2019 IEEE 26th International Conference on High Performance Computing, Data, and Analytics (HiPC)

SCOR-KYV: SIMD-Aware Client-Centric and Optimistic RDMA-based Key-Value
Store for Emerging CPU Architectures™

Dipti Shankar, Xiaoyi Lu, and Dhabaleswar K. (DK) Panda
Department of Computer Science and Engineering, The Ohio State University
{shankard, luxi, panda} @cse.ohio-state.edu

Abstract—Modern distributed key-value store-based appli-
cations rely on bulk-read operations like ‘Multi-Get’ (MGet)
to accelerate their data serving phase. While state-of-the-art
database systems employ SIMD-based techniques to optimize
data-parallel operations on their in-memory structures, such as
hash-tables, they have not been adapted into high-performance
RDMA-accelerated key-value (KV) stores. In this paper, we
present a holistic approach to designing high-performance
SIMD-aware KV stores for emerging multi-core CPU archi-
tectures. Towards this, we first perform an in-depth study of
the opportunities and challenges involved in leveraging AVX-
512 vectorization-based parallel hash table designs with a
state-of-the-art high-performance key-value store like RDMA-
Memcached. Based on this, we propose a SIMD-Aware Client-
Centric and Optimistic RDMA-based Key-Value Store, SCOR-
KV, that optimally exploits ‘RDMA+SIMD’ to accelerate
read-heavy MGet operations. SCOR-KV presents an SIMD-
conscious KV store friendly hash table layout, that leverages
the vertically vectorized N-way cuckoo hash table design
with optimistic KV pair lookup schemes. To complement this,
we propose RDMA -optimized SIMD-aware MGet communica-
tion protocols that offload the server-side pre-/post-processing
overheads to the client, while enabling optimal end-to-end
performance. Our performance evaluations over the latest
Intel Skylake CPUs and IB EDR interconnects show that our
proposed SCOR-KYV can achieve up to 3.7-8.6x improvement in
server-side Get throughput. Through our SIMD-aware RDMA
schemes, SCOR-KYV can also improve Multi-Get latencies for
read-heavy YCSB workloads by about 2.2x, as compared to
the RDMA-Memcached design running over the state-of-the-
art CPU-optimized MemC3 hash table design.

Keywords-CPU-SIMD, Key-Value Store, RDMA, AVX-512.

1. INTRODUCTION

Distributed in-memory key-value stores (KV stores) play a
vital role in accelerating data-intensive Big Data workloads
in multi-tiered data centre architectures and HPC clusters.
While they have been traditionally leveraged to accelerate
online data serving and caching services [6], [13], they are
also being widely used in offline data analytic scenarios
in both data centre and HPC environments [23], [26].
Many studies [7], [27] have shown that the performance
of KV store-based applications is dominated by reads, i.e.,
GETs. For instance, based on the real-workload traces from
Facebook [3], we see that a single web page request from

This research is supported in part by NSF grants #CCF-1822987, #CNS-
1513120, #ACI-1450440, #CCF-1565414, and NSF ACI1664137.

2640-0316/19/$31.00 ©2019 IEEE
DOI 10.1109/HiPC.2019.00040

257

a user can generate up to 521 distinct key-value (KV) pair
items that need to be fetched from the server cluster. High-
performance KV store applications [16], [27] attempt to
minimize the number of network round trips necessary to
fetch all the KV pairs corresponding to the user request
by coalescing (or batching) multiple read requests into a
single request; to maximize the number of items that can
be fetched concurrently. This common data access scenario,
referred to as a ‘Multi-Get’ (MGet), involves coalesced read
operations with per-server batches vary between 24 — 96
keys per request [16]. Thus, there is a significant need for
fast and scalable ‘Multi-Get’ support for read-mostly KV
store workloads.

With the emergence of modern CPU architectures (e.g.,
Intel Skylake, Intel Cascade Lake) that support vector regis-
ters which can fit an entire cache-line (512-bits vectors) [5],
there have been several studies directed towards exploiting
‘Single Instruction Multiple Data’ (SIMD) for accelerating
data-intensive operators like scan, sort, join, and bloom fil-
ters [8], [12], [19]. SIMD vector instructions have also been
leveraged to accelerate lookups over high-performance hash
tables [19]-[21] (i.e., CPU-vectorized hash table probing).
For instance, Polychroniou et al. [19] propose a data-parallel
probing approach with 512-bit vectors (AVX-512), that can
enable us to lookup 16 keys with one lookup operation,
when using a hash table with 32-bit keys and payloads.
These works make it evident that there is potential for
leveraging CPU-SIMD for scaling read-intensive hash
table workloads.

A. Motivation

On the other hand, high-performance ‘Remote Direct
Memory Access’ (RDMA)-based KV stores [9], [10], [14],
[25], that are optimized for modern HPC clusters and data
centers, use a hash table in their backend to store and
index KV pairs in a fast and efficient manner. Together
with the above-mentioned ‘MGet’ support requirement from
the applications, these KV store servers can benefit from
the ability to search (i.e., ‘lookup’) multiple KV pairs
concurrently using the SIMD-aware CPU-vectorized hash
table designs proposed in [19]. However, we find that:

Observation(I): The existing RDMA-based KV stores
rely on non-SIMD CPU-centric backend designs like tra-

IEEE
(@ computer
socl

Authorized licensed use limited to: The Ohio State University. Downloaded on September 19,2020 at 23:18:32 UTC from IEEE Xplore. Restrictions apply.

ety

ditional chaining hash tables [13] or CPU-optimized buck-
etized cuckoo hash tables like MemC3 [7]. They have not
been adapted to leverage the potential of CPU-SIMD on
current and emerging multi-core architectures.
Observation2): The existing state-of-the-art RDMA-
based KV store designs mostly focus on improving the
scalability and end-to-end latencies for point-to-point queries
like Set (K, V) and Get (K); i.e., they are not optimized
for bulk read operations like MGet (k1, k2,..,kN)).
This lack of SIMD-aware backend designs that support
read-intensive workloads over high-performance RDMA-
enhanced KV stores motivate us to explore the following re-
search challenges on modern multi-core CPU architectures:
Challenge@): What is the potential for leveraging SIMD-
aware hash tables for accelerating KV store servers?
Challenge®): Can we easily exploit the performance
benefits of CPU-SIMD by naively replacing the hash table
backend in the existing state-of-the-art RDMA-based KV
stores? If not, what are the performance bottlenecks?
Challenge(3): How can we eliminate these bottlenecks
to optimally exploit both RDMA and CPU-SIMD in high-
performance KV stores, towards supporting read-intensive
workloads like ‘Multi-Get’?

B. Contribution

To address the above research challenges, we first analyze
opportunities for exploiting CPU-SIMD, by performing an
in-depth analysis of state-of-the-art SIMD-aware hash table
designs [19], [20] with AVX-based vectorization (AVX2 /
AVX-512) support. Secondly, to identify the challenges in
leveraging these CPU-SIMD designs for accelerating KV
store servers, we integrate them with a state-of-the-art CPU-
centric KV store like RDMA-Memcached [17], and contrast
its performance with that of the non-SIMD cache-optimized
designs like MemC3 [7]. Through detailed performance
studies, we find that naively replacing the CPU-optimized
non-SIMD hash table designs with CPU vectorization-based
accelerated designs does not enable us to leverage the
optimal performance offered by the SIMD designs.

Based on the analysis with the state-of-the-art, in this pa-
per, we present a holistic approach to designing SIMD-aware
in-memory KV store, called SCOR-KV. SCOR-KV presents
an SIMD-aware Client-Centric and Optimistic RDMA-aware
design for Key-Value Stores, that co-designs the end-to-end
KV store ‘Multi-Get’ pipeline, by proposing:

@: a KV-friendly SIMD-aware hybrid and partitioned
hash table design for the server backend. It employs an
‘optimistic partial key’ lookup scheme that facilitates the KV
store to reap the benefits of employing AVX-based vector
instructions to lookup multiple KV pairs in parallel.

®@): an RDMA-optimized ‘optimistic lookup’-aware re-
sponse processing engine at the server, and a ‘Client-centric’
SIMD-aware request offload engine that employs zero-copy
and optimistic MGet request protocols.

258

Our performance evaluations over the latest Intel Skylake
CPUs and InfiniBand EDR (IB EDR) interconnects, show
that SCOR-KV can achieve about 3.7-8.6x improvement in
the server-side Get throughput. With our proposed SIMD-
aware RDMA-optimized Multi-Get schemes, SCOR-KYV can
improve the ‘Multi-Get’ latency for the read-heavy Yahoo!
Cloud Serving Benchmark (YCSB) [4] workload by about
2.2x, as compared to RDMA-Memcached [17] running with:
(a) the state-of-the-art CPU-optimized MemC3 hash table,
and, (b) a naively integrated SIMD-based hash table, in
its backend. The rest of the paper is organized as follows.
Section II presents the necessary background and Section III
presents our motivational analysis. We discuss the SCOR-
KV design in Section IV and present experimental evalua-
tions in Section V. Section VI discusses the related work.
We conclude in Section VII with future work.

II. BACKGROUND & MOTIVATION

In this section, we provide an overview of the state-of-the-
art non-SIMD and SIMD-aware hash table (HT) designs.

A. CPU-Optimized Key-Value Store Designs

State-of-the-art CPU-optimized HT designs based on
Memcached [13], such as MemC3 [7], have been pro-
posed to cater to the ‘read-heavy’ characteristics of pop-
ular online KV store workloads [27]. MemC3 introduces:
(a) a CLOCK-based LRU-approximating eviction algorithm
to maintain cache freshness while eliminating inter-thread
synchronization, and, (b) a cache-optimized optimistic con-
current cuckoo hashing (that supports multiple concurrent
readers and a single writer) via atomic key-version counters.

As shown in Figure 1, MemC3 employs a bucke-
tized cuckoo HT (BCHT) with four slots (i.e., places for
key/payload) per hash bucket with 2-way cuckoo hashing.
Each slot contains a 1-byte key signature and a KV pair loca-
tion pointe, and every key is associated with one key version
counter to enable lock-free read/write for concurrency. Since

KV Pair LocsA
(8x4 bytes)

1-byte tags
(1x4 bytes)

metadata
key (var-length)
val (var-length)

loc
loc

versionA S
counters

Figure 1: MemC3 Hash Table Design

each bucket fits into a single cache-line (40B), it enables
high load factor of about 90-95%' and cache-optimized
lookups; unlike Memcached’s default cache-unaware chain-
ing HT [9], [10], [13].

Iload factor of a HT (LF) = (number of KV pairs stored / number of
hash buckets); determines max. achievable hit rate for HT lookups.

Authorized licensed use limited to: The Ohio State University. Downloaded on September 19,2020 at 23:18:32 UTC from IEEE Xplore. Restrictions apply.

B. SIMD-Aware Hash Table Lookups

Firstly, using SIMD instructions for HT operations has
been proposed as a way to build bucketized hash tables (e.g.,
BCHT with ‘M’ slots-per-bucket). Rather than comparing
the input key against each slot in the designated hash bucket
individually, we can compare all ‘M’ keys in the hash bucket
with the input key using a single SIMD vector comparison.
This approach, referred to as horizontal vectorization [20],
[21], is however not always optimal, as: (a) we may expect
to search fewer than ‘M’ buckets on average, and, (b) it still
requires probing the ‘n’ input keys sequentially.

1) Vertical Vectorization for Data Parallel HT Lookups:
To enable true SIMD parallelism for lookups, we need a
single HT probe operation to iterate over ‘w’ input keys in
parallel (SIMD width ‘w > >1). The fundamental principle
is to process a different key per SIMD lane. Since it exploits
SIMD to process multiple keys in parallel and returns a
vector of payloads corresponding to the matching keys
(for a KV store, ‘payload’ refers to KV object pointer),
this approach is referred to as vertical vectorization. A
vertical vectorization-based HT lookup algorithm for an N-
way cuckoo HT (BCHT with ‘M’=1 and N hash functions)
is presented in [19]; a single iteration of which involves the
following steps (Figure 2 illustrates the same for ‘w’=4):

@D We load all SIMD lanes with input keys (ki) into a
SIMD register (K) with SIMD load operation.

@ For each probe key (ki) in SIMD register ‘K’, we
compute-and-store the corresponding hash buckets (hi) into
SIMD register ‘H’, based on hash function hl.

(B Using the hash bucket computed in ‘H’, we perform
a ‘Gather’ operation load buckets from the cuckoo HT into
SIMD register ‘KH’.

@ We perform an SIMD compare to match the original
probe keys (SIMD register K) with the keys we retrieved
from the HT (SIMD register ‘KH’) to obtain a bitmask for
potential key matches (green boxes in the mask indicate
matches and red boxes indicate misses). Steps (1), (2), (3),
and (4) are repeated up to ‘N-1’ times with hash functions
(h2,..,hN) for keys indicated as missing in the bitmask.

athes HMatch E athes I

: (mask)

(Vertical
K1) ..
k4] ...
k2] ...
K5] ..

mask

[try alternatlve buckets (Hash,_y)Afor keys without matches (e.g., k5)]

Figure 2: Vectorized operations on a ‘N-way’ Cuckoo Hash
Table (Vertical Vectorization); Illustration of one iteration
with probing 4 keys (k1,k2,k3,k4) in parallel

Now, if we consider the latest Intel CPUs that enable 512-
bit vectors (AVX-512) [5], for an ‘N’-way cuckoo HT with
32-bit keys and payloads, we can lookup 16 key in parallel
using one probe operation. Thus, we can lookup ‘n’ keys in a

259

maximum of Nxn/16 iterations, as compared to non-SIMD
designs that potentially perform N+n total iterations.

2) Stand-Alone HT Performance with Vertical Vectoriza-
tion: If we consider the latest Intel CPUs that enable 512-bit
vectors (AVX-512) [5], for an ‘N’-way cuckoo HT with 32-
bit keys and payloads, we can lookup 16 key in parallel
using one probe operation. Thus, we can lookup ‘n’ keys
in a maximum of N+n/16 iterations, as compared to non-
SIMD designs that may potentially perform N« n iterations in
total. To evaluate this, we study the stand-alone performance
of vertically vectorized 3-way cuckoo hashing with AVX-
512, i.e., ‘Cuckoo-Ver (AVX-512)’, based on the algorithm
presented in [19] (detailed in Section II-B1). Since 3-way
cuckoo HT enables a load factor close to 90%, we contrast it
with the performance of the state-of-the-art CPU-optimized
non-SIMD MemC3 [7], i.e., ‘MemC3 (Scalar)’.

We mimic two key access patterns: (a) a uniformly
random pattern (Uniform), and, (b) a skewed access pattern
(Skewed) based on Facebook’s Memcached workload gen-
erator [3], [15]. We use an input 32-bit column of 1G keys
with about 90% selectivity (selectivity = % of the input that
is likely to find a match in the HT), and the output is a 32-
bit column with matching payloads, over a table with a load
factor of 90%. We run this test on a shared HT across all 28
cores of a dual 14-core Intel Skylake node (see Section V).

Summary & Observations: Figure 3 presents the HT
probing throughput for the two designs, for varying HT
sizes. From this figure, we can observe that for HT sizes that
can fit into L2 cache (512KB), ‘Cuckoo-Ver’ outperforms
MemC3 by about 2.7x — 6.6x. When HT size exceeds L2
cache, we observe that, while ‘Cuckoo-Ver’ performance
drops by 3x-5x, it still maintains a gain of 1.63x-2.6x over
MemC3 HT. From the above experiments, we can observe
that, while the performance of the vertical-vectorized SIMD-
aware HT is bound by memory, it can maintain a consistent
improvement over cache-optimized non-SIMD HT designs.

<18
g o Umform Skewed
58 -
&% 12
2e 9
B
TEs
= 0 A 5 A ,_\% B
= MemC? Cuckoo- Ver MemC? Cuckoo Ver MemC3 Cuckoo-Ver

(Scalar) (AVX-512) (Scalar) (AVX-512) (Scalar) (AVX-512)
512KB 4 MB 32 MB
Hash Table Size vs. Cuckoo HT Designs

Figure 3: Stand-Alone HT Probing Performance on the 28-

core Intel Skylake CPU, over a 3-way Cuckoo HT vs. non-
SIMD CPU-optimized MemC3 HT with 32-bit key/payload

With this as the motivation, we present an in-depth
analysis of integrating the above SIMD-aware HT into an
RDMA-accelerated KV store.

Authorized licensed use limited to: The Ohio State University. Downloaded on September 19,2020 at 23:18:32 UTC from IEEE Xplore. Restrictions apply.

III. INTEGRATING CPU-SIMD INTO RDMA KV STORE

To identify the potential and corresponding challenges in
leveraging CPU-SIMD for accelerating KV stores, we inte-
grate the vertically vectorized HT discussed in Section II-B
with the state-of-the-art RDMA-Memcached [17] design.

A. Extending RDMA KV Store with SIMD HT

We focus on workloads of ‘MGet’ operations, i.e.,
MGet (K1, K2, ..,Kn), which batches together multiple
KV pairs requests directed to a particular server in KV
store cluster. For fair comparison, we replace the traditional
chaining HT in RDMA-Memcached [9] with the CPU-
optimized non-SIMD MemC3 HT design [7]. As shown in
Figure 4, the client-to-server pipeline for an MGet operation
can be broken down into three basic phases:

(1) Request Phase: In this phase, each key in
MGet(K1,..,.Kn) is mapped to a specific Memcached server
using consistent hashing, and the requests are batched-by-
server. These batched requests are sent to their respective
servers in one or more messages. From [16], typical batch
sizes vary from 24-96 KV pair read requests, with key sizes
between 200 B to 12 KB. With RDMA-Memcached’s current
non-SIMD aware ‘Get’ protocol, these small message trans-
fers entail using fast two-sided SENDs.

(2) Server Data Access: Upon receiving an MGet request
batch, forwarded from the server’s communication engine,
the assigned Memcached worker performs the following:

(a) Pre-Processing: The incoming request of ‘W’ keys
(‘W’ <= MGet size ‘n’) is parsed to extract the individual
keys. For each key, a corresponding 32-bit hash value,
signature, etc., are computed to prepare it for the HT lookup.

(b) KV Pair Search: In this phase, the HT is probed

to locate the payload (e.g., a KV pair memory pointer)
corresponding to the 32-bit key hash (i.e., HT Lookup
Phase). In this case, we can potentially leverage CPU-SIMD
data parallelism to accelerate key lookups. Once probing is
successful, the KV pair identified is located and read from
backend memory slabs (or data cache) and verified against
the client-supplied key string to ensure a full match (i.e.,
Key Match Lookup Phase). These matched KV pairs, with
variable length keys (8§ B-128 B) [13], are returned to the
communication engine.
(3) Post-Processing: Once all the KV pairs in the batch are
located at the server’s memory slabs, the server worker pre-
pares and posts responses to the client, followed by updating
the server’s metadata to maintain cache freshness (e.g., LRU
updates for Memcached). With RDMA-Memcached current
non-SIMD aware ‘Get’ protocol, this entails posting ‘W’
individual responses to the client.

B. Multi-Get Performance Analysis

We put together a complete end-to-end MGet pipeline, de-
picted in Figure 4, with the SIMD-aware vertical vectorized
HT design in Section II-B2 and RDMA-Memcached [17].

260

KV Client Libra

)
8
RDMA-based "B
Communication (0)-E : 2 [2b] HT Lookup Phase
Engine < g’ $ + Non SIMD [MemC3] vs. SIMD
9 g Wit & i (Horizontal vs. Vertical [SIGMOD15])
¢ |

[3] Post-Response Phase

(Client)

Figure 4: State-of-the-Art End-to-End Flow for MGet

(Server Cluster)

Towards supporting storing pointers to KV pairs, we extend
to generate RDMA-Memcached (RDMA-Mem) 32-bit KV
pair location IDs, and store it as the payload in ‘Cuckoo-
Ver (AVX-512)’-based HT backend. Based on this, we
study the performance potential of an integrated ‘RDMA-
Mem+Cuckoo-Ver(AVX-512)" KV store and contrast it with
RDMA-Memcached design backed by non-SIMD CPU-
optimized MemC3 (‘RDMA-Mem+MemC3 (Scalar)’). For
a fair comparison, we extend MemC3’s optimistic locking
and concurrency to the RDMA-Memcached design.

For our analysis, we use two nodes on Cluster A (see
Section V), that is equipped with 28-core Intel Skylake
nodes and IB EDR (100 Gbps) interconnects. We undertake
this experiment over an RDMA-Memcached server running
28 workers with a HT of size 4 M (hashpower=20). We use
the “memslap” Multi-Get benchmark [1], configured with
28 clients threads on the client node. We use varying value
sizes (32 B and 2 KB) and MGet sizes (i.e., ‘N’ = 32 or 96),
and perform a thorough analysis of the time-wise breakdown
into different stages described above.

é 48 EzAverage Latency (us) Throughput (MGet/s) 100 ﬂ
i)
g 40 80 &
S =
L 32 =
3] 60 T
- >
g > 40 £
i)
5 16 %"
oy
5 8 20 =
S 5
32 keys 96 keys 32 keys 96 keys 2
RDMA-Mem+MemC3(Scalar) RDMA-Mem+Cuckoo- 5}
Ver(AVX-512) g
(%]

Figure 5: Integrated End-to-End Performance with RDMA-
Memcached; Contrasting Vectorization-based Cuckoo HT
and Non-SIMD MemC3 backends; KV pair size (20 B,32 B)
and MGet sizes of 32 and 96

Figure 5 presents the end-to-end MGet latency with
server-side Get throughput and Figure 6 presents the server-
side latency breakdown for 16 keys-per-batch, based on
the phases in Section III-A, using the “memslap” MGet
benchmark. From these figures, we can observe that:

(1) the SIMD-aware ‘HT Look-up’ phase gains about 3.2x,
as seen in Figure 3. But, it is bottlenecked by ‘Key Match’
phase, and hence SIMD’s benefits are not noticeable.

(2) the ‘Post-Processing’ phase is the most dominant
of the different phases in Figure 4. The overhead of

Authorized licensed use limited to: The Ohio State University. Downloaded on September 19,2020 at 23:18:32 UTC from IEEE Xplore. Restrictions apply.

posting individual response for each ‘n’ keys in the
MGet (k1,k2,..,kn) dominates the end-to-end latency.
This can also be seen as the main factor contributing to the
13%-only gain in the total server performance.

& Pre-Processing
8Key Match

B HT Lookup
Post-Processing

_

Latency Breakdown (us)
S = N W A W

RDMA-Mem
Cuckoo-Ver (AVX-512)

RDMA Mem+
MemC3 (Scalar)
Figure 6: Server-Side Performance Breakdown for RDMA-
Memcached with 16 keys/batch; KV pair size (20B,32B)

C. Summary

From the analysis in Figures 5 and 6, it is evident that
naively replacing the HT backend in existing non-SIMD
RDMA-based KV store designs with an SIMD-aware HT
cannot give us optimal server scalability and high end-to-
end performance. Thus, towards designing a fully functional
‘RDMA+SIMD’ accelerated KV store, we identify the fol-
lowing challenges and co-design opportunities:

(1) Server-Side Bottlenecks: Existing SIMD-aware HT
designs [19] promise up to 3.2x improvement for the ‘HT
Lookup’ phase. However, these are diminished by the non-
SIMD aware steps involved in the ‘Pre-Processing’ and ‘KV
Pair Search’ phases (Phase [2a] and Phase [2b]). Hence, we
need a KV store-friendly SIMD-aware HT backend.

(2) Lack of End-to-End SIMD-Aware Designs: The
end-to-end latency for MGet is dominated by response
communication times (‘Post-Processing’ phase). We find
that this is because the state-of-the-art RDMA-aware KV
stores [9], [10], [14] are not optimized for bulk reads. Hence,
we need SIMD-aware RDMA protocols for MGets.

IV. SCOR-KV: DESIGN DETAILS

Towards overcoming the challenges identified above, we
propose a holistic approach to design an SIMD-aware
RDMA-based KV store, which we refer to as ‘SCOR-
KV’ (we use RDMA-based Memcached [17] as our ba-
sis). SCOR-KV presents an SIMD-aware Client-Centric and
Optimistic RDMA-aware design for Key-Value Stores. Fig-
ure 7 presents an overview of our proposed end-to-end for
MGet pipeline for SCOR-KYV, that introduces the following
enhancements into the MGet pipeline:

(1) KV-friendly SIMD-aware hybrid hash table (HT) for
the ‘Server Data Access’ phase (Figure 4 Phase [2b]), that
employs an ‘optimistic partial key’ lookup schemes.

(2) RDMA-optimized ‘optimistic lookup’-aware response
processing engine at the server (Figure 4 Phase [3]).

(3) Client-centric SIMD-aware request offload engine
(Figure 4 Phase [1]).

| SiMD-Aware kv Ciient Library | e [1b] SIMD-Aware Offoad Engine

i > | — ————————————————=

3 [{ll[Requestizhase @ 5 27 LHT Lookup Phase }

: : 2h 2 = e i

¢ [3b] Post- [1a] Pre-Process | | E '3 § gil Hybrid and Partitioned SIMD-Aware :

i |Process Engine Engine 8 <3"HT Design (Horizontal + Vertical Vect) 1

S 9

RDMA-based Communication = g R[iﬁ]%%/ 3 |

Engine T | ' Server-Reply vs. Hybrid Server-Reply/- ypass’.
(Client) (Server Cluster)

Figure 7: Proposed End-to-End Flow for MGet in SCOR-KV

A. SIMD-Aware Hybrid Hash Table with Optimistic Lookups

Typically, cuckoo HTs and its high-performance variants
(presented in Figure 3) inherently enable a constant lookup
performance. However, from Section III-A, we can see that
the ‘“HT Lookup’ phase entails: (a) an SIMD-aware parallel
probing phase to locate KV pair object from the HT using
32-bit key hashes, followed by, (b) a non-SIMD aware key-
matching phase that deals with variable length keys. Thus,
to maintain the near-constant performance enabled by CPU-
SIMD HT probing throughout the ‘HT Lookup’ phase, we
need to make the key-matching phase ‘SIMD-aware’ and
overcome the need to match variable key-lengths. Towards
this, we present a hybrid and partitioned SIMD-aware KV-
friendly HT design, as shown in Figure 8. It stores a fixed-
length ‘partial-key’ for every KV object indexed in the
HT, and matches this ‘partial key (PKey) to enable near-
constant ‘HT Lookup’ performance.

1) Partitioned Layout: As in Figure 8, we partition the
(key-hash, KV-obj-ptr) stored in the typical HT
among two distinct tables, i.e., ‘Key-Sig HT (SIMD-HT)’
and ‘Partial-Key Table (PKey-Table) ’, respectively.

N-way Cuckoo Hash TableA PKey Table
(hash=32-bits, Kkey—loc=32—bits) (pkey=32-bjts,KV-loc=32-bits)

pkey version
counters
J

counters

Step 1: Parallel Probing
over SIMD-HT

Step 2'Parallel Key
Matching over PKey-Table

Figure 8: SCOR-KV Hybrid Table Design (+HybridHT):
KV-friendly SIMD-aware HT layout with PKey-Table

(1) SIMD-HT stores the following tuple: (key-hash,
PKey-Table-ptr). It leverages an SIMD-aware verti-
cally vectorized N-way cuckoo HT design (see Section II-B).

(2) PKey Table follows a columnar table format (i.e.,
non-bucketized vertical HT) and stores the following tuple:

(PKey, KV-obij-ptr).

(3) Asin [28], we use a slab memory management where
each KV object is assigned with a 32-bit location ID (i.e, 32-
bit KV object pointers), and 32-bit values for (key-hash,
kv-obj-ptr, PKey-Table-ptr).

Authorized licensed use limited to: The Ohio State University. Downloaded on September 19,2020 at 23:18:32 UTC from IEEE Xplore. Restrictions apply.

N-way M-bucket
(aligned CPU buffers for Cuckoo HT
key-hash {h1...h16}, pkey

{p1...p16})

Pkey-Table

(16 blt

AVX
[[MASKED [MASKED>
e masg CUSEP T F]"one [
(compareA (gather
PKeys) matchingA (KV thls
i wi
(32-bit hash,) KV objs) - version
4-byte partial key matches)

“W'=16) 16 hash hkey hkey Pkey-HT pkey 16A 16 16A pkey 16A
hash buckets Ik-ver F_’key»HTIk-ver locsAforA lk-ver PKeys input KV Ik-ver KVlocs
keys (before indexes (after version (before from PKeys locs (after for matchesA/

- probe) probe) matches j_ probe) PKey-HT probe) 2

(Step 1: Vertical Vectorization overmvay Cuckoo Hash Table with (key-hash,
pkey-loc) tuples;AParallel Probing if locate KV object; Repeat N-1' times for
missing keys; See Figure-2 for details)

Y N N
(Step 2: Vertical Vectorization over Pkey-Table (pkey,A KMoc-ID) tuples; SIMD widthA'w'=16;

Parallel Key Matching for KV pairs located via SIMD-HT probing)

Figure 9: Vectorized operations on the SCOR-KV Hybrid HT with AVX-512 (SIMD width ‘w’=16); SIMD-aware 3-way
Cuckoo Hashing for HT Probing and SIMD-aware Partial Key Matching

With SCOR-KV’s hybrid HT layout, every insert/update
Set (K,V) operation entails: (a) retrieving a free
PKey-Table location, (b) updating key into SIMD-HT
with this PKey-Table-ptr, (b) updating first ‘P’ bytes
of the KV pair’s variable length key-string into the
PKey-Table along with the PKey-Table-ptr.

2) SIMD-Aware Optimistic Lookups: Similar to typical
CPU vectorization-based accelerated designs discussed in
Section II-B, we lookup the ‘N’ keys in the MGet request
in the SIMD-HT to exploit SIMD data parallelism. For
hash-key matches located in SIMD-HT, we employ the
PKey-Table-ptr to index the PKey—-Table and finding
KV pair object with matching keys. These two steps to
enable data-parallel key lookups and matches are illustrated
in detail in Figure 9. Since we match ‘partial keys’, we refer
to the SCOR-KV’s HT Lookups as ‘Optimistic’.

As vector gather instructions on the latest CPUs en-
able loading up to 64-bits per-SIMD lane, we can have
PKey lengths (‘P’) of up to 8 bytes (and powers of
2). For instance, if we store 4-byte PKey and 4-byte
pointer-to-KV-obj, we can leverage two 64-bit wide
AVX-512 gather (_mm512_1i64gather_epi32) 32-bit
shuffle (mm512_shuffle_epi32), to extract and match
16 keys in the input in parallel. This eliminates server’s non-
SIMD overheads during the ‘HT Lookup’ phase.

3) Enabling SIMD-aware Concurrency: While KV store
workloads are read-dominated, they are comprised of a mix
of Set/MGet/Get operations. So, we need to ensure safe con-
current reads and updates to the backend HT. With SIMD-
aware vertical vectorized cuckoo HT, that enable lookup up
‘w’ distinct keys in parallel, employing traditional concur-
rency schemes (e.g., fine-grained locks in Memcached [13])
is not feasible as we need to lock ‘w’ distinct hash buckets.
To alleviate this, we extend the optimistic locking mecha-
nism in MemC3 [7], that employs key-version counters, to
enable lock-free single-writer/multiple-reader concurrency.
Each key is associated with a ‘key version’ counter, which
is atomically incremented only during updates. For both
SIMD-HT and PKey-Table, we use AVX-512 gather-and-
compare (_mm512_gather_132_epi32) to check the

262

‘key version’ before and after the probing/matching pro-
cesses to ensure data consistent lookups. A version mismatch
signifies an update, and the particular key lookup is retried.

B. RDMA-optimized Response Engine (+PostOptm)

To alleviate the bottlenecks during ‘Post-Processing’
phase at the RDMA-based KV store server, we need to
minimize the round-trip communication times involved per
MGet. Based on [9], we propose a latency-optimized ‘Hy-
brid Server-Reply/-Bypass’ RDMA protocol, that partially
offload the server-side ‘Post-Response’ phase (Figure 4
phase [3]) to the client, as depicted in phases [3a] and [3b]
in Figure 7. It reduces the ‘n’ two-sided SENDs posted by
the servers in [9], [10] per MGet to just one per-server. At
each server, all responses are aggregated into a pre-allocated
buffer and only the buffer address (and remote HCA key) is
communicated to the client, which retrieves them in one or
more server-bypassed RDMA Reads.

While ‘SIMD-aware optimistic partial key lookups’ are
ideal, a full comparison of the variable-length key (corre-
sponding to the KV object) is still vital for ensuring the basic
MGet semantics. Therefore, unlike default designs [13], we
send the ‘key’ in-line with the corresponding ‘value’ in
the response. Upon receiving batched responses, the client
invokes the ‘Post-Process’ engine ([3b] in Figure 7) to parse
and ensure full key matches. This is illustrated in Figure 10.
If the optimistic matches fail, the request can be re-sent as
a single key ‘Get’ or with the next concurrent ‘MGet’.

C. Client-Centric Request Offloading (+PreOptm)

To alleviate the overheads at the server that is incurred
during ‘Pre-Processing’ phase, we present a client-centric
SIMD-aware request engine for MGets. It offloads the
server-side ‘Pre-Processing’ phase (Figure 4 phase [2a])
to the client, as depicted in phases [la] and [1b] in Fig-
ure 7. The RDMA-based SCOR-KV client: (a) performs
n’ hash/signature computations locally, (b) packs them into
a contiguous buffer with aligned ‘n’ 8-byte partial keys,
and, (c) posts an RDMA-Write-with-Immediate (RWImm)
directly into a pre-leased CPU-aligned server buffers at the

Authorized licensed use limited to: The Ohio State University. Downloaded on September 19,2020 at 23:18:32 UTC from IEEE Xplore. Restrictions apply.

[Client | \ Server ‘(SIMD-KV HT Layout)

[kafKa ... [knl : N-way PKey-
GLs2,..5n) L RWImm(mget-sig(n)) : Cuckoo-Ver Table

(h1,h2,...han) |
(p1,p2,....pn) |:

| SEND(mget_rsp(n)) |
(client-side full

keycmp) i RDMAREAD f
. (rbuf, rkey, tot-len d
K1,V1..... KN,VN | . o

Figure 10: SCOR-KV Hybrid Server-Reply/-Bypass
MGet Schemes; with Client-Centric Request Offload
(‘MGet(hash, pkey)’+RDMA-Write-Imm) and Post-
Processing (SEND+RDMA-Read) Engine; backed by
SIMD-Aware Hybrid HT with Optimistic Lookups

server. Upon receiving an ‘immediate’ work request (32-bit
immediate value to identify the pre-lease buffer), the server
launches the ‘Server Data Access’ phase via the SIMD-
Aware MGet offload engine ([1b] in Figure 7). This is also
illustrated in Figure 10. Based on this, we present detailed
evaluations of SCOR-KV in Section V.

V. PERFORMANCE EVALUATION

In this section, we present the results of our in-depth anal-
ysis of the proposed ‘RDMA+CPU-SIMD’-aware SCOR-
KV designs. We present evaluations with ‘memslap” MGet
benchmark [1] and YCSB application benchmark [4].

A. Experimental Setup

We use the OSU-RI2-Skylake (Cluster A) for our eval-
uations. Each node in this testbed is provisioned with Intel
Skylake dual fourteen-core processors (28-cores), 128 GB
DRAM, connected via Mellanox InfiniBand EDR intercon-
nects (100 Gbps). We study the performance of the following
SIMD-aware and non-SIMD KV store designs: (a) SCOR-
KV (illustrated in Figure 10), (b) RDMA-enhanced Mem-
cached with Non-SIMD MemC3 [7] backend (MemC3+
RDMA-Mem), and, (c) the naively integrated ‘RDMA-
Mem+Cuckoo-Ver (AVX-512)’ presented in Section III.

For our micro-benchmark studies, we employ the “mem-
slap” MGet benchmark [1], configured with 28 streaming
client threads on a single node on Cluster A. We enhance
“memslap” MGet benchmark to employ FB’s Memcached
workload generator (mutilate [15]) to mimic KV store’s
skewed data access pattern. Since the SIMD-aware HT is
employed per-server, we focus on a single KV store server
running full-subscription (i.e., 28 workers) on a node on
Cluster A. We configure the RDMA-Memcached and SCOR-
KV servers with an HT size of 32 MB with 90% load factor.
This refers to 220 buckets with 4slots/bucket for MemC3,
and, 22 hash buckets with 32-bit keys/payloads for Cuckoo-
Ver (AVX-512) and SCOR-KV.

263

B. Performance with Varying KV Pair / MGet Sizes

For the first experiment, we study the end-to-end per-
formance with MGet (k1,k2,..,kn) using uniformly
random (Uniform) access pattern. We use an MGet size
‘n=32’, using KV pair sizes: (a) 16 B key and 64 B value,
(b) 32B key and 512 B value, and, (c) 128 B key and 1 KB
value. From Figure 11a, we observe that SCOR-KV can
improve the overall MGet latency by about 2.6x for small
KV pair sizes and about 12% for larger sizes; as compared
to the non-SIMD ‘RDMA-Mem+MemC3’ and naive SIMD-
based ‘RDMA-Mem+Cuckoo-Ver (AVX-512)’ design.

For the second experiment, we study the end-to-end
performance with MGet (k1,k2, .., kn) with MGet size
‘n=16, 64, 96’, using KV pair size of 16 B key and 64B
value. We employ the skewed access pattern (Skewed)
that mimics KV store data popularity in [3], [15]. From
Figure 11b, we can see that SCOR-KV can improve the
overall MGet latencies from 1.6x to 3.6x as the MGet request
length ‘n’ increases. Thus, we observe that:
Observation): For smaller KV pair sizes, irrespective
of the MGet size, SIMD-aware and optimistic RDMA-
accelerated lookups in SCOR-KV can maintain up to 3x
improvement in end-to-end performance, and server-side
throughput by about 8.56x. Also, for both uniform and
skewed patterns, naively integrated ‘RDMA-Mem+Cuckoo-
Ver (AVX-512)’ does not show significant performance
benefits, due to its inherent non-SIMD aware design. On
further analysis, we find that the overhead of increased
network I/O and memory-bound key matches with large KV
pair sizes, seem to dominate over the benefits of CPU-SIMD.

C. Server-Side Performance with SCOR-KV

For our third experiment, we investigate how each of
the individual optimizations in SCOR-KV contributes to
the overall server performance. We extend the server-side
time-wise breakdown in Figure 6 to include SCOR-KV
optimizations, as shown in Figure 12a. We use an MGet
size ‘n=32’, using varying KV pair sizes (K, V) of: (a)
(16 B, 64 B), and, (b) (128 B, 1 KB). Since AVX-512 allows
a max. SIMD width of ‘w’=16 (i.e, probe ‘w’ in parallel),
we present the average breakdown for batch sizes of 16 keys.

With ‘RDMA-Mem+MemC3’ as our baseline, we cu-
mulatively add optimizations proposed in SCOR-KYV, as
follows: (1) Cuckoo-Ver: This refers to naively replacing
the non-SIMD HT in the KV store backed with an SIMD-
aware (vertical vectorized ‘Cuckoo-Ver’) HT design. No
other additional changes are made to the KV store’s MemC3
backend for RDMA-Memcached (as in Section III-A).

(2) +HybridHT: This is the hybrid/partitioned SIMD-
aware HT design optimistic partial key lookups, discussed
in Section IV-A, to optimize the ‘HT Lookup’ phase. The
default non-SIMD MGet protocol in RDMA-Memcached,
involving two-sided SENDs per key, is employed.

Authorized licensed use limited to: The Ohio State University. Downloaded on September 19,2020 at 23:18:32 UTC from IEEE Xplore. Restrictions apply.

—100
2
580
|5 60
= 40
o 20
S 0]
* Exs~ >Q ¢t Es~ >Q % Ex~ >Q
2 B 2290 &z 5. 220 kp 5. 22O ki
&) SO T ol iy 20 T ol M S0 T ol o
) ZE SSx 0% ZE Zex 9% ZE Sgx o%
o 5 54> O S8 5355 © g8 535 O
k= 5= A< S 33 piE< »S 33 g »8
i @ A @ 7O~ 5 A
(K,V)=(16B,64B) (K,V)=(32B,512B) (K,V)=(128 B,1KB)

(a) Performance with Varying KV Pair Sizes (Uniform Pattern)

Figure 11: End-to-End MGet
Memcached+Cuckoo-Ver(AVX-512)

E@Pre-Processing EIKV Pair Search EaPost-Processing -e-Agg. Server Get Throughput

28 40 300 5

2 2

56 30 240 8

5 180 5

54 20 =

| 120 E
=}

2?2 =2 B " 10 60 £

3, BB B , & 2 2 2,8

%) 5 = o] 5 = =

P g 2 & g & g 2 £ E £ 5

B g 2 £ 9 s ¢ 2 £ 9 3

= 2 z =2 ¢ = Z gz = g 2

E I~ = & s I~ = & g

] + + o + + [3

(K,V)=(16B, 64 B) (K,V)=(128B, 1 KB)
SCOR-KV Design Optimizations vs. RDMA-Memcached; Breakdown for 16 Key/Batch

(a) Varying KV Pair Sizes

)

—~
2

Breakdown Latency (u:

End-to-End MGet Latency (us

120 -e-Total Server Get Throughput (M Gets/s) 250 =
100 200 %
=
80 150 <
60 &
100 2
40]
50 Q
20 ’—‘ ’_‘ 5
0 7 0 5
b Exs~ »>aQ % Es~ &t Es~ 2a »n
5. 229 &z F. 229 kp 5. 229 kg o
S0 T dw FQ T ol dw 20U T ol &0
tE ZSX O tE ZSxX O LE ZSx O <
S8 234> 0z S& 245 0z & 245 oz
== A2 9% 3= A2% »< == pax o<
3T 20% 3 202 3 202
~ "4 [~
16 keys/Mget 64 keys/Mget 96 keys/Mget

(b) Performance with Varying MGet Sizes (Skewed Pattern)

Latency: Contrasting SCOR-KV with RDMA-Memcached+MemC3 / RDMA-

I
=)
S

Total Server Get Throughput (M Gets/s)

30 EPre-Processing
25 E3Post-Processing

=KV Pair Search

320

553
(=1

240

w

160

—_
(=}

80

w

(=}

+Pre-Optm [
MemC3 [#

+Post-Optm [[]]
+HybridHT [
Cuckoo-Ver [EEE7
+Post-Optm []
+HybridHT
+Pre-Optm []

Cuckoo-Ver [

Uniform w/ (K,V) = (32 B,512B) Skewed w/ (K,V) = (32 B, 512 B)
SCOR-KYV Designs vs. RDMA-Memcached; Breakdown for 16 Key/Batch

(b) Uniform vs. Skewed Access Pattern

Figure 12: Server-Side Time-wise Breakdown for MGet Processing with SCOR-KV optimizations

(3) +PostOptm: This refers to the ‘Post-Processing Phase’
optimizations in Section IV-B, i.e., the ‘Hybrid Server-
Reply/Server-Bypass’ RDMA-MGet protocol, along with
‘optimistic offloading’ of key matching to the client-side.

(4) +PreOptm: This refers to the ‘Pre-Processing Phase’
optimizations in Section IV-C, that enables the server-side
pre-processing overheads to be offloaded to the client.

From Figure 12a, we can observe that:
(1) +PostOptm can enable a 5.09x improvement to the
overall server-side processing time per MGet, as compared
to the default MGet protocol in RDMA-Memcached.
(2) +HybridHT enables a constant KV pair search perfor-
mance, irrespective of the key size. SCOR-KV can improve
the ‘HT Lookup’ phase by about 2.6x over MemC3 and 1.3x
over naively integrated Cuckoo-Ver(AVX-512).
(3) +PreOptm optimizations in SCOR-KV reduces the pre-
processing server-side time by about 90%. However, since it
accounts for a small percentage of the total MGet processing
time, the overall improvement is about 19%.
(4) SCOR-KYV can improve the total server Get throughput
by 3.74x-8.69x over the non-SIMD RDMA-based KV stores
(both Non-SIMD MemC3 and naively integrated SIMD-
HT), as evident from the line graph (purple) in Figure 12a.

We also extend this time-wise breakdown to study the
impact of uniform and skewed access patterns on the server’s

264

data processing time. We use an MGet size ‘n=32’, using
varying KV pair size of 32B key and 512B value. From
Figure 12b, we can observe similar performance impacts
across both patterns. However, SCOR-KV can improve the
performance by an additional 1.87x over its performance
with the uniform access pattern. With a skewed pattern, it is
intuitive that the popularly queried KV pairs can be cached
in L2. Thus, SCOR-KV can maintain the high performance
of the ‘HT-fits-in-Cache’ scenario, even when the overall HT
size exceeds the cache. Therefore:

Observation2): SCOR-KV can maintain the benefits of
SIMD-aware data-parallel HT probing to improve the overall
server-side Get performance. SIMD-aware hybrid HT with
optimistic lookups with RDMA-based schemes are more
beneficial for skewed KV workloads, as they can exploit
the inherent caching behavior of multi-core CPUs more
efficiently than the uniform data access pattern.

D. SCOR-KV with Horizontal Vectorized SIMD HT

To demonstrate that SCOR-KV’s SIMD-aware optimiza-
tions apply to SIMD-based designs beyond the 3-way
vertical cuckoo HT employed in this paper, we present
evaluations with a horizontal vectorized HT, i.e, bucketized
cuckoo HT (BCHT) with 4 slots/bucket and 32-bit key and
payloads using AVX-2 (256-bit) vectors to probe hash bucket
slots in parallel. We replace SCOR-KV’s N-way Cuckoo

Authorized licensed use limited to: The Ohio State University. Downloaded on September 19,2020 at 23:18:32 UTC from IEEE Xplore. Restrictions apply.

Pre-Processing O Server Data Access B Post-Processing

Breakdown Latency (us)

+Post-Optm ED
+HybridHT] 7]
+Pre-Optm Dﬂ
NoSIMDY]
+Post-Optm m
+Pre-Optm Dj

+HybridHT J[]

+pet.sivp-t17 TN
Det-siv-tr I

s
2
7]
°
z
T
BCHT-Hor(AVX-256) Cuckoo-Ver(AVX-512)

SIMD HT Design with RDMA-Memcached; Breakdown for 16 Key Batches (K,V) = (20,128)

(a) Performance with SIMD-based for Bucketized Cuckoo HT (Horizontal

Vectorization)

2120
<100
z i
£ 80 = i 2 £
= i A A i
3 60 i i i G i
S 40 i o i i i
is i i i i i
F 20 i o G i i i
=} v S v e e —
g i i i i i i
S 0 e s e e 2 Z
= + PR = + e =
4 £ §5q ga £ §sa &8
S SZ 2 oz S =5 Rz
=10 DR-IA 3% =19 DRI o
L E I Ex oK * B <8x% ox
32 s3> 0z e >5> 0z
= oE< aZ == 82% 2
a A [a) 2O~
o~ ~
YCSB-B MGet YCSB-B Set

SCOR-KV vs. RDMA-Memcached+MemC3/Cuckoo-Ver (AVX-512) with 100 clients

(b) Concurrency with YCSB Workload B; 112 clients over 4 nodes and
a 28 worker KV store server

Figure 13: SCOR-KV Performance with Different Vectorization Approaches and YCSB Application Workload

HT with this ‘BCHT-Hor (AVX-256)’ design, and keep
our proposed hybrid HT layout and client-centric RDMA-
optimized offloading schemes.

We extend the server-side time-wise breakdown studies
presented in Section V-C. From Figure 13a, we can ob-
serve that, as compared to the RDMA-Memcached server
with Non-SIMD MemC3, SCOR-KV can improve the ‘HT
Lookup’ phase by 1.47x for SIMD-HT based on BCHT-
Hor(AVX-256). This is about 2x lesser than the benefits
observed with Cuckoo-Ver (AVX-512). We attribute this
to the need to lock and probe keys individually over the
horizontal vectorized BCHT design.

E. Evaluations with YCSB

Finally, to evaluate the performance of SCOR-KV with
KV store mixed workloads (read/write mix with MGet and
Set operations), we present end-to-end latency evaluations
with the popular YCSB benchmark [4]. We employ the
YCSB workload B (YCSB-B) with 95:5 Read:Write mix,
with KV pair size of (16 B, 64 B) and an MGet length of 16
keys (we employ coalesce individual Gets into an MGet). We
set up a small cluster with a single KV store server with 28
workers on a node, and run a total of 112 clients over 4 client
nodes, on Cluster A. From Figure 13b, we can observe that
SCOR-KV can maintain 2.2x performance improvement for
MGet over SIMD-based ‘RDMA-Mem+Cuckoo-Ver (AVX-
512)’ and non-SIMD ‘RDMA-Mem+MemC3’ KV store
designs. Also, we observe that SCOR-KV can maintain
the RDMA KV store’s Set performance, and the hybrid
and partitioned HT layout does not incur any performance
overheads for KV store update operations.

Thus, our proposed SIMD-aware MGet schemes can ben-
efit the overall KV store performance. While SCOR-KV’s
optimizations are presented for MGets, the optimistic client-
centric designs can be applied to any in-memory storage
middleware that needs to scale the server-side performance.

VI. RELATED WORK

The idea of leveraging CPU-SIMD to improve the per-
formance of critical database operations has been well re-

265

searched in literature. For instance, CPU vector instructions
are being leveraged to accelerate database scan, sort, aggre-
gation [8], [18], [19], [29], hash join operations [19], [20],
and bloom filters [12]. Similarly, network packet processing
applications dealing with batched HT lookups [21], also
leverage CPU-SIMD. Additionally, in-depth performance
analysis and micro-benchmarks for these state-of-the-art
SIMD-aware HT designs on the latest CPU architectures
have been presented in [24]. On the other hand, Zhang
et al. [28] leverage the high memory bandwidth of mod-
ern GPGPUs to scale the KV store server’s performance.
While its GPU-optimized cuckoo HT outperforms its CPU-
optimized counterpart, the client-side latency suffers due to
the GPU kernel launch and server-side batching overheads.
Consequently, several works have proposed on exploiting
RDMA-based communication engines for accelerating KV
store performance [9]-[11], [14], [22], [25]. In addition
to these, holistic designs like MICA [11], that focus on
partitioning data access among cores to avoid concurrency
overheads have been proposed. However, these state-of-the-
art designs are mostly focused on optimizing performance
for point-to-point queries like Set/Get, and are not optimized
for bulk read requests like MGet. Unlike these works, in
this paper, we propose an SIMD-aware RDMA-optimized
KV store that co-designs the client-to-server data processing
pipeline to exploit existing CPU-vectorized HT designs
without compromising on the end-to-end performance.

VII. CONCLUSION & FUTURE WORK

In this paper, we propose an SIMD-Aware Client-Centric
and Optimistic RDMA-based Key-Value Store, SCOR-KYV,
that optimally exploits ‘RDMA+SIMD’, to accelerate read-
heavy MGet operations in KV stores on emerging multi-core
CPU architectures. SCOR-KV presents an SIMD-conscious
KV store friendly hash table layout, based on the vertically
vectorized N-way cuckoo hashing design. It proposes op-
timistic KV pair lookups schemes, that enable offloading
server-side pre- and post-processing overheads to the client
while maintaining the end-to-end ‘Multi-Get’ semantics.

Authorized licensed use limited to: The Ohio State University. Downloaded on September 19,2020 at 23:18:32 UTC from IEEE Xplore. Restrictions apply.

To complement this, we present ‘Multi-Get’-aware RDMA
schemes to maximize the overall performance.

Our performance evaluations on the latest Intel Skylake
CPUs and IB EDR interconnects, show that our proposed
SCOR-KV can achieve up to 3.7-8.6x improvement in
server-side Get throughput, while improving end-to-end
MGet latencies for read-heavy YCSB workloads by about
2.2x over the state-of-the-art RDMA-based Memcached
server running over non-SIMD cache-optimized MemC3
backend. In the future, we plan to extend our proposed de-
signs to: (a) larger-scale distributed Memcached workloads,

and,

(b) leverage SCOR-KV’s generic designs into other

memory-centric key-value stores like Redis [2].

(1]
(2]
(3]

(4]

[5

—_

[6

—_

[7

—

(8]

[9

[r

[10]

(1]

[12]

REFERENCES

“memslap,” http://docs.libmemcached.org/bin/memslap.html.
“Redis,” https://redis.io/.

B. Atikoglu, Y. Xu, E. Frachtenberg, S. lJiang, and
M. Paleczny, “Workload Analysis of a Large-Scale Key-
Value Store,” in ACM SIGMETRICS Performance Evaluation
Review, vol. 40, no. 1. ACM, 2012, pp. 53-64.

B. E Cooper, A. Silberstein, E. Tam, R. Ramakrishnan,
and R. Sears, “Benchmarking Cloud Serving Systems with
YCSB,” in The Proceedings of the ACM Symposium on Cloud
Computing (SoCC ’10), Indianapolis, Indiana, June 2010.

J. Doweck, W. Kao, A. K. Lu, J. Mandelblat, A. Rahatekar,
L. Rappoport, E. Rotem, A. Yasin, and A. Yoaz, “Inside 6th-
Generation Intel Core: New Microarchitecture Code-Named
Skylake,” IEEE Micro, vol. 37, no. 2, pp. 52-62, March 2017.
A. Dragojevi¢, D. Narayanan, M. Castro, and O. Hodson,
“FaRM: Fast Remote Memory,” in /1th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 14),
2014, pp. 401-414.

B. Fan, D. G. Andersen, and M. Kaminsky, “MemC3: Com-
pact and Concurrent MemCache with Dumber Caching and
Smarter Hashing,” in Presented as part of the 10th USENIX
Symposium on Networked Systems Design and Implementa-
tion (NSDI 13). Lombard, IL: USENIX, 2013, pp. 371-384.
P. Jiang and G. Agrawal, “Efficient SIMD and MIMD Paral-
lelization of Hash-based Aggregation by Conflict Mitigation,”
in Proceedings of the International Conference on Supercom-
puting. ACM, 2017, p. 24.

J. Jose, H. Subramoni, M. Luo, M. Zhang, J. Huang, M. Wasi-
ur Rahman, N. S. Islam, X. Ouyang, H. Wang, S. Sur, and
D. K. Panda, “Memcached Design on High Performance
RDMA Capable Interconnects,” in Proceedings of the 2011
International Conference on Parallel Processing, ser. ICPP
’11, Washington, DC, USA, 2011.

A. Kalia, M. Kaminsky, and D. G. Andersen, “Using RDMA
Efficiently for Key-Value Services,” in Proceeding of SIG-
COMM ’14, Aug 2014.

H. Lim, D. Han, D. G. Andersen, and M. Kaminsky, “MICA:
A Holistic Approach to Fast In-memory Key-value Storage,”
in Proceedings of the 11th USENIX Conference on Networked
Systems Design and Implementation (NSDI), April 2014.

J. Lu, Y. Wan, Y. Li, C. Zhang, H. Dai, Y. Wang, G. Zhang,
and B. Liu, “Ultra-Fast Bloom Filters using SIMD tech-
niques,” in 2017 IEEE/ACM 25th International Symposium
on Quality of Service (IWQoS), June 2017, pp. 1-6.

266

[13]

[14]

[15]
[16]

[17]

(18]

[19]

(20]

(21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

“Memcached: High-Performance, Distributed Memory Object
Caching System,” http://memcached.org/.

C. Mitchell, Y. Geng, and J. Li, “Using One-Sided RDMA
Reads to Build a Fast, CPU-Efficient Key-Value Store,” in
Proceeding of USENIX ATC ’13, Jun 2013.

Mutilate, https://github.com/leverich/mutilate.

R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee,
H. C. Li, R. McElroy, M. Paleczny, D. Peek, P. Saab,
D. Stafford, T. Tung, and V. Venkataramani, “Scaling Mem-
cache at Facebook,” in Proceedings of the 10th USENIX Sym-
posium on Networked Systems Design and Implementation
(NSDI ’13), 2013.

NOWLAB, “High-Performance
http://hibd.cse.ohio-state.edu, 2019.
M. Pilman, K. Bocksrocker, L. Braun, R. Marroquin, and
D. Kossmann, “Fast Scans on Key-Value Stores,” Proceedings
of the VLDB Endowment 10, no. 11, pp. 1526-1537, 2017.
O. Polychroniou, A. Raghavan, and K. A. Ross, “Rethinking
SIMD Vectorization for In-Memory Databases,” in Proceed-
ings of the 2015 ACM SIGMOD International Conference on
Management of Data, 2015, pp. 1493-1508.

K. A. Ross, “Efficient Hash Probes on Modern Processors,”
in IEEE 23rd International Conference on Data Engineering
(ICDE ’07). 1IEEE, 2007, pp. 1297-1301.

N. L. Scouarnec, “Cuckoo++ Hash Tables: High-Performance
Hash Tables for Networking Applications,” in Proceedings of
the 2018 Symposium on Architectures for Networking and
Communications Systems. ACM, 2018, pp. 41-54.

D. Shankar, X. Lu, N. Islam, M. Wasi-Ur-Rahman, and
D. K. Panda, “High-Performance Hybrid Key-Value Store on
Modern Clusters with RDMA Interconnects and SSDs: Non-
blocking Extensions, Designs, and Benefits,” in 2016 IEEE
International Parallel and Distributed Processing Symposium
(IPDPS), May 2016, pp. 393-402.

D. Shankar, X. Lu, and D. K. Panda, “Boldio: A Hybrid and
Resilient Burst-Buffer Over Lustre for Accelerating Big Data
I/0,” in 2016 IEEE International Conference on Big Data,
Dec 2016, pp. 404-409.

D. Shankar, X. Lu, and D. K. Panda, “SimdHT-Bench: Char-
acterizing SIMD-Aware Hash Table Designs on Emerging
CPU Architectures,” in 2019 IEEE International Symposium
on Workload Characterization (IISWC), November 2019.

M. Su, M. Zhang, K. Chen, Z. Guo, and Y. Wu, “RFP: When
RPC is Faster Than Server-Bypass with RDMA,” in Pro-
ceedings of the Twelfth European Conference on Computer
Systems, ser. EuroSys *17, 2017, pp. 1-15.

T. Wang, S. Oral, Y. Wang, B. Settlemyer, S. Atchley, and
W. Yu, “BurstMem: A High-Performance Burst Buffer Sys-
tem for Scientific Applications,” in 2014 IEEE International
Conference on Big Data, October 2014.

Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny, “Char-
acterizing Facebook’s Memcached Workload,” IEEE Internet
Computing, vol. 18, no. 2, pp. 41-49, 2014.

K. Zhang, K. Wang, Y. Yuan, L. Guo, R. Lee, and X. Zhang,
“Mega-KV: A Case for GPUs to Maximize the Throughput
of In-Memory Key-Value Stores,” Proceedings of the VLDB
Endowment, vol. 8, no. 11, pp. 1226-1237, 2015.

J. Zhou and K. A. Ross, “Implementing Database Operations
using SIMD Instructions,” in Proceedings of the 2002 ACM
SIGMOD International Conference on Management of Data.
ACM, 2002, pp. 145-156.

Big Data (HiBD)”

Authorized licensed use limited to: The Ohio State University. Downloaded on September 19,2020 at 23:18:32 UTC from IEEE Xplore. Restrictions apply.

