
Vol:.(1234567890)

CCF Transactions on High Performance Computing (2019) 1:224–239
https://doi.org/10.1007/s42514-019-00018-4

1 3

REGULAR PAPER

Performance analysis of deep learning workloads using roofline 
trajectories

M. Haseeb Javed1 · Khaled Z. Ibrahim2 · Xiaoyi Lu1

Received: 31 July 2019 / Accepted: 9 November 2019 / Published online: 29 November 2019 
© China Computer Federation (CCF) 2019

Abstract
Over the last decade, technologies derived from convolutional neural networks (CNNs) called Deep Learning applications, 
have revolutionized fields as diverse as cancer detection, self-driving cars, virtual assistants, etc. However, many users of such 
applications are not experts in Machine Learning itself. Consequently, there is limited knowledge among the community to 
run such applications in an optimized manner. The performance question for Deep Learning applications has typically been 
addressed by employing bespoke hardware (e.g., GPUs) better suited for such compute-intensive operations. However, such 
a degree of performance is only accessibly at increasingly high financial costs leaving only big corporations and govern-
ments with resources sufficient enough to employ them at a large scale. As a result, an average user is only left with access to 
commodity clusters with, in many cases, only CPUs as the sole processing element. For such users to make effective use of 
resources at their disposal, concerted efforts are necessary to figure out optimal hardware and software configurations. This 
study is one such step in this direction as we use the Roofline model to perform a systematic analysis of representative CNN 
models and identify opportunities for black box and application-aware optimizations. Using the findings from our study, we 
are able to obtain up to 3.5× speedup compared to vanilla TensorFlow with default configurations.

Keywords  Roofline · Deep learning · Tensorflow · MKL

1  Introduction

With the convergence of High-Performance Computing 
(HPC) and Artificial Intelligence (AI), researchers and 
developers have started paying more attention to accelerat-
ing the performance of AI models, applications, and frame-
works. Under the umbrella of AI, Deep Learning (DL) has 
been gaining more momentum as a new promising technol-
ogy to solve many challenging problems facing society, such 
as cancer detection (Esteva et al. 2017), self-driving cars 
(Huval et al. 2015), natural language processing (Yan et al. 

2016), and so on. Deep Learning frameworks and applica-
tions have been heavily leveraging HPC technologies to 
improve their performance and scalability.

Taking TensorFlow (Abadi et al. 2016) as an exam-
ple, a lot of optimized designs have been proposed in the 
community to improve its performance with different 
approaches. From the network perspective, InfiniBand 
(InfiniBand Trade Association 2017), RoCE (RDMA over 
Converged Ethernet 2019), High Speed Ethernet, etc. are 
used to improve the tensor communication performance in 
TensorFlow with high-performance communication librar-
ies, such as gRPC (gRPC 2019), RDMA-gRPC (Biswas 
et al. 2018), MPI (Message Passing Interface Forum 2019) 
etc. From the computation perspective, TensorFlow-based 
Deep Learning workloads have been taking advantage of 
many advanced computing capabilities available on CPUs, 
GPUs, TPUs (Jouppi et al. 2017b), and so on. For CPU-
based platforms, Intel TensorFlow (Intel-Tensorflow 2019) 
can accelerate Deep Learning workloads with the latest 
AVX512 technology on x86 CPUs. For GPU-based plat-
forms, cuDNN (Chetlur et al. 2014) and NCCL (NVIDIA 
NCCL 2017) have become the standard building blocks 

 *	 M. Haseeb Javed 
	 javed.19@osu.edu

	 Khaled Z. Ibrahim 
	 kzibrahim@lbl.gov

	 Xiaoyi Lu 
	 lu.932@osu.edu

1	 Department of Computer Science and Engineering, Ohio 
State University, Columbus, USA

2	 Computational Research Division, Lawrence Berkeley 
National Laboratory, Berkeley, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s42514-019-00018-4&domain=pdf


225Performance analysis of deep learning workloads using roofline trajectories﻿	

1 3

for high-performance and scalable Deep Learning train-
ing on GPU devices. DL architectures (Chen et al. 2018) 
specifically optimized for GPUs have also been suggested.

Even though there exists significant literature address-
ing performance enhancements for Deep Learning work-
loads, we find that there is a lack of performance models 
to systematically guide optimizations for Deep Learning 
workloads. Coming up with a useful and insightful perfor-
mance model for Deep Learning workloads is not a trivial 
task. This is because Deep Learning workloads typically 
have very complex and deep software and hardware stacks 
(Lu et al. 2018), which can not be easily abstracted as 
a simple and meaningful model. Due to the lack of use-
ful performance models for Deep Learning workloads, 
researchers and developers typically use ad-hoc or expe-
riential approaches to optimize the performance of their 
workloads, which may not be efficient. These approaches 
also can not exactly identify where the bottlenecks lie and 
how much more improvement can be expected with pos-
sible further optimizations.

To shed light on how to solve these challenges facing 
Deep Learning researchers, we propose a simple and effec-
tive approach to systematically analyze and optimize the 
performance of Deep Learning workloads with the Roof-
line model (Williams et al. 2009). The Roofline model is 
a very useful and insightful visual performance model for 
multi-core architectures. We choose the Roofline model as 
our hammer to analyze Deep Learning workloads, which 
is because it can analyze the heavy stacked Deep Learning 
workloads in a black box approach.

To this end, this paper performs comprehensive profiling 
and analysis of Deep Learning models run on a multi-core 
CPU cluster using TensorFlow. In particular, we make use of 
the Roofline model to identify bottlenecks in a step-by-step 
manner and resolve them accordingly. Using this approach 
to optimize distributed training of DNNs, we are able to 
obtain up to 3.5× performance improvement over vanilla 
TensorFlow using the default configurations.

The optimizations obtained in our study broadly focus 
on two major directions of improving the computational 
efficiency at minimal levels of concurrency and communi-
cational efficiency at high levels of concurrency. We find 
that a visual tool that helps identify particular avenues of 
improvement along these directions will be very useful for 
the community. We believe that because of the simplicity 
of the Roofline model, many Deep Learning application 
researchers and developers can also use it to analyze and 
optimize their workloads even if they do not have a com-
prehensive understanding of the bulky and complex Deep 
Learning stacks.

Our studies demonstrate that such a performance analysis 
approach for Deep Learning workloads with the Roofline 
model is efficient for achieving near-peak performance on 

target platforms. In a nutshell, this study makes the follow-
ing key contributions:

•	 Present detailed profiling and analysis of CPU-based dis-
tributed training of Deep Neural Networks (DNNs);

•	 Provide guidelines to show how a performance model, 
such as the Roofline model, may be used to optimize the 
execution of DNN workloads;

•	 Suggest optimal values for some key parameters which 
may be used by non-expert users to get high performance 
for CPU-based Deep Learning.

The paper is organized as follows. Section 2 covers back-
ground knowledge with regards to TensorFlow and Roof-
line model. The performance analysis methodology used in 
this study is detailed in Sect. 3. Section 4 discusses baseline 
observations while Sect. 5 presents the black box optimi-
zations performed on the baselines established in the sec-
tion prior. Application-aware optimizations are discussed 
in Sect. 6. Related work is summarized in Sect. 7. Finally, 
concluding remarks and future directions for continued work 
appear in Sect. 8.

2 � Background

2.1 � Tensorflow

Tensorflow (Abadi et al. 2016) is a Machine Learning frame-
work developed at Google which provides an implementa-
tion of various functions and modules commonly used in 
Machine Learning algorithms. It also provides the function-
ality to make use of various resources available within a 
system, such as multi-core processors, GPUs, etc, to acceler-
ate the performance of the applications developed using it. 
Distributed TensorFlow allows users to scale applications 
along both inter-node and intra-node directions. Note that in 
this paper we adapt the data-parallelism (Krizhevsky et al. 
2012) approach to partition and scale our algorithms. In this 
approach, multiple replicas of the same model are launched 
on the processing units available while the training data is 
partitioned equally across these replicas. Subsequently, dif-
ferent mechanisms, such as the ones described below, are 
used to aggregate the results of these replicas to obtain a 
global state. A contrasting approach is the model-parallelism 
(Dean et al. 2012) where instead of data, the layers of the 
Machine Learning model itself are partitioned across vari-
ous processing units while the same data is fed to each unit. 
Moreover, the modular implementation of TensorFlow ena-
bles many different communication paradigms and gradient 
update models to be used underneath the algorithm layer. 
This study focuses on the two such widely used paradigms 
which are described in detail below.



226	 M. H. Javed et al.

1 3

2.1.1 � Parameter Server

The Parameter Server model (Li et al. 2014) is an approach 
used to perform distributed Machine Learning at scale. It 
includes the abstractions of the parameter server (PS) pro-
cesses and worker processes. Workers execute replicas of 
the actual Machine Learning algorithm while the PS stores 
global parameters required by each replica. The process of 
transmission of gradients to the PS and subsequent aggrega-
tion can be performed in synchronous as well as asynchro-
nous manner. A recent study (Chen et al. 2016) has shown 
that synchronous weight updates with replication for strag-
glers result in faster convergence and better accuracy com-
pared to the asynchronous approach, therefore we use the 
synchronous approach in our experiments as well.

Figure 1 describes how the parameter server model works 
with synchronous updates. Each of the workers involved 
compute their own local gradients. After a certain number of 
iterations, the participating worker replicas share their local 
gradient vectors with the parameter server and wait at a bar-
rier. The parameter server then aggregates all the received 
gradients to obtain a global view of the model, which is 
then broadcasted to all the workers, which can then begin 
the next set of iterations. For greater scalability, the ratio of 
parameter servers to workers can be increased. However, 
figuring out the optimal ratio is non-trivial and having exces-
sive servers may saturate the network. Moreover, using the 
parameter server approach to scale a sequential implemen-
tation of Deep Learning model requires significant changes 
in order to configure the distribution of resources and the 
communication pattern between them in an optimal manner.

2.1.2 � Horovod

Horovod (Sergeev et al. 2018) is a runtime developed for 
decentralized distributed Machine Learning by Uber. Instead 
of using separate parameter servers to store the global 
parameters, each worker in a Horovod cluster keeps a copy 
of all the parameters. In the synchronization phase, each 
worker takes part in a bandwidth optimal ring-based all-
reduce (Patarasuk and Yuan 2009) aggregation. The ring-
based allreduce algorithm is implemented using NVIDIA 
Collective Communication Library (NCCL2) (NVIDIA 
NCCL 2017) for GPUs and MPI on CPUs. Compared to 
the parameter server approach, using Horovod to distrib-
ute sequential Machine Learning code requires minimal 
changes.

Figure 2 shows how the ring-allreduce algorithm is used 
for synchronizing gradients in Horovod operates. Each node 
sends 2 × (N − 1) messages to each of its two neighbors. 
First N − 1 messages received are added to the receiving 
node’s buffer whereas the second round of N − 1 messages 
replaces the values held in the receiving node’s buffer. After 
2 × (N − 1) iterations, each worker has a globally synchro-
nized view of all the parameters.

2.2 � Roofline model

The Roofline model (Williams et al. 2009) is a performance 
analysis technique which makes use of memory access pro-
files and compute operations to identify if the application 
is memory bound or compute-bound. Traditionally, Float-
ing Point Operations Per Second (FLOPS) have been used 
to quantify the compute operations performed but recently 
many studies have come up with bespoke, platform-specific 
units as well. For example, Wang et al. (2018) introduces 
a data-centric variant of Roofline model which better cap-
tures the behavior of typical applications running on com-
modity clusters by including not only floating point but all 
other integer-based operations as well. However, FLOPS 
is suitable for many HPC and Machine Learning applica-
tions as they are known to be fairly floating-point operations 
intensive.

Figure 3 shows a typical Roofline model. The x-axis 
represents Operational Intensity (OI)1 which is a unit for 
measuring the floating-point operations performed per byte 
of memory accessed. The vertical axis represents the com-
putational performance obtained in GFLOPS. The sloped 
line starting from the origin represents the range of Opera-
tional Intensity for which the performance of the application 

Fig. 1   Parameter server (PS) model with synchronous gradient 
updates: one or more PSs distribute work (through broadcast) and 
aggregate results (through reduction)

1  OI  =  NUM_FLOP∕MEM_ACC , where NUM_FLOP means the 
number of floating-point operations performed and MEM_ACC 
means the bytes of memory accessed.



227Performance analysis of deep learning workloads using roofline trajectories﻿	

1 3

will be bound by memory bandwidth. The point at which 
it terminates is called the ridge point, which is the point 
beyond which all Operational Intensities represent the com-
pute-bound region. The red horizontal line denotes the peak 
floating-point performance of the hardware the experiments 
are executed on. The individual points on the graph represent 
various applications and the region that they lie in based on 
their OIs and operations executed, which in our case are 

obtained by reading performance counters using tools such 
as perf (De Melo 2010).

3 � Performance analysis methodology

Determining the method to be utilized to obtain a set of per-
formance optimizations for a particular application is a non-
trivial task. Such a task is complicated even further in the 
case of distributed Machine Learning frameworks because 
of the sheer quantity of independent layers of communica-
tions and computation involved. Therefore, in this study, we 
adopt a step by step approach where insights from one step 
are used as a guide for the subsequent so that a comprehen-
sive set of optimizations are obtained covering many differ-
ent facets of the system under consideration. The first step 
in our methodology involves running baseline experiments 
to determine the performance metrics obtained using just 
the out-of-the-box implementation. These experiments are 
then analyzed to identify and isolate potential bottlenecks. 
In the next step, we attempt to remove these bottlenecks 
by performing application-agnostic, black box optimiza-
tions targeting the framework that the end-user application 
is running on. These optimizations do not modify the client 
application, which in our case is the Machine Learning algo-
rithm, but rather optimize the operations of the framework 
the application executes on, which is TensorFlow for this 
study. Lastly, application-aware optimizations are performed 
to tune the application itself to extract further performance 

Fig. 2   Ring-allreduce, which optimizes for bandwidth and memory usage over latency

Fig. 3   The Roofline model characterizes the application using opera-
tional intensity and machine computational bounds. We could visu-
ally assess the performance optimality of a particular implementation 
against a empirical machine limits



228	 M. H. Javed et al.

1 3

gains based on the optimizations implemented in the preced-
ing step. This method, when applied to distributed Machine 
Learning using TensorFlow, and the optimizations derived 
as such are explained in detail in subsequent sections.

The official TensorFlow repository provides benchmarks2 
of various Convolutional Neural Networks (CNNs) which 
we use in our study. Of the many networks available, we 
select four commonly used and extensively studied mod-
els—Alexnet (Krizhevsky et al. 2012), Inception3 (Szegedy 
et al. 2016), Resnet50 (He et al. 2016), and Vgg16 Simon-
yan and (Zisserman 2014)—which are based on the Ima-
geNet (Deng et al. 2009) image classification dataset. These 
represent models with varying degree of computation and 
communication intensities covering a broad range of imple-
mentations of the broad spectrum of Deep Learning models.

The experiments are carried on Chameleon Cloud (Kea-
hey et al. 2019), an NSF funded cloud testbed. The hardware 
specifications of the ‘Skylake’ nodes that are used to carry 
out all the experiments presented in this study are summa-
rized in Table 1.

The names and versions of different frameworks and com-
pilers used in this study are summarized in Table 2.

Even though the focus of this study has been on homo-
geneous, CPU-based clusters, the approach described in 
this study can easily be extended to heterogeneous GPU 

or hybrid CPU/GPU clusters. Tools such as nvprof3 and 
NVIDIA Nsight4 kernel profile utility can be used to extract 
the relevant performance counters on NVIDIA GPU-based 
systems, as has been described in other similar works (Kim 
et al. 2011; Ibrahim et al. 2018a). As a guideline, the follow-
ing steps may be performed to achieve the task for a given 
architecture:

1.	 Launch the relevant performance counter retrieval tool 
as a daemon. As mentioned earlier, on Intel CPU based 
architectures perf may be used while nvporf may be used 
for NVIDIA GPUs.

2.	 Launch the application that needs to be profiled. In our 
case, these were DL models executed on TensorFlow.

3.	 Once the application terminates, use the counters 
obtained to calculate the number of FLOP executed, 
number of bytes of memory accessed and time taken.

(a)	 The counters to obtain memory accesses are 
CAS_COUNT.WR and CAS_COUNT.RD on CPUs 
while dram_read_transactions and dram_write_
transactions on NVIDIA GPUs.

(b)	 An approprite multitplier (64 for Intel Skylake, 
32 for NVIDIA Volta) can be used to convert the 
conter values to actual memory bytes accessed.

(c)	
4.	 Use these metrics to construct a Roofline profile to guide 

optimizations.

4 � Baseline experiments

In this section, we analyze the performance characteristics 
of running distributed Deep Learning on vanilla Tensorflow 
using PS and Horovod as the variable update models. We 
use a variant of the Roofline model (Ibrahim et al. 2018b), 
in which we plot scaling trajectories, rather than points, at 
full concurrency; the trajectories are helpful in observing the 
overall trend in performance attained with respect to changes 
in the level of concurrency.

4.1 � Profiling

The experiments described in this section are performed 
on the real ImageNet data set. However, some preliminary 
experiments are performed with synthetic data as well. 

(1)OI =
FLOP

(Reads +Writes) ×Multiplier
.

Table 1   Cluster configuration

ahttps​://en.wikic​hip.org/wiki/intel​/xeong​old/6126.

Resource Specification

CPU Intel(R) Xeon(R) Gold 
6126 @ 2.60 GHz

Cores × sockets 12 × 2
Memory 192 GB @ 119.21 GiB/sa

Disk 240 GB HDD
NIC Ethernet (10 Gbps)
OS CentOS release 7.5.1804

Table 2   Software configuration Software Version

Tensorflow 1.13
Intel-Tensorflow 1.13
Python 2.7.1
MPICH 3.3.1
Horovod 0.16.4
gcc 4.8.5

2  https​://githu​b.com/tenso​rflow​/bench​marks​.

3  https​://docs.nvidi​a.com/cuda/profi​ler-users​-guide​/index​.html#nvpro​
f-overv​iew.
4  https​://devel​oper.nvidi​a.com/tools​-overv​iew.

https://en.wikichip.org/wiki/intel/xeongold/6126
https://github.com/tensorflow/benchmarks
https://docs.nvidia.com/cuda/profiler-users-guide/index.html#nvprof-overview
https://docs.nvidia.com/cuda/profiler-users-guide/index.html#nvprof-overview
https://developer.nvidia.com/tools-overview


229Performance analysis of deep learning workloads using roofline trajectories﻿	

1 3

We observe that, barring minor experimental variability, 
the results obtained with real data are matching the ones 
obtained using the synthetic data. Moreover, the actual 
memory bandwidth achieved on a system is often less than 
the theoretical peak. To measure the maximum achievable 
memory bandwidth, STREAM5 benchmark was used. All 
the experiments described in this study are performed with 
a batch size of 64, unless specified otherwise.

4.1.1 � Parameter Server Model

Setting up a TensorFlow cluster allows for various configu-
rations of PS and worker processes, described in Sect. 2.1.1, 
to run on the resources available. However, the number of 
such processes to launch and their mutual ratio is a heuristic 
that often needs to be optimized as it can have a significant 
performance impact. The launched worker processes per 
node (PPN) is a parameter we have tuned before we launch 
our detailed experiments. We run some preliminary experi-
ments to arrive at an optimal value for PPN.

Figure 4 shows the aggregate throughput obtained with 
varying number of worker PPN. We observe a sharp increase 
in aggregate throughput when PPN is increased from 1 to 
4, after which it starts to stabilize. Other factors are also 
needed to be considered for an optimal PPN value; launching 
multiple processes per node rapidly increases the job startup 
time and the benchmark itself would have issues outputting 
the correct logs for each process at higher PPN values. Tak-
ing these factors into account, we decide to set worker PPN 
to 4 for the experiments described in this section as it can 

represent a reasonable balance between desired concurrency 
and ease of implementation.

Binding processes to cores by setting their affinity is a 
frequently used optimization technique for parallel applica-
tions. We have tried various configurations of process affini-
ties also taken into account the NUMA configuration of the 
processing element, on which the experiments are executed. 
Regardless, the best performance is obtained without mak-
ing the use of processing affinities at all. Instead, allow-
ing processes and the threads launched by them to freely 
migrate among cores can deliver the best performance for 
TensorFlow-based training. This phenomenon has also been 
observed in other Python or Java-based applications (Lu 
et al. 2017).

Different levels of concurrency are tested against a vary-
ing number of PS to see how well the distributed training 
can scale. Figures 5 and 6 show Roofline plots for differ-
ent DNNs executed using varying levels of concurrency, for 
nodes running PS and worker, respectively. As described 
in detail later in Sect. 4.2, unoptimized TensorFlow does 
not perform Advanced Vector Extensions (AVX) or Fused 
Multiply Add (FMA) instructions thus the peak attainable 
floating performance comes out to be: 2 sockets × 12 cores/
socket × 3.7(GHz) clock rate with Turbo boost × 8 Single 
Precision (SP) FLOPs/cycle = 710.4 GFLOPS, which is 
denoted by the dotted red line “Peak FLOPS 256” in the 
graphs.

From Roofline plots for nodes running PS shown in 
Fig. 5, we observe that the task is not compute intensive 
as FLOPS generated are in the ballpark of 1 MFLOPS to 
1 GFLOPS, which is orders of magnitude less than nodes 
running worker processes as shown in Fig. 6. Keeping the 
number of PS constant, increasing the number of workers 
leads to an upward shift for the data points in Fig. 5 as the 
number of workers across which the gradients need to be 
synchronized also increases for each PS. Similarly, for any 
given number of workers, adding more PS to the system 
leads to fewer parameters that each PS is responsible for 
synchronizing across the system. As a result, the correspond-
ing Roofline trajectories also show a downward shift. Note 
that the results for PS nodes are plotted against a logarithmic 
scale.

Figures  6 and 7 show the Roofline trajectories for 
worker nodes and throughput obtained by the model, 
respectively. This helps in comparing the actual appli-
cation performance with the black box approach of the 
Roofline model. The model which is able to gener-
ate FLOPS closest to the peak performance is Vgg16. 
If more workers are added to the system, while keeping 
the number of PS unchanged, we see an almost 2 × (8.2 
img/s with 4 workers vs 16.3 img/s with 16 workers for 
Vgg16) increase in throughput for a proportional increase 
in workers, for all models barring Alexnet. These models 

Fig. 4   Throughput variations in response to varying PPN. Increas-
ing PPN from 1 to 2 and then 4 yields significant improvements in 
throughput but for PPN values beyond 4 the throughput remains fairly 
stable

5  https​://www.cs.virgi​nia.edu/strea​m/.

https://www.cs.virginia.edu/stream/


230	 M. H. Javed et al.

1 3

Fig. 5   Roofline plots for PS nodes. Significantly less raw operations are executed compared to the worker nodes which is expected. Increasing 
number of PS results in downward shift of trajectories as each PS becomes responsible for fewer network parameters to be aggregated

Fig. 6   Roofline plots for worker nodes. Trajectories for Alexnet show 
variations proportional to the level of concurrency suggesting its 
communication overhead is significant. A reduction in the length of 
trajectories for Alexnet may also be observed in response to increas-

ing number of PS as gradient exchange becomes faster. Stable trajec-
tories for other models indicate decent overlap between communica-
tion and computation

Fig. 7   Throughput obtained by various DNNs, which may be 
matched to Roofline trajectories from Fig. 6. Throughput for Alexnet 
almost follows a logarithmic trajectory, which shows improvement as 

more PS are added. All other models show linear speedup with mini-
mal changes in response to increasing number of PS



231Performance analysis of deep learning workloads using roofline trajectories﻿	

1 3

show a scaling efficiency upwards of 90%, with Resent50 
turning out to be the most scalable model at 100% scal-
ing efficiency. This is observable from the Roofline data 
points as well as the OIs for all models barring Alexnet 
show little change. Alexnet, however, at best shows a scal-
ing efficiency of 37% using as many as 4 PS. The OI for 
Alexnet also shows a steady decline in response to an 
increase in concurrency in the system. This suggests that 
communication costs start to dominate at higher concur-
rency levels. When looked at in conjunction with the PS 
Roofline plot, we interestingly see that while the data 
points at the worker end decline, the ones at the PS show 
an upward trend indicating that PS has to perform more 
work to synchronize gradients across the system. Con-
sequently, the workers have to wait longer at the barrier 
in-between successive steps while the synchronization 
takes place.

The Roofline plot for PS is not included from this sec-
tion onwards for the sake of brevity as it did not show 
any notable change compared to the one shown in Fig. 5.

It should be noted that all data points obtained using 
the PS approach are under the memory-bound region of 
the Roofline plot which implies that adding more com-
putational resources will not necessarily lead to a gain 
in application performance. This is ever more relevant 
in the case of Alexnet where we observe that an increase 
in concurrency leads to almost a vertical decline in raw 
performance without a drastic change in OI. This sug-
gests that overheads pertinent to concurrency dominate 
and simple increase in processing power will not ben-
efit the performance much. Instead, approaches that may 
result in an improvement in OI should be considered. The 

use of Horovod as a gradient update layer is a step in this 
direction.

4.1.2 � Horovod

In this section, we carry out the same experiments as 
described in Sect. 4.1.1 but perform them using Horovod as 
the gradient update layer.

From Fig. 8, we can see a marked improvement in appli-
cation throughput with Horovod as compared to the PS 
approach, which becomes even more pronounced at higher 
levels of concurrency. The OIs are also much higher for 
Horovod, improving as much as 2× (2.0 FLOP/byte vs 4.2 
FLOP/Byte) compared to the PS approach for Vgg16. The 
raw floating-point performance, however, is within the same 
ballpark.

The scaling efficiency of experiments with Horovod is 
equal or better than the ones obtained with the PS approach. 
For Alexnet, however, the bandwidth optimal ring-allreduce 
algorithm shows its benefits leading to a scaling efficiency 
of 66%, a marked improvement from 37% obtained with as 
many as 4 PS in the system.

4.2 � Analysis

The Roofline plots discussed in Sect. 4.1 help understand the 
computational and memory/network I/O footprint of various 
DNNs implemented in TensorFlow. However, we need to 
take a deeper look at what kind of floating-point operations 
are performed at what degree of memory access rate to get 
a deeper understanding into how we can improve the perfor-
mance of these applications.

(a) Roofline plot (b) Throughput

Fig. 8   Roofline trajectories for Horovod show increased OIs for all models compared to the PS approach (Fig. 6). For Alexnet, there is a reduc-
tion in the length of Roofline trajectory which is also reflected in the almost linear speedup of the throughput



232	 M. H. Javed et al.

1 3

Figure 9 is helpful in understanding why there is a dif-
ference in OI for the same experiments run using PS and 
Horovod approach. Figure 9a shows the OI breakdown at 
worker nodes of experiments run with varying number of 
PS while Fig. 9b is for Horovod. As expected, NUM_FLOP 
and MEM_ACC do not vary much if we add more PS to 
the system while increasing number of workers leads to 
an increase in both NUM_FLOP and MEM_ACC. That is 
because adding more PS reduces the workload for each PS 
but the worker task remains unchanged. As far as Horovod is 
concerned, the bars of NUM_FLOP in Fig. 9b are generally 
not as high as for similar PS based experiments. However, 
MEM_ACCs are, on average 2× lower for all models leading 
to a much higher OI.

Based on the above profiling results, we can conclude 
that Horovod is much more efficient with the data that it 
processes as for each byte of memory accessed, it performs 

more FLOP than using the PS approach. Next, we take a 
look at the distribution of different kinds of floating-point 
(FP) instructions performed by TensorFlow using different 
methods of gradient update.

From Fig. 10, we can see that vanilla TensorFlow mostly 
makes use 256-bit SP FP instructions. As a result, the maxi-
mum FLOPS that can be performed has an upper bound 
denoted by Peak FLOPS 256 line on the Roofline graph. 
For the DNNs to perform closer to the theoretical peak, the 
multiple FMA units available have to be used in conjunction 
with the 512-bit AVX registers.

4.3 � Insights

The Roofline plots coupled with the throughput gradients 
are quite helpful in understanding the general behavior of 
DNN models. For instance, the Roofline trajectories shown 

(a) Parameter Server (b) Horovod

Fig. 9   OI breakdown of TensorFlow worker with PS and Horovod. 
Memory accesses are higher than FLOP executed for Inception and 
Resnet50 resulting in an OI of less than 1 for PS. For Horovod, how-
ever, the ratio between NUM_FLOP and MEM_ACC is much higher 

than the ones observed for PS. Increase in concurrency leads to a pro-
portional increase in both NUM_FLOP and MEM_ACC for both pro-
gramming models

(a) Parameter Server (b) Horovod

Fig. 10   FP breakdown of TensorFlow worker with PS and Horovod. 256-bit SP instructions constitute the majority of all FP instructions exe-
cuted despite Horovod using a different aggregation mechanism



233Performance analysis of deep learning workloads using roofline trajectories﻿	

1 3

in Fig. 6 of all models barring Alexnet suggest that these 
are computationally dense models with communicational 
requirements which do not become a bottleneck even at 
higher levels of concurrency. The corresponding through-
put numbers, as described in Fig. 7, verify this claim as we 
see an almost linear speedup for all models barring Alexnet.

Alexnet seems to be an anomaly in this case requir-
ing deeper investigation. There is a drop in performance 
per node of almost 70% (311 GLOPS vs 98 GFLOPS) for 
Alexnet even with 4 PS in the system. This corresponds with 
the throughput numbers for Alexnet which show sub-par 
speedup with an almost logarithmic trajectory. However, 
even with poor speedup, the absolute speedup for Alexnet 
is orders of magnitude higher than that of the next best 
performing model (i.e., Resent50). This indicates that, as 
opposed to other models, Alexnet is quite intensive in terms 
of communication but is not too dense computationally. 
The observation can be verified by analyzing the number 
of operations that need to be executed by the processing 
element and network parameters that need to be exchanged. 
Alexnet has 60 million network parameters which have to 
be synchronized relatively frequently as it contains only 25 
layers. Resent50, on the other hand, has only 25 million net-
work parameters spread out over 50 layers thus not requiring 
synchronization as often.

5 � Black box optimizations

From the graphs discussed in the previous section, we find 
that to improve the application performance and take the 
Roofline data points closer to the theoretical peak, some 
optimizations need to be performed. The data discussed so 
far indicates that the choice of underlying gradient update 
model significantly influences whether the computation 

is bandwidth bound, i.e. PS-based approach, or compute-
bound i.e. Horovod.

5.1 � Profiling

To start with, we decide to use Intel MKL enabled Ten-
sorFlow. Intel-TensorFlow makes use of AVX, AVX2 and 
AVX512 registers to perform Fused Multiply Addition 
(FMA) instructions enabling applications to perform FP 
operations much closer to the theoretical peak provided by 
the hardware. Note that the peak attainable performance 
with AVX512 FMA instructions may not be calculated 
using the formula described in Sect. 4.1.1, as having 512 
byte vector instructions reduces the maximum clock rate6. 
Therefore we use the value of 652.8 × 2 sockets = 1305.6 
GFLOPS provided by Intel in their official documentation7 
as the maximum attainable FLOPS with AVX512 instruc-
tions, denoted by the solid red “Peak FLOPS 512 ” line.

We are able to figure out the appropriate configuration 
to get the most out of MKL enhanced Intel-TensorFlow. 
We have tried a series of configurations and at two MPI 
processes/node and 12 OMP threads/MPI process, we can 
obtain the best scalability. Note that for vanilla Tensor-
Flow, the best performance is achieved by using four MPI 
processes/node.

5.1.1 � Parameter server model

Figure  11 shows the Roofline plot of MKL enabled 
TensorFlow with PS for gradient update while Fig. 12 

Fig. 11   MKL enabled TensorFlow worker with PS. The use of vectorized instructions pushes the maximum attainable performance to Peak 
FLOPS 512. As a result, the raw application performance also shows an upward movement compared to the ones shown without MKL in Fig. 6

6  https​://www.intel​.com/conte​nt/dam/www/publi​c/us/en/docum​ents/
speci​ficat​ion-updat​es/xeon-scala​ble-spec-updat​e.pdf.
7  https​://www.intel​.com/conte​nt/dam/suppo​rt/us/en/docum​ents/proce​
ssors​/APP-for-Intel​-Xeon-Proce​ssors​.pdf..

https://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/xeon-scalable-spec-update.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/xeon-scalable-spec-update.pdf
https://www.intel.com/content/dam/support/us/en/documents/processors/APP-for-Intel-Xeon-Processors.pdf.
https://www.intel.com/content/dam/support/us/en/documents/processors/APP-for-Intel-Xeon-Processors.pdf.


234	 M. H. Javed et al.

1 3

summarizes the throughput achieved. The use of AVX-512 
enabled FMA instructions by MKL not only leads to a sig-
nificant increase in OI for all models but also results in the 
Roofline trajectories shifting upwards. The result is pro-
nounced with Vgg16 with four workers performing at 1200 
GFLOPS, which is merely 8% less than the peak perfor-
mance. The improvement in raw performance is supported 
by throughput numbers as well with almost 2× improve-
ment in performance for Inception (72 img/s vs 170 img/
sec), Resnet50 (74 img/s vs 130 img/s), and Vgg16 (50 
img/s vs 100 img/s with 32 workers) using only 2 PS. 
Alexnet, however, does not show marked improvement in 
throughput, which can be seen from the Roofline plot as 
well as it shows the least improvement in raw performance 
compared to other DNNs tested. We can also observe an 
increase in length and variability in Roofline trajectories 
compared to vanilla TensorFlow (Fig. 6) indicating that 

although the use of vectorized instructions speed up the 
pass through the layers of a DNN, the network param-
eters have to be synchronized more often which leads to a 
decline in raw performance per node proportional to the 
level of concurrency in the system.

5.1.2 � Horovod

From Fig. 13, we can see that using Horovod for gradient 
update seems to bring the most out of MKL enabled Tensor-
Flow as a quicker pass through DNN layers (because of vec-
torized instructions) is complemented by a bandwidth opti-
mal gradient update algorithm (i.e., ring-based allreduce). 
MKL-enabled TensorFlow with Horovod leads to less time 
spent in both computation and communication with neither 
becoming a bottleneck for the other. This is not observed to 
be the case in any of the prior experiments.

Fig. 12   Throughput of MKL enabled TensorFlow worker with PS. Significant improvement in speedup is observed for all models except Alexnet 
as gains from faster computation are compensated with losses from more frequent gradient exchanges resulting in minimal net improvement

(a) Roofline plot (b) Throughput

Fig. 13   MKL enabled TensorFlow worker with Horovod. Simi-
lar trends in Roofline trajectories and throughput are observed as in 
Figs. 11 and 12 for PS, respectively. However, the bandwith optimal 

ringa-allreduce algorithm seems to overlap computation and commu-
nication more effectively resulting noticeable improvements over the 
PS counterpart



235Performance analysis of deep learning workloads using roofline trajectories﻿	

1 3

We see greater than 2× improvement for Resnet50 (98 
img/s vs 273 img/s with 16 workers) and Vgg16 (49 img/s 
vs 101 img/s with 16 workers) while Inception3 shows a 
speedup of  3× (73 img/s vs 215 img/s with 16 workers) 
compared to vanilla TensorFlow. Alexnet, however, shows 
severely poor scalability as at eight nodes it shows a decline 
of 25% in throughput compared to vanilla TensorFlow 
even though at one node the observed speedup is  2× (101 
img/s vs 198 img/sec). The Roofline trajectory for Alexnet 
provides cues for this behavior. Comparing Figs. 8 and 13 
at eight nodes, the raw performance also shows a decline 
of 41% however the performance at minimal concurrency 
(i.e., two workers on one node) improves by about 70%. This 
indicates that although vectorized instructions improve pass 
through the layers significantly, the overhead incurred from 
synchronizing 60 million network parameters frequently at 
higher levels of concurrency actually leads to a performance 
degradation.

As shown in Fig. 13, at minimal concurrency (i.e., one 
node) we do get very close to the theoretical peak perfor-
mance for Vgg16. However, Intel-TensorFlow does not 
scale as well as vanilla. Doubling the number of resources 
for vanilla TensorFlow leads to a proportional increase in 
throughput as well. However, for Intel-TensorFlow it is 
less than proportional. This trend is evident in the Roofline 
plot as well where data points for Intel-TensorFlow show a 
much greater decline in response to an increase in resources 
(higher communication costs) than vanilla TensorFlow.

5.2 � Analysis

The graphs discussed in Sect. 5 indicate that using optimi-
zations provided by MKL, the throughput of DNNs run on 
TensorFlow is improved by at least an order of magnitude, 
which is also indicated by the upward movement Roofline 

(a) Parameter Server (b) Horovod

Fig. 14   OI breakdown of MKL enabled TensorFlow worker with PS and Horovod. There is a significant decline in memory accesses compared 
to vanilla TensorFlow (Fig. 9a). As a result the OIs are orders of magnitude higher

(a) Parameter Server (b) Horovod

Fig. 15   Breakdown of FP operations performed by MKL-enabled 
TensorFlow worker with PS and Horovod. MKL-enabled TensorFlow 
almost exclusively makes use of 512-bit SP vectorized instructions 

resulting in a much higher FP operations count than that observed 
with vanilla TensorFlow (Fig. 15a)



236	 M. H. Javed et al.

1 3

trajectories crossing the Peak 256 line and getting ever so 
closer to the theoretical peak of the Peak 512 line. Further 
analysis of the data is performed to understand the exact 
cause of this improvement and if further insights can be 
obtained leading to even greater benefits.

Comparing Figs.  6 and 11, we can see that the OIs 
obtained with the same experiments run with MKL-enabled 
TensorFlow are higher than those obtained with vanilla Ten-
sorFlow. That is because, as depicted in Fig. 14a, b, the num-
ber of raw FP operations executed by vanilla TensorFlow 
are much higher than those of Intel-TensorFlow, no matter 
which gradient update layer is used. However, Intel-Tensor-
Flow performs less memory accesses to execute the same 
number of floating-point operations which results in it hav-
ing much higher OI, with both PS and Horovod approaches.

It can be observed from Fig. 15a, b that MKL enabled 
TensorFlow almost exclusively performs 512-bit SP floating-
point instructions, which helps it to achieve FLOPS much 
closer to the theoretical peak. We also see that vanilla Ten-
sorFlow mostly uses 256-bit SP instructions where one such 
instruction performs 8 actual FLOPs. Intel-TensorFlow, on 
the other hand, almost exclusively uses 512-bit SP instruc-
tions which are equal to 16 FLOPs. Even though the magni-
tude of 256-bit SP instructions executed by vanilla Tensor-
Flow is much higher than 512-bit SP instructions executed 
by Intel-TensorFlow, the actual number of FP instructions 
executed does not vary much, as is evidenced by Fig. 14b.

5.3 � Insights

Initially, the experiments with MKL were executed with the 
worker PPN set to 4. However, even though it yields better 
performance than other values of PPN, the gains in speedup 

were not nearly as much as expected from using vectorized 
instructions. We suspected that thread management might be 
an issue. A cursory analysis indicated that, with default con-
figurations, as many as 200 threads were launched by Ten-
sorFlow per worker. As MKL enabled TensorFlow makes 
use of OpenMP threads to distribute workload among all the 
cores available, launching extraneous threads has detrimen-
tal effects on the performance. We did some further experi-
mentation and concluded that with MKL enabled, the case 
of worker PPN setting to 2 can give the best performance 
which is what we have used for all experiments described in 
this section. This has been verified by other studies as well8.

Guidelines provided by Intel to get the best performance 
also suggest using channel first NCHW (Batch Size, Chan-
nel, Height, Width) data encoding format instead of the 
channel last NHWC (Batch Size, Height, Width, Channel) 
data encoding format, which is the default data format used 
for all experiments described in this study. We have per-
formed several experiments with the recommended NCHW 
format as well however we could not observe any observable 
benefits. It should be noted that this does not necessarily 
indicate that there are no performance gains to be had from 
using the NCHW format for training on CPUs. Instead, it 
merely indicates that for the experiments performed in this 
study, the choice of data format could not have significant 
effects.

(a) Roofline plot (b) Throughput

Fig. 16   Roofline plots and throughputs using Horovod and batch 
size = 128. Increased batch size benefits Alexnet the most, lead-
ing to an upward shift by more than 200 GFLOPS for each Roofline 

data point compared to similar experiments with batch size = 64 
(Fig. 13a). This translates to improvement in throughput as well with 
2× improvement at 8 nodes compared to Fig. 13b

8  https​://softw​are.intel​.com/en-us/artic​les/maxim​ize-tenso​rflow​-perfo​
rmanc​e-on-cpu-consi​derat​ions-and-recom​menda​tions​-for-infer​ence.

https://software.intel.com/en-us/articles/maximize-tensorflow-performance-on-cpu-considerations-and-recommendations-for-inference
https://software.intel.com/en-us/articles/maximize-tensorflow-performance-on-cpu-considerations-and-recommendations-for-inference


237Performance analysis of deep learning workloads using roofline trajectories﻿	

1 3

6 � Application‑aware optimizations

This section describes our attempts to tweak the perfor-
mance derived from using vectorized instructions in Ten-
sorFlow even further.

6.1 � Profiling

The black box optimizations performed in the previous sec-
tion yield performance enhancements for all DNNs tested. 
However, the gains are less pronounced for Alexnet than for 
other models. To address this discrepancy, characteristics 
particular to Alexnet have to be considered. Knowing that 
network communication significantly impacts the perfor-
mance of Alexnet, we decide to increase the batch size of the 
input data to 128. This is done particularly to improve the 
performance of Alexnet. From the perspective of the DNN 
model itself, increasing the batch size results in more data 
being processed before gradients have to be synchronized. 
This should be helpful for models such as Alexnet with a 
large number of network parameters spread out over not as 
many layers.

Figure 16 shows the Roofline plots using Horovod for 
gradient update with batch size increased to 128. As can be 
seen from the graph, increasing the batch size significantly 
improves the throughput obtained by Alexnet which is 3.5× 
improvement compared to vanilla Tensorflow with 1 PS and 
8 Nodes for workers (700 img/s vs 200 img/s). This indicates 
that because Alexnet is more communication-bound than other 
models, when we increase the batch size, the gradients have 
to be updated after relatively larger amounts of data is pro-
cessed thus amortizing the communication costs over a longer 
stretch of computation. The increase in throughput is not as 
pronounced for other models indicating their implementations 

overlap computation and communication to a reasonable 
degree.

6.2 � Analysis

Figure 17 shows the breakdown of OIs for experiments with 
batch size set to 128. Focusing on Alexnet and comparing its 
OI breakdown results with batch size set to 64 in Fig. 14b, 
we observe that the number of floating-point operations per-
formed gets increased by a factor of two when the batch size 
is set to 128. However, memory accesses remain constant. 
As a result, there is an upward shift in not only the Roofline 
trajectories of all models but also an increase in the applica-
tion throughput obtained, most pronounced with Alexnet.

7 � Related work

The original Roofline (Williams et al. 2009) paper suggests 
various optimizations that could be performed on workload 
bound by memory bandwidth and/or computational power 
and applies them to traditional scientific workloads. Since 
then it has been used to profile and optimize various archi-
tectures such as Intel KNL (Doerfler et al. 2016), NVIDIA 
GPUs (Lopes et  al. 2017), Google TPUs (Jouppi et  al. 
2017a) and applications, including but not limited to, dis-
aster detection Nagasu et al. (2017), large scale simulations 
(Kim et al. 2011), wireless network detection (Sarker et al. 
2002) and even matrix multiplication (Kong et al. 2015).

There have not been many studies analyzing and profiling 
the performance of distributed Deep Learning. The few that 
exist (Bahrampour et al. 2016; Shi et al. 2016; Lu et al. 2018; 
Kim et al. (2017) do not focus on Roofline model based per-
formance analysis and optimizations on CPUs. Bahrampour 
et al. (2016) and Shi et al. (2016) analyze the overall execu-
tion time of different frameworks but do not discuss tech-
niques for performance improvement. In Kim et al. (2017), 
the authors use Alexnet alone as a representative model to 
analyze the performance of different distributed Machine 
Learning frameworks using GPUs. They can speed up train-
ing by 2 × using only framework-specific options. However, 
their study does not include the effects of gradient exchange 
between nodes over a network. Recently, the Roofline model 
has also been applied to analyze the performance of Deep 
Learning models, mostly focusing on bespoke FPGA accel-
erator implementations, such as in Zhang et al. (2015) and 
Meloni et al. (2016).

8 � Conclusion

In this paper, we propose the use of the Roofline model to 
analyze various CNN models implemented in TensorFlow 
for CPU. We are able to identify various bottlenecks that 

Fig. 17   OI breakdown of MKL enabled TensorFlow worker with 
Horovod and batch size = 128. The reason for improvement in the 
performance of Alexnet can be seen here as the FP operations per-
formed increase by a factor of two compared to experiments with 
batch size=64 (Fig. 14b)



238	 M. H. Javed et al.

1 3

allow us to significantly improve the performance of these 
CNN models. We hope that our study would be helpful for 
scientists, especially those who may not have enough knowl-
edge of low-level systems, to optimize their Deep Learning 
model training processes and maximize the performance. 
Using various optimizations described in this study, we are 
able to achieve a maximum speedup in throughput of 3.5× 
for Alexnet at a concurrency level of 8 nodes.

For future work, we would like to understand how the 
choice of network interconnect—InfiniBand, RoCE, High-
Speed Ethernet, etc.— and the network channels used to 
communicate over them—gRPC, MPI, etc.—influence the 
performance of Deep Learning models. Furthermore, we 
would also like to extend our study to incorporate the ever-
expanding landscape of processing elements suitable for 
Deep Learning, such as GPUs, TPUs, and FPGAs. Moreo-
ver, since DL applications are notorious for their soaring 
power requirements, we would also like to explore if our 
approach can be used to generate optimizations that can 
reduce the energy consumption of the applications without 
incurring a significant performance penalty.

Acknowledgements  Results presented in this paper are obtained on the 
Chameleon Cloud testbed supported by the National Science Founda-
tion. This work has been supported by Lawrence Berkeley National 
Laboratory under Contract no. DE-AC02-05CH11231 with the U.S. 
Department of Energy. Moreover, this research is supported in part by 
National Science Foundation Grant CCF#1822987.

References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, 
M., Ghemawat, S., Irving, G., Isard, M. et al.: Tensorflow: a sys-
tem for large-scale machine learning. In: 12th {USENIX} Sympo-
sium on Operating Systems Design and Implementation ( {OSDI} 
16), pp. 265–283 (2016)

Bahrampour, S., Ramakrishnan, N., Schott, L., Shah, M.: Comparative 
study of caffe, neon, theano, and torch for deep learning (2016)

Biswas, R., Lu, X., Panda, D.K.: Accelerating TensorFlow with adap-
tive RDMA-based gRPC. In: 2018 IEEE 25th International Con-
ference on High Performance Computing (HiPC). IEEE, pp. 2–11 
(2018)

Chen, J., Pan, X., Monga, R., Bengio, S., Jozefowicz, R.: Revisit-
ing distributed synchronous SGD (2016). arXiv preprint arXiv​
:1604.00981​

Chen, J., Li, K., Bilal, K., Li, K., Philip, S.Y., et al.: A bi-layered paral-
lel training architecture for large-scale convolutional neural net-
works. IEEE Trans. Parallel Distrib. Syst. 30(5), 965–976 (2018)

Chetlur, S., Woolley, C., Vandermersch, P., Cohen, J., Tran, J., Cat-
anzaro, B., Shelhamer, E.: cuDNN: Efficient primitives for deep 
learning, CoRR, vol. abs/1410.0759 (2014). [Online]. http://arxiv​
.org/abs/1410.0759

De Melo, A.C.: The new Linux perf tool. In: Slides from Linux Kon-
gress, vol. 18 (2010)

Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Mao, M., Sen-
ior, A., Tucker, P., Yang, K., Le, Q.V. et al.: Large scale distrib-
uted deep networks. In: Advances in Neural Information Process-
ing Systems, pp. 1223–1231 (2012)

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Ima-
geNet: a large-scale hierarchical image database. In: CVPR09 
(2009)

Doerfler, D., Deslippe, J., Williams, S., Oliker, L., Cook, B., Kurth, 
T., Lobet, M., Malas, T., Vay, J.-L., Vincenti, H.: Applying the 
roofline performance model to the intel xeon phi knights land-
ing processor. In: International Conference on High Performance 
Computing. Springer, pp. 339–353 (2016)

Esteva, A., Kuprel, B., Novoa, R.A., Ko, J., Swetter, S.M., Blau, H.M., 
Thrun, S.: Dermatologist-level Classification of skin cancer with 
deep neural networks. Nature 542(7639), 115 (2017)

gRPC (2019). http://grpc.io/
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image 

recognition. In: Proceedings of the IEEE Conference on Computer 
Vision and Pattern Recognition, pp. 770–778 (2016)

Huval, B., Wang, T., Tandon, S., Kiske, J., Song, W., Pazhayampallil, 
J., Andriluka, M., Rajpurkar, P., Migimatsu, T., Cheng-Yue, R. 
et al.: An empirical evaluation of deep learning on highway driv-
ing. arXiv preprint arXiv​:1504.01716​, (2015)

Ibrahim, K., Williams, S., Oliker, L.: Performance analysis of GPU 
programming models using the roofline scaling trajectories. In: 
2018 International Symposium on Benchmarking, Measuring and 
Optimizing (Bench’19) (2018a)

Ibrahim, K., Williams, S., Oliker, L.: Roofline scaling trajectories: a 
method for parallel application and architectural performance 
analysis. In: 2018 International Conference on High Performance 
Computing and Simulation (HPCS). IEEE, pp. 350–358 (2018b)

InfiniBand Trade Association (2017). [Online]. http://www.infin​iband​
ta.org

Intel-Tensorflow (2019). [Online]. https​://githu​b.com/Intel​-tenso​rflow​
/tenso​rflow​

Jouppi, N.P., Young, C., Patil, N., Patterson, D., Agrawal, et al.: In-
datacenter performance analysis of a tensor processing unit. In: 
2017 ACM/IEEE 44th Annual International Symposium on Com-
puter Architecture (ISCA). IEEE (2017a)

Jouppi, N.P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, 
R., Bates, S., Bhatia, S., Boden, N., Borchers, A., et al.: In-data-
center performance analysis of a tensor processing unit. In: 2017 
ACM/IEEE 44th Annual International Symposium on Computer 
Architecture (ISCA). IEEE, pp. 1–12 (2017b)

Keahey, K., Riteau, P., Stanzione, D., Cockerill, T., Mambretti, J., Rad, 
P., Ruth, P.: Chameleon: a scalable production testbed for com-
puter science research. From Petascale toward Exascale, Contem-
porary High Performance Computing (2019)

Kim, K.-H., Kim, K., Park, Q.-H.: Performance analysis and optimiza-
tion of three-dimensional FDTD on GPU using roofline model. 
Comput. Phys. Commun. 182(6), 1201–1207 (2011)

Kim, H., Nam, H., Jung, W., Lee, J.: Performance analysis of CNN 
frameworks for GPUs. In: 2017 IEEE International Symposium on 
Performance Analysis of Systems and Software (ISPASS). IEEE, 
pp. 55–64 (2017)

Kong, M., Pouchet, L.-N., Sadayappan, P.: A roofline-based perfor-
mance estimator for distributed matrix-multiply on Intel CnC. 
2015 IEEE International Parallel and Distributed Processing Sym-
posium Workshop, pp. 1241–1250 (2015)

Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification 
with deep convolutional neural networks. In: Advances in Neural 
Information Processing Systems, pp. 1097–1105 (2012)

Li, M., Andersen, D.G., Park, J.W., Smola, A.J., Ahmed, A., Josifovski, 
V., Long, J., Shekita, E.J., Su, B.-Y.: Scaling distributed machine 
learning with the parameter server. In: 11th {USENIX} Sympo-
sium on Operating Systems Design and Implementation ( {OSDI} 
14), (2014), pp. 583–598

Lopes, A., Pratas, F., Sousa, L., Ilic, A.: Exploring GPU perfor-
mance, power and energy-efficiency bounds with cache-aware 
roofline modeling. In: 2017 IEEE International Symposium on 

http://arxiv.org/abs/1604.00981
http://arxiv.org/abs/1604.00981
http://arxiv.org/abs/1410.0759
http://arxiv.org/abs/1410.0759
http://grpc.io/
http://arxiv.org/abs/1504.01716
http://www.infinibandta.org
http://www.infinibandta.org
https://github.com/Intel-tensorflow/tensorflow
https://github.com/Intel-tensorflow/tensorflow


239Performance analysis of deep learning workloads using roofline trajectories﻿	

1 3

Performance Analysis of Systems and Software (ISPASS). IEEE, 
pp. 1–12 (2017)

Lu, X., Shi, H., Shankar, D., Panda, D.K.: Performance characteri-
zation and acceleration of big data workloads on OpenPOWER 
system. In: 2017 IEEE International Conference on Big Data (Big 
Data), pp. 213–222 (2017)

Lu, X., Shi, H., Biswas, R., Javed, M.H., Panda, D.K.: DLoBD: a com-
prehensive study of deep learning over big data stacks on HPC 
clusters. IEEE Trans. MultiScale Comput. Syst. 4(4), 635–648 
(2018)

Meloni, P., Deriu, G., Conti, F., Loi, I., Raffo, L., Benini, L.: Curb-
ing the roofline: a scalable and flexible architecture for CNNs on 
FPGA. In: Proceedings of the ACM International Conference on 
Computing Frontiers. ACM, pp. 376–383 (2016)

Message Passing Interface Forum (2019). [Online]. http://www.mpi-
forum​.org/

Nagasu, K., Sano, K., Kono, F., Nakasato, N.: FPGA-based tsunami 
simulation: performance comparison with GPUs, and roofline 
model for scalability analysis. J. Parallel Distrib. Comput. 106, 
153–169 (2017)

NVIDIA NCCL (2017). [Online]. https​://githu​b.com/NVIDI​A/nccl
Patarasuk, P., Yuan, X.: Bandwidth optimal all-reduce algorithms 

for clusters of workstations. J. Parallel Distrib. Comput. 69(2), 
117–124 (2009)

RDMA over Converged Ethernet (2019). http://www.rocei​nitia​tive.org/
Sarker, J.H., Hassan, M., Halme, S.J.: Power level selection schemes to 

improve throughput and stability of slotted ALOHA under heavy 
load. Comput. Commun. 25(18), 1719–1726 (2002)

Sergeev, A., Del Balso, M.: Horovod: fast and easy distributed deep 
learning in tensorflow (2018). arXiv preprint arXiv​:1802.05799​

Shi, S., Wang, Q., Xu, P., Chu, X.: Benchmarking state-of-the-art deep 
learning software tools. In: 2016 7th International Conference 
on Cloud Computing and Big Data (CCBD). IEEE, pp. 99–104 
(2016)

Simonyan, K., Zisserman, A.: Very deep convolutional networks 
for large-scale image recognition. (2014). arXiv preprint arXiv​
:1409.1556

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking 
the inception architecture for computer vision. In: Proceedings of 
the IEEE conference on computer vision and pattern recognition, 
pp. 2818–2826 (2016)

Wang, L., Zhan, J., Gao, W., Ren, R., He, X., Luo, C., Lu, G., Li, 
J.: BOPS, not FLOPS! A new metric, measuring tool, and roof-
line performance model for datacenter computing, CoRR, vol. 
abs/1801.09212. [Online]. (2018). http://arxiv​.org/abs/1801.09212​

Williams, S., Waterman, A., Patterson, D.: Roofline: an insightful vis-
ual performance model for floating-point programs and multicore 
architectures, Lawrence Berkeley National Lab.(LBNL), Berkeley, 
CA (United States), Tech. Rep. (2009)

Yan, R., Song, Y., Wu, H.: Learning to respond with deep neural net-
works for retrieval-based human-computer conversation system. 
In: Proceedings of the 39th International ACM SIGIR Conference 
on Research and Development in Information Retrieval. ACM, 
pp. 55–64 (2016)

Zhang, C., Li, P., Sun, G., Guan, Y., Xiao, B., Cong, J.: Optimizing 
FPGA-based accelerator design for deep convolutional neural 
networks. In: Proceedings of the 2015 ACM/SIGDA Interna-
tional Symposium on Field-Programmable Gate Arrays. ACM, 
pp. 161–170 (2015)

M. Haseeb Javed  received his 
undergraduate degree in soft-
ware engineering from the 
National University of Science 
and Technology (NUST), Paki-
stan. He is working towards a 
graduate degree at The Ohio 
State University and is a research 
assistant in Dr. Xiaoyi Lu’s lab. 
His current focus is on systems 
research cross-cutting the 
domain of big data and high-
performance computing.

Khaled Z. Ibrahim  is a computer 
scientist in the Computational 
Research Division at Lawrence 
Berkeley National Laboratory 
(LBNL). He obtained his PhD in 
computer engineering from 
North Carolina State University 
in 2003. His research interests 
include high-performance com-
puting, virtualization and cloud 
computing environments, high-
performance runtime systems, 
and code optimization.

Xiaoyi Lu  is a Research Assistant 
Professor in the Department of 
Computer Science and Engineer-
ing, The Ohio State University, 
Ohio. He received his Ph.D. 
degree in Computer Science and 
Technology from Institute of 
Computing Technology, Chinese 
Academy of Sciences, Beijing, in 
2012. His current research inter-
ests include high performance 
interconnects and protocols, Big 
Data Analytics, Parallel Comput-
ing Models, Virtualization, 
Cloud Computing, and Deep 
Learning systems. He has pub-

lished more than 100 papers in major International conferences, work-
shops, and journals with multiple Best (Student) Paper Awards or 
Nominations. He has been actively involved in various professional 
activities in academic journals and conferences.

He is a member of the IEEE and ACM. More details about Dr. Lu 
are available at http://web.cse.ohio-state​.edu/~luxi.

http://www.mpi-forum.org/
http://www.mpi-forum.org/
https://github.com/NVIDIA/nccl
http://www.roceinitiative.org/
http://arxiv.org/abs/1802.05799
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1801.09212
http://web.cse.ohio-state.edu/~luxi

	Performance analysis of deep learning workloads using roofline trajectories
	Abstract
	1 Introduction
	2 Background
	2.1 Tensorflow
	2.1.1 Parameter Server
	2.1.2 Horovod

	2.2 Roofline model

	3 Performance analysis methodology
	4 Baseline experiments
	4.1 Profiling
	4.1.1 Parameter Server Model
	4.1.2 Horovod

	4.2 Analysis
	4.3 Insights

	5 Black box optimizations
	5.1 Profiling
	5.1.1 Parameter server model
	5.1.2 Horovod

	5.2 Analysis
	5.3 Insights

	6 Application-aware optimizations
	6.1 Profiling
	6.2 Analysis

	7 Related work
	8 Conclusion
	Acknowledgements 
	References




