
A Global Nonhydrostatic Atmospheric Model with a Mass- and Energy-conserving
Vertically Implicit Correction (VIC) Scheme

Huazhi Ge (葛華志)1 , Cheng Li2 , Xi Zhang1, and Dongwook Lee3
1 Department of Earth and Planetary Sciences, The University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA; huazhige@ucsc.edu

2 Astronomy Department, The University of California, Berkeley, CA 94720, USA
3 Applied Mathematics, The University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA

Received 2020 March 28; revised 2020 June 17; accepted 2020 June 18; published 2020 July 31

Abstract

Global nonhydrostatic atmospheric models are becoming increasingly important for studying the climates of
planets and exoplanets. However, such models suffer from computational difficulties due to the large aspect ratio
between the horizontal and vertical directions. To overcome this problem, we developed a global model using a
vertically implicit correction (VIC) scheme in which the integration time step is no longer limited by the vertical
propagation of acoustic waves. We proved that our model, based on the Athena++ framework and its extension for
planetary atmospheres—SNAP (Simulating Nonhydrostatic Atmospheres on Planets), rigorously conserves mass
and energy in finite-volume simulations. We found that traditional numerical stabilizers such as hyperviscosity and
divergence damping are not needed when using the VIC scheme, which greatly simplifies the numerical
implementation and improves stability. We present simulation results ranging from 1D linear waves to 3D global
circulations with and without the VIC scheme. These tests demonstrate that our formulation correctly tracks local
turbulent motions, produces Kelvin–Helmholtz instability, and generates a super-rotating jet on hot Jupiters.
Employing this VIC scheme improves the computational efficiency of global simulations by more than two orders
of magnitude compared to an explicit model and facilitates the capability of simulating a wide range of planetary
atmospheres both regionally and globally.

Unified Astronomy Thesaurus concepts: Atmospheric science (116); Exoplanet atmospheres (487); Planetary
atmospheres (1244); Computational methods (1965)

1. Introduction

General circulation models (GCMs) are numerical tools for
studying the weather and climate of planetary atmospheres.
They solve the hydrodynamic equations on a sphere including a
whole range of additional physical processes such as rotation,
radiation, and tracer transport. To improve the computational
efficiency, various levels of assumptions can be adopted to
simplify the calculation. Some famous forms include the quasi-
geostrophic equations, shallow water equations, primitive
equations, Boussinesq equations, and anelastic equations
(e.g., Holton 2004, 2016; Pedlosky 2013; Vallis 2017).
Comparisons of some forms of these equations are detailed
in White et al. (2005) and Mayne et al. (2014b, 2019). Most
GCMs adopt the primitive equations to study the general
circulation of planetary atmospheres by assuming a “thin shell”
atmosphere in hydrostatic equilibrium and neglecting some
terms in the momentum equations (the “traditional approxima-
tions”) (Boer et al. 1984; Held & Suarez 1994; Dowling et al.
1998; Adcroft et al. 2004; Holton 2004). Though this approach
has been successful in exploring global features of the Earth’s
atmosphere for decades, the usage of primitive equations has
some limitations when applied to diverse planetary atmo-
spheres other than that of Earth. For example, Mayne et al.
(2019) showed that the simulations of tidally locked sub-
Neptune atmospheres using the “full” dynamical equations
without the above approximations are different from those
derived using the primitive equations, with the differences
attributed to the traditional approximation (also see
Tokano 2013 for a study on slow rotators such as Venus and
Titan). Therefore the full set of Euler equations has to be
applied to study weather and climate in the atmospheric regime

where conventional assumptions break down (see Appendix A
for the detailed formulation).
In addition, planetary atmospheres broadly exhibit diverse

behaviors associated with complex physical processes, such as
atmospheric collapse, surface interactions, multilayer moist
convection, and interactions with magnetic fields. These
processes are usually parameterized in conventional GCMs for
simplification and computational efficiency (e.g., Suarez et al.
1983; Newman et al. 2002; Schneider & Liu 2009; Lian &
Showman 2010). The input parameters in these designed
schemes are often adjusted to match observations. For example,
convection parameterizations are commonly adopted in simula-
tions of Earth’s atmosphere, such as quasi-equilibrium schemes
(e.g., Betts & Miller 1986; Emanuel 1991, 1993). It has recently
been shown that applying convection parameterizations devel-
oped for the Earth to study tidally locked terrestrial planets might
lead to overestimation of the efficiency of heat redistribution
between hemispheres compared with the high-resolution con-
vection-resolving simulations. In the latter, the full set of Euler
equations is also needed (Sergeev et al. 2020).
Nonhydrostatic GCMs solving the full set of Euler equations

emerged at the turn of this century. However, directly solving
the Euler equations is usually computationally expensive for
global atmospheric simulations due to the numerical limitation
imposed by the meteorologically trivial but fast-propagating
acoustic waves as well as by the large aspect ratio between the
vertical and the horizontal directions. The difficulty is more
severe when simulating atmospheric circulations on cold
and large bodies, such as gas giants and ice giants. For example,
at the 1 bar pressure level, Jupiter’s radiative cooling timescale is
about 10 times slower than the Earth’s, meaning it requires a
much longer time to integrate to a steady and fully evolved state.
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Solving the full set of Euler equations with a vertically implicit
scheme allows the use of a large time step by damping the
vertically propagating acoustic waves in the vertical direction.
Several nonhydrostatic models with a variety of vertically
implicit schemes have been developed to study the Earth’s
atmosphere (see Ullrich et al. 2017 for a recent intercomparison
of models) and exoplanetary atmospheres (Mayne et al. 2014b;
Mendonça et al. 2016; Deitrick et al. 2020).

It is also important to develop a GCM dynamical core that
can rigorously conserve total mass and energy in a closed
domain. The conservation of total axial angular momentum
(AAM) is also crucial for studying atmospheric dynamics,
especially the zonal jet patterns. Satisfying these conservation
laws is particularly important for simulations that require very
long time integration of more than a decade or even centuries,
such as those on Venus (slow rotator) (Lebonnois et al. 2013;
Mendonça & Buchhave 2020), giant planets (cold atmo-
spheres) (Schneider & Liu 2009; Liu & Schneider 2010; Spiga
et al. 2020), and hot Jupiters (long radiative timescale in the
deep atmosphere) (Mayne et al. 2017; Deitrick et al. 2020;
Wang & Wordsworth 2020). In these cases, the numerical
schemes used in the dynamical cores have to be carefully
designed with the capability of satisfying conservation laws.
Any continuous loss or increase of mass, energy, or AAM
prohibits the numerical model from reaching a steady state.
However, previously presented vertically implicit schemes
seldom provide detailed proof of such conservation.

Here we present a three-dimensional (3D) nonhydrostatic
GCM with a state-of-the-art mass- and energy-conserving
vertically implicit correction (VIC) scheme based on the
Athena++ framework (Stone et al. 2020) and its extension for
planetary atmospheres, SNAP (Simulating Nonhydrostatic
Atmospheres on Planets) (Li & Chen 2019). In Section 2, we
describe the governing equations and the algorithm of our VIC
scheme including a modified time integration scheme and a
dimensionally unsplit method. In Section 3, we prove that our
VIC scheme satisfies conservation laws. In Section 4, we
present numerical solutions of local simulations (e.g., linear
wave test, Straka sinking bubble test, and Robert rising bubble
test) and global simulations (e.g., Held–Suarez test and shallow
hot Jupiter benchmark test). Local simulations are designed to
validate the damping of acoustic waves and the capability of
resolving turbulence. The global simulations are designed to
validate the model performance such as mass, energy, and
AAM conservation and jet formation. Finally, we summarize
our works and list our future plans in Section 5.

2. Numerical Scheme for Implicit SNAP

We use the finite-volume method (FVM) to discretize the
Euler equations. Conservative variables—density (ρ), momen-
tum in three directions (ρu, ρv, and ρw), and total energy (E),

r r r r=Q u v w E, , , , T( ) —are solved in the unstaggered con-
trol volumes in each time step. Total energy is the internal
energy plus the kinetic energy, E=p/(γ− 1)+ρ(u2+
v2+ w2)/2. In a specific cell, we can write the integrated form
of the Euler equations as

¶
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where r r r r=Q u v w E, , , , T( ) is the vector of conservative
variables; F Q( ) are fluxes of Q in three directions, which are

r r r r= + +F u uu p uv uw E p, , , , T( ) , r r r= +G v vu vv, ,(
r +P vw E p, , T) , and r r r r= + +H w wu wv ww p E p, , , , ;T( )

 Q X t, ,( ) is the vector of body forces (i.e., source terms),
such as gravity. The detailed Euler equations in different
coordinate systems are presented in Appendix A.

2.1. VIC in the Forward-Euler Time Integration Scheme

We start by describing our model Euler equations in 1D to
present the derivation and formulation of our VIC scheme.
Discretized using the simple forward-Euler time integration
scheme, the governing equation can be given by
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where Qi
n represents the vector of volume-averaged conserva-

tive variables in the ith cell at the nth time step (i.e., current
time step); -

+Fi
n
1 2
1 and +

+Fi
n
1 2
1 are numerical fluxes across the

left (bottom) and the right (top) interfaces of the ith cell at the
(n+ 1)th time step (i.e., next time step), respectively; Yi

n and
+Xi
n 1 are explicitly and implicitly treated source terms,

respectively. ΔVi is the volume of the cell, which is constant
in the Cartesian coordinate system but changes with latitude
and radius in the spherical polar coordinate system. s+i 1 2 and
s-i 1 2 are face areas of the ith cell in the vertical direction. On
the right-hand side of the equation, most of the source terms,
such as gravitational acceleration, Coriolis force, and centrifu-
gal force, can be treated implicitly (i.e., included in +Xi

n 1)
because they can be written analytically in terms of flux
Jacobian, which is the first-order partial derivative of the
forcing with respect to Q. Radiative forcing is treated explicitly
because it usually does not have an analytical Jacobian.
Once we know D = -+Q Q Qi i

n
i
n1 , then we can update

+Qi
n 1 by = D ++Q Q Qi

n
i i

n1 . Then, the problem becomes how
to acquire the flux and source terms at the (n+ 1)th time step,

-
+Fi
n
1 2
1 , +

+Fi
n
1 2
1 , and +Xi

n 1, from the conservative variables at the
nth step. Following the ideas in Fernandez (1988) and Viozat
(1997), we use the Roe scheme to acquire the implicit fluxes
across cell interfaces at the (n+ 1)th time step (Roe 1981),
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where +
+Ai
n
1 2
1∣ ∣ is the Roe-averaged flux Jacobian across the

right interface of the ith cell (Roe 1981). This formulation can
also be applied to the fluxes at the nth time level. +Ai

n
1 2∣ ∣

performs as a “stabilization term” to stabilize the flux at the cell
interface. It is different from the hyperviscosity that is
implemented in many GCMs. It is commonly considered as a
stabilization term in the Roe scheme. The detailed discussion of

+Ai
n
1 2∣ ∣ is well presented in Roe (1981), LeVeque et al. (2002,

Chap. 4.14), and Toro (2013, Chap. 11). We provide the
analytical derivation of +Ai

n
1 2∣ ∣ in Appendix B.

Note that the Roe-averaged Jacobian at the (n+ 1)th time
step, +

+Ai
n
1 2
1∣ ∣, is unknown at the nth time step. As a

workaround, we consider the first-order approximation,
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1∣ ∣ ∣ ∣ ( ), which can be justified by two

reasons: (1) A∣ ∣ is dictated by the flow and acoustic speed, and
they are locally uniform in the atmosphere, therefore the
temporal evolution of A∣ ∣ remains trivial over a small time step
Δt (Δt is usually much smaller than 103 s); (2) the desired
numerical stability of the Roe scheme is not severely
compromised by the approximation of using +Ai

n
1 2∣ ∣, since

A∣ ∣ acts as the numerical diffusion term. We will demonstrate
the validity of this approximation by benchmark simulations in
Section 4.

To simplify the notation in this section, we define the flux
Jacobian, Ji

n, and the Jacobian of the source term, ¢Xi
n, as
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The numerical flux, +Fi
n 1, and the implicitly treated source

terms, +Xi
n 1, at the (n+ 1)th time step are unknown. To

compute these values, we use a Taylor expansion to linearize
the flux at the (n+ 1)th time step. For example, we predict

+Fi
n 1 and +Xi

n 1, at the (n+ 1)th step from the nth time step by a
second-order accurate Taylor expansion,
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where Fi
n and Xi

n are numerical flux and source terms at the nth
time step, respectively, andD = -+Q Q Qi i

n
i
n1 . As previously

mentioned, our numerical scheme solves DQi to obtain +Qi
n 1.

Note that Roe flux is not available at cell centers (i.e., Fi
n and

+Fi
n
1 in Equation (6)) because fluxes are evaluated at the cell

interfaces. These terms can be eliminated by Equation (3) at the
nth time step to assemble the interface flux at time step n (i.e.,
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n
1 2),
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Then, we can assemble linear equations about DQi by
combining Equations (6)–(8). As a consequence, the tridiago-
nal linear system can be rewritten as
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with coefficients ai, bi, and ci being

s s s

s

= - +

+

+ - - -

+ +

Ja A

A

1

2

, 10

i i i i
n

i i
n

i i
n

1 2 1 2 1 2 1 2

1 2 1 2

⎡
⎣⎢

⎤
⎦⎥

( ) ∣ ∣

∣ ∣ ( )

s
= -+

+ +Jb A
2

, 11i
i

i
n

i
n1 2

1 1 2( ∣ ∣) ( )
and

s
= - +-

- -Jc A
2

, 12i
i

i
n

i
n1 2

1 1 2( ∣ ∣) ( )

where  is the identity matrix. When i=1 and i=m, these
equations shall be modified to satisfy different boundary
conditions, which is detailed in Section 3 and Appendix C.
We use the fifth-order accurate weighted essentially non-

oscillation (WENO5) reconstruction scheme and Riemann
solvers in SNAP (Li & Chen 2019) to compute the Riemann
state at each interface i±1/2, which are used to solve the
Riemann problems at i±1/2 to calculate the Roe fluxes,

+Fi
n
1 2 and -Fi

n
1 2. A Riemann solver has a good capability of

capturing shocks, which might be helpful in studying
climatology on exoplanets (Fromang et al. 2016). The left-
hand side of Equation (9) is a tridiagonal linear system that can
be solved via the simple Gaussian elimination method. Thus,
all terms in Equation (9) can be evaluated at the nth time step.
DQi is solved by inverting Equation (9), and finally the
conservative variables at step n+1 are

= D ++Q Q Q . 13i
n

i i
n1 ( )

2.2. VIC in the Multi-stage Time Integration Scheme

The previous section provided the formulation of the VIC
scheme in a single-stage and forward-Euler time integration
scheme. Here we discuss how to implement the VIC scheme in
a multi-stage Runge–Kutta (RK)-type time integration scheme
to achieve higher numerical stability and accuracy in time (Shu
& Osher 1988). The formulation of this implicit scheme is
slightly different from the total variation diminishing (TVD)
method in the original paper (Li & Chen 2019). Here, we list
algorithms of a third-order accurate Runge–Kutta time
integration (RK3) method as an example. We also present
both explicit and implicit algorithms for comparison. The
original explicit RK3 time integration scheme is
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where the superscripts (1) and (2) represent the first and the
second intermediate states, respectively. We use the inter-
mediate states of conservative variables, Qi

1( ) or Qi
2( ), to update

the flux at the intermediate states, +Fi 1 2
1( ) and +Fi 1 2

2( ) .
The implicit scheme replaces the explicit fluxes F and

forcing X by their implicit counterparts. For example, the first
step of the RK3 integration scheme becomes
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According to Equation (9), DQi
n is solved by inverting the

tridiagonal system defined by Equation (17). Then, the
conservative variables are updated by the following equation:

= D +Q Q Q . 18i i
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i
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Similarly, the other two intermediate stages are updated
sequentially:
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2.3. VIC in Three Dimensions

In this section, we demonstrate how to combine the explicit
scheme in the horizontal plane (x–y plane) with the implicit
scheme in the vertical z-direction. In particular, H is the flux in
the vertical direction and is treated implicitly. The explicit
scheme is computationally efficient in one time step but subject
to the conditional numerical stability. The computational
efficiency of an explicit nonhydrostatic atmosphere model is
generally limited by the acoustic speed and atmospheric
vertical resolution. In contrast, the implicit scheme trades off
the computational efficiency against numerical stability. Here
we combine the advantages of the two numerical schemes to
solve the 3D Euler equations.

Most of the existing atmosphere models with the vertically
implicit scheme use a dimensionally split method to compute
horizontal and vertical terms separately (e.g., Ullrich &
Jablonowski 2012a, 2012b; Mendonça et al. 2016). Flux
divergence in different directions is updated by different time
integration schemes in some algorithms (e.g., Bao et al. 2015).
Here, we use a dimensionally unsplit method to update
conservative variables simultaneously in all x-, y-, and z-
directions for each half time step and the final time step. The
discretized equation using the dimensionally unsplit formulae
for the 3D case is

s s

s s

s s

-

D
+

-

D

+
-

D

+
-

D

= +

+
+ + - -

+ + - -

+ +
+

- -
+

+

   

 

 

 

t V

V

V

, 21

ijk
n

ijk
n

i i
n

i i
n

ijk

j j
n

j j
n

ijk

k k
n

k k
n

ijk

ijk
n

ijk
n

1
1 2;; 1 2;; 1 2;; 1 2;;

; 1 2; ; 1 2; ; 1 2; ; 1 2;

;; 1 2 ;; 1 2
1

;; 1 2 ;; 1 2
1

1 ( )

/ / / /

/ / / /

/ / / /

where F, G, and H are numerical fluxes in x-, y-, and z-
directions (or θ, f, and r in a spherical coordinate system),
respectively. Note that only the vertical (or radial) flux gradient
is treated implicitly. We simplified the notation of the subscript

by using “;” to omit some cell-centered indices. For example,
º+ +Q Qi i j k1 2 ;; 1 2, , .

Substituting Equations (6) and (3) into Equation (21), the
discretized Euler equations can be rewritten as
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Qijk
e( ) denotes the conservative variables predicted by the

explicit formulation. The time integration scheme for the 3D
case is similar to the 1D time integration scheme in Section 2.2.
We observe that, for some 3D simulations, the horizontal
Courant–Friedrichs–Lewy (CFL) number can reach as large as
1.6 (i.e., csΔt/min(Δx, Δy)≈1.6) with the implicit RK3 time
integration scheme. The reason for this “ultrastable” behavior is
probably due to the unsplit nature of our implicit scheme, such
that relaxing the theoretical CFL limit in one direction helps to
improve numerical stability in the other directions. A rigorous
numerical study of the VIC scheme will be undertaken in
forthcoming studies. Finally, we summarize the whole implicit
scheme in the following steps:

1. Perform an explicit forward step and calculate Rijk
according to Equation (23).

2. Calculate coefficients of the block tridiagonal matrix (aijk,
bijk, cijk) according to Equations (10)–(12).

3. Solve the block tridiagonal matrix column by column as
defined by Equation (22).

4. Update the conserved variables according to
Equation (13).

5. Repeat the preceding steps for each stage of a multi-stage
time integration scheme similar to Equations (18)–(20).

Because steps 1, 4, and 5 are needed for any explicit
integration scheme, an existing explicit model can employ our
implicit scheme by simply adding additional implicit correction
steps outlined in step 2 and step 3, which makes the scheme
extremely flexible and versatile.

3. Conservation Laws

Conservation laws are important for atmospheric simula-
tions. Built on top of the FVM framework, whose explicit
scheme has already been well designed for conservation laws,
our VIC scheme can rigorously satisfy the conservation of total
mass and energy and perhaps total momentum with appropriate
boundary conditions and coordinate systems. The conservation
of angular momentum under spherical coordinates cannot be
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numerically guaranteed since we solve momentum equations
instead of angular momentum equations. In this section, we
particularly discuss conservation laws under a Cartesian
framework while disregarding the body force (i.e., gravitational
acceleration, etc.).

The conservation of total mass, momentum, and energy can
be guaranteed by the intrinsic relationship between the
elements in the matrix of the linear system, ai, bi, and ci,
which satisfy bi−1+ai+ci+1=0. The changes in total mass,
momentum, and energy from the current time step to the next
can be mathematically written as
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where m is the total number of cells in the vertical direction.
i=1 and i=m are the first and last cells in the domain,
respectively. i=0 and i=m+1 are used to denote the
location of ghost cells. Ghost cells are out of the domain and
contain information about boundary conditions. Therefore,
å D= Qi

m
i1 can be acquired from the linear system, Equation (9),
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where DQB0 0( ), DQBm m( ), Fn
1 2, and +Fm

n
1 2 are determined

by boundary conditions. As previously mentioned, with
bi−1+ai+ci+1=0 for i=2, 3, 4, ..., m−1, the third term
on the right-hand side of the equation is zero. Then, as
previously presented, conservation laws are purely decided by
boundary conditions.

Physically, only the double-periodic boundary condition can
guarantee the conservation of total mass, momentum, and
energy in the domain. The reflecting boundary condition only
conserves total mass and energy. Our VIC scheme can be
applied to a variety of boundary conditions by modifying the
linear system in Equation (9). Similar to the other vertically
implicit schemes (Mendonça et al. 2016), linear equations
about the first cell (i.e., the first row of the linear system) and
the last cell (i.e., the last row of the linear system) in the
domain interior are modified to satisfy different boundary
conditions.

In Appendices C and D, we present the detailed proof of
mass and energy conservation under the reflecting boundary
condition and mass, momentum, and energy conservation
under the double-periodic boundary condition, respectively.

The reflecting boundary condition (i.e., no-flux or free-slip
boundary condition) is the most commonly applied to both
terrestrial and gaseous planetary atmosphere simulations.

4. Benchmark Test Validation

In this section, we present the code performance and
verification tests of the VIC scheme against several standard
numerical benchmark tests. Benchmark simulations can test
whether the VIC scheme can remain stable under large time
steps (i.e., relaxed CFL number), track turbulent motions,
resolve meteorologically significant gravity waves, and pro-
duce large-scale dynamics. They can also validate the
numerical performance of conservation laws. We provide the
simulation results of fully explicit numerical schemes as a
comparison to the results using the VIC scheme. We present
the simulation results of the linearized acoustic wave test,
Straka sinking bubble test (Straka et al. 1993), Robert rising
bubble test (Robert 1993), gravity wave test (Skamarock &
Klemp 1994), Held–Suarez atmospheric experiment (Held &
Suarez 1994), and shallow hot Jupiter test. These tests are
summarized in Table 1.
The simulation results of the Straka sinking bubble test and

Robert rising bubble test in the original papers only show results
with the aspect ratio equal to one (i.e.,Δx/Δz= 1) (Robert 1993;
Straka et al. 1993), which does not usually occur in a more
realistic atmospheric simulation (i.e., Δx/Δz ? 1). In this case,
we cannot test the implicit scheme with a very large time step
because of the limitation on time step in the horizontal direction.
Here, we will present the simulation results with the aspect ratio
of 10 in this paper to validate the performance of the code in a
large time step. The CFL numbers are computed differently in the
explicit and VIC schemes. The time step is computed from
D = ´ D D Dt z y z cCFL min , , sexp ( )/ in the explicit scheme,
but fromD = ´ D Dt x y cCFL min , sVIC ( )/ in the VIC scheme.

4.1. Linear Wave Test: Acoustic Wave Damping

The VIC scheme relaxes the CFL limitation by damping fast
acoustic waves. In most benchmark tests that are designed for
atmospheric simulations, the vertical wind velocity is slower
than the acoustic speed by more than two orders of magnitude,
meaning that the time step is predominantly limited by the
acoustic wave speed. The VIC scheme resolves this issue by
imposing numerical diffusivity, which suppresses the accumu-
lation of the spurious numerical noise.
We validate the model by simulating the propagation of the

linearized acoustic wave. This test is very similar to the linear
wave convergence test in Stone et al. (2008) but we focus on
how numerical diffusivity damps the amplitude of the acoustic
wave. Linear acoustic waves are launched by an initial pressure

Table 1
Local and Global Benchmark Cases in This Study

Test Name Dimensions Test Purpose Boundary Conditions

Linearized acoustic wave 1D local Testing spurious numerical noise damping II
Straka sinking bubble 2D local Resolving nonlinear density current I
Robert rising bubble 2D local Tracking weak turbulence I
Localized gravity wave 2D local Resolving gravity waves I, II
Held–Suarez 3D global Generating thermal wind I, II, III
Shallow hot Jupiter 3D global Generating super-rotating jet I, II, III

Note. Three types of boundary conditions in ++Athena are used. I: reflecting; II: double-periodic; III: polar wedge. See Stone et al. (2020) for the scheme description.
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perturbation. The polytropic index, γ, is set as 5/3. Pressure,
density, and velocity of the uniform background are initialized
with 1.0 Pa, 0.6 -g cm 3, and 0 -m s 1, respectively. The
corresponding acoustic speed, cs, is 1 -m s 1. The wave
amplitude is set as 10−3 Pa. The wave propagates in a 1D
double-periodic tube whose wavelength is equal to the length
of the domain. We simulate the propagation of acoustic waves
with different time steps (i.e., CFL numbers) and collect the
density profiles after 1 s in the simulation.

The left plot in Figure 1 shows the density profiles after one
wave period with different CFL numbers but the same
resolution. The numerical diffusivity damps the acoustic wave
amplitude significantly for large CFL numbers. The usage of
the large CFL number also cause the dispersion error for the
acoustic waves. The right plot in Figure 1 shows that the
damping rate grows almost linearly with increasing CFL
number. The increase of the damping rate can be inferred by
analyzing Equation (9). The numerical diffusivity is imposed
by the off-diagonal elements in Equation (9). They are
independent of the changing time step and depend only on
the spatial resolution. When we fix the spatial resolution and
increase Δt, the off-diagonal elements become more and more
dominant because 1/Δt in diagonal terms reduces. Therefore,
the damping rate increases linearly with increasing CFL
number.

4.2. Straka Sinking Bubble Test

We have shown that the numerical diffusivity imposed by
the VIC can damp the acoustic wave amplitude from the
linearized acoustic wave test. This helps the VIC to achieve
numerical stability when a large time step is adopted. However,
large numerical diffusivity may hinder the ability to resolve
turbulence. It is important to necessary the VIC scheme’s
ability to correctly track turbulent motions. In this and the next
section, we will focus on the VIC scheme’s capability of
resolving nonlinear density currents and turbulent motions.

The Straka sinking bubble test is a standard benchmark test,
which is designed for the validation of nonhydrostatic atmo-
spheric dynamical cores (Straka et al. 1993). This case
simulates the fluid motion in a nonlinear density current
generated by a sinking cold bubble. Several physical processes
(i.e., Kelvin–Helmholtz instability) should be produced after
the bubble is dropped on the surface (Straka et al. 1993). The
simulation is carried out in a 25.6 km by 6.4 km closed domain.
The initial background temperature structure is set as dry
adiabat in the vertical direction. The reference surface pressure
is set as 1 bar (105 Pa). A cold bubble, whose center is 15 K
colder than the local background temperature, is put aloft. The
cold bubble is expected to drop to the surface and generate
several nonlinear density currents. In the original test, the
explicit diffusion is also applied to momentum and energy
equations to guarantee convergence (Straka et al. 1993). In this
work, however, we do not apply the diffusion terms in our
equations in order to check the performance difference between
our VIC scheme and the explicit scheme. The initial
temperature is given by

p
D =

>
- + 

T
L

L L
0, if 1,

15 cos 1 2, if 1,
26

⎧⎨⎩ [ ( ) ] ( )
/

where = - + -L x x x z z zc r c r
2 2 1 2{[( ) ] [( ) ] } , =x 0c km,

=x 4r km, =z 3c km, and =z 2r km.
For the explicit test, we adopt the same numerical techniques

as adopted in Li & Chen (2019) using the Low Mach Number
Approximate Riemann Solver (LMARS), WENO5 reconstruc-
tion scheme, and RK3 time integration scheme, to ensure our
result is comparable with the numerical solutions in Li & Chen
(2019). We first investigate our VIC scheme’s capability of
capturing the position of the bubble debris and Kelvin–
Helmholtz rotors. Then, we compare the potential temperature
difference between the results of the VIC scheme and the
explicit SNAP from Li & Chen (2019) to estimate the role of
the numerical diffusivity.

Figure 1. The left plot shows the wave amplitude damping and dispersion errors with different CFL numbers from 0.05 to 25.6 in a 1D tube with 512 grids. The right
plot shows the wave amplitude damping as a function of the CFL number.
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Figure 2. Nearly inviscid simulation results of the Straka sinking bubble test with different numerical schemes and CFL numbers. The left column shows the result of
the explicit SNAP model with CFL =0.4; the middle and right columns show the results of the SNAP model with the VIC scheme. CFL numbers of the numerical
solutions in the middle and the right columns are 0.4 and 0.8, respectively. The plotted domain size is [0, 17.5]×[0, 4] in kilometers. The spatial resolutions of the
three cases are the same: Δx=100 m and Δz=100 m.

Figure 3. Another set of nearly inviscid simulation results of the Straka sinking bubble test with the aspect ratio of 10. The left column shows the result of the explicit
SNAP scheme with CFL =0.4; the right column shows the numerical solution using the VIC scheme with CFL =0.8. The spatial resolutions of these two cases are
the same: Δx=100 m and Δz=10 m.

7

The Astrophysical Journal, 898:130 (22pp), 2020 August 1 Ge et al.



Simulation results at t=900 s with an aspect ratio of 1 (i.e.,
Δx/Δz= 1) are presented in Figure 2. The maximum CFL
numbers are 0.5 and 1.0 for the explicit and implicit schemes,
respectively. Here, we present and compare the results of using
the explicit scheme with CFL =0.4, the VIC scheme with
CFL =0.4, and the VIC scheme with CFL=0.8 in Figure 2.
Simulation results show that they generally converge to the
same solution morphologically. Three Kelvin–Helmholtz rotors
are correctly produced in all three cases. The position of the
density currents’ outer limb is about 15,300 m in all results.
Slight potential temperature differences can be seen from the
plots. They are caused by numerical diffusion. The potential
temperature deviations of the coldest part of the bubble debris
are roughly 11.9 K, 13.4 K, and 12.9 K for the three cases,
respectively. For the explicit cases, the numerical diffusivity
becomes smaller when the CFL number becomes larger,
whereas the numerical diffusivity caused by the VIC scheme
becomes larger when the time step becomes larger. This is
expected because the non-diagonal terms, which act as the
numerical diffusivity, are more dominant than the diagonal
terms when the time step becomes larger.

We also present two innovative simulation results with the
large aspect ratio (i.e., Δx/Δz= 10) in Figure 3. The large
aspect ratio of the vertical resolution and horizontal resolution
allows us to use a much larger CFL number for the VIC
scheme. The VIC scheme adopts a time step that is larger than
the time step in the explicit case by a factor of 20. The
dynamical evolution of the bubble is not affected by the usage
of a much larger time step in the VIC scheme but the
computational efficiency is significantly improved. It takes
about 31 minutes for the explicit scheme to finish the
computation on Pleiades with 32 CPU cores (Sandy Bridge
processors with frequency 2.6 GHz). The VIC scheme, on the
other hand, only takes about 3 minutes, illustrating that the
computational efficiency is improved by one order of
magnitude with no influence on dynamics.

Figure 4 shows the evolution of total mass and energy as a
function of time for cases using the large aspect ratio. This

result is presented to show the performance of the conservation
law on both the VIC and the explicit schemes. It shows that
total mass linearly increases as a function of time on the
machine precision level in both explicit and implicit cases. The
simulation using the VIC scheme has a smaller mass error than
the explicit one due to the smaller workload and fewer time
steps. The fractional variation of total energy in both cases is
about 10−9 of the initial value.
In sum, the Straka sinking bubble test shows that, despite the

small and dynamically trivial potential temperature differences
among these cases, our VIC scheme can reproduce numerical
results in the explicit integration. It also shows that the VIC
scheme can well conserve total mass and energy in a closed
system (e.g., with reflecting boundary conditions).

4.3. Robert Rising Bubble Test

The third benchmark test is the Robert rising bubble test,
which is designed to test the model performance under a weak
forcing. The simulation results of the Straka sinking bubble test
show that the VIC scheme can correctly track the fluid motion
in the gravity-dominant regime. However, further validation of
turbulence tracking is necessary for the regime with weak
buoyant forcing. The Robert rising bubble test is a suitable
benchmark test for our needs (Robert 1993). This benchmark
test has some practical implications because there are
ubiquitous convective air parcels in the moist convective layer
(i.e., troposphere) and, unlike the situation in the Straka bubble
test, atmospheric convection is usually triggered by a small
temperature perturbation (i.e., less than 1 K). The simulation is
initialized with a Gaussian-shaped warm bubble and finished
with a very turbulent snapshot (Robert 1993).
Similar to the Straka benchmark test, the ambient atmo-

spheric temperature is adiabatic with 303.15 K at the surface in
a 1.5 km by 1 km closed box. The central temperature of the
Gaussian-shaped bubble is set to be 0.5 K warmer than the
background. The analytical formulation of the initial

Figure 4. Temporal evolution of total mass (left) and energy (right) normalized by the initial values from explicit (red) and implicit (blue) simulations in Figure 3. The
total energy calculation includes internal energy, kinetic energy, and gravitational potential. Explicit and implicit results are denoted by red and blue, respectively.
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temperature is calculated from the potential temperature

qD =
>- -

A r a

A e r a

, if ,

, if ,
27

r a s2 2

⎧⎨⎩ ( )( ) /

where = - + -r x x z z2
0

2
0

2( ) ( ) , A=0.5 K, a=50 m,
s=100 m, =x 5000 m, and =z 2600 m. The warm bubble
is expected to rise upward due to buoyancy. Robert (1993)
shows that the uplifting motion stops at about 18 minutes
(simulation time) and the Kelvin–Helmholtz instability is
developed at the tail of the warm air parcel (Robert 1993). It
is necessary to apply a fine resolution, at least 5 m in horizontal
or vertical, to resolve the Kelvin–Helmholtz instability at 18
minutes (Robert 1993).
We present the simulation results with a large aspect ratio

(i.e., D D =x z 10) in Figure 5. Similar to the Straka sinking
bubble test, this setup allows us to test the performance of our
VIC scheme in a time step an order of magnitude larger. The
implicit numerical solutions are mostly identical to explicit
results. Our VIC scheme can reproduce the same turbulent
patterns and Kelvin–Helmholtz instability as in the explicit
solution at 18 minutes. The predominant difference is still the
potential temperature. The head of the bubble showing in the

implicit result is also slightly larger than in the explicit one. In
general, this simulation result agrees with the solutions reported
in the previous studies (Robert 1993; Chen et al. 2013; Guerra
& Ullrich 2016; Li & Chen 2019). Although our implicit
scheme possesses a strong numerical diffusion for large CFL
numbers, the numerical diffusivity specifically suppresses the
growing numerical noise of acoustic waves without any
significant influence on turbulent flows induced by the very
weak forcing.
The simulation efficiency is significantly improved by the

VIC scheme for simulations with large aspect ratio. Both
explicit and implicit simulations use 50 CPU cores on Pleiades
(Sandy Bridge processors) for the computation. The VIC
scheme allows a time step that is a factor of 20 larger than in
the explicit case. The implicit scheme is faster than the explicit
scheme by a factor of eight in this case.

4.4. Gravity Wave Test

It is important for an atmospheric dynamical core to
correctly resolve the dispersion relation of gravity waves
because it preserves the information on how much energy and
momentum are conveyed by waves. For example, inertial
gravity waves play important roles in the momentum budget in

Figure 5. Simulation results of the Robert rising bubble test with the aspect ratio of 10. The horizontal resolution is 5 m and the vertical resolution is 0.5 m. Top panels
show the explicit simulation results with the CFL number of 0.4 (i.e., Δt ∼ 5 × 10−4 s). Bottom panels show the implicit simulation results with the CFL number of
0.8 (i.e., Δt ∼ 1 × 10−2 s). The CFL number is computed from the horizontal resolution in the VIC scheme.
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the middle atmosphere, such as generating the quasi-biennial
oscillation in Earth’s stratosphere (Baldwin et al. 2001) and
the quasi-quadrennial oscillation in Jupiter’s stratosphere
(Cosentino et al. 2017). Here, we present simulation results
of a gravity wave benchmark test, which were first introduced
by Skamarock & Klemp (1994).

The model setup is similar to Skamarock & Klemp (1994) and
Chen et al. (2013). We adopt a stable and hydrostatic atmosphere
in a 300 km×10 km domain with a small initial potential
temperature perturbation to launch a train of gravity waves. The
background atmosphere is initialized with a constant buoyancy
frequency (i.e., Brunt–Väisälä frequency), = -N 10 2 s−1. The
surface pressure is set as 1 bar. The analytical potential temperature
perturbation is

q q
p

D = D
+ -

z H

x x a

sin

1
, 28

c
0 2 2

( )
( )

( )

where qD = 0.010 K is the maximum potential temperature
perturbation; =x 100c km, a=5 km, and H is the domain
height, 10 km. A prescribed horizontal wind profile, u=20

-m s 1, is initialized as the background wind for the wave
propagation. Thus one set of gravity waves propagates
eastward with respect to the reference wind field, while another
set of waves is quasi-stationary.

The reflecting boundary condition is adopted for the lower and
upper boundaries. The double-periodic condition is used in the
horizontal direction. Our setup is different from the original test
(Skamarock & Klemp 1994) but is close to the simulations in

Chen et al. (2013) and Bao et al. (2015). We simulate
nonhydrostatic wave activities with density variations instead of
using an anelastic assumption in the original paper (Skamarock &
Klemp 1994). Furthermore, similar to Chen et al. (2013), we do
not include Coriolis forces in the simulation to simplify the
problem.
The simulation results in a train of dispersive gravity waves at

3000 s as shown in Figure 6. Both explicit and implicit schemes
can accurately resolve the phase and dispersion relation of the
wave. This is crucial for simulating the propagation of momentum
and energy. On the other hand, gravity waves with a small
amplitude near~160 km are not resolved using our VIC scheme,
indicating that the VIC scheme has a difficulty resolving very
weak perturbations (i.e., qD ~ 0.001K). Furthermore, the explicit
scheme can preserve the symmetrical structure of waves, but it
seems that the performance of our VIC scheme is not as good as
that of the explicit scheme under weak perturbations (i.e., at about
~ 170 km in Figure 6(b)).

4.5. Held–Suarez Benchmark for Earth’s Atmosphere

The Held–Suarez experiment is designed for the intercompar-
ison of GCM dynamical cores to produce the global-scale
atmospheric features of an Earth-like planet (Held & Suarez 1994).
This ideal climatology test focuses on the long-term and
statistically averaged final state. The final quasi-steady state of
this test is similar to an Earth-like atmosphere with a latitudinal
temperature gradient and large-scale winds. The original work
applied Newtonian cooling and Rayleigh drag schemes to simplify

Figure 6. Potential temperature contours for the gravity wave test at t = 3000 s. The solid contours refer to positive potential temperature deviation from the
background, while the dashed contours represent negative values. Contours are plotted with an interval of ´ -5 10 4 K. The numerical schemes, CFL numbers, and
spatial resolutions are shown in the title of each plot.
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the radiative forcing and boundary effects, respectively. The fluid
motion is quasi-geostrophic under the equator-to-pole temperature
gradient and the Coriolis force with Earth’s rotational rate. In the
long-term averaged equilibrium state, thermal wind theory predicts
two sub-tropical jets.

The initial condition of our simulation is set as a quasi-
hydrostatic atmosphere with random and small temperature
perturbations deviating from dry adiabats to break the initial
symmetry. The thermal structure is relaxed to a reference
profile via a Newtonian cooling scheme,

f s r f r
¶
¶

+ = - - -
E

t
k c T T p wg... , , , 29T v eq( ) [ ( )] ( )

where cv is the isochoric specific heat; σ is the ratio of the local
pressure, p, to the surface pressure, ps; kT is the temperature
damping strength as a function of the latitude and s; Teq is the
reference temperature profile as a function of latitude and σ. KT

and Teq are adopted from the original paper (Held & Suarez 1994).
Rayleigh drags are applied to all three momentum equations,

r
s r r rW¶

¶
+ = - - ´ +
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u u g

t
k... 2 , 30v
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where kv is Rayleigh drag strength and W is the planetary
rotation vector. Geometric terms shall be written on the left-
hand side of the equation. We treat both Newtonian cooling
and Rayleigh drag friction as the explicit body forcing (i.e.,
explicit source terms), using the same parameters as used in the
original paper (Held & Suarez 1994).

The simulation domain is 25 km in height, latitude from
−90°S to 90°N, and the longitude from 0 to 360 . We adopt
spherical polar coordinates with the latitude and longitude
divided uniformly in degrees. The polar wedge scheme in
Athena++ (Stone et al. 2020) is applied to the polar region as
the boundary conditions at the poles. Two solid-wall
boundaries (i.e., reflecting or no-flux boundary condition) are
applied to both the bottom and the top of the domain (Table 1).
The spatial resolution is about 2°.8 in latitude (64 cells), 2 .8 in
longitude (128 cells), and 625 meters in height (40 layers). A 5
km thick sponge layer (e.g., Rayleigh drag layer) is applied at
the top of the atmosphere for both explicit and implicit schemes
to absorb the vertically propagating acoustic and gravity waves.
The CFL number for the explicit scheme is fixed as 0.3, which
is calculated as CFL= D Dc t zs . We adopt CFL=0.5 for the
VIC scheme, in which case the CFL number is limited by the
horizontal resolution, satisfying CFL = D D Dc t x ymin ,s ( ).

Similar to the original work, the simulation reaches the
quasi-equilibrium state after about 200 simulation days given
that the radiative cooling and Rayleigh drag timescales are
about tens of days (Held & Suarez 1994). Simulation results are
averaged from 200 to 1200 days.

First, we present the averaged state of zonal-mean zonal wind,
meridional wind, and temperature in Figure 7. We also present the
eddy analysis of this test in Figure 8 with the zonal-mean
meridional eddy momentum flux and zonal-mean eddy kinetic
energy. The maximum prograde jet speeds for explicit and implicit
models are 30.97 -m s 1 and 30.84 -m s 1, respectively. The wind
structures and jet speeds are very close to previously published
simulations (e.g., Held & Suarez 1994; Lin 2004; Ullrich &
Jablonowski 2012b; Mayne et al. 2014a; Mendonça et al. 2016).

Second, in Figure 9, we show the temporal evolution of total
mass, energy, and AAM of both the explicit and implicit
simulation results. The fractional variation of total mass increases

linearly at the machine precision level (i.e., ~ -10 9 of the initial
value) at a rate of ~ ´ -3 10 9 yr−1 and ~ ´ -3 5 10 yr−1 for
explicit and implicit results, respectively. The changes in total mass
are similar to the result of the Straka sinking bubble test, in which
the VIC scheme results have a smaller change in total mass. This
shows that the VIC scheme can conserve total mass just like the
explicit scheme in a spherical polar coordinate system. The
accumulated machine precision error of total mass is negligible
given that the change in total mass is much smaller than -10 6 even
if the model with the VIC scheme is integrated for thousands of
years. The total energy varies at the start by about 0.6% and
reaches a quasi-steady state after 200 days. The fractional variation
of total energy is less than 10−3 after 200 days. The total AAM
decreases from the initial value by about 0.1% and varies by about
0.2% after 200 days. Note that the total AAM is not expected to be
rigorously conserved because we solve momentum equations
instead of angular momentum equations. This result shows that our
simulation does achieve the steady state after 200 days.
In sum, our model can reproduce the benchmark result for

Earth-like global-scale atmospheric dynamics. The VIC
scheme achieves the mass conservation to the machine
precision level. In the steady state, the total energy and AAM
vary at a level below 1%.
Similar to previous tests, the VIC scheme can significantly

improve computational efficiency. First, the time step increases by
a factor of ~450 with the VIC scheme. Second, with the use of
512 CPU cores on Pleiades (Sandy Bridge processors), the
computational efficiency is improved by more than two orders of
magnitudes. The polar convergence issue of the spherical polar
coordinate system still limits the spatial resolution in the polar
region and therefore limits the time step and the computational
efficiency, which can be improved by implementing a cubed-
sphere coordinate system (Putman & Lin 2007) or using static
mesh refinement (Zhu & Stone 2018) in our future studies.

4.6. Shallow Hot Jupiter Test

Our final global-scale test is on the atmospheres of hot
Jupiters, which are Jovian-size extrasolar planets very close to
their host stars. These giant planets are likely to be synchro-
nously orbiting around their host stars due to strong gravitational
tides, meaning that the dayside of such a planet is always
irradiated by its host star. Even though most hot Jupiters could
still be rapid rotators (rotational period of about three days) like
Jupiter, the strong, permanent day–night irradiation patterns
distinguish the climate state on these emerging planetary
populations from any previously known planetary atmospheres
in the solar system. Observations and theories (e.g., Showman &
Guillot 2002; Knutson et al. 2008; Showman et al. 2009) have
shown that the equatorial super-rotating jet on hot Jupiters can be
subsonic or sonic and the dayside and nightside temperature
contrast can exceed 1000 K. The atmospheres of some ultrahot
Jupiters can be hotter than 2500 K, so that hydrogen molecules
on the dayside can be thermally dissociated (Bell & Cowan 2018;
Tan & Komacek 2019). To prepare our model for future
application to diverse exoplanetary atmospheres, here we
validate our global GCM in this new regime of a synchronously
rotating hot Jupiter. In particular, we validate our model against
an experiment called the shallow hot Jupiter test. Several
previous models have performed this hot Jupiter benchmark test
and shown relatively good agreement (Menou & Rauscher 2009;
Heng et al. 2011; Bending et al. 2012; Mayne et al. 2014b, 2017;
Mendonça et al. 2016). But to date the published results were
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Figure 7. Explicit and implicit simulation results of the Held–Suarez benchmark averaged over 1000 Earth days. Zonal-mean zonal wind, meridional wind, and
temperature are shown in rows (a), (b), and (c), respectively.
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Figure 8. Explicit and implicit simulation results of the Held–Suarez benchmark averaged over 1000 Earth days. Zonal-mean meridional eddy momentum flux and
eddy kinetic energy are displayed in rows (a) and (b), respectively.

Figure 9. Temporal evolution of total mass, energy, and AAM normalized by the initial condition in the Held–Suarez atmospheric simulations from Day 0 to Day
1200. Explicit and implicit results are shown in red and blue, respectively.
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from either the model using primitive equations, hydrostatic
models (Menou & Rauscher 2009; Heng et al. 2011; Bending
et al. 2012) or a nonhydrostatic model with implicit and semi-
implicit schemes (Mendonça et al. 2016; Mayne et al. 2017). In
addition to testing our VIC scheme, here we also provide the first
nonhydrostatic, explicit integration results for this case without
damping the acoustic waves.

Similar to previous works, we simulate a canonical hot
Jupiter with a planetary radius of 105 km and a gravitational
acceleration of 8 -m s 2. The simulation domain covers 4500
km in height with 40 layers,- 90 S to 90 N in latitude with 64
cells, and 0 to 360 in longitude with 128 cells. The bottom
pressure and temperature are set as 1 bar and 1600 K,
respectively. The initial temperature structure is isothermal
(1600 K) from the surface to the top. The atmospheric
temperature is relaxed to a reference temperature profile by a
Newtonian cooling scheme, but no Rayleigh drag is applied.
We adopt a 500 km thick sponge layer at the top of the domain
to absorb vertically propagating waves. The same Newtonian
cooling setup is used as in previous works. The reference
temperature profile is given by

b l f= + D -T T T cos cos , 31E Peq vert trop ( )

where λ is the longitude, f is the latitude, and Tvert and btrop are
parameters adopted from Menou & Rauscher (2009), Heng
et al. (2011), and Mendonça et al. (2016). The temperature
difference between equator and pole, -TE P, is 300 K.

We choose the time steps corresponding to CFL=0.3 for
the explicit case and CFL = 0.9 for the implicit case.

Figure 10 shows the zonal-mean zonal wind, meridional wind,
and temperature structure in the statistically averaged state from
Day 200 to Day 1200. Figure 11 shows the zonal-mean meridional
eddy momentum flux, vertical eddy momentum flux, and eddy
kinetic energy. The zonal-mean zonal wind pattern exhibits a
prograde equatorial super-rotating jet and retrograde jets in the mid-
latitude. The zonal-mean temperature pattern in the lower
atmosphere shows a strong latitudinal variation, with two sub-
tropical maxima and two polar maxima. The results from the
explicit and VIC cases are almost identical. The maximum zonal-
mean prograde zonal wind speeds are 1052.95 -m s 1 and 1109.61

-m s 1 for explicit and implicit simulations, respectively. The
location of the super-rotating jet ranges from about - 20 S to

20 N. The difference in jet speed is also associated with a slight
difference in the equatorial temperature structure shown in
Figure 10. The maximum westward jet speeds are −588.41

-m s 1 and −581.59 -m s 1 in the explicit and implicit cases,
respectively.

The zonal-mean zonal wind and zonal-mean temperature
generally show similar structures to previous results. Both the
explicit and VIC schemes produce a slightly slower equatorial
jet than previous works (Menou & Rauscher 2009; Heng et al.
2011; Bending et al. 2012; Mayne et al. 2014b, 2017;
Mendonça et al. 2016). The zonal-mean temperature structure
at the equator is also slightly different from previous models
(note that these differences also exist among previous models).
These subtle differences might come from different capabilities
of resolving eddies in different models. Although the
agreement between our implicit and explicit model results
demonstrates a good performance of our VIC scheme in
exoplanet simulations, future nonhydrostatic models with
explicit time integration schemes would be needed to validate
our explicit model results.

It was also recently argued that simulations of the deep
atmospheres of hot Jupiters might require a very long time
integration to achieve the steady state (Mayne et al. 2017;
Deitrick et al. 2020; Sainsbury-Martinez et al. 2019; Wang &
Wordsworth 2020). The shallow hot Jupiter benchmark case
has a relatively short radiative timescale and is expected to
converge early. We also integrated our case for 12,000 days to
ensure that simulations have achieved the steady state but did
not find a significant change after 1200 days.
Figure 12 shows the change in total mass, energy, and AAM

for the shallow hot Jupiter test in the first 1200 days. The explicit
and implicit schemes show similar behavior (Figure 12). Similar
to the Held–Suarez test, the total mass is well conserved at the
machine precision level with a slight, linear increase with time. In
the steady state, total energy varies at a level below 1% and total
AAM varies within a few per cent. Both the total energy and
AAM at the steady state are different from their initial values by a
few per cent but show no trend of continuous loss or increase,
even after long-term integration of 12,000 days.

5. Conclusion

In this paper, we have developed a new nonhydrostatic
planetary atmosphere model with a state-of-the-art vertically
implicit correction scheme built on top of the Athena++ and
SNAP framework. The VIC scheme has the advantage of
satisfying conservation laws (i.e., conservation of total mass and
energy for local simulations and conservation of total mass for
global simulations). We validated the model using both localized
simulations and global-scale simulations. Our VIC scheme can
improve the computational efficiency of 3D global-scale simula-
tions, especially for hydrogen-dominated atmospheres with the
large aspect ratio of spatial resolutions between the vertical
direction and horizontal direction, which is relevant to Jupiter,
Saturn, Uranus, Neptune, extrasolar gas giants, and brown dwarfs.
The SNAP with the VIC scheme has several features:
1. With the VIC scheme, we are able to efficiently solve the

full set of Euler equations on unstaggered grids by employing a
dimensionally unsplit method for atmospheric simulations. The
VIC scheme significantly relaxes the CFL limitation and
improves the computational efficiency compared with using the
explicit scheme.
2. The algorithm of the VIC scheme in our model allows the

use of different Riemann solvers (e.g., LMARS, Roe, HLLC),
reconstruction methods (e.g., PPM, WENO5), and time
integration schemes (e.g., RK3, VL2) in order to achieve
different levels of spatial and temporal accuracy.
3. A linear wave test shows that the VIC scheme can use a

large time step in atmospheric simulations by damping the
amplitude of acoustic waves and suppressing the numerical
instability in time marching. The Straka sinking bubble test and
the Robert rising bubble test show that, although the VIC
scheme suppresses the spurious numerical noise of acoustic
waves with numerical diffusion, it does not affect the ability to
capture the vertically convective fluid motions even in the cases
with weak forcing. These tests also show that our VIC scheme
can well maintain numerical stability without any extra
divergence damping or hyperviscosity over the intrinsic
damping in the VIC scheme. Users can also apply an additional
eddy diffusion using the original diffusion solver in Athena++

if spatial resolution is not fine enough to capture the eddy
transport.
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Figure 10. Explicit and implicit simulation results of the shallow hot Jupiter test averaged over 1000 Earth days. Zonal-mean zonal wind, meridional wind, and
temperature are shown in rows (a), (b), and (c), respectively.
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Figure 11. Explicit and implicit simulation results of the shallow hot Jupiter test averaged over 1000 Earth days. Zonal-mean eddy meridional momentum flux,
vertical eddy momentum flux, and eddy kinetic energy are plotted in rows (a), (b), and (c), respectively.
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4. The Earth-like Held–Suarez benchmark and shallow hot
Jupiter test show that the VIC scheme performs well for 3D
global simulations in the spherical polar coordinate system. The
VIC scheme has been able to reproduce the numerical solutions
of model validation tests published in the literature, showing
that our VIC scheme can perform as the dynamical core for
simulating atmospheric dynamics under different regimes.

5. The analysis of the Straka sinking bubble, shallow hot
Jupiter, and Held–Suarez tests shows that our VIC scheme
performs well in conserving mass and energy in a closed
domain and also in maintaining the total AAM for global
dynamic simulations. The fractional variation of total AAM is
about 0.5% for the Held–Suarez test and 10% for the shallow
hot Jupiter test. The total AAM variation is commensurate with
previous works (Mayne et al. 2017; Deitrick et al. 2020). This
capability provides a safeguard for simulations that require
long time integration.

6. Both the local and the global tests show that the VIC scheme
can significantly improve computational efficiency while quanti-
tatively agreeing with the explicit results for cases of large aspect
ratio. For each time step, the VIC cases are generally slower than
the explicit cases by only a factor of two to three. Because the
VIC scheme allows a much larger time step, one can save the
overall computational time in global-scale simulations by up to
two orders of magnitude. In general, the VIC scheme can greatly
reduce and save the simulation time and computational resources
when applied to planetary atmospheric simulations.

We plan to improve the implicit SNAP in our future studies.
Several improvements could include: coupling with a radiative
transfer module, HARP, which was designed in the Athena++

framework (Li et al. 2018), developing the implicit cloud-
resolving scheme to provide the capability to study large-scale
moist convection, implementing the cubed-sphere coordinate
system to further improve the computational efficiency, and
incorporating tracer transport modules with gas chemistry and
cloud microphysics. Our ultimate goal is to develop a
numerical scheme with topography so that we are able to
study not only gas giants or aqua-planets but also the
atmospheric dynamics on terrestrial planets with realistic
topography. Our implicit SNAP model will be made publicly
available following the Athena++ open-source policy.
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Appendix A
Governing Equations in Different Coordinate Systems

The Euler equations in a Cartesian coordinate system can be
written as
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where g is the gravitational acceleration. The Euler equations set
still adopt some approximations such as the spherically
symmetric geopotential (e.g., Holton 2004, 2016; Pedlosky 2013;
Vallis 2016).
For planetary-scaled simulations, the conservative form of

the Euler equations should be treated in spherical coordinates,
which can be written as
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Figure 12. Temporal evolution of total mass, total energy, and total AAM normalized by the initial condition in shallow hot Jupiter simulations from Day 0 to Day
1200. Explicit and implicit results are shown in red and blue, respectively.
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where rp is planetary radius; Ω is the planetary rotational
frequency; θ is latitude; f is longitude; r is the distance of the
cell from the center of the planet.

Appendix B
The Analytical Form of A∣ ∣

The vector form of 1D Euler equations can be written as
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The quasi-linear form of the Euler equations can be written
as
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where ¶ ¶F Q is the flux Jacobian. One can compute the
analytical right eigenvectors R and eigenvalues Λ,
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where g r g= - +h p u1 22( ) .
Then we can acquire A∣ ∣ by computing L-R R1∣ ∣ . Note that A∣ ∣

is automatically determined by the localized thermodynamic
quantities (i.e., acoustic speed and flow speed).

Appendix C
Conservation Laws under Reflecting Boundary Conditions

Here, we prove that the conservation of total mass and
energy is guaranteed in our VIC scheme with reflecting
boundary conditions at both the top and bottom. We can write
down the extended linear system with ghost cells as
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where Q n
0 and +Qm

n
1 are ghost cells at the bottom and top

boundaries.Q n
0 and +Qm

n
1 are inferred by the first and the last cells

in the domain, satisfying the boundary condition. They can be
written as
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where M is the converting matrix. Then, we can substitute
Equation (C2) into (C1) to simplify the matrix on the left-hand
side of the linear equation. As a result, we can get an invertible
tridiagonal matrix on the left-hand side,

Following the philosophy of Equation (25), we can acquire
the change in total mass, momentum, and energy from
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As described in Section 3, the third term on Equation (C4)ʼs
right-hand side is zero. The reflecting boundary condition also
guarantees that the mass and energy fluxes at boundaries are 0,

r= DF u0, , 0n T
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Therefore, the fourth term on the left-hand side is zero. The
total mass and energy changes are only determined by the first
and second terms. We compute mass and energy changes in

+ + DQc M a c1 1 2 1( ) and + + D- Qb a b Mm m m m1( ) by analy-
tically calculating + +c M a c1 1 2 and + +-b a b Mm m m1 . By
substituting Equations (10)–(12) into + +c M a c1 1 2 and
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Here, we just prove that the mass and energy changes in
+ + DQc M a c1 1 2 1( ) are 0. A proof of Equation (C6) is similar

to the proof of Equation (C5). Jn1 and Jn0 are determined by the
density, velocity, and energy in the first cell’s center, r1, u1, E1:
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where An
1 2∣ ∣ is computed from r1 2, u1 2, and E1 2 on the

interface between the first cell and the neighboring ghost cell.
Physically, the velocity at 1/2 cell interface should be 0. The
numerical solver solves the vertical velocity at the boundary
interface by using the approximate Riemann solver (Roe
scheme)
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where the subscripts R and L represent the right and left states
of the interface, respectively, which are acquired from the
reconstructed density and velocity profiles in neighboring cell
centers. The reflecting boundary condition ensures r r=R L
and = -u uR L. In this case, we can get the vertical velocity at
the domain boundary, =u 01 2 .
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where cs is the acoustic speed at cell interface 1/2, and H is
the total enthalpy, g g r= - +H p u1 22( ) . Then, we
can substitute Equations (C7)–(C10) into Equation (C5) and
obtain
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Finally, we can compute the temporal mass and energy
changes, rD 1 and DE1, in + + DQc M a c1 1 2 1( ) from this
equation, which are 0:
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Appendix D
Conservation Laws under Double-periodic Boundary

Conditions

Here, we provide the detailed math on the conservation of
total mass, momentum, and energy with double-periodic
boundary conditions at the top and bottom. Equation (9) can
be specifically modified for double-periodic boundary condi-
tions as

g g g

g
g

g r
g

g r
g g

=
- - -

- - +
- -

+ -

J

u
u

u p
u

p u
u

0 1 0

3
2

3 1

2
2 1 1

3
2

, C7n
1

1
2

1

1
2

1

1
1

1

1

1
2

1

⎡

⎣

⎢⎢⎢⎢⎢⎢
⎡
⎣⎢

⎤
⎦⎥

⎤

⎦

⎥⎥⎥⎥⎥⎥

( ) ( )

( ) ( )

( )

g g g

g
g

g r
g

g r
g g

=
- - - -

- +
- -

+ - -

J

u
u

u p
u

p u
u

0 1 0

3
2

3 1

2
2 1 1

3
2

, C8n
0

1
2

1

1
2

1

1
1

1

1

1
2

1

⎡

⎣

⎢⎢⎢⎢⎢⎢
⎡
⎣⎢

⎤
⎦⎥

⎤

⎦

⎥⎥⎥⎥⎥⎥

( ) ( )

( ) ( )

( )

20

The Astrophysical Journal, 898:130 (22pp), 2020 August 1 Ge et al.



For equation i=1, the diagnostic variables in the ghost cell
are inferred from the variables in the last cell in the domain.
The same philosophy can be applied to equation i=m. The
total change of conserved variables, å D= Qi

m
i1 , can be acquired

from Equation (D1):
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One can infer =+F Fm
n n

1 2 1 2, + + =b a c 0m 1 2 , and
+ + =-b a c 0m m1 1 from double-periodic boundary condi-

tions. They ensure the first, second, and fourth terms on the
right-hand side of Equation (D2) are 0. Then, we can acquire
the conservation of total mass, momentum, and energy in a 1D
double-periodic tube:

å
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Q
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