. Consider the map

γ(x) �→ (φ−1 ◦ h0 ◦ F (x))−1 · h0(x).

It is easy to see that for every g ∈ G we have

γ(g(x)) = γ(x),

i.e., γ is constant on G-orbits, hence it descends to a continuous map γ : X −→ L, which 
is an element of Q. There exists γ′ ∈ Q such that T (γ′) = γ. Then F0(γ′)(γ′)−1 = γ, 
which means that γ′(f(x)) = φ(γ(x)) · φ(γ′(x)).

Then the map h(x) = h0(x) · γ′(π(x)) is G-equivariant, and

h(F (x)) = h0(F (x)) · γ′(f(π(x))) =

h0(F (x)) · φ(γ(x)) · φ(γ′(π(x))) =

h0(F (x))h0(F (x))−1φ(h0(x))φ(γ′(π(x))) =

φ(h0(x)γ′(π(x))) = φ(h(x)),

which finishes the proof of the proposition. �
Theorem 5.15 shows now that (X , f) and (G\L, fL) are topologically conjugate. �
Let us finish the proof of Theorem 6.1. Let (X , f) be a connected and locally connected 

Smale space, and let π : M −→ X be its splitting with a virtually nilpotent group of 
deck transformations G. Let F be a lift of f to M. Let φ be the automorphism induced 
by F on G.

Every finitely generated virtually nilpotent group G contains a torsion free nilpotent 
subgroup G0 of finite index (see [19, 17.2.2]). For every g ∈ G and n ∈ Z the sub-
group g−1φn(G0)g has the same index in G as G0. There exists only a finite number of 
subgroups of given index in a finitely generated group. Taking then intersection of all 
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subgroups of the form g−1φn(G0)g for n ∈ Z and g ∈ G, we get a normal φ-invariant 
torsion free nilpotent subgroup G1 of finite index in G. It will be finitely generated as a 
finite index subgroup of a finitely generated group.

Then G1\M together with the map f1 induced by F is a Smale space. It is a finite 
covering of X , and its group of deck transformations is G1. Then, by Proposition 6.17, 
f1 has a fixed point, hence we may assume that F has a fixed point x0. We assume then 
that φ : G −→ G is given by φ(g)(x0) = F (g(x0)).

Let L be the Malcev completion of G1. Extend φ : G1 −→ G1 to an automorphism 
φ : L −→ L. Then, by Theorem 6.19, there exists a homeomorphism Φ : L −→ M
conjugating the actions of G1 on M and L, and such that Φ ◦ F = φ ◦ L. Note that 
Φ(1) = x0, Φ(L+) = W+, and Φ(L−) = W−, where L+ = W+(1), L− = W−(1) are 
the stable and unstable plaques of the identity element of L, and W+ = W+(x0), W− =
W−(x0) are the stable and unstable plaques of x0.

Note that L+ = {g ∈ L : limn→+∞ φn(g) = 1} and L− = {g ∈ L :
limn→−∞ φn(g) = 1} are closed subgroups of L (they are closed since they are plaques 
of a splitting). The stable plaques of L are the left cosets of L+; the unstable plaques of 
L are the left cosets of L−.

Consider the action of G on L obtained by conjugating by Φ the action of G on M. 
The action of its subgroup G1 ≤ G will coincide with the natural action of G1 ≤ L on L
by left multiplication.

The Smale space (X , f) is then topologically conjugate to the homeomorphism induced 
by φ on G\L.

Proposition 6.21. The group G acts on L by affine transformations.

Proof. The action of G1 ≤ G on L coincides with the natural left action of G1 on L as 
a subgroup of L. The action of G on G1 by conjugation can be uniquely extended to an 
action of G on L by automorphism. Denote by αg(h) for g ∈ G and h ∈ L the image of 
h under the automorphism of L equal to the extension of the automorphism h �→ ghg−1

of G1.
Let g ∈ G. Then ag = g(1) = Φ−1(g(x0)) is an element of L. Let us prove that the 

action of g on L is given by the formula

g(x) = αg(x) · ag.

Consider the map Ag(x) = a−1
g αg(x)ag : L −→ L. Note that if h ∈ G1, then Ahg = Ag, 

since ahg = hg(1) = hag and αhg(x) = hαg(x)h−1. It follows that there is a finite number 
of possibilities for Ag, since G1 has finite index in G. Note also that φ(ag) = φ(g(1)) =
φ(g)(1) and φ(αg(x)) = αφ(g)(φ(x)), so that φ(Ag(x)) = Aφ(g)(φ(x)).

Suppose that x ∈ L+. Then φn(x) → 1 as n → ∞. Since the set of possible maps of 
the form Aφn(g) is finite and they are continuous, we have

φn(Ag(x)) = Aφn(g)(φn(x)) → 1,
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i.e., Ag(x) ∈ L+. Consequently, the maps Ag preserve L+.
If x, y belong to one stable plaque, then x−1y ∈ L+, hence

Ag(x−1y) = (αg(x)ag)−1(αg(y)ag) ∈ L+.

Consequently, the affine map x �→ αg(x)ag preserves the stable plaques of L. It is proved 
in the same way that it preserves the unstable plaques, hence it preserves the local 
product structure.

Let h ∈ G1. Then g(hL+) = ghg−1(g(L+)) = αg(h)agL+, since g(L+) is the stable 
plaque agL+ of the point ag = g(1). By the same argument, g(hL−) = αg(h)agL− for 
all h ∈ G1.

Let R ⊂ L be a relatively compact open rectangle such that G1\R = G1\L and 1 ∈ R. 
Then for every x ∈ L− and every n ∈ N there exists gn ∈ G1 such that x ∈ φn(gnR). 
Note that then distance from x to φn(gnL+) is exponentially decreasing with n. It follows 
that the union of the stable plaques of the form hL+ for h ∈ G1 is dense in L. Similarly, 
the union of the unstable plaques of the form hL− for h ∈ G1 is also dense in L.

The actions of the maps x �→ g(x) and x �→ αg(x)ag on the stable and unstable plaques 
of the form hL± for h ∈ G1 coincide. Both maps are continuous on L and preserve the 
direct product structure, hence they are equal. �

This finishes the proof of Theorem 6.1. �
7. Smale spaces with pinched spectrum

7.1. Splitting

Definition 7.1. Let (X , f) be a Smale space such that X is connected and locally con-
nected. Let a0, a1 be the stable lower and upper critical exponents, and let b0, b1 be the 
unstable lower and upper critical exponents.

We say that the Smale space has pinched spectrum if

a0

a1
+ b0

b1
> 1,

Theorem 7.2. A Smale space with pinched spectrum is splittable.

Proof. Choose numbers α0, α1, β0, β1 such that 0 < α0 < a0 ≤ a1 < α1, 0 < β0 < b0 ≤
b1 < β1, and

α0

α1
+ β0

β1
> 1.

Let d+ and d− be metrics associated with the internal log-scales �+ and �− on the 
stable and unstable leaves of the exponents α0 and β0, respectively. All distances inside 
the leaves will be measured using these metrics.
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Fig. 4. Splitting.

Let R be a finite covering of X by small open rectangles. We assume (making the rect-
angles small enough) that the holonomies inside the rectangles R ∈ R are bi-Lipschitz. 
Then it follows from equalities (3) and (4) in Section 2 that the holonomies inside fk(R)
for all R ∈ R and k ∈ Z are bi-Lipschitz with a common Lipschitz constant L > 1.

There exists ε > 0 such that for any x ∈ X there exists a rectangle R ∈ R such that 
the ε-neighborhood of x in W+(x) (with respect to d+) and the ε-neighborhood of x in 
W−(x) (with respect to d−) are contained in R. Then for some constant c > 0 and for 
every k ∈ Z, x ∈ X there exists R ∈ R such that the ce−α0k-neighborhood of x in W+(x)
is contained in fk(R), and the ceα0k-neighborhood of x in W−(x) is contained in fk(R).

Choose x0 ∈ X . Let us construct a splitting πx0 : W+(x0) ×W−(x0) −→ X . Let x ∈
W+(x0), and let n be a positive integer. Since α1 is a stable upper exponent, there exists 
a sequence x0, x1, . . . , xm1 = x of points of W+(x0) such that m1 ≤ C1e

α1(n−�−(x0,x)), 
and �+(xi, xi+1) ≥ n, for some constant C1.

Passing to d+, we get that

m1 ≤ C2d+(x0, x)α1/α0eα1n, d+(xi, xi+1) ≤ C3e
−α0n.

For every k ∈ Z there exist rectangles Ri,1 ∈ R such that the ce−α0k-neighborhood of 
xi in W+(xi) = W+(x0) and the ceβ0k-neighborhood of xi in W−(xi) belong to fk(Ri,1). 
If ce−α0k > C3e

−α0n, then Ri,1 contains xi−1 and xi+1. The last inequality is equivalent 
to k ≤ n − r1 for some constant r1 ∈ Z. Choose k1 = n − r1, and find a sequence of 
rectangles Ri,1 satisfying the above conditions for k = k1. (See Fig. 4.)

Let y ∈ W−(x0) be such that d−(x0, y) ≤ ceα0k1 = C4e
α0n (where C4 = ce−α0r1). 

Denote z0 = y, z1 = [x1, z0]fk1 (R0,1), z2 = [x2, z1]fk1 (R1,1), etc. If all points z0, . . . , zm1

are defined, then we say that y can be continued to x, and denote πx0(x, y) = zm1 . Note 
that x0 can be continued to x and πx0(x0, x) = x.

If y can be continued to x, then, in the above notation,

d+(zi, zi+1) ≤ Ld+(xi, xi+1) ≤ C5e
−α0n,
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hence

d+(y, πx0(x, y)) ≤ C5m1e
−α0n ≤ C6d+(x0, x)α1/α0e(α1−α0)n.

Let k2 be such that

ceα0k2 ≥ C6d+(x0, x)α1/α0e(α1−α0)n, (14)

so that for every point z ∈ X there exists a rectangle R ∈ R such that the 
C6d+(x0, x)α1/α0e(α1−α0)n-neighborhood of z in W+(z) is contained in f−k2(R), and 
the ce−β0k2-neighborhood of z in W−(z) is also contained in f−k2(R).

Inequality (14) follows from an inequality

k2 ≥ α1

α2
0

log d+(x0, x) + α1 − α0

α0
n + s

for some constant s. Consequently, we can take

k2 = α1

α2
0

log d+(x0, x) + α1 − α0

α0
n + s1, (15)

where s1 > 0 is bounded from above.
Let n2 be such that �−(z1, z2) ≥ n2 implies d−(z1, z2) ≤ ce−β0k2 . There exists a 

constant r2 (not depending on k2) such that we can take n2 = k2 + r2. Let y ∈ W−(x0). 
There exists a sequence y0 = x0, y1, y2, . . . , ym2 = y such that

m2 ≤ C7d−(y, x0)β1/β0eβ1n2 , d−(yi, yi+1) ≤ ce−β0n2 ≤ ce−β0k2 .

Choose a sequence of rectangles Ri,2 ∈ R such that the ce−β0n2-neighborhood of yi
in W−(yi) = W−(x0), and the ceα0n2-neighborhood of yi in W+(yi) are contained in 
f−n2(R).

Suppose that yi can be continued to x. Then d+(yi, πx0(x, yi)) ≤ ceα0k2 ≤
ceα0n2 , hence πx0(x, yi) ∈ f−n2(Ri,2). Define then a sequence z0,i = yi+1, z1,i =
[x1, z0,i]fk1 (R0), z2,i = [x2, z1,i]fk1 (R1), etc. Each of the points zj,i will be defined, pro-
vided d−(zj−1,i, xj−1) ≤ ceβ0k1 . We have an estimate

d−(zj−1,i, xj−1) ≤ C8(d−(x0, y1) + d−(y1, y2) + · · · + d−(yj−2, yj−1)) ≤
C8m2ce

−β0k2 ≤ C9d−(y, x0)β1/β0e(β1−β0)k2 .

(We used that n2 = k2 + r1 for some constant r1.)
It follows that y can be continued to x if

C9d−(y, x0)β1/β0e(β1−β0)k2 ≤ ceβ0k1 ,
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i.e., if

(β1 − β0)k2 + β1

β0
log d−(y, x0) + s2 ≤ β0n

for some constant s2.
Replacing k2 by the value given in (15), we get that y can be continued to x if

(β1 − β0)
(
α1 − α0

α0
n + α1

α2
0

log d+(x0, x)
)

+ β1

β0
log d−(y, x0) + s3 ≤ β0n (16)

for some constant s3. If

(β1 − β0)(α1 − α0)
α0

< β0, (17)

then taking n big enough, we can guarantee that inequality (16) is satisfied. Inequal-
ity (17) is equivalent to

(β1 − β0)(α1 − α0) < α0β0,

i.e., to

β1α1 < β0α1 + β1α0 ⇐⇒ α0

α1
+ β0

β1
> 1.

It follows that if the Smale space has pinched spectrum, then every point y ∈ W−(x0)
can be continued to every x ∈ W+(x0), and we can define πx0 : W+(x0) ×W−(x0) using 
the rules described above.

Let us show that the map πx0 : W+(x0) × W−(x0) −→ X is well defined, i.e., does 
not depend on the choice of the rectangles Ri,1 (we did not use the rectangles Ri,2 in 
the definition of πx0).

It follows from the construction that the map y �→ πx0(x, y) is equal to composition 
of holonomy maps of a sequence of rectangles Ri,1 ∈ fk1(R) for some positive k1.

We also showed that for every y, the germ of the map y �→ πx0(x, y) is equal to a 
germ of a holonomy in a rectangle Rj,1 ∈ f−n2(R) for some positive n2.

Note also that given such a sequence Ri,1 ∈ fk1(R) we can find a sequence R′
i ∈ fm(R)

such that m is arbitrarily big and the map y �→ πx0(x, y) defined by the original sequence 
R1,i is a restriction of the maps defined by the new sequence R′

i.
Suppose that hi : W−(x0) −→ W−(x) for i = 1, 2 are compositions of holonomies 

defined using two sequences R1,i, and R′
1,i. We may assume that both sequences belong 

to fk1(R) for some fixed k1. Let y belong to the domain of both maps hi. We may 
assume (taking k1 big enough) that x and y belong to connected components of the 
domains of hi. Then there exists a connected chain of rectangles R2,i ∈ f−n2(R), for 
some n2 > 0, such that the restrictions of hi to the corresponding plaques of R2,i are 
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equal to holonomies in R2,i. It follows then from h1(x0) = h2(x0) = x that h1(y) = h2(y). 
Consequently, πx0 is well defined. The map πx0 is obviously a local homeomorphism.

Note that if R ∈ R is such that x0 ∈ R, then πx0 : P+(R, x0) × P−(R, x0) −→ R

coincides with [·, ·]R.
Let (a, b) ∈ W+(x0) ×W−(x0) be an arbitrary point, and let x1 = πx0(a, b). Then it 

follows from the definition of the maps πxi
and their uniqueness that

πx0(x, y) = πx1(πx0(x, b), πx0(a, y)). (18)

It follows that πx0 is onto, since its range contains every rectangle R ∈ R intersecting 
it. It also follows that the map πx0 is a covering, since every point of W+(x0) ×W−(x0)
has a neighborhood mapped homeomorphically by πx0 to an element of R.

Another corollary of (18) is that πx0 homeomorphically maps the plaques of W+(x0) ×
W−(x0) to the leaves of X , since πx1 maps the direct factors of W+(x1) ×W−(x1) iden-
tically onto the leaves W+(x1) and W−(x1). This finishes the proof of the theorem. �
7.2. Polynomial growth

Theorem 7.3. Let (X , f) be a Smale space with pinched spectrum. Then the group of deck 
transformations of the splitting of (X , f) has polynomial growth.

Proof. Our proof essentially repeats the proof of the main theorem of [7]. Let R be a 
finite covering of X by open connected rectangles. Let π : M −→ X be the splitting 
constructed in Theorem 7.2, where M = W+(x0) ×W−(x0). Denote by R̃ the union of 
the sets of connected components of π−1(R) for R ∈ R.

Consider the graph Γ with the set of vertices identified with R̃ in which two vertices 
are connected if the corresponding sets have non-empty intersection. It is easy to show 
(see the proof of Proposition 5.5) that the graph Ξ is quasi-isometric to the Cayley graph 
of the group G of deck transformations of π and has the same growth rate as G.

Let B(r) be the set of elements of R̃ that are on distance at most r in Γ from a vertex 
R ∈ R̃ such that (x0, x0) ∈ R.

Let 0 < α0 < a0 ≤ a1 < α1 and 0 < β0 < b0 ≤ b1 < β1 such that α0/α1 + β0/β1 > 1. 
Denote by d+ and d− the metrics of exponents α0 and β0 on the corresponding leaves 
of X and plaques of W+(x0) ×W−(x0). (Every plaque of M is identified with a leaf of 
X by π.)

Take R ∈ B(r). Choose a sequence R0 � (x0, x0), R1, . . . , Rm = R of elements of R̃
forming a chain in Γ of length m ≤ r.

We will denote by [·, ·] the direct product structure on W+(x0) × W−(x0). Let D−
and D+ be the suprema of the d−- and d+-diameters of the sets [y, ∪Ri] and [∪Ri, y] for 
all y ∈ ∪Ri (see Fig. 5).

There exist constants C1, C2 not depending on r, and a number n = n(r) such that 
|n − logD−/β0| < C1, and for every point y ∈ M there exists a rectangle V ∈ fn(R)
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Fig. 5. Growth estimation

such that the C2e
−α0n-neighborhood of y in the stable plaque of y (with respect to d+) 

and the set [y, ∪Ri] are both contained in V .
It follows that we can find a sequence of rectangles Vi ∈ fn(R) of length at most 

C3e
α1n such that Vi∩Vi+1 �= ∅, the first rectangle in the sequence contains a given point 

of Ri−1 ∩Ri, while the last one contains a given point of Ri ∩Ri+1.
Consequently, we can find a sequence of rectangles V0, . . . , Vl ∈ fn(R) of length at 

most

C3re
α1n ≤ C4rD

α1/β0
−

such that Vi ∩ Vi+1 �= ∅, x0 ∈ V0, Vm contains a point x ∈ R = Rm, and for every Vi

there exists a point zi ∈ Vi such that [zi, ∪Ri] ⊂ Vi. Moreover, we may assume that the 
chain Vi covers any given in advance three point y1, y2, y3 ∈ ∪Ri.

It follows that the d+-distance from [y1, y2] to [y3, y2] is bounded from above by

C5rD
α1/β0
− · e−α0n ≤ C6rD

α1/β0
− D

−α0/β0
− = C6rD

α1−α0
β0

− .

It follows that

D+ ≤ C6rD
α1−α0

β0
− ,

and, by the same argument,

D− ≤ C7rD
β1−β0

α0
+ .

Combining the inequalities, we get

D+ ≤ C6r

(
C7rD

β1−β0
α0

+

)α1−α0
β0

= C8r
1+α1−α0

β0 D
(α1−α0)(β1−β0)

α0β0
+ ,

hence
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D
α1
α0

+ β1
β0

−α1β1
α0β0

+ ≤ C8r
1+α1−α0

β0 .

Note that α1
α0

+ β1
β0

− α1β1
α0β0

= α1β1
α0β0

(
α0
α1

+ β0
β1

− 1
)
> 0, hence

D+ ≤ C8r
p+

for p+ =
(
1 + α1−α0

β0

)(
α1
α0

+ β1
β0

− α1β1
α0β0

)−1
.

Similarly,

D− ≤ C9r
p−

for p− =
(
1 + β1−β0

α0

)(
α1
α0

+ β1
β0

− α1β1
α0β0

)−1
.

In particular (taking C10 = max(C8, C9) and p = max(p+, p−)) we have that 
d−([x0, x], x0) and d+([x, x0], x0) are less than C10r

p for any x ∈
⋃

R∈B(r) R.
Let μ+ and μ− be the measures satisfying the conditions of Theorem 3.8 (note 

that (X , f) is mixing by Proposition 5.2). Let μ be their direct product on M =
W+(x0) × W−(x0). Since the measures μ+ and μ− on the leaves of X are invariant 
under holonomies, G acts by measure preserving transformations on M. It follows that 
there exist positive constants A1 and A2 such that

A1|B(r)| ≤ μ

⎛
⎝ ⋃

R∈B(r)

R

⎞
⎠ ≤ A2|B(r)|.

By the proven above, the set 
⋃

R∈B(r) R is contained in the direct product of the balls 
of radius C10r

p with center in x0 in W+(x0) and W−(x0). By condition (1) of Theorem 3.8
volumes of these balls are bounded from above by C(C10r

p)η/α0 and C(C10r
p)η/β0 for 

some constant C. It follows that |B(r)| is bounded above by a polynomial in r. �
By the Gromov’s theorem on groups of polynomial growth [17], G is virtually nilpo-

tent. Theorem 6.1 now implies the following description of Smale spaces with pinched 
spectrum.

Theorem 7.4. Every connected and locally connected Smale space with pinched spectrum 
is topologically conjugate to an infra-nilmanifold automorphism.

8. Mather spectrum of Anosov diffeomorphisms

Let f : X −→ X be a diffeomorphism of a compact Riemann manifold X . It induces 
a linear operator f∗ on the Banach space of continuous vector fields by

f∗( �X)(x) = Df ◦ �X(f−1(x)).
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By a theorem of J. Mather [23], f is an Anosov diffeomorphism if and only if the spectrum 
of f+ does not intersect the unit circle. It belongs then to the set

{z ∈ C : λ1 < |z| < λ2} ∪ {z ∈ C : μ2 < |z| < μ1},

where 0 < λ1 < λ2 < 1 < μ2 < μ1. The tangent bundle TX is decomposed into a direct 
sum W s⊕Wu such that there exists a constant C > 1 such that for all vectors �v+ ∈ W s, 
�v− ∈ Wu, and for every positive integer n we have

C−1λn
1‖�v+‖ ≤ ‖Dfn�v+‖ ≤ Cλn

2‖�v+‖

and

C−1μn
2‖�v−‖ ≤ ‖Dfn�v−‖ ≤ Cμn

1‖�v−‖.

For more detail, see [23,6,7]. Every Anosov diffeomorphism is a Smale space, see [10, 
Proposition 5.10.1]. Stable and unstable leaves of (X , f) are manifolds, and the vectors 
of W s and Wu are tangent to the stable and unstable leaves, respectively.

Proposition 8.1. Let λ1, λ2, μ1, μ2 be as above. Then logμ2 and logμ1 are unstable lower 
and upper exponents of (X , f), and − log λ2 and − log λ1 are stable lower and upper 
exponents of (X , f).

Proof. It is easy to show that for every fixed k0 the metrics dk0 on leaves W+(x0)
and W−(x0) are quasi-isometric to the restrictions of the Riemannian metric of X onto 
W+(x0) and W−(x0), with the quasi-isometry constants depending only on k0 (and 
(X , f)). For every stable leaf W+ of (X , f) and all x, y ∈ W+, n ∈ Z,

d0(f−n(x), f−n(y)) = dn(x, y).

It follows that there exist constants C1 > 1, Δ > 0 such that

C−1
1 d̃+(f−n(x), f−n(y)) − Δ ≤ dn(x, y) ≤ C1d̃+(f−n(x), f−n(y)) + Δ,

where d̃+ is the Riemannian metrics on the stable leaves.
If γ is a curve in the stable leaf connecting f−n(x) to f−n(y), then fn(γ) is a curve 

connecting x to y, and

length(fn(γ)) =
∫ ∥∥∥∥ d

dt
fn ◦ γ(t)

∥∥∥∥ dt =
∫ ∥∥∥∥Dfn ◦ d

dt
γ(t)

∥∥∥∥ dt,

hence

C−1λn
1 length(γ) ≤ length(fn(γ)) ≤ Cλn

2 length(γ),
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and

C−1λn
1 · d̃+(f−n(x), f−n(y)) ≤ d̃+(x, y) ≤ Cλn

2 · d̃+(f−n(x), f−n(y)).

It follows that

C−1
1 C−1d+(x, y) · λ−n

2 − Δ ≤ dn(x, y) ≤ C1Cd̃+(x, y) · λ−n
1 + Δ

for all stably equivalent x, y and all positive n. Then, by Propositions 3.7 and 4.12, 
− log λ1 and − log λ2 are upper and lower exponents.

The case of unstable leaves is proved in the same way. �
M. Brin considers in [6–9] Anosov diffeomorphisms such that either

1 + logμ2

logμ1
>

log λ1

log λ2
(19)

or

1 + log λ2

log λ1
>

logμ1

logμ2
. (20)

Note that since logμ1
logμ2

and logλ1
logλ2

are both greater than one, each of the inequalities (19)
and (20) implies

log λ2

log λ1
+ logμ2

logμ1
> 1. (21)

For instance, in the case of (19):

log λ1

log λ2
+ logμ1

logμ2
> 1 + logμ1

logμ2
= logμ1

logμ2

(
logμ2

logμ1
+ 1

)
>

logμ1

logμ2
· log λ1

log λ2
.

Multiplying by logμ2
logμ1

· logλ2
logλ1

, we get (21).
Note that if a0 and a1 are stable lower and upper critical exponents, and b0 and b1

are unstable lower and upper critical exponents of the Smale space, then − logλ2 ≤ a0, 
and − log λ1 ≥ a1, logμ2 ≤ b0, and logμ1 ≥ b1, so that

logμ2

logμ1
≤ a0

a1
,

log λ2

log λ1
≤ b0

b1
,

and therefore

a0 + b0 ≥ logμ2 + log λ2
.

a1 b1 logμ1 log λ1
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Consequently, each of the conditions (19), (20) implies the inequality

a0

a1
+ b0

b1
> 1,

which is the condition of Theorems 7.2 and 7.3. In particular, we conclude that Theo-
rem 7.4 is a generalization of the results of [9].

9. Co-dimension one Smale spaces

We say that a Smale space is of co-dimension one if its stable or unstable leaves are 
homeomorphic to R with respect to their intrinsic topology.

It was proved by Franks [14, Theorem 6.3] and Newhouse [28] that every co-dimension 
one Anosov diffeomorphism is topologically conjugate to a linear Anosov diffeomorphism 
of a torus. Here we prove this statement for all locally connected and connected Smale 
spaces.

Theorem 9.1. A locally connected and connected co-dimension one Smale space is topo-
logically conjugate to a co-dimension one hyperbolic automorphism of a torus Rd/Zd.

Proof. Let us prove at first that every co-dimension one locally connected and connected 
Smale space f : X −→ X is splittable and irreducible. We assume that the stable leaves 
of X are homeomorphic to R.

Let d+(x, y) and d−(x, y) be the metrics on the stable and unstable leaves of X asso-
ciated with the natural log-scales and some exponents, as in the proof of Theorem 7.2. 
Let dn(x, y) be the distance inside the stable leaves of X defined in 3. Changing the 
log-scale � used in the definition of dn(x, y) to a bi-Lipschitz equivalent one (e.g., chang-
ing the entourage U in the definition of �) will change dn to a metric d′n satisfying 
L−1dn(x, y) − C ≤ d′n(x, y) ≤ Ldn(x, y) + C. In other words, the identity map will be a 
quasi-isometry.

In particular, up to quasi-isometry, the metric dn can be defined in the following way. 
Fix a finite cover R of X by small open rectangles, such that the stable direction of every 
rectangle Ri ∈ R is homeomorphic to R (equivalently, to an open interval in R). We 
will denote fn(R) = {fn(R) : R ∈ R}. By the Lebesgue covering lemma there exists 
δ0 > 0 such that for every x ∈ X there exists R ∈ R such that the δ0-neighborhoods of 
x in its stable and unstable leaves belong to R.

Then dn(x, y) is equal (up to linear lower and upper bounds) to the smallest number 
k such that there exists a sequence of stable plaques P0, P1, . . . , Pk of rectangles Ri from 
fn(R) such that Pi ∩ Pi+1 �= ∅, x ∈ P0, y ∈ Pk.

Fix ε > 0. For every n ≥ 1, let Dn be the smallest value of dn(x, y) for stably equiva-
lent x, y and such that d(x, y) > ε. Let x and y be some points realizing the minimum Dn. 
Let R0, R1, . . . , RD′ ∈ fn(R) be a sequence of rectangles as in the previous paragraph, 
were L−1Dn − C ≤ D′ ≤ LDn + C for some fixed L and C.
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Note that it follows from the inequality dn−Δ(x, y) ≤ 1
2 (dn(x, y) + 1) for some Δ > 0

(see the beginning of the proof of Proposition 3.3) and the fact that fk induces an 
isomorphism Γn(W ) −→ Γn+k(fk(W )) that there exist positive constants k and l such 
that dn(fk(x), fk(y)) < dn(x, y). Consequently, d(fk(xn), fk(yn)) < ε. It follows (as f
is bi-Lipschitz) that there exists a constant C1 > 0 such that d(xn, yn) < C1ε for all n. 
We may assume that C1ε < δ0 by choosing ε small enough.

Consider the composition of the holonomies between the unstable plaques of the rect-
angles Ri defined by the intersections Ri ∩ Ri+1 and seen as a homeomorphism from 
a neighborhood Ux ⊂ W−(x) of x to a neighborhood Uy ⊂ W−(y) of y. Suppose that 
x′ ∈ Ux, and let y′ ∈ Uy be its image under the composition. Then we get a chain 
of intersecting stable plaques of the rectangles Ri starting from the plaque of x′ and 
ending in the plaque of y′. It follows that dn(x′, y′) ≤ L′dn(x, y) + Δ′ for some fixed 
L′, Δ′. Applying an appropriate iteration fs (where s depends only on L′ and Δ′) we 
get dn(fs(x′), fs(y′)) < dn(x, y), which implies that d(fs(x′), fs(y′)) < ε. Consequently, 
there exists a constant r > 0 (not depending on n) such that d(x′, y′) < r.

We are using now arguments similar to the arguments of the proof of Theorem 7.2. 
By the Lebesgue covering condition for the rectangles Ri and the fact that f−1 uni-
formly expands the unstable leaves, we get that the rectangles Ri contain C2 exp(αn)-
neighborhoods in the unstable direction of their intersections with the stable leaf of 
x and y. If x′ ∈ Ux, y′ ∈ Uy are as in the previous paragraph, then there exists a 
rectangle R ∈ f−m(R) containing x′ and y′ in one stable plaque and such that the 
δ1-neighborhood of x′ in the unstable direction belongs to R (where m and hence δ1
do not depend on n, x, and y). Then the holonomy of the unstable leaf from x′ to y′

extends to this neighborhood (but may be not contained in Ux). The smallest number 
of steps of size at most δ from x to a point z ∈ W−(x) is bounded from above by a 
function of the form C3d(x, z)p + C4 (where p depends on the ratio of the exponent 
of the metric and the upper exponent of the unstable direction, see the proof of The-
orem 7.2). The holonomy inside the rectangles R ∈ f−s(R) are uniformly Lipschitz. It 
follows that when we apply the holonomies between the unstable directions coming from 
the intersections Ri ∩Ri+1, one by one, then the distances between the images of x and 
z are bounded from above by a function of the form C5d(x, z)p + C6. It follows that 
z ∈ Ux if C5d(x, z)p + C6 < C2 exp(αn). Consequently, the holonomy from x to y can 
be extended to a ball with center in x of exponentially big in n radius.

Let xn, yn be the points realizing the minimum Dn. Choose a strictly increasing 
sequence nk such that each of the sequence xn and yn converge to points x, y. Since 
d(xn, yn) < C1ε for all n, such a sequence exists and the points x, y are stably equivalent 
with ε ≤ d(x, y) ≤ C1ε. The holonomy from the unstable plaque of xnk

to the unstable 
plaque of x is a bi-Lipschitz map with the same bi-Lipschitz constant L defined on an 
exponentially big in nk ball inside W−(xnk

), the same is true for y and ynk
. By the 

proven above, the holonomy from W−(xnk
) to W−(ynk

) is defined on an exponentially 
big ball with center in xnk

. It follows that the holonomy between the unstable leaves of 
x and y is everywhere defined.
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Note that we have not used the fact that the Smale space is of co-dimension one so far. 
We have shown that for every locally connected Smale space there exist two different sta-
bly equivalent points x and y such that local holonomies between their unstable plaques 
can be extended to a global holonomy of their unstable leaves W−(x) and W−(y). In the 
case when the stable leaves are one-dimensional, this is enough to show splittability of 
the Smale space. It is unclear, however, what we can deduce from this fact in the general 
case.

Namely, let x and y be as above. Then for every point x′ ∈ W−(x) there exists N and a 
chain of rectangles R0, R1, . . . , RD ∈ fN (R) such that x′, x ∈ R0, y ∈ RD, Ri∩Ri+1 �= ∅, 
and the composition of all the holonomies between the unstable plaques of Ri defined 
by the intersections Ri ∩ Ri+1 is a holonomy from U−(x) ⊂ W−(x) to U−(y) such that 
x, x′ ∈ U−(x) and y ∈ U−(y).

The stable directions of Ri are open sub-intervals of the stable leaf of x and y
such that x and y are contained in the initial and the final intervals, and every 
two neighboring intervals intersect. It follows that these intervals cover the interval 
I ⊂ W+(x) with the endpoints x and y. Consequently, there exists a local product 
preserving map π : I × W−(x) −→ X identical on I and W−(x). Denote by πn the 
map f−n ◦ π ◦ fn : f−n(I) ×W−(f−n(x)) −→ X . It is also local product preserving and 
identical on f−n(I) ×W−(f−n(x)). Note that the diameter of f−n(I) inside W+(f−n(x))
grows exponentially with n > 0.

Let t be an interior point of the interval I. Let mk be a sequence of positive in-
tegers converging to infinity such that the limit t′ = limk→∞ f−mk(t) exists. The 
maps πmk

: f−mk(I) × W−(f−mk(t)) −→ X as k → ∞ will converge to a splitting 
W+(t′) ×W−(t′) −→ X .

Consequently, f : X −→ X is irreducible (see Proposition 5.2). Let μ+ be the measure 
on stable leaves described in Theorem 3.8. The group G of deck transformations of a 
splitting of X acts on a stable leaf W+(x0) ∼= R by the transformations x �→ [g(x), x0]. 
This action preserves the measure μ+. Let us identify (W+(x0), μ+) and R with the 
Lebesgue measure by a measure-preserving homeomorphism. Since G acts by measure-
preserving transformations, the corresponding action of G on R is by transformations of 
the form x �→ ±x + a for a ∈ R.

The action of G on W+(x0) is free, since otherwise an unstable leaf is not mapped 
homeomorphically onto its image in X . But this implies that G acts on R by translations, 
hence it is torsion-free abelian. Therefore, by Proposition 5.5 and Theorem 6.10, (X , f) is 
topologically conjugate to a hyperbolic automorphism of the torus Rd/Zd for some d. �

Note that the proof of Franks-Newhouse theorem due to K. Hiraide [18] also uses the 
measure μ+ on the stable leave.
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