CCF Transactions on High Performance Computing (2019) 1:224-239
https://doi.org/10.1007/542514-019-00018-4

REGULAR PAPER q

Check for
updates

Performance analysis of deep learning workloads using roofline
trajectories

M. Haseeb Javed’ - Khaled Z. Ibrahim? - Xiaoyi Lu’

Received: 31 July 2019 / Accepted: 9 November 2019 / Published online: 29 November 2019
© China Computer Federation (CCF) 2019

Abstract

Over the last decade, technologies derived from convolutional neural networks (CNNs) called Deep Learning applications,
have revolutionized fields as diverse as cancer detection, self-driving cars, virtual assistants, etc. However, many users of such
applications are not experts in Machine Learning itself. Consequently, there is limited knowledge among the community to
run such applications in an optimized manner. The performance question for Deep Learning applications has typically been
addressed by employing bespoke hardware (e.g., GPUs) better suited for such compute-intensive operations. However, such
a degree of performance is only accessibly at increasingly high financial costs leaving only big corporations and govern-
ments with resources sufficient enough to employ them at a large scale. As a result, an average user is only left with access to
commodity clusters with, in many cases, only CPUs as the sole processing element. For such users to make effective use of
resources at their disposal, concerted efforts are necessary to figure out optimal hardware and software configurations. This
study is one such step in this direction as we use the Roofline model to perform a systematic analysis of representative CNN
models and identify opportunities for black box and application-aware optimizations. Using the findings from our study, we
are able to obtain up to 3.5 speedup compared to vanilla TensorFlow with default configurations.

Keywords Roofline - Deep learning - Tensorflow - MKL

1 Introduction

With the convergence of High-Performance Computing
(HPC) and Artificial Intelligence (AI), researchers and
developers have started paying more attention to accelerat-
ing the performance of Al models, applications, and frame-
works. Under the umbrella of Al, Deep Learning (DL) has
been gaining more momentum as a new promising technol-
ogy to solve many challenging problems facing society, such
as cancer detection (Esteva et al. 2017), self-driving cars
(Huval et al. 2015), natural language processing (Yan et al.

< M. Haseeb Javed
javed.19@osu.edu

Khaled Z. Ibrahim
kzibrahim@1Ibl.gov

Xiaoyi Lu
1u.932@osu.edu
Department of Computer Science and Engineering, Ohio

State University, Columbus, USA

Computational Research Division, Lawrence Berkeley
National Laboratory, Berkeley, USA

@ Springer

2016), and so on. Deep Learning frameworks and applica-
tions have been heavily leveraging HPC technologies to
improve their performance and scalability.

Taking TensorFlow (Abadi et al. 2016) as an exam-
ple, a lot of optimized designs have been proposed in the
community to improve its performance with different
approaches. From the network perspective, InfiniBand
(InfiniBand Trade Association 2017), RoCE (RDMA over
Converged Ethernet 2019), High Speed Ethernet, etc. are
used to improve the tensor communication performance in
TensorFlow with high-performance communication librar-
ies, such as gRPC (gRPC 2019), RDMA-gRPC (Biswas
etal. 2018), MPI (Message Passing Interface Forum 2019)
etc. From the computation perspective, TensorFlow-based
Deep Learning workloads have been taking advantage of
many advanced computing capabilities available on CPUs,
GPUs, TPUs (Jouppi et al. 2017b), and so on. For CPU-
based platforms, Intel TensorFlow (Intel-Tensorflow 2019)
can accelerate Deep Learning workloads with the latest
AVX512 technology on x86 CPUs. For GPU-based plat-
forms, cuDNN (Chetlur et al. 2014) and NCCL (NVIDIA
NCCL 2017) have become the standard building blocks

http://crossmark.crossref.org/dialog/?doi=10.1007/s42514-019-00018-4&domain=pdf

Performance analysis of deep learning workloads using roofline trajectories

225

for high-performance and scalable Deep Learning train-
ing on GPU devices. DL architectures (Chen et al. 2018)
specifically optimized for GPUs have also been suggested.

Even though there exists significant literature address-
ing performance enhancements for Deep Learning work-
loads, we find that there is a lack of performance models
to systematically guide optimizations for Deep Learning
workloads. Coming up with a useful and insightful perfor-
mance model for Deep Learning workloads is not a trivial
task. This is because Deep Learning workloads typically
have very complex and deep software and hardware stacks
(Lu et al. 2018), which can not be easily abstracted as
a simple and meaningful model. Due to the lack of use-
ful performance models for Deep Learning workloads,
researchers and developers typically use ad-hoc or expe-
riential approaches to optimize the performance of their
workloads, which may not be efficient. These approaches
also can not exactly identify where the bottlenecks lie and
how much more improvement can be expected with pos-
sible further optimizations.

To shed light on how to solve these challenges facing
Deep Learning researchers, we propose a simple and effec-
tive approach to systematically analyze and optimize the
performance of Deep Learning workloads with the Roof-
line model (Williams et al. 2009). The Roofline model is
a very useful and insightful visual performance model for
multi-core architectures. We choose the Roofline model as
our hammer to analyze Deep Learning workloads, which
is because it can analyze the heavy stacked Deep Learning
workloads in a black box approach.

To this end, this paper performs comprehensive profiling
and analysis of Deep Learning models run on a multi-core
CPU cluster using TensorFlow. In particular, we make use of
the Roofline model to identify bottlenecks in a step-by-step
manner and resolve them accordingly. Using this approach
to optimize distributed training of DNNs, we are able to
obtain up to 3.5x performance improvement over vanilla
TensorFlow using the default configurations.

The optimizations obtained in our study broadly focus
on two major directions of improving the computational
efficiency at minimal levels of concurrency and communi-
cational efficiency at high levels of concurrency. We find
that a visual tool that helps identify particular avenues of
improvement along these directions will be very useful for
the community. We believe that because of the simplicity
of the Roofline model, many Deep Learning application
researchers and developers can also use it to analyze and
optimize their workloads even if they do not have a com-
prehensive understanding of the bulky and complex Deep
Learning stacks.

Our studies demonstrate that such a performance analysis
approach for Deep Learning workloads with the Roofline
model is efficient for achieving near-peak performance on

target platforms. In a nutshell, this study makes the follow-
ing key contributions:

e Present detailed profiling and analysis of CPU-based dis-
tributed training of Deep Neural Networks (DNNs);

e Provide guidelines to show how a performance model,
such as the Roofline model, may be used to optimize the
execution of DNN workloads;

e Suggest optimal values for some key parameters which
may be used by non-expert users to get high performance
for CPU-based Deep Learning.

The paper is organized as follows. Section 2 covers back-
ground knowledge with regards to TensorFlow and Roof-
line model. The performance analysis methodology used in
this study is detailed in Sect. 3. Section 4 discusses baseline
observations while Sect. 5 presents the black box optimi-
zations performed on the baselines established in the sec-
tion prior. Application-aware optimizations are discussed
in Sect. 6. Related work is summarized in Sect. 7. Finally,
concluding remarks and future directions for continued work
appear in Sect. 8.

2 Background
2.1 Tensorflow

Tensorflow (Abadi et al. 2016) is a Machine Learning frame-
work developed at Google which provides an implementa-
tion of various functions and modules commonly used in
Machine Learning algorithms. It also provides the function-
ality to make use of various resources available within a
system, such as multi-core processors, GPUs, etc, to acceler-
ate the performance of the applications developed using it.
Distributed TensorFlow allows users to scale applications
along both inter-node and intra-node directions. Note that in
this paper we adapt the data-parallelism (Krizhevsky et al.
2012) approach to partition and scale our algorithms. In this
approach, multiple replicas of the same model are launched
on the processing units available while the training data is
partitioned equally across these replicas. Subsequently, dif-
ferent mechanisms, such as the ones described below, are
used to aggregate the results of these replicas to obtain a
global state. A contrasting approach is the model-parallelism
(Dean et al. 2012) where instead of data, the layers of the
Machine Learning model itself are partitioned across vari-
ous processing units while the same data is fed to each unit.
Moreover, the modular implementation of TensorFlow ena-
bles many different communication paradigms and gradient
update models to be used underneath the algorithm layer.
This study focuses on the two such widely used paradigms
which are described in detail below.

@ Springer

226

M. H. Javed et al.

l Barrier

T

T
T
1 ! !
Aggregation | : :
______ 1 _——————
1 1 1
AG=f(Dg,, Og,, Dgs) 1 ! 1
Agy) g, gy,
1 1 1
Parameter Server
Worker 1 Worker 2 Worker N
~— AG

Fig. 1 Parameter server (PS) model with synchronous gradient
updates: one or more PSs distribute work (through broadcast) and
aggregate results (through reduction)

2.1.1 Parameter Server

The Parameter Server model (Li et al. 2014) is an approach
used to perform distributed Machine Learning at scale. It
includes the abstractions of the parameter server (PS) pro-
cesses and worker processes. Workers execute replicas of
the actual Machine Learning algorithm while the PS stores
global parameters required by each replica. The process of
transmission of gradients to the PS and subsequent aggrega-
tion can be performed in synchronous as well as asynchro-
nous manner. A recent study (Chen et al. 2016) has shown
that synchronous weight updates with replication for strag-
glers result in faster convergence and better accuracy com-
pared to the asynchronous approach, therefore we use the
synchronous approach in our experiments as well.

Figure 1 describes how the parameter server model works
with synchronous updates. Each of the workers involved
compute their own local gradients. After a certain number of
iterations, the participating worker replicas share their local
gradient vectors with the parameter server and wait at a bar-
rier. The parameter server then aggregates all the received
gradients to obtain a global view of the model, which is
then broadcasted to all the workers, which can then begin
the next set of iterations. For greater scalability, the ratio of
parameter servers to workers can be increased. However,
figuring out the optimal ratio is non-trivial and having exces-
sive servers may saturate the network. Moreover, using the
parameter server approach to scale a sequential implemen-
tation of Deep Learning model requires significant changes
in order to configure the distribution of resources and the
communication pattern between them in an optimal manner.

@ Springer

2.1.2 Horovod

Horovod (Sergeev et al. 2018) is a runtime developed for
decentralized distributed Machine Learning by Uber. Instead
of using separate parameter servers to store the global
parameters, each worker in a Horovod cluster keeps a copy
of all the parameters. In the synchronization phase, each
worker takes part in a bandwidth optimal ring-based all-
reduce (Patarasuk and Yuan 2009) aggregation. The ring-
based allreduce algorithm is implemented using NVIDIA
Collective Communication Library (NCCL2) (NVIDIA
NCCL 2017) for GPUs and MPI on CPUs. Compared to
the parameter server approach, using Horovod to distrib-
ute sequential Machine Learning code requires minimal
changes.

Figure 2 shows how the ring-allreduce algorithm is used
for synchronizing gradients in Horovod operates. Each node
sends 2 X (N — 1) messages to each of its two neighbors.
First N — 1 messages received are added to the receiving
node’s buffer whereas the second round of N — 1 messages
replaces the values held in the receiving node’s buffer. After
2 X (N — 1) iterations, each worker has a globally synchro-
nized view of all the parameters.

2.2 Roofline model

The Roofline model (Williams et al. 2009) is a performance
analysis technique which makes use of memory access pro-
files and compute operations to identify if the application
is memory bound or compute-bound. Traditionally, Float-
ing Point Operations Per Second (FLOPS) have been used
to quantify the compute operations performed but recently
many studies have come up with bespoke, platform-specific
units as well. For example, Wang et al. (2018) introduces
a data-centric variant of Roofline model which better cap-
tures the behavior of typical applications running on com-
modity clusters by including not only floating point but all
other integer-based operations as well. However, FLOPS
is suitable for many HPC and Machine Learning applica-
tions as they are known to be fairly floating-point operations
intensive.

Figure 3 shows a typical Roofline model. The x-axis
represents Operational Intensity (OI)! which is a unit for
measuring the floating-point operations performed per byte
of memory accessed. The vertical axis represents the com-
putational performance obtained in GFLOPS. The sloped
line starting from the origin represents the range of Opera-
tional Intensity for which the performance of the application

L' OI = NUM_FLOP/MEM_ACC, where NUM_FLOP means the
number of floating-point operations performed and MEM_ACC
means the bytes of memory accessed.

Performance analysis of deep learning workloads using roofline trajectories

227

Worker A

—

Worker A

Worker A

513 1536

—

/A

Worker B Worker C Worker B / \ Worker C Worlf.{rB Workerc\
m ‘s11|4z|77‘ ‘927|717|s4‘ 1324|4z|77‘ ’2251l7l7|84‘ ‘1324|42|571z‘
Y] Y]
‘\
Worker A Worker A

2251 15 36| 57 12

N

-

251115 36

4

AN

Worker B / \ Worker C

‘2251|1536|5712‘ ’2251'1536|5712‘
Y /

Worker B Worker C
[ot

‘2251|717|5712‘ ‘1324|1536|5712‘
13 7

Fig.2 Ring-allreduce, which optimizes for bandwidth and memory usage over latency

= Peak FLOPS 256 A alexnet A inception3 resnet50 A vgglé

700 4

600 ~

w

o

o
L

Performance [GFLOP/s]
»

0 2 4 6
Operational Intensity [FLOP/byte]

Fig.3 The Roofline model characterizes the application using opera-
tional intensity and machine computational bounds. We could visu-
ally assess the performance optimality of a particular implementation
against a empirical machine limits

will be bound by memory bandwidth. The point at which
it terminates is called the ridge point, which is the point
beyond which all Operational Intensities represent the com-
pute-bound region. The red horizontal line denotes the peak
floating-point performance of the hardware the experiments
are executed on. The individual points on the graph represent
various applications and the region that they lie in based on
their Ols and operations executed, which in our case are

obtained by reading performance counters using tools such
as perf (De Melo 2010).

3 Performance analysis methodology

Determining the method to be utilized to obtain a set of per-
formance optimizations for a particular application is a non-
trivial task. Such a task is complicated even further in the
case of distributed Machine Learning frameworks because
of the sheer quantity of independent layers of communica-
tions and computation involved. Therefore, in this study, we
adopt a step by step approach where insights from one step
are used as a guide for the subsequent so that a comprehen-
sive set of optimizations are obtained covering many differ-
ent facets of the system under consideration. The first step
in our methodology involves running baseline experiments
to determine the performance metrics obtained using just
the out-of-the-box implementation. These experiments are
then analyzed to identify and isolate potential bottlenecks.
In the next step, we attempt to remove these bottlenecks
by performing application-agnostic, black box optimiza-
tions targeting the framework that the end-user application
is running on. These optimizations do not modify the client
application, which in our case is the Machine Learning algo-
rithm, but rather optimize the operations of the framework
the application executes on, which is TensorFlow for this
study. Lastly, application-aware optimizations are performed
to tune the application itself to extract further performance

@ Springer

228

M. H. Javed et al.

Table 1 Cluster configuration

Resource Specification

CPU Intel(R) Xeon(R) Gold
6126 @ 2.60 GHz

Cores X sockets 12x2

Memory 192 GB @ 119.21 GiB/s?*

Disk 240 GB HDD

NIC Ethernet (10 Gbps)

(ON] CentOS release 7.5.1804

“https://en.wikichip.org/wiki/intel/xeongold/6126.

Table 2 Software configuration

Software Version
Tensorflow 1.13
Intel-Tensorflow 1.13
Python 2.7.1
MPICH 3.3.1
Horovod 0.16.4
gce 4.8.5

gains based on the optimizations implemented in the preced-
ing step. This method, when applied to distributed Machine
Learning using TensorFlow, and the optimizations derived
as such are explained in detail in subsequent sections.

The official TensorFlow repository provides benchmarks?
of various Convolutional Neural Networks (CNNs) which
we use in our study. Of the many networks available, we
select four commonly used and extensively studied mod-
els—Alexnet (Krizhevsky et al. 2012), Inception3 (Szegedy
et al. 2016), Resnet50 (He et al. 2016), and Vggl6 Simon-
yan and (Zisserman 2014)—which are based on the Ima-
geNet (Deng et al. 2009) image classification dataset. These
represent models with varying degree of computation and
communication intensities covering a broad range of imple-
mentations of the broad spectrum of Deep Learning models.

The experiments are carried on Chameleon Cloud (Kea-
hey et al. 2019), an NSF funded cloud testbed. The hardware
specifications of the ‘Skylake’ nodes that are used to carry
out all the experiments presented in this study are summa-
rized in Table 1.

The names and versions of different frameworks and com-
pilers used in this study are summarized in Table 2.

Even though the focus of this study has been on homo-
geneous, CPU-based clusters, the approach described in
this study can easily be extended to heterogeneous GPU

2 https://github.com/tensorflow/benchmarks.

@ Springer

or hybrid CPU/GPU clusters. Tools such as nvprof® and
NVIDIA Nsight* kernel profile utility can be used to extract
the relevant performance counters on NVIDIA GPU-based
systems, as has been described in other similar works (Kim
et al. 2011; Ibrahim et al. 2018a). As a guideline, the follow-
ing steps may be performed to achieve the task for a given
architecture:

1. Launch the relevant performance counter retrieval tool
as a daemon. As mentioned earlier, on Intel CPU based
architectures perf may be used while nvporf may be used
for NVIDIA GPUs.

2. Launch the application that needs to be profiled. In our
case, these were DL models executed on TensorFlow.
Once the application terminates, use the counters
obtained to calculate the number of FLOP executed,
number of bytes of memory accessed and time taken.

(a) The counters to obtain memory accesses are
CAS_COUNT.WR and CAS_COUNT.RD on CPUs
while dram_read_transactions and dram_write_
transactions on NVIDIA GPUs.

(b) An approprite multitplier (64 for Intel Skylake,
32 for NVIDIA Volta) can be used to convert the
conter values to actual memory bytes accessed.

FLOP
Ol = - —. €))
© (Reads + Writes) X Multiplier
c
4. Use these metrics to construct a Roofline profile to guide
optimizations.

4 Baseline experiments

In this section, we analyze the performance characteristics
of running distributed Deep Learning on vanilla Tensorflow
using PS and Horovod as the variable update models. We
use a variant of the Roofline model (Ibrahim et al. 2018b),
in which we plot scaling trajectories, rather than points, at
full concurrency; the trajectories are helpful in observing the
overall trend in performance attained with respect to changes
in the level of concurrency.

4.1 Profiling

The experiments described in this section are performed
on the real ImageNet data set. However, some preliminary
experiments are performed with synthetic data as well.

3 https://docs.nvidia.com/cuda/profiler-users-guide/index.html#nvpro
f-overview.

4 nhttps://developer.nvidia.com/tools-overview.

https://en.wikichip.org/wiki/intel/xeongold/6126
https://github.com/tensorflow/benchmarks
https://docs.nvidia.com/cuda/profiler-users-guide/index.html#nvprof-overview
https://docs.nvidia.com/cuda/profiler-users-guide/index.html#nvprof-overview
https://developer.nvidia.com/tools-overview

Performance analysis of deep learning workloads using roofline trajectories

229

100 A
—— alexnet
75 T T T T T T T

[vgglé
10.0 A
—— inception3
75— : :
12.5 A
10.0 1 —— resnet50

7.5 : .
2 & © ® A0 2 NS \6
PPN

Images/sec

Fig.4 Throughput variations in response to varying PPN. Increas-
ing PPN from 1 to 2 and then 4 yields significant improvements in
throughput but for PPN values beyond 4 the throughput remains fairly
stable

We observe that, barring minor experimental variability,
the results obtained with real data are matching the ones
obtained using the synthetic data. Moreover, the actual
memory bandwidth achieved on a system is often less than
the theoretical peak. To measure the maximum achievable
memory bandwidth, STREAM?® benchmark was used. All
the experiments described in this study are performed with
a batch size of 64, unless specified otherwise.

4.1.1 Parameter Server Model

Setting up a TensorFlow cluster allows for various configu-
rations of PS and worker processes, described in Sect. 2.1.1,
to run on the resources available. However, the number of
such processes to launch and their mutual ratio is a heuristic
that often needs to be optimized as it can have a significant
performance impact. The launched worker processes per
node (PPN) is a parameter we have tuned before we launch
our detailed experiments. We run some preliminary experi-
ments to arrive at an optimal value for PPN.

Figure 4 shows the aggregate throughput obtained with
varying number of worker PPN. We observe a sharp increase
in aggregate throughput when PPN is increased from 1 to
4, after which it starts to stabilize. Other factors are also
needed to be considered for an optimal PPN value; launching
multiple processes per node rapidly increases the job startup
time and the benchmark itself would have issues outputting
the correct logs for each process at higher PPN values. Tak-
ing these factors into account, we decide to set worker PPN
to 4 for the experiments described in this section as it can

3 https://www.cs.virginia.edu/stream/.

represent a reasonable balance between desired concurrency
and ease of implementation.

Binding processes to cores by setting their affinity is a
frequently used optimization technique for parallel applica-
tions. We have tried various configurations of process affini-
ties also taken into account the NUMA configuration of the
processing element, on which the experiments are executed.
Regardless, the best performance is obtained without mak-
ing the use of processing affinities at all. Instead, allow-
ing processes and the threads launched by them to freely
migrate among cores can deliver the best performance for
TensorFlow-based training. This phenomenon has also been
observed in other Python or Java-based applications (Lu
et al. 2017).

Different levels of concurrency are tested against a vary-
ing number of PS to see how well the distributed training
can scale. Figures 5 and 6 show Roofline plots for differ-
ent DNNs executed using varying levels of concurrency, for
nodes running PS and worker, respectively. As described
in detail later in Sect. 4.2, unoptimized TensorFlow does
not perform Advanced Vector Extensions (AVX) or Fused
Multiply Add (FMA) instructions thus the peak attainable
floating performance comes out to be: 2 sockets X 12 cores/
socket X 3.7(GHz) clock rate with Turbo boost x 8 Single
Precision (SP) FLOPs/cycle = 710.4 GFLOPS, which is
denoted by the dotted red line “Peak FLOPS 256 in the
graphs.

From Roofline plots for nodes running PS shown in
Fig. 5, we observe that the task is not compute intensive
as FLOPS generated are in the ballpark of 1 MFLOPS to
1 GFLOPS, which is orders of magnitude less than nodes
running worker processes as shown in Fig. 6. Keeping the
number of PS constant, increasing the number of workers
leads to an upward shift for the data points in Fig. 5 as the
number of workers across which the gradients need to be
synchronized also increases for each PS. Similarly, for any
given number of workers, adding more PS to the system
leads to fewer parameters that each PS is responsible for
synchronizing across the system. As a result, the correspond-
ing Roofline trajectories also show a downward shift. Note
that the results for PS nodes are plotted against a logarithmic
scale.

Figures 6 and 7 show the Roofline trajectories for
worker nodes and throughput obtained by the model,
respectively. This helps in comparing the actual appli-
cation performance with the black box approach of the
Roofline model. The model which is able to gener-
ate FLOPS closest to the peak performance is Vggl6.
If more workers are added to the system, while keeping
the number of PS unchanged, we see an almost 2x (8.2
img/s with 4 workers vs 16.3 img/s with 16 workers for
Vggl6) increase in throughput for a proportional increase
in workers, for all models barring Alexnet. These models

@ Springer

https://www.cs.virginia.edu/stream/

M. H. Javed et al.

230
104
1034] T] T s
102 4
v
o
o 10!
-
w
S 100 4 + Peak FLOPS 256 + Peak FLOPS 256 + Peak FLOPS 256
3 - alexnet - alexnet - alexnet
% 10-1 4 inception3 inception3 inception3
§ resnet50 resnet50 resnet50
o _ - vgglé - vgglé - vgglé
2
g 107 1 nodes 1 nodes 1 nodes
& 5 2 nodes 2 nodes 2 nodes
1077 4 x 4 nodes 4 nodes 4 nodes
A 8nodes 8 nodes 8 nodes
1074 T
10> 107* 1073 1072 10°! 10° 10! 102 10 107° 1074 10°3 10°2 107! 10° 10' 102 10°® 107° 107* 1073 1072 10°! 10° 10' 102 103
1ps 2 ps 4 ps

Operational Intensity [FLOP/byte]

Fig.5 Roofline plots for PS nodes. Significantly less raw operations are executed compared to the worker nodes which is expected. Increasing
number of PS results in downward shift of trajectories as each PS becomes responsible for fewer network parameters to be aggregated

o Y TP T TP T P LT R E TP T PP T PELTTRLTT] [E L LY P EEEE PP T PE UL PETEEE TR TTPTT T J S T TR LT TP L CPL LR PEY PELEPPLEEPIEER D
600 -
g 500 1
(o]
rn
O 400 1 E
- ? * Peak FLOPS 256 s + Peak FLOPS 256 b4 -++: Peak FLOPS 256
9] --- alexnet ---- alexnet --- alexnet
S 300+ r b4 1 .
© B --- inception3 * ---- inception3 ¢ -==" inception3
g (] ', resnet50 (' ’u' resnet50 l H resnet50
£ 2001 ; -== vggl6 ¥ -==+ vggl6 1 ¥ --- vggl6
& #': ® 1nodes ' ®m 1nodes ! | 1nodes
100 4 H ® 2 nodes " ® 2 nodes | i ® 2 nodes
A' X 4 nodes X 4 nodes X 4 nodes
A 8 nodes A 8 nodes A 8nodes
0 T T T T T T
0 2 4 2 4 0 2 4 6
2 ps 4 ps

Fig.6 Roofline plots for worker nodes. Trajectories for Alexnet show
variations proportional to the level of concurrency suggesting its
communication overhead is significant. A reduction in the length of

1ps

Operational Intensity [FLOP/byte]

tion and computation

trajectories for Alexnet may also be observed in response to increas-

ing number of PS as gradient exchange becomes faster. Stable trajec-
tories for other models indicate decent overlap between communica-

300 1

250 A

= N

% o

o o
L L

=

o

o
L

Throughput [img/sec]

=== alexnet

-==inception3
resnet50

-=-- vggl6

alexnet

inception3

resnet50 5

vgglé i
-

=== alexnet

-==inception3
resnet50

-=-- vggl6

Fig.7 Throughput obtained by various DNNs, which may be
matched to Roofline trajectories from Fig. 6. Throughput for Alexnet

2 ps
of Nodes

almost follows a logarithmic trajectory, which shows improvement as

@ Springer

more PS are added. All other models show linear speedup with mini-
mal changes in response to increasing number of PS

Performance analysis of deep learning workloads using roofline trajectories 231
.. 600 1 --- alexnet e
7001 -~ inception3 ed
resnet50 //
--- vggl6 7
600 500 1 o
¥ 500 'J 400 oo
o “o P
z IS} ./'
S, 4004 £ L
g = 300 A o
5 & -7
E 3001 = - g L
2 I » £ 2001 A
9)(,’ = /’
200 9 ¥ o
4 v+ Peak FLOPS256 m 1 nodes L
100 A
---- alexnet ® 2nodes | TTC L0 F
100 1 -==- inception3 x 4 nodes »________»»»——““":: _______ -
resnet50 A 8nodes B st SUMEENEEEL L
- vggl6 I
0 " r r T v " r " "
0 1 2 3 4 5 6 1 2 4 8
Operational Intensity [FLOP/byte] # of Nodes
(a) Roofline plot (b) Throughput

Fig. 8 Roofline trajectories for Horovod show increased Ols for all models compared to the PS approach (Fig. 6). For Alexnet, there is a reduc-
tion in the length of Roofline trajectory which is also reflected in the almost linear speedup of the throughput

show a scaling efficiency upwards of 90%, with Resent50
turning out to be the most scalable model at 100% scal-
ing efficiency. This is observable from the Roofline data
points as well as the OIs for all models barring Alexnet
show little change. Alexnet, however, at best shows a scal-
ing efficiency of 37% using as many as 4 PS. The OI for
Alexnet also shows a steady decline in response to an
increase in concurrency in the system. This suggests that
communication costs start to dominate at higher concur-
rency levels. When looked at in conjunction with the PS
Roofline plot, we interestingly see that while the data
points at the worker end decline, the ones at the PS show
an upward trend indicating that PS has to perform more
work to synchronize gradients across the system. Con-
sequently, the workers have to wait longer at the barrier
in-between successive steps while the synchronization
takes place.

The Roofline plot for PS is not included from this sec-
tion onwards for the sake of brevity as it did not show
any notable change compared to the one shown in Fig. 5.

It should be noted that all data points obtained using
the PS approach are under the memory-bound region of
the Roofline plot which implies that adding more com-
putational resources will not necessarily lead to a gain
in application performance. This is ever more relevant
in the case of Alexnet where we observe that an increase
in concurrency leads to almost a vertical decline in raw
performance without a drastic change in OI. This sug-
gests that overheads pertinent to concurrency dominate
and simple increase in processing power will not ben-
efit the performance much. Instead, approaches that may
result in an improvement in OI should be considered. The

use of Horovod as a gradient update layer is a step in this
direction.

4.1.2 Horovod

In this section, we carry out the same experiments as
described in Sect. 4.1.1 but perform them using Horovod as
the gradient update layer.

From Fig. 8, we can see a marked improvement in appli-
cation throughput with Horovod as compared to the PS
approach, which becomes even more pronounced at higher
levels of concurrency. The Ols are also much higher for
Horovod, improving as much as 2x (2.0 FLOP/byte vs 4.2
FLOP/Byte) compared to the PS approach for Vggl6. The
raw floating-point performance, however, is within the same
ballpark.

The scaling efficiency of experiments with Horovod is
equal or better than the ones obtained with the PS approach.
For Alexnet, however, the bandwidth optimal ring-allreduce
algorithm shows its benefits leading to a scaling efficiency
of 66%, a marked improvement from 37% obtained with as
many as 4 PS in the system.

4.2 Analysis

The Roofline plots discussed in Sect. 4.1 help understand the
computational and memory/network I/O footprint of various
DNNs implemented in TensorFlow. However, we need to
take a deeper look at what kind of floating-point operations
are performed at what degree of memory access rate to get
a deeper understanding into how we can improve the perfor-
mance of these applications.

@ Springer

232

M. H. Javed et al.

m=s NUM_FLOP mmm MEM_ACC

leld

I

of operations
N

S \] ©
a\ey\(\e Ce?‘\oi\e“' (\e’&‘) \IQQX
=

X 00 O 10
a\e*(\e Ce@‘\oi\e(?(\e‘c’ N QQ:\'
A

1 Node(s) 8 Node(s)

(a) Parameter Server

Fig.9 OI breakdown of TensorFlow worker with PS and Horovod.
Memory accesses are higher than FLOP executed for Inception and
Resnet50 resulting in an OI of less than 1 for PS. For Horovod, how-
ever, the ratio between NUM_FLOP and MEM_ACC is much higher

mmm SCALAR_SINGLE
s 128B_PACKED_SINGLE

256B_PACKED_SINGLE
wmm 512B_PACKED_SINGLE

lel3

)]
s

of operations
N

24 - —

0 : n — > — S T6 — N — 5 — S 76
(2 . %) A\ e .)

a\e*“.(\ce‘)‘\oie%“e‘ oo a\e*(\.‘\c,e()“'\otes‘\e‘C) NEY
\! \

1 Node(s) 8 Node(s)

(a) Parameter Server

mes NUM_FLOP mmm MEM_ACC

leld

of operations
N W A

=
s
s

o
L

X o0 O © A N)
2ot ce@‘\oi\e‘)“e@ W e c,caQK\o:\e,eK\é63 ¥
o =

1 Node(s) 8 Node(s)

(b) Horovod

than the ones observed for PS. Increase in concurrency leads to a pro-
portional increase in both NUM_FLOP and MEM_ACC for both pro-
gramming models

mmm SCALAR_SINGLE
W 128B_PACKED_SINGLE

256B_PACKED_SINGLE
wmm 512B_PACKED_SINGLE

lel3

of operations

ol= = = = | | = =

B 0 46 B 0 a6
0\ o0 O % oe 00 oD %S
a\e* A (\Ce()‘\ (es(\e \j(}g a\e* ,\(\CGQ‘\ ‘6‘5‘\6 \‘QQ

1 Node(s) 8 Node(s)

(b) Horovod

Fig. 10 FP breakdown of TensorFlow worker with PS and Horovod. 256-bit SP instructions constitute the majority of all FP instructions exe-

cuted despite Horovod using a different aggregation mechanism

Figure 9 is helpful in understanding why there is a dif-
ference in OI for the same experiments run using PS and
Horovod approach. Figure 9a shows the OI breakdown at
worker nodes of experiments run with varying number of
PS while Fig. 9b is for Horovod. As expected, NUM_FLOP
and MEM_ACC do not vary much if we add more PS to
the system while increasing number of workers leads to
an increase in both NUM_FLOP and MEM_ACC. That is
because adding more PS reduces the workload for each PS
but the worker task remains unchanged. As far as Horovod is
concerned, the bars of NUM_FLOP in Fig. 9b are generally
not as high as for similar PS based experiments. However,
MEM_ACC:s are, on average 2X lower for all models leading
to a much higher OL

Based on the above profiling results, we can conclude
that Horovod is much more efficient with the data that it
processes as for each byte of memory accessed, it performs

@ Springer

more FLOP than using the PS approach. Next, we take a
look at the distribution of different kinds of floating-point
(FP) instructions performed by TensorFlow using different
methods of gradient update.

From Fig. 10, we can see that vanilla TensorFlow mostly
makes use 256-bit SP FP instructions. As a result, the maxi-
mum FLOPS that can be performed has an upper bound
denoted by Peak FLOPS 256 line on the Roofline graph.
For the DNNSs to perform closer to the theoretical peak, the
multiple FMA units available have to be used in conjunction
with the 512-bit AVX registers.

4.3 Insights
The Roofline plots coupled with the throughput gradients

are quite helpful in understanding the general behavior of
DNN models. For instance, the Roofline trajectories shown

Performance analysis of deep learning workloads using roofline trajectories

233

1200 =

1000 4

800 -

600

400 1 Peak FLOPS 256
Peak FLOPS 512

- alexnet
inception3
resnet50

vgglé

1 nodes
2 nodes
4 nodes
8 nodes

Performance [GFLOP/s]

200 :

=+ Peak FLOPS 256
= Peak FLOPS 512
alexnet
inception3
resnet50

vgglée

1 nodes
2 nodes
4 nodes
8 nodes

T T T

T

28

T T T T

20 22 24

T T

2 28

T
30 0 20 22 30

Operational Intensity [FLOP/byte]

Fig. 11 MKL enabled TensorFlow worker with PS. The use of vectorized instructions pushes the maximum attainable performance to Peak
FLOPS 512. As a result, the raw application performance also shows an upward movement compared to the ones shown without MKL in Fig. 6

in Fig. 6 of all models barring Alexnet suggest that these
are computationally dense models with communicational
requirements which do not become a bottleneck even at
higher levels of concurrency. The corresponding through-
put numbers, as described in Fig. 7, verify this claim as we
see an almost linear speedup for all models barring Alexnet.

Alexnet seems to be an anomaly in this case requir-
ing deeper investigation. There is a drop in performance
per node of almost 70% (311 GLOPS vs 98 GFLOPS) for
Alexnet even with 4 PS in the system. This corresponds with
the throughput numbers for Alexnet which show sub-par
speedup with an almost logarithmic trajectory. However,
even with poor speedup, the absolute speedup for Alexnet
is orders of magnitude higher than that of the next best
performing model (i.e., Resent50). This indicates that, as
opposed to other models, Alexnet is quite intensive in terms
of communication but is not too dense computationally.
The observation can be verified by analyzing the number
of operations that need to be executed by the processing
element and network parameters that need to be exchanged.
Alexnet has 60 million network parameters which have to
be synchronized relatively frequently as it contains only 25
layers. Resent50, on the other hand, has only 25 million net-
work parameters spread out over 50 layers thus not requiring
synchronization as often.

5 Black box optimizations

From the graphs discussed in the previous section, we find
that to improve the application performance and take the
Roofline data points closer to the theoretical peak, some
optimizations need to be performed. The data discussed so
far indicates that the choice of underlying gradient update
model significantly influences whether the computation

is bandwidth bound, i.e. PS-based approach, or compute-
bound i.e. Horovod.

5.1 Profiling

To start with, we decide to use Intel MKL enabled Ten-
sorFlow. Intel-TensorFlow makes use of AVX, AVX2 and
AVX512 registers to perform Fused Multiply Addition
(FMA) instructions enabling applications to perform FP
operations much closer to the theoretical peak provided by
the hardware. Note that the peak attainable performance
with AVX512 FMA instructions may not be calculated
using the formula described in Sect. 4.1.1, as having 512
byte vector instructions reduces the maximum clock rate®.
Therefore we use the value of 652.8 X 2 sockets = 1305.6
GFLOPS provided by Intel in their official documentation’
as the maximum attainable FLOPS with AVX512 instruc-
tions, denoted by the solid red “Peak FLOPS 512 ” line.

We are able to figure out the appropriate configuration
to get the most out of MKL enhanced Intel-TensorFlow.
We have tried a series of configurations and at two MPI
processes/node and 12 OMP threads/MPI process, we can
obtain the best scalability. Note that for vanilla Tensor-
Flow, the best performance is achieved by using four MPI
processes/node.

5.1.1 Parameter server model

Figure 11 shows the Roofline plot of MKL enabled
TensorFlow with PS for gradient update while Fig. 12

S https://www.intel.com/content/dam/www/public/us/en/documents/
specification-updates/xeon-scalable-spec-update.pdf.

7 https://www.intel.com/content/dam/support/us/en/documents/proce
ssors/ APP-for-Intel-Xeon-Processors.pdf..

@ Springer

https://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/xeon-scalable-spec-update.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/xeon-scalable-spec-update.pdf
https://www.intel.com/content/dam/support/us/en/documents/processors/APP-for-Intel-Xeon-Processors.pdf.
https://www.intel.com/content/dam/support/us/en/documents/processors/APP-for-Intel-Xeon-Processors.pdf.

M. H. Javed et al.

234
300 4~~~ alexnet J---alexnet o cemmms &
—== inception3 --- inceptions L __eeme=mmmTTTT
resnet50 resnet’0 ___---"7 -
250 4 ——= vgglé 4 === vggle __---"T"

— ,/-

g

R 111 e B e e ELDE LSRRt & 4 /

|2 g [i /,'

£ e o / 4

= | - e | ——

5 150 * e v g

< T e

= PPy e

§ 1007 O — + 1 e e T B

= S F IR o J

501 B T 1 o
e A P ErEEL
- -
T T T T T T T T
1 2 4 8 1 2 4 8
1ps 2 ps
of Nodes

Fig. 12 Throughput of MKL enabled TensorFlow worker with PS. Significant improvement in speedup is observed for all models except Alexnet
as gains from faster computation are compensated with losses from more frequent gradient exchanges resulting in minimal net improvement

1200
]
/
Y
1000 - »
—_— J/
g 7
9 ;
= 800 - ') 7
o m 4
o | e
o i
S 600 ¢
£ *
S [I
£ !
9] /
S 400 A |
!
[]
A =+ Peak FLOPS 256 -=--vgglé
200 4 yi —— Peak FLOPS512 @ 1nodes
o ---- alexnet ® 2 nodes
" -=-=- inception3 x 4 nodes
resnet50 A 8nodes
0 T T T T T
0 5 10 15 20 25 30

Operational Intensity [FLOP/byte]

(a) Roofline plot

Fig. 13 MKL enabled TensorFlow worker with Horovod. Simi-
lar trends in Roofline trajectories and throughput are observed as in
Figs. 11 and 12 for PS, respectively. However, the bandwith optimal

summarizes the throughput achieved. The use of AVX-512
enabled FMA instructions by MKL not only leads to a sig-
nificant increase in OI for all models but also results in the
Roofline trajectories shifting upwards. The result is pro-
nounced with Vgg16 with four workers performing at 1200
GFLOPS, which is merely 8% less than the peak perfor-
mance. The improvement in raw performance is supported
by throughput numbers as well with almost 2X improve-
ment in performance for Inception (72 img/s vs 170 img/
sec), Resnet50 (74 img/s vs 130 img/s), and Vggl6 (50
img/s vs 100 img/s with 32 workers) using only 2 PS.
Alexnet, however, does not show marked improvement in
throughput, which can be seen from the Roofline plot as
well as it shows the least improvement in raw performance
compared to other DNNs tested. We can also observe an
increase in length and variability in Roofline trajectories
compared to vanilla TensorFlow (Fig. 6) indicating that

@ Springer

--- alexnet A
-=-~- inception3 T
350 1 resnets0 e
--- vgglé o
300 1 e
ko) T
8 2501 oo
o o
£ 7 _*
2 2001 g et
2 -
& -
] -
3 150 e
< -
[I e
100 A et e *
S e e
et e
50 4 e T e e
LA o
-
0 T T T T
1 2 4 8
of Nodes
(b) Throughput

ringa-allreduce algorithm seems to overlap computation and commu-
nication more effectively resulting noticeable improvements over the
PS counterpart

although the use of vectorized instructions speed up the
pass through the layers of a DNN, the network param-
eters have to be synchronized more often which leads to a
decline in raw performance per node proportional to the
level of concurrency in the system.

5.1.2 Horovod

From Fig. 13, we can see that using Horovod for gradient
update seems to bring the most out of MKL enabled Tensor-
Flow as a quicker pass through DNN layers (because of vec-
torized instructions) is complemented by a bandwidth opti-
mal gradient update algorithm (i.e., ring-based allreduce).
MKL-enabled TensorFlow with Horovod leads to less time
spent in both computation and communication with neither
becoming a bottleneck for the other. This is not observed to
be the case in any of the prior experiments.

Performance analysis of deep learning workloads using roofline trajectories

235

m=s NUM_FLOP mmm MEM_ACC

leld

& o

of operations
N

>) e Lo N ©
\e‘/\(\ Q“\O(\ (\e{‘) \IQQ' a\e*(\ i 9‘\0:\66(\3\5 N qg'\.
QY

1 Node(s) 8 Node(s)

(a) Parameter Server

mes NUM_FLOP mmm MEM_ACC

lel4d

N w
s s

of operations
=

W xo0 510 & o 00 (3
\e~l~ Qx\o e oo a\e~l~“\(\<’e@x\0‘e‘_’(\e‘)

1 Node(s) 8 Node(s)

(b) Horovod

Fig. 14 OI breakdown of MKL enabled TensorFlow worker with PS and Horovod. There is a significant decline in memory accesses compared
to vanilla TensorFlow (Fig. 9a). As a result the OIs are orders of magnitude higher

mmm SCALAR_SINGLE 256B_PACKED_SINGLE

lel3 wes 128B_PACKED_SINGLE ~ wem 512B_PACKED_SINGLE
4< B
0]
o
2 31]
=
o
a2 1
o
kS
el U I
ol= = — = — — | =
©
et o(\ &0 '\ oe! o xS)
a\c>:l~ < 9‘0 B N N IS SRt SN

1 Node(s) 8 Node(s)

(a) Parameter Server

Fig. 15 Breakdown of FP operations performed by MKL-enabled
TensorFlow worker with PS and Horovod. MKL-enabled TensorFlow
almost exclusively makes use of 512-bit SP vectorized instructions

We see greater than 2X improvement for Resnet50 (98
img/s vs 273 img/s with 16 workers) and Vggl6 (49 img/s
vs 101 img/s with 16 workers) while Inception3 shows a
speedup of 3X (73 img/s vs 215 img/s with 16 workers)
compared to vanilla TensorFlow. Alexnet, however, shows
severely poor scalability as at eight nodes it shows a decline
of 25% in throughput compared to vanilla TensorFlow
even though at one node the observed speedup is 2x (101
img/s vs 198 img/sec). The Roofline trajectory for Alexnet
provides cues for this behavior. Comparing Figs. 8 and 13
at eight nodes, the raw performance also shows a decline
of 41% however the performance at minimal concurrency
(i.e., two workers on one node) improves by about 70%. This
indicates that although vectorized instructions improve pass
through the layers significantly, the overhead incurred from
synchronizing 60 million network parameters frequently at
higher levels of concurrency actually leads to a performance
degradation.

mmm SCALAR_SINGLE 256B_PACKED_SINGLE

lel3 wem 128B_PACKED_SINGLE ~ mmm 512B_PACKED_SINGLE
2.0
)]
c
9 1.51
]
o
8 1.01
o
]
> b N
I & o o0
a\e*(\ Q&\O PN a\e*“_\“ceQ“O‘es“e‘ o9

1 Node(s) 8 Node(s)

(b) Horovod

resulting in a much higher FP operations count than that observed
with vanilla TensorFlow (Fig. 15a)

As shown in Fig. 13, at minimal concurrency (i.e., one
node) we do get very close to the theoretical peak perfor-
mance for Vggl6. However, Intel-TensorFlow does not
scale as well as vanilla. Doubling the number of resources
for vanilla TensorFlow leads to a proportional increase in
throughput as well. However, for Intel-TensorFlow it is
less than proportional. This trend is evident in the Roofline
plot as well where data points for Intel-TensorFlow show a
much greater decline in response to an increase in resources
(higher communication costs) than vanilla TensorFlow.

5.2 Analysis
The graphs discussed in Sect. 5 indicate that using optimi-
zations provided by MKL, the throughput of DNNs run on

TensorFlow is improved by at least an order of magnitude,
which is also indicated by the upward movement Roofline

@ Springer

236 M. H. Javed et al.
7004 ~~ alexnet &
-=-~- inception3 //’
1200 - resnet50 7
i 6004 7" vggle ”a”
! e
/‘ ’a”’
1000 all e
7 & < 500 PP
& -
= 800 1 %\ ——————————— b
] ¢ -——-
<) Por E 400
o | e A e = y
5} * 5 .
§ 600 Ly 2
g é S 3001,
5 ! 3 *
h | 2
9] ‘:' = %
& 4001 ! 200 s
i S
X -:+: Peak FLOPS 256 ---- vggl6 SRR .
200 4 Ve = Peak FLOPS 512 ®m 1nodes 100 4 __,_,——"'f _______________
& ---- alexnet ® 2nodes e Tl T
--- inception3 x 4 nodes $-= PSS
resnet50 A 8nodes [Sia
04
0 T T T T T T T T T
0 5 10 15 20 25 30 1 2 4 8
Operational Intensity [FLOP/byte] # of Nodes
(a) Roofline plot (b) Throughput

Fig. 16 Roofline plots and throughputs using Horovod and batch
size = 128. Increased batch size benefits Alexnet the most, lead-
ing to an upward shift by more than 200 GFLOPS for each Roofline

trajectories crossing the Peak 256 line and getting ever so
closer to the theoretical peak of the Peak 512 line. Further
analysis of the data is performed to understand the exact
cause of this improvement and if further insights can be
obtained leading to even greater benefits.

Comparing Figs. 6 and 11, we can see that the OIs
obtained with the same experiments run with MKL-enabled
TensorFlow are higher than those obtained with vanilla Ten-
sorFlow. That is because, as depicted in Fig. 14a, b, the num-
ber of raw FP operations executed by vanilla TensorFlow
are much higher than those of Intel-TensorFlow, no matter
which gradient update layer is used. However, Intel-Tensor-
Flow performs less memory accesses to execute the same
number of floating-point operations which results in it hav-
ing much higher OI, with both PS and Horovod approaches.

It can be observed from Fig. 15a, b that MKL enabled
TensorFlow almost exclusively performs 512-bit SP floating-
point instructions, which helps it to achieve FLOPS much
closer to the theoretical peak. We also see that vanilla Ten-
sorFlow mostly uses 256-bit SP instructions where one such
instruction performs 8 actual FLOPs. Intel-TensorFlow, on
the other hand, almost exclusively uses 512-bit SP instruc-
tions which are equal to 16 FLOPs. Even though the magni-
tude of 256-bit SP instructions executed by vanilla Tensor-
Flow is much higher than 512-bit SP instructions executed
by Intel-TensorFlow, the actual number of FP instructions
executed does not vary much, as is evidenced by Fig. 14b.

5.3 Insights
Initially, the experiments with MKL were executed with the

worker PPN set to 4. However, even though it yields better
performance than other values of PPN, the gains in speedup

@ Springer

data point compared to similar experiments with batch size = 64
(Fig. 13a). This translates to improvement in throughput as well with
2x improvement at 8 nodes compared to Fig. 13b

were not nearly as much as expected from using vectorized
instructions. We suspected that thread management might be
an issue. A cursory analysis indicated that, with default con-
figurations, as many as 200 threads were launched by Ten-
sorFlow per worker. As MKL enabled TensorFlow makes
use of OpenMP threads to distribute workload among all the
cores available, launching extraneous threads has detrimen-
tal effects on the performance. We did some further experi-
mentation and concluded that with MKL enabled, the case
of worker PPN setting to 2 can give the best performance
which is what we have used for all experiments described in
this section. This has been verified by other studies as well®.

Guidelines provided by Intel to get the best performance
also suggest using channel first NCHW (Batch Size, Chan-
nel, Height, Width) data encoding format instead of the
channel last NHWC (Batch Size, Height, Width, Channel)
data encoding format, which is the default data format used
for all experiments described in this study. We have per-
formed several experiments with the recommended NCHW
format as well however we could not observe any observable
benefits. It should be noted that this does not necessarily
indicate that there are no performance gains to be had from
using the NCHW format for training on CPUs. Instead, it
merely indicates that for the experiments performed in this
study, the choice of data format could not have significant
effects.

8 https://software.intel.com/en-us/articles/maximize-tensorflow-perfo
rmance-on-cpu-considerations-and-recommendations-for-inference.

https://software.intel.com/en-us/articles/maximize-tensorflow-performance-on-cpu-considerations-and-recommendations-for-inference
https://software.intel.com/en-us/articles/maximize-tensorflow-performance-on-cpu-considerations-and-recommendations-for-inference

Performance analysis of deep learning workloads using roofline trajectories

237

w== NUM_FLOP w== MEM_ACC

leld

»)]

N
s

of operations

o
|

A >] © \ >] ©
2 O ’(‘c)) 2 O ’(‘c))
aet .\(\c?«(’“ (er,oe 49 aeF .\(\ce(J‘\ (er,(\e 49

1 Node(s) 8 Node(s)

Fig.17 OI breakdown of MKL enabled TensorFlow worker with
Horovod and batch size = 128. The reason for improvement in the
performance of Alexnet can be seen here as the FP operations per-
formed increase by a factor of two compared to experiments with
batch size=64 (Fig. 14b)

6 Application-aware optimizations

This section describes our attempts to tweak the perfor-
mance derived from using vectorized instructions in Ten-
sorFlow even further.

6.1 Profiling

The black box optimizations performed in the previous sec-
tion yield performance enhancements for all DNNss tested.
However, the gains are less pronounced for Alexnet than for
other models. To address this discrepancy, characteristics
particular to Alexnet have to be considered. Knowing that
network communication significantly impacts the perfor-
mance of Alexnet, we decide to increase the batch size of the
input data to 128. This is done particularly to improve the
performance of Alexnet. From the perspective of the DNN
model itself, increasing the batch size results in more data
being processed before gradients have to be synchronized.
This should be helpful for models such as Alexnet with a
large number of network parameters spread out over not as
many layers.

Figure 16 shows the Roofline plots using Horovod for
gradient update with batch size increased to 128. As can be
seen from the graph, increasing the batch size significantly
improves the throughput obtained by Alexnet which is 3.5x
improvement compared to vanilla Tensorflow with 1 PS and
8 Nodes for workers (700 img/s vs 200 img/s). This indicates
that because Alexnet is more communication-bound than other
models, when we increase the batch size, the gradients have
to be updated after relatively larger amounts of data is pro-
cessed thus amortizing the communication costs over a longer
stretch of computation. The increase in throughput is not as
pronounced for other models indicating their implementations

overlap computation and communication to a reasonable
degree.

6.2 Analysis

Figure 17 shows the breakdown of Ols for experiments with
batch size set to 128. Focusing on Alexnet and comparing its
OI breakdown results with batch size set to 64 in Fig. 14b,
we observe that the number of floating-point operations per-
formed gets increased by a factor of two when the batch size
is set to 128. However, memory accesses remain constant.
As aresult, there is an upward shift in not only the Roofline
trajectories of all models but also an increase in the applica-
tion throughput obtained, most pronounced with Alexnet.

7 Related work

The original Roofline (Williams et al. 2009) paper suggests
various optimizations that could be performed on workload
bound by memory bandwidth and/or computational power
and applies them to traditional scientific workloads. Since
then it has been used to profile and optimize various archi-
tectures such as Intel KNL (Doerfler et al. 2016), NVIDIA
GPUs (Lopes et al. 2017), Google TPUs (Jouppi et al.
2017a) and applications, including but not limited to, dis-
aster detection Nagasu et al. (2017), large scale simulations
(Kim et al. 2011), wireless network detection (Sarker et al.
2002) and even matrix multiplication (Kong et al. 2015).

There have not been many studies analyzing and profiling
the performance of distributed Deep Learning. The few that
exist (Bahrampour et al. 2016; Shi et al. 2016; Lu et al. 2018;
Kim et al. (2017) do not focus on Roofline model based per-
formance analysis and optimizations on CPUs. Bahrampour
et al. (2016) and Shi et al. (2016) analyze the overall execu-
tion time of different frameworks but do not discuss tech-
niques for performance improvement. In Kim et al. (2017),
the authors use Alexnet alone as a representative model to
analyze the performance of different distributed Machine
Learning frameworks using GPUs. They can speed up train-
ing by 2x using only framework-specific options. However,
their study does not include the effects of gradient exchange
between nodes over a network. Recently, the Roofline model
has also been applied to analyze the performance of Deep
Learning models, mostly focusing on bespoke FPGA accel-
erator implementations, such as in Zhang et al. (2015) and
Meloni et al. (2016).

8 Conclusion
In this paper, we propose the use of the Roofline model to

analyze various CNN models implemented in TensorFlow
for CPU. We are able to identify various bottlenecks that

@ Springer

238

M. H. Javed et al.

allow us to significantly improve the performance of these
CNN models. We hope that our study would be helpful for
scientists, especially those who may not have enough knowl-
edge of low-level systems, to optimize their Deep Learning
model training processes and maximize the performance.
Using various optimizations described in this study, we are
able to achieve a maximum speedup in throughput of 3.5%x
for Alexnet at a concurrency level of 8 nodes.

For future work, we would like to understand how the
choice of network interconnect—InfiniBand, RoCE, High-
Speed Ethernet, etc.— and the network channels used to
communicate over them—gRPC, MPI, etc.—influence the
performance of Deep Learning models. Furthermore, we
would also like to extend our study to incorporate the ever-
expanding landscape of processing elements suitable for
Deep Learning, such as GPUs, TPUs, and FPGAs. Moreo-
ver, since DL applications are notorious for their soaring
power requirements, we would also like to explore if our
approach can be used to generate optimizations that can
reduce the energy consumption of the applications without
incurring a significant performance penalty.

Acknowledgements Results presented in this paper are obtained on the
Chameleon Cloud testbed supported by the National Science Founda-
tion. This work has been supported by Lawrence Berkeley National
Laboratory under Contract no. DE-AC02-05CH11231 with the U.S.
Department of Energy. Moreover, this research is supported in part by
National Science Foundation Grant CCF#1822987.

References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin,
M., Ghemawat, S., Irving, G., Isard, M. et al.: Tensorflow: a sys-
tem for large-scale machine learning. In: 12th {USENIX} Sympo-
sium on Operating Systems Design and Implementation ({OSDI}
16), pp. 265-283 (2016)

Bahrampour, S., Ramakrishnan, N., Schott, L., Shah, M.: Comparative
study of caffe, neon, theano, and torch for deep learning (2016)

Biswas, R., Lu, X., Panda, D.K.: Accelerating TensorFlow with adap-
tive RDMA-based gRPC. In: 2018 IEEE 25th International Con-
ference on High Performance Computing (HiPC). IEEE, pp. 2-11
(2018)

Chen, J., Pan, X., Monga, R., Bengio, S., Jozefowicz, R.: Revisit-
ing distributed synchronous SGD (2016). arXiv preprint arXiv
:1604.00981

Chen, J., Li, K., Bilal, K., Li, K., Philip, S.Y., et al.: A bi-layered paral-
lel training architecture for large-scale convolutional neural net-
works. IEEE Trans. Parallel Distrib. Syst. 30(5), 965-976 (2018)

Chetlur, S., Woolley, C., Vandermersch, P., Cohen, J., Tran, J., Cat-
anzaro, B., Shelhamer, E.: cuDNN: Efficient primitives for deep
learning, CoRR, vol. abs/1410.0759 (2014). [Online]. http://arxiv
.org/abs/1410.0759

De Melo, A.C.: The new Linux perf tool. In: Slides from Linux Kon-
gress, vol. 18 (2010)

Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Mao, M., Sen-
ior, A., Tucker, P., Yang, K., Le, Q.V. et al.: Large scale distrib-
uted deep networks. In: Advances in Neural Information Process-
ing Systems, pp. 1223-1231 (2012)

@ Springer

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Ima-
geNet: a large-scale hierarchical image database. In: CVPR09
(2009)

Doerfler, D., Deslippe, J., Williams, S., Oliker, L., Cook, B., Kurth,
T., Lobet, M., Malas, T., Vay, J.-L., Vincenti, H.: Applying the
roofline performance model to the intel xeon phi knights land-
ing processor. In: International Conference on High Performance
Computing. Springer, pp. 339-353 (2016)

Esteva, A., Kuprel, B., Novoa, R.A., Ko, J., Swetter, S.M., Blau, H.M.,
Thrun, S.: Dermatologist-level Classification of skin cancer with
deep neural networks. Nature 542(7639), 115 (2017)

gRPC (2019). http://grpc.io/

He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image
recognition. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 770-778 (2016)

Huval, B., Wang, T., Tandon, S., Kiske, J., Song, W., Pazhayampallil,
J., Andriluka, M., Rajpurkar, P., Migimatsu, T., Cheng-Yue, R.
et al.: An empirical evaluation of deep learning on highway driv-
ing. arXiv preprint arXiv:1504.01716, (2015)

Ibrahim, K., Williams, S., Oliker, L.: Performance analysis of GPU
programming models using the roofline scaling trajectories. In:
2018 International Symposium on Benchmarking, Measuring and
Optimizing (Bench’19) (2018a)

Ibrahim, K., Williams, S., Oliker, L.: Roofline scaling trajectories: a
method for parallel application and architectural performance
analysis. In: 2018 International Conference on High Performance
Computing and Simulation (HPCS). IEEE, pp. 350-358 (2018b)

InfiniBand Trade Association (2017). [Online]. http://www.infiniband
ta.org

Intel-Tensorflow (2019). [Online]. https://github.com/Intel-tensorflow
/tensorflow

Jouppi, N.P.,, Young, C., Patil, N., Patterson, D., Agrawal, et al.: In-
datacenter performance analysis of a tensor processing unit. In:
2017 ACM/IEEE 44th Annual International Symposium on Com-
puter Architecture (ISCA). IEEE (2017a)

Jouppi, N.P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa,
R., Bates, S., Bhatia, S., Boden, N., Borchers, A., et al.: In-data-
center performance analysis of a tensor processing unit. In: 2017
ACM/IEEE 44th Annual International Symposium on Computer
Architecture (ISCA). IEEE, pp. 1-12 (2017b)

Keahey, K., Riteau, P., Stanzione, D., Cockerill, T., Mambretti, J., Rad,
P., Ruth, P.: Chameleon: a scalable production testbed for com-
puter science research. From Petascale toward Exascale, Contem-
porary High Performance Computing (2019)

Kim, K.-H., Kim, K., Park, Q.-H.: Performance analysis and optimiza-
tion of three-dimensional FDTD on GPU using roofline model.
Comput. Phys. Commun. 182(6), 1201-1207 (2011)

Kim, H., Nam, H., Jung, W., Lee, J.: Performance analysis of CNN
frameworks for GPUs. In: 2017 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS). IEEE,
pp. 55-64 (2017)

Kong, M., Pouchet, L.-N., Sadayappan, P.: A roofline-based perfor-
mance estimator for distributed matrix-multiply on Intel CnC.
2015 IEEE International Parallel and Distributed Processing Sym-
posium Workshop, pp. 1241-1250 (2015)

Krizhevsky, A., Sutskever, 1., Hinton, G.E.: ImageNet classification
with deep convolutional neural networks. In: Advances in Neural
Information Processing Systems, pp. 1097-1105 (2012)

Li, M., Andersen, D.G., Park, J.W., Smola, A.J., Ahmed, A., Josifovski,
V., Long, J., Shekita, E.J., Su, B.-Y.: Scaling distributed machine
learning with the parameter server. In: 11th {USENIX} Sympo-
sium on Operating Systems Design and Implementation ({OSDI}
14), (2014), pp. 583-598

Lopes, A., Pratas, F., Sousa, L., Ilic, A.: Exploring GPU perfor-
mance, power and energy-efficiency bounds with cache-aware
roofline modeling. In: 2017 IEEE International Symposium on

http://arxiv.org/abs/1604.00981
http://arxiv.org/abs/1604.00981
http://arxiv.org/abs/1410.0759
http://arxiv.org/abs/1410.0759
http://grpc.io/
http://arxiv.org/abs/1504.01716
http://www.infinibandta.org
http://www.infinibandta.org
https://github.com/Intel-tensorflow/tensorflow
https://github.com/Intel-tensorflow/tensorflow

Performance analysis of deep learning workloads using roofline trajectories

239

Performance Analysis of Systems and Software (ISPASS). IEEE,
pp. 1-12 (2017)

Lu, X., Shi, H., Shankar, D., Panda, D.K.: Performance characteri-
zation and acceleration of big data workloads on OpenPOWER
system. In: 2017 IEEE International Conference on Big Data (Big
Data), pp. 213-222 (2017)

Lu, X., Shi, H., Biswas, R., Javed, M.H., Panda, D.K.: DLoBD: a com-
prehensive study of deep learning over big data stacks on HPC
clusters. IEEE Trans. MultiScale Comput. Syst. 4(4), 635-648
(2018)

Meloni, P., Deriu, G., Conti, F., Loi, I., Raffo, L., Benini, L.: Curb-
ing the roofline: a scalable and flexible architecture for CNNs on
FPGA. In: Proceedings of the ACM International Conference on
Computing Frontiers. ACM, pp. 376-383 (2016)

Message Passing Interface Forum (2019). [Online]. http://www.mpi-
forum.org/

Nagasu, K., Sano, K., Kono, F., Nakasato, N.: FPGA-based tsunami
simulation: performance comparison with GPUs, and roofline
model for scalability analysis. J. Parallel Distrib. Comput. 106,
153-169 (2017)

NVIDIA NCCL (2017). [Online]. https://github.com/NVIDIA/nccl

Patarasuk, P., Yuan, X.: Bandwidth optimal all-reduce algorithms
for clusters of workstations. J. Parallel Distrib. Comput. 69(2),
117-124 (2009)

RDMA over Converged Ethernet (2019). http:/www.roceinitiative.org/

Sarker, J.H., Hassan, M., Halme, S.J.: Power level selection schemes to
improve throughput and stability of slotted ALOHA under heavy
load. Comput. Commun. 25(18), 1719-1726 (2002)

Sergeev, A., Del Balso, M.: Horovod: fast and easy distributed deep
learning in tensorflow (2018). arXiv preprint arXiv:1802.05799

Shi, S., Wang, Q., Xu, P., Chu, X.: Benchmarking state-of-the-art deep
learning software tools. In: 2016 7th International Conference
on Cloud Computing and Big Data (CCBD). IEEE, pp. 99-104
(2016)

Simonyan, K., Zisserman, A.: Very deep convolutional networks
for large-scale image recognition. (2014). arXiv preprint arXiv
:1409.1556

Szegedy, C., Vanhoucke, V., loffe, S., Shlens, J., Wojna, Z.: Rethinking
the inception architecture for computer vision. In: Proceedings of
the IEEE conference on computer vision and pattern recognition,
pp. 2818-2826 (2016)

Wang, L., Zhan, J., Gao, W., Ren, R., He, X., Luo, C., Lu, G., Li,
J.: BOPS, not FLOPS! A new metric, measuring tool, and roof-
line performance model for datacenter computing, CoRR, vol.
abs/1801.09212. [Online]. (2018). http://arxiv.org/abs/1801.09212

Williams, S., Waterman, A., Patterson, D.: Roofline: an insightful vis-
ual performance model for floating-point programs and multicore
architectures, Lawrence Berkeley National Lab.(LBNL), Berkeley,
CA (United States), Tech. Rep. (2009)

Yan, R., Song, Y., Wu, H.: Learning to respond with deep neural net-
works for retrieval-based human-computer conversation system.
In: Proceedings of the 39th International ACM SIGIR Conference
on Research and Development in Information Retrieval. ACM,
pp. 55-64 (2016)

Zhang, C., Li, P., Sun, G., Guan, Y., Xiao, B., Cong, J.: Optimizing
FPGA-based accelerator design for deep convolutional neural
networks. In: Proceedings of the 2015 ACM/SIGDA Interna-
tional Symposium on Field-Programmable Gate Arrays. ACM,
pp.- 161-170 (2015)

M. Haseeb Javed received his
undergraduate degree in soft-
ware engineering from the
National University of Science
and Technology (NUST), Paki-
stan. He is working towards a
graduate degree at The Ohio
State University and is a research
assistant in Dr. Xiaoyi Lu’s lab.
His current focus is on systems
research cross-cutting the
domain of big data and high-
performance computing.

Khaled Z. Ibrahim is a computer
scientist in the Computational
Research Division at Lawrence
Berkeley National Laboratory
(LBNL). He obtained his PhD in
computer engineering from
North Carolina State University
in 2003. His research interests
include high-performance com-
puting, virtualization and cloud
computing environments, high-
performance runtime systems,
and code optimization.

XiaoyiLu is a Research Assistant
Professor in the Department of
Computer Science and Engineer-
ing, The Ohio State University,
Ohio. He received his Ph.D.
degree in Computer Science and
Technology from Institute of
Computing Technology, Chinese
Academy of Sciences, Beijing, in
2012. His current research inter-
ests include high performance
interconnects and protocols, Big
Data Analytics, Parallel Comput-
ing Models, Virtualization,
Cloud Computing, and Deep
Learning systems. He has pub-
lished more than 100 papers in major International conferences, work-
shops, and journals with multiple Best (Student) Paper Awards or
Nominations. He has been actively involved in various professional
activities in academic journals and conferences.

He is a member of the IEEE and ACM. More details about Dr. Lu
are available at http://web.cse.ohio-state.edu/~luxi.

@ Springer

http://www.mpi-forum.org/
http://www.mpi-forum.org/
https://github.com/NVIDIA/nccl
http://www.roceinitiative.org/
http://arxiv.org/abs/1802.05799
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1801.09212
http://web.cse.ohio-state.edu/~luxi

	Performance analysis of deep learning workloads using roofline trajectories
	Abstract
	1 Introduction
	2 Background
	2.1 Tensorflow
	2.1.1 Parameter Server
	2.1.2 Horovod

	2.2 Roofline model

	3 Performance analysis methodology
	4 Baseline experiments
	4.1 Profiling
	4.1.1 Parameter Server Model
	4.1.2 Horovod

	4.2 Analysis
	4.3 Insights

	5 Black box optimizations
	5.1 Profiling
	5.1.1 Parameter server model
	5.1.2 Horovod

	5.2 Analysis
	5.3 Insights

	6 Application-aware optimizations
	6.1 Profiling
	6.2 Analysis

	7 Related work
	8 Conclusion
	Acknowledgements
	References

