
SCOR-KV: SIMD-Aware Client-Centric and Optimistic RDMA-based Key-Value

Store for Emerging CPU Architectures*

Dipti Shankar, Xiaoyi Lu, and Dhabaleswar K. (DK) Panda

Department of Computer Science and Engineering, The Ohio State University

{shankard, luxi, panda}@cse.ohio-state.edu

Abstract—Modern distributed key-value store-based appli-
cations rely on bulk-read operations like ‘Multi-Get’ (MGet)
to accelerate their data serving phase. While state-of-the-art
database systems employ SIMD-based techniques to optimize
data-parallel operations on their in-memory structures, such as
hash-tables, they have not been adapted into high-performance
RDMA-accelerated key-value (KV) stores. In this paper, we
present a holistic approach to designing high-performance
SIMD-aware KV stores for emerging multi-core CPU archi-
tectures. Towards this, we first perform an in-depth study of
the opportunities and challenges involved in leveraging AVX-
512 vectorization-based parallel hash table designs with a
state-of-the-art high-performance key-value store like RDMA-
Memcached. Based on this, we propose a SIMD-Aware Client-
Centric and Optimistic RDMA-based Key-Value Store, SCOR-
KV, that optimally exploits ‘RDMA+SIMD’ to accelerate
read-heavy MGet operations. SCOR-KV presents an SIMD-
conscious KV store friendly hash table layout, that leverages
the vertically vectorized N-way cuckoo hash table design
with optimistic KV pair lookup schemes. To complement this,
we propose RDMA-optimized SIMD-aware MGet communica-
tion protocols that offload the server-side pre-/post-processing
overheads to the client, while enabling optimal end-to-end
performance. Our performance evaluations over the latest
Intel Skylake CPUs and IB EDR interconnects show that our
proposed SCOR-KV can achieve up to 3.7-8.6x improvement in
server-side Get throughput. Through our SIMD-aware RDMA
schemes, SCOR-KV can also improve Multi-Get latencies for
read-heavy YCSB workloads by about 2.2x, as compared to
the RDMA-Memcached design running over the state-of-the-
art CPU-optimized MemC3 hash table design.

Keywords-CPU-SIMD, Key-Value Store, RDMA, AVX-512.

I. INTRODUCTION

Distributed in-memory key-value stores (KV stores) play a

vital role in accelerating data-intensive Big Data workloads

in multi-tiered data centre architectures and HPC clusters.

While they have been traditionally leveraged to accelerate

online data serving and caching services [6], [13], they are

also being widely used in offline data analytic scenarios

in both data centre and HPC environments [23], [26].

Many studies [7], [27] have shown that the performance

of KV store-based applications is dominated by reads, i.e.,

GETs. For instance, based on the real-workload traces from

Facebook [3], we see that a single web page request from

This research is supported in part by NSF grants #CCF-1822987, #CNS-
1513120, #ACI-1450440, #CCF-1565414, and NSF ACI1664137.

a user can generate up to 521 distinct key-value (KV) pair

items that need to be fetched from the server cluster. High-

performance KV store applications [16], [27] attempt to

minimize the number of network round trips necessary to

fetch all the KV pairs corresponding to the user request

by coalescing (or batching) multiple read requests into a

single request; to maximize the number of items that can

be fetched concurrently. This common data access scenario,

referred to as a ‘Multi-Get’ (MGet), involves coalesced read

operations with per-server batches vary between 24 – 96

keys per request [16]. Thus, there is a significant need for

fast and scalable ‘Multi-Get’ support for read-mostly KV

store workloads.

With the emergence of modern CPU architectures (e.g.,

Intel Skylake, Intel Cascade Lake) that support vector regis-

ters which can fit an entire cache-line (512-bits vectors) [5],

there have been several studies directed towards exploiting

‘Single Instruction Multiple Data’ (SIMD) for accelerating

data-intensive operators like scan, sort, join, and bloom fil-

ters [8], [12], [19]. SIMD vector instructions have also been

leveraged to accelerate lookups over high-performance hash

tables [19]–[21] (i.e., CPU-vectorized hash table probing).

For instance, Polychroniou et al. [19] propose a data-parallel

probing approach with 512-bit vectors (AVX-512), that can

enable us to lookup 16 keys with one lookup operation,

when using a hash table with 32-bit keys and payloads.

These works make it evident that there is potential for

leveraging CPU-SIMD for scaling read-intensive hash

table workloads.

A. Motivation

On the other hand, high-performance ‘Remote Direct

Memory Access’ (RDMA)-based KV stores [9], [10], [14],

[25], that are optimized for modern HPC clusters and data

centers, use a hash table in their backend to store and

index KV pairs in a fast and efficient manner. Together

with the above-mentioned ‘MGet’ support requirement from

the applications, these KV store servers can benefit from

the ability to search (i.e., ‘lookup’) multiple KV pairs

concurrently using the SIMD-aware CPU-vectorized hash

table designs proposed in [19]. However, we find that:

Observation 1©: The existing RDMA-based KV stores

rely on non-SIMD CPU-centric backend designs like tra-

257

2019 IEEE 26th International Conference on High Performance Computing, Data, and Analytics (HiPC)

2640-0316/19/$31.00 ©2019 IEEE
DOI 10.1109/HiPC.2019.00040

Authorized licensed use limited to: The Ohio State University. Downloaded on September 19,2020 at 23:18:32 UTC from IEEE Xplore. Restrictions apply.

ditional chaining hash tables [13] or CPU-optimized buck-

etized cuckoo hash tables like MemC3 [7]. They have not

been adapted to leverage the potential of CPU-SIMD on

current and emerging multi-core architectures.

Observation 2©: The existing state-of-the-art RDMA-

based KV store designs mostly focus on improving the

scalability and end-to-end latencies for point-to-point queries

like Set(K,V) and Get(K); i.e., they are not optimized

for bulk read operations like MGet(k1, k2,..,kN)).

This lack of SIMD-aware backend designs that support

read-intensive workloads over high-performance RDMA-

enhanced KV stores motivate us to explore the following re-

search challenges on modern multi-core CPU architectures:

Challenge 1©: What is the potential for leveraging SIMD-

aware hash tables for accelerating KV store servers?

Challenge 2©: Can we easily exploit the performance

benefits of CPU-SIMD by naively replacing the hash table

backend in the existing state-of-the-art RDMA-based KV

stores? If not, what are the performance bottlenecks?

Challenge 3©: How can we eliminate these bottlenecks

to optimally exploit both RDMA and CPU-SIMD in high-

performance KV stores, towards supporting read-intensive

workloads like ‘Multi-Get’?

B. Contribution

To address the above research challenges, we first analyze

opportunities for exploiting CPU-SIMD, by performing an

in-depth analysis of state-of-the-art SIMD-aware hash table

designs [19], [20] with AVX-based vectorization (AVX2 /

AVX-512) support. Secondly, to identify the challenges in

leveraging these CPU-SIMD designs for accelerating KV

store servers, we integrate them with a state-of-the-art CPU-

centric KV store like RDMA-Memcached [17], and contrast

its performance with that of the non-SIMD cache-optimized

designs like MemC3 [7]. Through detailed performance

studies, we find that naively replacing the CPU-optimized

non-SIMD hash table designs with CPU vectorization-based

accelerated designs does not enable us to leverage the

optimal performance offered by the SIMD designs.

Based on the analysis with the state-of-the-art, in this pa-

per, we present a holistic approach to designing SIMD-aware

in-memory KV store, called SCOR-KV. SCOR-KV presents

an SIMD-aware Client-Centric and Optimistic RDMA-aware

design for Key-Value Stores, that co-designs the end-to-end

KV store ‘Multi-Get’ pipeline, by proposing:

1©: a KV-friendly SIMD-aware hybrid and partitioned

hash table design for the server backend. It employs an

‘optimistic partial key’ lookup scheme that facilitates the KV

store to reap the benefits of employing AVX-based vector

instructions to lookup multiple KV pairs in parallel.

2©: an RDMA-optimized ‘optimistic lookup’-aware re-

sponse processing engine at the server, and a ‘Client-centric’

SIMD-aware request offload engine that employs zero-copy

and optimistic MGet request protocols.

Our performance evaluations over the latest Intel Skylake

CPUs and InfiniBand EDR (IB EDR) interconnects, show

that SCOR-KV can achieve about 3.7-8.6x improvement in

the server-side Get throughput. With our proposed SIMD-

aware RDMA-optimized Multi-Get schemes, SCOR-KV can

improve the ‘Multi-Get’ latency for the read-heavy Yahoo!

Cloud Serving Benchmark (YCSB) [4] workload by about

2.2x, as compared to RDMA-Memcached [17] running with:

(a) the state-of-the-art CPU-optimized MemC3 hash table,

and, (b) a naively integrated SIMD-based hash table, in

its backend. The rest of the paper is organized as follows.

Section II presents the necessary background and Section III

presents our motivational analysis. We discuss the SCOR-

KV design in Section IV and present experimental evalua-

tions in Section V. Section VI discusses the related work.

We conclude in Section VII with future work.

II. BACKGROUND & MOTIVATION

In this section, we provide an overview of the state-of-the-

art non-SIMD and SIMD-aware hash table (HT) designs.

A. CPU-Optimized Key-Value Store Designs

State-of-the-art CPU-optimized HT designs based on

Memcached [13], such as MemC3 [7], have been pro-

posed to cater to the ‘read-heavy’ characteristics of pop-

ular online KV store workloads [27]. MemC3 introduces:

(a) a CLOCK-based LRU-approximating eviction algorithm

to maintain cache freshness while eliminating inter-thread

synchronization, and, (b) a cache-optimized optimistic con-

current cuckoo hashing (that supports multiple concurrent

readers and a single writer) via atomic key-version counters.

As shown in Figure 1, MemC3 employs a bucke-

tized cuckoo HT (BCHT) with four slots (i.e., places for

key/payload) per hash bucket with 2-way cuckoo hashing.

Each slot contains a 1-byte key signature and a KV pair loca-

tion pointe, and every key is associated with one key version

counter to enable lock-free read/write for concurrency. Since

b1

loc

b2

bM

sig

metadata
key (var-length)
val (var-length)

sig sigsig

loc

1-byte tags
(1x4 bytes)

(key K)

KV Pair LocsÀ
(8x4 bytes)

key
versionÀ
counters

Figure 1: MemC3 Hash Table Design

each bucket fits into a single cache-line (40 B), it enables

high load factor of about 90-95%1 and cache-optimized

lookups; unlike Memcached’s default cache-unaware chain-

ing HT [9], [10], [13].

1load factor of a HT (LF) = (number of KV pairs stored / number of
hash buckets); determines max. achievable hit rate for HT lookups.

258

Authorized licensed use limited to: The Ohio State University. Downloaded on September 19,2020 at 23:18:32 UTC from IEEE Xplore. Restrictions apply.

B. SIMD-Aware Hash Table Lookups

Firstly, using SIMD instructions for HT operations has

been proposed as a way to build bucketized hash tables (e.g.,

BCHT with ‘M’ slots-per-bucket). Rather than comparing

the input key against each slot in the designated hash bucket

individually, we can compare all ‘M’ keys in the hash bucket

with the input key using a single SIMD vector comparison.

This approach, referred to as horizontal vectorization [20],

[21], is however not always optimal, as: (a) we may expect

to search fewer than ‘M’ buckets on average, and, (b) it still

requires probing the ‘n’ input keys sequentially.

1) Vertical Vectorization for Data Parallel HT Lookups:

To enable true SIMD parallelism for lookups, we need a

single HT probe operation to iterate over ‘w’ input keys in

parallel (SIMD width ‘w ’ >1). The fundamental principle

is to process a different key per SIMD lane. Since it exploits

SIMD to process multiple keys in parallel and returns a

vector of payloads corresponding to the matching keys

(for a KV store, ‘payload’ refers to KV object pointer),

this approach is referred to as vertical vectorization. A

vertical vectorization-based HT lookup algorithm for an N-

way cuckoo HT (BCHT with ‘M’=1 and N hash functions)

is presented in [19]; a single iteration of which involves the

following steps (Figure 2 illustrates the same for ‘w’=4):

1© We load all SIMD lanes with input keys (ki) into a

SIMD register (K) with SIMD load operation.

2© For each probe key (ki) in SIMD register ‘K’, we

compute-and-store the corresponding hash buckets (hi) into

SIMD register ‘H’, based on hash function h1.

3© Using the hash bucket computed in ‘H’, we perform

a ‘Gather’ operation load buckets from the cuckoo HT into

SIMD register ‘KH’.

4© We perform an SIMD compare to match the original

probe keys (SIMD register K) with the keys we retrieved

from the HT (SIMD register ‘KH’) to obtain a bitmask for

potential key matches (green boxes in the mask indicate

matches and red boxes indicate misses). Steps (1), (2), (3),

and (4) are repeated up to ‘N-1’ times with hash functions

(h2,..,hN) for keys indicated as missing in the bitmask.

Hash1

...
k1
k2
k3
k4
...

Load k1
k2
k3
k4

h1
h2
h3
h4

k1
k4
...
k2
k5
...

...

...

...

...

...

...

Gather k1
k2
k5
k4

Match

[try alternative buckets (Hash2..N)Àfor keys without matches (e.g., k5)]

(Vertical)

Gather v1
v2

v4

(mask) (mask)(mask)

Figure 2: Vectorized operations on a ‘N-way’ Cuckoo Hash

Table (Vertical Vectorization); Illustration of one iteration

with probing 4 keys (k1,k2,k3,k4) in parallel

Now, if we consider the latest Intel CPUs that enable 512-

bit vectors (AVX-512) [5], for an ‘N’-way cuckoo HT with

32-bit keys and payloads, we can lookup 16 key in parallel

using one probe operation. Thus, we can lookup ‘n’ keys in a

maximum of N*n/16 iterations, as compared to non-SIMD

designs that potentially perform N*n total iterations.

2) Stand-Alone HT Performance with Vertical Vectoriza-

tion: If we consider the latest Intel CPUs that enable 512-bit

vectors (AVX-512) [5], for an ‘N’-way cuckoo HT with 32-

bit keys and payloads, we can lookup 16 key in parallel

using one probe operation. Thus, we can lookup ‘n’ keys

in a maximum of N*n/16 iterations, as compared to non-

SIMD designs that may potentially perform N*n iterations in

total. To evaluate this, we study the stand-alone performance

of vertically vectorized 3-way cuckoo hashing with AVX-

512, i.e., ‘Cuckoo-Ver (AVX-512)’, based on the algorithm

presented in [19] (detailed in Section II-B1). Since 3-way

cuckoo HT enables a load factor close to 90%, we contrast it

with the performance of the state-of-the-art CPU-optimized

non-SIMD MemC3 [7], i.e., ‘MemC3 (Scalar)’.

We mimic two key access patterns: (a) a uniformly

random pattern (Uniform), and, (b) a skewed access pattern

(Skewed) based on Facebook’s Memcached workload gen-

erator [3], [15]. We use an input 32-bit column of 1G keys

with about 90% selectivity (selectivity = % of the input that

is likely to find a match in the HT), and the output is a 32-

bit column with matching payloads, over a table with a load

factor of 90%. We run this test on a shared HT across all 28

cores of a dual 14-core Intel Skylake node (see Section V).

Summary & Observations: Figure 3 presents the HT

probing throughput for the two designs, for varying HT

sizes. From this figure, we can observe that for HT sizes that

can fit into L2 cache (512 KB), ‘Cuckoo-Ver’ outperforms

MemC3 by about 2.7x – 6.6x. When HT size exceeds L2

cache, we observe that, while ‘Cuckoo-Ver’ performance

drops by 3x–5x, it still maintains a gain of 1.63x–2.6x over

MemC3 HT. From the above experiments, we can observe

that, while the performance of the vertical-vectorized SIMD-

aware HT is bound by memory, it can maintain a consistent

improvement over cache-optimized non-SIMD HT designs.

MemC3
(Scalar)

Cuckoo-Ver
(AVX-512)

MemC3
(Scalar)

Cuckoo-Ver
(AVX-512)

MemC3
(Scalar)

Cuckoo-Ver
(AVX-512)

512 KB 4 MB 32 MB

T
hr

ou
gh

pu
t

(B
ill

io
n

Tu
pl

es
/S

ec
on

d)

Figure 3: Stand-Alone HT Probing Performance on the 28-

core Intel Skylake CPU, over a 3-way Cuckoo HT vs. non-

SIMD CPU-optimized MemC3 HT with 32-bit key/payload

With this as the motivation, we present an in-depth

analysis of integrating the above SIMD-aware HT into an

RDMA-accelerated KV store.

259

Authorized licensed use limited to: The Ohio State University. Downloaded on September 19,2020 at 23:18:32 UTC from IEEE Xplore. Restrictions apply.

III. INTEGRATING CPU-SIMD INTO RDMA KV STORE

To identify the potential and corresponding challenges in

leveraging CPU-SIMD for accelerating KV stores, we inte-

grate the vertically vectorized HT discussed in Section II-B

with the state-of-the-art RDMA-Memcached [17] design.

A. Extending RDMA KV Store with SIMD HT

We focus on workloads of ‘MGet’ operations, i.e.,

MGet(K1, K2,..,Kn), which batches together multiple

KV pairs requests directed to a particular server in KV

store cluster. For fair comparison, we replace the traditional

chaining HT in RDMA-Memcached [9] with the CPU-

optimized non-SIMD MemC3 HT design [7]. As shown in

Figure 4, the client-to-server pipeline for an MGet operation

can be broken down into three basic phases:

(1) Request Phase: In this phase, each key in

MGet(K1,..,Kn) is mapped to a specific Memcached server

using consistent hashing, and the requests are batched-by-

server. These batched requests are sent to their respective

servers in one or more messages. From [16], typical batch

sizes vary from 24–96 KV pair read requests, with key sizes

between 200 B to 12 KB. With RDMA-Memcached’s current

non-SIMD aware ‘Get’ protocol, these small message trans-

fers entail using fast two-sided SENDs.

(2) Server Data Access: Upon receiving an MGet request

batch, forwarded from the server’s communication engine,

the assigned Memcached worker performs the following:

(a) Pre-Processing: The incoming request of ‘W’ keys

(‘W’ <= MGet size ‘n’) is parsed to extract the individual

keys. For each key, a corresponding 32-bit hash value,

signature, etc., are computed to prepare it for the HT lookup.

(b) KV Pair Search: In this phase, the HT is probed

to locate the payload (e.g., a KV pair memory pointer)

corresponding to the 32-bit key hash (i.e., HT Lookup

Phase). In this case, we can potentially leverage CPU-SIMD

data parallelism to accelerate key lookups. Once probing is

successful, the KV pair identified is located and read from

backend memory slabs (or data cache) and verified against

the client-supplied key string to ensure a full match (i.e.,

Key Match Lookup Phase). These matched KV pairs, with

variable length keys (8 B–128 B) [13], are returned to the

communication engine.

(3) Post-Processing: Once all the KV pairs in the batch are

located at the server’s memory slabs, the server worker pre-

pares and posts responses to the client, followed by updating

the server’s metadata to maintain cache freshness (e.g., LRU

updates for Memcached). With RDMA-Memcached current

non-SIMD aware ‘Get’ protocol, this entails posting ‘W’

individual responses to the client.

B. Multi-Get Performance Analysis

We put together a complete end-to-end MGet pipeline, de-

picted in Figure 4, with the SIMD-aware vertical vectorized

HT design in Section II-B2 and RDMA-Memcached [17].

KV Client Library

RDMA-based
Communication

Engine

[1] Request Phase

R
D

M
A

 C
om

m
.

E
ng

in
e

[2a] Pre-Processing Phase

[2b] HT Lookup Phase
Non SIMD [MemC3] vs. SIMD

(Horizontal vs. Vertical [SIGMOD15]) [2
] S

er
ve

r D
at

a
A

cc
es

s

[3] Post-Response Phase

(Server Cluster)(Client)

Figure 4: State-of-the-Art End-to-End Flow for MGet

Towards supporting storing pointers to KV pairs, we extend

to generate RDMA-Memcached (RDMA-Mem) 32-bit KV

pair location IDs, and store it as the payload in ‘Cuckoo-

Ver (AVX-512)’-based HT backend. Based on this, we

study the performance potential of an integrated ‘RDMA-

Mem+Cuckoo-Ver(AVX-512)’ KV store and contrast it with

RDMA-Memcached design backed by non-SIMD CPU-

optimized MemC3 (‘RDMA-Mem+MemC3 (Scalar)’). For

a fair comparison, we extend MemC3’s optimistic locking

and concurrency to the RDMA-Memcached design.

For our analysis, we use two nodes on Cluster A (see

Section V), that is equipped with 28-core Intel Skylake

nodes and IB EDR (100 Gbps) interconnects. We undertake

this experiment over an RDMA-Memcached server running

28 workers with a HT of size 4 M (hashpower=20). We use

the “memslap” Multi-Get benchmark [1], configured with

28 clients threads on the client node. We use varying value

sizes (32 B and 2 KB) and MGet sizes (i.e., ‘N’ = 32 or 96),

and perform a thorough analysis of the time-wise breakdown

into different stages described above.

Figure 5: Integrated End-to-End Performance with RDMA-

Memcached; Contrasting Vectorization-based Cuckoo HT

and Non-SIMD MemC3 backends; KV pair size (20 B,32 B)

and MGet sizes of 32 and 96

Figure 5 presents the end-to-end MGet latency with

server-side Get throughput and Figure 6 presents the server-

side latency breakdown for 16 keys-per-batch, based on

the phases in Section III-A, using the “memslap” MGet

benchmark. From these figures, we can observe that:

(1) the SIMD-aware ‘HT Look-up’ phase gains about 3.2x,

as seen in Figure 3. But, it is bottlenecked by ‘Key Match’

phase, and hence SIMD’s benefits are not noticeable.

(2) the ‘Post-Processing’ phase is the most dominant

of the different phases in Figure 4. The overhead of

260

Authorized licensed use limited to: The Ohio State University. Downloaded on September 19,2020 at 23:18:32 UTC from IEEE Xplore. Restrictions apply.

posting individual response for each ‘n’ keys in the

MGet(k1,k2,..,kn) dominates the end-to-end latency.

This can also be seen as the main factor contributing to the

13%-only gain in the total server performance.

RDMA-Mem+
MemC3 (Scalar)

RDMA-Mem
Cuckoo-Ver (AVX-512)

L
at

en
cy

 B
re

ak
do

w
n

(u
s)

Figure 6: Server-Side Performance Breakdown for RDMA-

Memcached with 16 keys/batch; KV pair size (20 B,32 B)

C. Summary

From the analysis in Figures 5 and 6, it is evident that

naively replacing the HT backend in existing non-SIMD

RDMA-based KV store designs with an SIMD-aware HT

cannot give us optimal server scalability and high end-to-

end performance. Thus, towards designing a fully functional

‘RDMA+SIMD’ accelerated KV store, we identify the fol-

lowing challenges and co-design opportunities:

(1) Server-Side Bottlenecks: Existing SIMD-aware HT

designs [19] promise up to 3.2x improvement for the ‘HT

Lookup’ phase. However, these are diminished by the non-

SIMD aware steps involved in the ‘Pre-Processing’ and ‘KV

Pair Search’ phases (Phase [2a] and Phase [2b]). Hence, we

need a KV store-friendly SIMD-aware HT backend.

(2) Lack of End-to-End SIMD-Aware Designs: The

end-to-end latency for MGet is dominated by response

communication times (‘Post-Processing’ phase). We find

that this is because the state-of-the-art RDMA-aware KV

stores [9], [10], [14] are not optimized for bulk reads. Hence,

we need SIMD-aware RDMA protocols for MGets.

IV. SCOR-KV: DESIGN DETAILS

Towards overcoming the challenges identified above, we

propose a holistic approach to design an SIMD-aware

RDMA-based KV store, which we refer to as ‘SCOR-

KV’ (we use RDMA-based Memcached [17] as our ba-

sis). SCOR-KV presents an SIMD-aware Client-Centric and

Optimistic RDMA-aware design for Key-Value Stores. Fig-

ure 7 presents an overview of our proposed end-to-end for

MGet pipeline for SCOR-KV, that introduces the following

enhancements into the MGet pipeline:

(1) KV-friendly SIMD-aware hybrid hash table (HT) for

the ‘Server Data Access’ phase (Figure 4 Phase [2b]), that

employs an ‘optimistic partial key’ lookup schemes.

(2) RDMA-optimized ‘optimistic lookup’-aware response

processing engine at the server (Figure 4 Phase [3]).

(3) Client-centric SIMD-aware request offload engine

(Figure 4 Phase [1]).

[1] Request Phase

SIMD-Aware KV Client Library

RDMA-based Communication
Engine

[1a] Pre-Process
Engine

[3b] Post-
Process Engine

R
D

M
A

 C
om

m
. E

ng
in

e [1b] SIMD-Aware Of‡oad Engine

[2
] S

er
ve

r
D

at
a

A
cc

es
s

[3a] Post-Response Phase
Server-Reply vs. Hybrid Server-Reply/-Bypass

[2] HT Lookup Phase
Hybrid and Partitioned SIMD-Aware

HT Design (Horizontal + Vertical Vect)

(Server Cluster)(Client)

Figure 7: Proposed End-to-End Flow for MGet in SCOR-KV

A. SIMD-Aware Hybrid Hash Table with Optimistic Lookups

Typically, cuckoo HTs and its high-performance variants

(presented in Figure 3) inherently enable a constant lookup

performance. However, from Section III-A, we can see that

the ‘HT Lookup’ phase entails: (a) an SIMD-aware parallel

probing phase to locate KV pair object from the HT using

32-bit key hashes, followed by, (b) a non-SIMD aware key-

matching phase that deals with variable length keys. Thus,

to maintain the near-constant performance enabled by CPU-

SIMD HT probing throughout the ‘HT Lookup’ phase, we

need to make the key-matching phase ‘SIMD-aware’ and

overcome the need to match variable key-lengths. Towards

this, we present a hybrid and partitioned SIMD-aware KV-

friendly HT design, as shown in Figure 8. It stores a fixed-

length ‘partial-key’ for every KV object indexed in the

HT, and matches this ‘partial key (PKey)’ to enable near-

constant ‘HT Lookup’ performance.

1) Partitioned Layout: As in Figure 8, we partition the

(key-hash, KV-obj-ptr) stored in the typical HT

among two distinct tables, i.e., ‘Key-Sig HT (SIMD-HT)’

and ‘Partial-Key Table (PKey-Table) ’, respectively.

hN(k)

h1(k)

pkey-loc

N-way Cuckoo Hash TableÀ
(hash=32-bits, pkey-loc=32-bits)

(key K)

....

PKey Table
(pkey=32-bits,KV-loc=32-bits)

Step 2: Parallel Key
Matching over PKey-Table

b1

:

b2

bM
hkey

version
counters

Step 1: Parallel Probing
over SIMD-HT

hash pkey KV-loc

:

pkey version
counters

Figure 8: SCOR-KV Hybrid Table Design (+HybridHT):

KV-friendly SIMD-aware HT layout with PKey-Table

(1) SIMD-HT stores the following tuple: (key-hash,

PKey-Table-ptr). It leverages an SIMD-aware verti-

cally vectorized N-way cuckoo HT design (see Section II-B).

(2) PKey Table follows a columnar table format (i.e.,

non-bucketized vertical HT) and stores the following tuple:

(PKey, KV-obj-ptr).

(3) As in [28], we use a slab memory management where

each KV object is assigned with a 32-bit location ID (i.e, 32-

bit KV object pointers), and 32-bit values for (key-hash,

kv-obj-ptr, PKey-Table-ptr).

261

Authorized licensed use limited to: The Ohio State University. Downloaded on September 19,2020 at 23:18:32 UTC from IEEE Xplore. Restrictions apply.

AVX
LOAD

16
hash
keys

h1
h2

:
h16

b2-*
b1-*
b3-*

bx-*
:
:

b4-*
Pkey-HT
locsÀforÀ
version
matches

h1
h2
h3

h4
:
:

h16

b1
b2
b3

b4
:

bx

:

AVX
PROBE

(aligned CPU buffers for
key-hash {h1...h16}, pkey

{p1...p16})

(32-bit hash,
4-byte partial key

`w'=16)

p1,v1
p2,v2
p3,v3

p4,v4

:
px,vx

:

pk1
pk2

:

pk16

Pkey-Table

AVX
GATHER

(Step 2: Vertical Vectorization over Pkey-Table (pkey,À KV-loc-ID) tuples; SIMD widthÀ`w'=16;
Parallel Key Matching for KV pairs located via SIMD-HT probing)

(Step 1: Vertical Vectorization over 3-way Cuckoo Hash Table with (key-hash,
pkey-loc) tuples;ÀParallel Probing if locate KV object; Repeat ̀N-1' times for

missing keys; See Figure-2 for details)

k1
k2
k3

....
:

k2

....

N-way M-bucket
Cuckoo HT

hash
buckets

p2
p1
p3

px

:
:

p4

pk1

pk2
pk3
pk4

:
:

pk16

AVX
CMP

v1
v2

(v=0)
v4

:
vx

:

(16-bit
mask)

AVX
MASKED
GATHER

16À
PKeys
from

PKey-HT

16
input

PKeys

(compareÀ
PKeys)

(gather
matchingÀ
KV objs)

16À
KV
locs

hkey
lk-ver

(before
probe)

k1
k2
k3

....
:

k2

....
pkey
lk-ver

(before
probe)

k1

k2
k3
....

:
k2
....

pkey
lk-ver
(after

probe)

k1
k2
k3

....
:

k2

....

AVX
MASKED
STORE

(KV objs
with

version
matches)

v1

(v=0)
v4

:
vx

:
16À

KV locs
for matchesÀÀ

v2

b2-*

b1-*
b3-*
bx-*

:
:

b4-*
16

Pkey-HT
indexes

k1

k2
k3
....

:
k2
....

hkey
lk-ver
(after

probe)

Figure 9: Vectorized operations on the SCOR-KV Hybrid HT with AVX-512 (SIMD width ‘w’=16); SIMD-aware 3-way

Cuckoo Hashing for HT Probing and SIMD-aware Partial Key Matching

With SCOR-KV’s hybrid HT layout, every insert/update

Set(K,V) operation entails: (a) retrieving a free

PKey-Table location, (b) updating key into SIMD-HT

with this PKey-Table-ptr, (b) updating first ‘P’ bytes

of the KV pair’s variable length key-string into the

PKey-Table along with the PKey-Table-ptr.

2) SIMD-Aware Optimistic Lookups: Similar to typical

CPU vectorization-based accelerated designs discussed in

Section II-B, we lookup the ‘N’ keys in the MGet request

in the SIMD-HT to exploit SIMD data parallelism. For

hash-key matches located in SIMD-HT, we employ the

PKey-Table-ptr to index the PKey-Table and finding

KV pair object with matching keys. These two steps to

enable data-parallel key lookups and matches are illustrated

in detail in Figure 9. Since we match ‘partial keys’, we refer

to the SCOR-KV’s HT Lookups as ‘Optimistic’.

As vector gather instructions on the latest CPUs en-

able loading up to 64-bits per-SIMD lane, we can have

PKey lengths (‘P’) of up to 8 bytes (and powers of

2). For instance, if we store 4-byte PKey and 4-byte

pointer-to-KV-obj, we can leverage two 64-bit wide

AVX-512 gather (_mm512_i64gather_epi32) 32-bit

shuffle (_mm512_shuffle_epi32), to extract and match

16 keys in the input in parallel. This eliminates server’s non-

SIMD overheads during the ‘HT Lookup’ phase.

3) Enabling SIMD-aware Concurrency: While KV store

workloads are read-dominated, they are comprised of a mix

of Set/MGet/Get operations. So, we need to ensure safe con-

current reads and updates to the backend HT. With SIMD-

aware vertical vectorized cuckoo HT, that enable lookup up

‘w’ distinct keys in parallel, employing traditional concur-

rency schemes (e.g., fine-grained locks in Memcached [13])

is not feasible as we need to lock ‘w’ distinct hash buckets.

To alleviate this, we extend the optimistic locking mecha-

nism in MemC3 [7], that employs key-version counters, to

enable lock-free single-writer/multiple-reader concurrency.

Each key is associated with a ‘key version’ counter, which

is atomically incremented only during updates. For both

SIMD-HT and PKey-Table, we use AVX-512 gather-and-

compare (_mm512_gather_i32_epi32) to check the

‘key version’ before and after the probing/matching pro-

cesses to ensure data consistent lookups. A version mismatch

signifies an update, and the particular key lookup is retried.

B. RDMA-optimized Response Engine (+PostOptm)

To alleviate the bottlenecks during ‘Post-Processing’

phase at the RDMA-based KV store server, we need to

minimize the round-trip communication times involved per

MGet. Based on [9], we propose a latency-optimized ‘Hy-

brid Server-Reply/-Bypass’ RDMA protocol, that partially

offload the server-side ‘Post-Response’ phase (Figure 4

phase [3]) to the client, as depicted in phases [3a] and [3b]

in Figure 7. It reduces the ‘n’ two-sided SENDs posted by

the servers in [9], [10] per MGet to just one per-server. At

each server, all responses are aggregated into a pre-allocated

buffer and only the buffer address (and remote HCA key) is

communicated to the client, which retrieves them in one or

more server-bypassed RDMA Reads.

While ‘SIMD-aware optimistic partial key lookups’ are

ideal, a full comparison of the variable-length key (corre-

sponding to the KV object) is still vital for ensuring the basic

MGet semantics. Therefore, unlike default designs [13], we

send the ‘key’ in-line with the corresponding ‘value’ in

the response. Upon receiving batched responses, the client

invokes the ‘Post-Process’ engine ([3b] in Figure 7) to parse

and ensure full key matches. This is illustrated in Figure 10.

If the optimistic matches fail, the request can be re-sent as

a single key ‘Get’ or with the next concurrent ‘MGet’.

C. Client-Centric Request Offloading (+PreOptm)

To alleviate the overheads at the server that is incurred

during ‘Pre-Processing’ phase, we present a client-centric

SIMD-aware request engine for MGets. It offloads the

server-side ‘Pre-Processing’ phase (Figure 4 phase [2a])

to the client, as depicted in phases [1a] and [1b] in Fig-

ure 7. The RDMA-based SCOR-KV client: (a) performs

‘n’ hash/signature computations locally, (b) packs them into

a contiguous buffer with aligned ‘n’ 8-byte partial keys,

and, (c) posts an RDMA-Write-with-Immediate (RWImm)

directly into a pre-leased CPU-aligned server buffers at the

262

Authorized licensed use limited to: The Ohio State University. Downloaded on September 19,2020 at 23:18:32 UTC from IEEE Xplore. Restrictions apply.

(SIMD-KV HT Layout)

K
V

 P
air

S
labs

N-way
Cuckoo-Ver

PKey-
Table

h(K)

Figure 10: SCOR-KV Hybrid Server-Reply/-Bypass

MGet Schemes; with Client-Centric Request Offload

(‘MGet(hash, pkey)’+RDMA-Write-Imm) and Post-

Processing (SEND+RDMA-Read) Engine; backed by

SIMD-Aware Hybrid HT with Optimistic Lookups

server. Upon receiving an ‘immediate’ work request (32-bit

immediate value to identify the pre-lease buffer), the server

launches the ‘Server Data Access’ phase via the SIMD-

Aware MGet offload engine ([1b] in Figure 7). This is also

illustrated in Figure 10. Based on this, we present detailed

evaluations of SCOR-KV in Section V.

V. PERFORMANCE EVALUATION

In this section, we present the results of our in-depth anal-

ysis of the proposed ‘RDMA+CPU-SIMD’-aware SCOR-

KV designs. We present evaluations with ‘memslap” MGet

benchmark [1] and YCSB application benchmark [4].

A. Experimental Setup

We use the OSU-RI2-Skylake (Cluster A) for our eval-

uations. Each node in this testbed is provisioned with Intel

Skylake dual fourteen-core processors (28-cores), 128 GB

DRAM, connected via Mellanox InfiniBand EDR intercon-

nects (100 Gbps). We study the performance of the following

SIMD-aware and non-SIMD KV store designs: (a) SCOR-

KV (illustrated in Figure 10), (b) RDMA-enhanced Mem-

cached with Non-SIMD MemC3 [7] backend (MemC3+

RDMA-Mem), and, (c) the naively integrated ‘RDMA-

Mem+Cuckoo-Ver (AVX-512)’ presented in Section III.

For our micro-benchmark studies, we employ the “mem-

slap” MGet benchmark [1], configured with 28 streaming

client threads on a single node on Cluster A. We enhance

“memslap” MGet benchmark to employ FB’s Memcached

workload generator (mutilate [15]) to mimic KV store’s

skewed data access pattern. Since the SIMD-aware HT is

employed per-server, we focus on a single KV store server

running full-subscription (i.e., 28 workers) on a node on

Cluster A. We configure the RDMA-Memcached and SCOR-

KV servers with an HT size of 32 MB with 90% load factor.

This refers to 2
20 buckets with 4slots/bucket for MemC3,

and, 224 hash buckets with 32-bit keys/payloads for Cuckoo-

Ver (AVX-512) and SCOR-KV.

B. Performance with Varying KV Pair / MGet Sizes

For the first experiment, we study the end-to-end per-

formance with MGet(k1,k2,..,kn) using uniformly

random (Uniform) access pattern. We use an MGet size

‘n=32’, using KV pair sizes: (a) 16 B key and 64 B value,

(b) 32 B key and 512 B value, and, (c) 128 B key and 1 KB

value. From Figure 11a, we observe that SCOR-KV can

improve the overall MGet latency by about 2.6x for small

KV pair sizes and about 12% for larger sizes; as compared

to the non-SIMD ‘RDMA-Mem+MemC3’ and naive SIMD-

based ‘RDMA-Mem+Cuckoo-Ver (AVX-512)’ design.

For the second experiment, we study the end-to-end

performance with MGet(k1,k2,..,kn) with MGet size

‘n=16, 64, 96’, using KV pair size of 16 B key and 64 B

value. We employ the skewed access pattern (Skewed)

that mimics KV store data popularity in [3], [15]. From

Figure 11b, we can see that SCOR-KV can improve the

overall MGet latencies from 1.6x to 3.6x as the MGet request

length ‘n’ increases. Thus, we observe that:

Observation 1©: For smaller KV pair sizes, irrespective

of the MGet size, SIMD-aware and optimistic RDMA-

accelerated lookups in SCOR-KV can maintain up to 3x

improvement in end-to-end performance, and server-side

throughput by about 8.56x. Also, for both uniform and

skewed patterns, naively integrated ‘RDMA-Mem+Cuckoo-

Ver (AVX-512)’ does not show significant performance

benefits, due to its inherent non-SIMD aware design. On

further analysis, we find that the overhead of increased

network I/O and memory-bound key matches with large KV

pair sizes, seem to dominate over the benefits of CPU-SIMD.

C. Server-Side Performance with SCOR-KV

For our third experiment, we investigate how each of

the individual optimizations in SCOR-KV contributes to

the overall server performance. We extend the server-side

time-wise breakdown in Figure 6 to include SCOR-KV

optimizations, as shown in Figure 12a. We use an MGet

size ‘n=32’, using varying KV pair sizes (K, V) of: (a)

(16 B, 64 B), and, (b) (128 B, 1 KB). Since AVX-512 allows

a max. SIMD width of ‘w’=16 (i.e, probe ‘w’ in parallel),

we present the average breakdown for batch sizes of 16 keys.

With ‘RDMA-Mem+MemC3’ as our baseline, we cu-

mulatively add optimizations proposed in SCOR-KV, as

follows: (1) Cuckoo-Ver: This refers to naively replacing

the non-SIMD HT in the KV store backed with an SIMD-

aware (vertical vectorized ‘Cuckoo-Ver’) HT design. No

other additional changes are made to the KV store’s MemC3

backend for RDMA-Memcached (as in Section III-A).

(2) +HybridHT: This is the hybrid/partitioned SIMD-

aware HT design optimistic partial key lookups, discussed

in Section IV-A, to optimize the ‘HT Lookup’ phase. The

default non-SIMD MGet protocol in RDMA-Memcached,

involving two-sided SENDs per key, is employed.

263

Authorized licensed use limited to: The Ohio State University. Downloaded on September 19,2020 at 23:18:32 UTC from IEEE Xplore. Restrictions apply.

R
D

M
A

-M
em

+
M

em
C

3

R
D

M
A

-M
em

C
uc

ko
o-

V
er

(A
V

X
-5

12
)

S
C

O
R

-K
V

(A
V

X
-5

12
)

R
D

M
A

-M
em

+
M

em
C

3

R
D

M
A

-M
em

C
uc

ko
o-

V
er

(A
V

X
-5

12
)

S
C

O
R

-K
V

(A
V

X
-5

12
)

R
D

M
A

-M
em

+
M

em
C

3

R
D

M
A

-M
em

C
uc

ko
o-

V
er

(A
V

X
-5

12
)

S
C

O
R

-K
V

(A
V

X
-5

12
)

(K,V) = (16 B, 64 B) (K,V) = (32 B, 512 B) (K,V) = (128 B, 1 KB)

E
nd

-t
o-

E
nd

M
G

et
 L

at
en

cy
 (u

s)

(a) Performance with Varying KV Pair Sizes (Uniform Pattern)

0

50

100

150

200

250

R
D

M
A

-M
em

+
M

em
C

3

R
D

M
A

-M
em

C
uc

ko
o-

V
er

(A
V

X
-5

12
)

S
C

O
R

-K
V

(A
V

X
-5

12
)

R
D

M
A

-M
em

+
M

em
C

3

R
D

M
A

-M
em

C
uc

ko
o-

V
er

(A
V

X
-5

12
)

S
C

O
R

-K
V

(A
V

X
-5

12
)

R
D

M
A

-M
em

+
M

em
C

3

R
D

M
A

-M
em

C
uc

ko
o-

V
er

(A
V

X
-5

12
)

S
C

O
R

-K
V

(A
V

X
-5

12
)

16 keys/Mget 64 keys/Mget 96 keys/Mget

E
nd

-t
o-

E
nd

M
G

et
 L

at
en

cy
 (u

s)

(b) Performance with Varying MGet Sizes (Skewed Pattern)

Figure 11: End-to-End MGet Latency: Contrasting SCOR-KV with RDMA-Memcached+MemC3 / RDMA-

Memcached+Cuckoo-Ver(AVX-512)

M
em

C
3

C
uc

ko
o-

V
er

+P
os

t-
O

pt
m

+H
yb

ri
dH

T

+P
re

-O
pt

m

(K,V) = (16 B, 64 B)

B
re

ak
do

w
n

L
at

en
cy

 (u
s)

SCOR-KV Design Optimizations vs. RDMA-Memcached; Breakdown for 16 Key/Batch

0

60

120

180

240

300

M
em

C
3

C
uc

ko
o-

V
er

+P
os

t-
O

pt
m

+H
yb

ri
dH

T

+P
re

-O
pt

m

(K,V) = (128 B, 1 KB) To
ta

l S
er

ve
r

G
et

 T
hr

. (
M

 G
et

s/
s)

(a) Varying KV Pair Sizes

M
em

C
3

C
uc

ko
o-

V
er

+P
os

t-
O

pt
m

+H
yb

ri
dH

T

+P
re

-O
pt

m

M
em

C
3

C
uc

ko
o-

V
er

+P
os

t-
O

pt
m

+H
yb

ri
dH

T

+P
re

-O
pt

m

Uniform w/ (K,V) = (32 B, 512 B) Skewed w/ (K,V) = (32 B, 512 B)

B
re

ak
do

w
n

L
at

en
cy

 (u
s)

SCOR-KV Designs vs. RDMA-Memcached; Breakdown for 16 Key/Batch To
ta

l S
er

ve
r

G
et

 T
hr

ou
gh

pu
t (

M
 G

et
s/

s)

(b) Uniform vs. Skewed Access Pattern

Figure 12: Server-Side Time-wise Breakdown for MGet Processing with SCOR-KV optimizations

(3) +PostOptm: This refers to the ‘Post-Processing Phase’

optimizations in Section IV-B, i.e., the ‘Hybrid Server-

Reply/Server-Bypass’ RDMA-MGet protocol, along with

‘optimistic offloading’ of key matching to the client-side.

(4) +PreOptm: This refers to the ‘Pre-Processing Phase’

optimizations in Section IV-C, that enables the server-side

pre-processing overheads to be offloaded to the client.

From Figure 12a, we can observe that:

(1) +PostOptm can enable a 5.09x improvement to the

overall server-side processing time per MGet, as compared

to the default MGet protocol in RDMA-Memcached.

(2) +HybridHT enables a constant KV pair search perfor-

mance, irrespective of the key size. SCOR-KV can improve

the ‘HT Lookup’ phase by about 2.6x over MemC3 and 1.3x

over naively integrated Cuckoo-Ver(AVX-512).

(3) +PreOptm optimizations in SCOR-KV reduces the pre-

processing server-side time by about 90%. However, since it

accounts for a small percentage of the total MGet processing

time, the overall improvement is about 19%.

(4) SCOR-KV can improve the total server Get throughput

by 3.74x–8.69x over the non-SIMD RDMA-based KV stores

(both Non-SIMD MemC3 and naively integrated SIMD-

HT), as evident from the line graph (purple) in Figure 12a.

We also extend this time-wise breakdown to study the

impact of uniform and skewed access patterns on the server’s

data processing time. We use an MGet size ‘n=32’, using

varying KV pair size of 32 B key and 512 B value. From

Figure 12b, we can observe similar performance impacts

across both patterns. However, SCOR-KV can improve the

performance by an additional 1.87x over its performance

with the uniform access pattern. With a skewed pattern, it is

intuitive that the popularly queried KV pairs can be cached

in L2. Thus, SCOR-KV can maintain the high performance

of the ‘HT-fits-in-Cache’ scenario, even when the overall HT

size exceeds the cache. Therefore:

Observation 2©: SCOR-KV can maintain the benefits of

SIMD-aware data-parallel HT probing to improve the overall

server-side Get performance. SIMD-aware hybrid HT with

optimistic lookups with RDMA-based schemes are more

beneficial for skewed KV workloads, as they can exploit

the inherent caching behavior of multi-core CPUs more

efficiently than the uniform data access pattern.

D. SCOR-KV with Horizontal Vectorized SIMD HT

To demonstrate that SCOR-KV’s SIMD-aware optimiza-

tions apply to SIMD-based designs beyond the 3-way

vertical cuckoo HT employed in this paper, we present

evaluations with a horizontal vectorized HT, i.e, bucketized

cuckoo HT (BCHT) with 4 slots/bucket and 32-bit key and

payloads using AVX-2 (256-bit) vectors to probe hash bucket

slots in parallel. We replace SCOR-KV’s N-way Cuckoo

264

Authorized licensed use limited to: The Ohio State University. Downloaded on September 19,2020 at 23:18:32 UTC from IEEE Xplore. Restrictions apply.

N
o

S
IM

D

+D
ef

-S
IM

D
-H

T

+P
os

t-
O

pt
m

+H
yb

ri
dH

T

+P
re

-O
pt

m

N
o

S
IM

D

+D
ef

-S
IM

D
-H

T

+P
os

t-
O

pt
m

+H
yb

ri
dH

T

+P
re

-O
pt

m

BCHT-Hor(AVX-256) Cuckoo-Ver(AVX-512)

B
re

ak
do

w
n

L
at

en
cy

 (
us

)

SIMD HT Design with RDMA-Memcached; Breakdown for 16 Key Batches (K,V) = (20,128)

(a) Performance with SIMD-based for Bucketized Cuckoo HT (Horizontal
Vectorization)

R
D

M
A

-M
em

+
M

em
C

3

R
D

M
A

-M
em

C
uc

ko
o-

V
er

(A
V

X
-5

12
)

SC
O

R
-K

V
(A

V
X

-5
12

)

R
D

M
A

-M
em

+
M

em
C

3

R
D

M
A

-M
em

C
uc

ko
o-

V
er

(A
V

X
-5

12
)

SC
O

R
-K

V
(A

V
X

-5
12

)

YCSB-B MGet YCSB-B Set

E
nd

-t
o-

E
nd

 L
at

en
cy

 (u
s)

SCOR-KV vs. RDMA-Memcached+MemC3/Cuckoo-Ver (AVX-512) with 100 clients

(b) Concurrency with YCSB Workload B; 112 clients over 4 nodes and
a 28 worker KV store server

Figure 13: SCOR-KV Performance with Different Vectorization Approaches and YCSB Application Workload

HT with this ‘BCHT-Hor (AVX-256)’ design, and keep

our proposed hybrid HT layout and client-centric RDMA-

optimized offloading schemes.

We extend the server-side time-wise breakdown studies

presented in Section V-C. From Figure 13a, we can ob-

serve that, as compared to the RDMA-Memcached server

with Non-SIMD MemC3, SCOR-KV can improve the ‘HT

Lookup’ phase by 1.47x for SIMD-HT based on BCHT-

Hor(AVX-256). This is about 2x lesser than the benefits

observed with Cuckoo-Ver (AVX-512). We attribute this

to the need to lock and probe keys individually over the

horizontal vectorized BCHT design.

E. Evaluations with YCSB

Finally, to evaluate the performance of SCOR-KV with

KV store mixed workloads (read/write mix with MGet and

Set operations), we present end-to-end latency evaluations

with the popular YCSB benchmark [4]. We employ the

YCSB workload B (YCSB-B) with 95:5 Read:Write mix,

with KV pair size of (16 B, 64 B) and an MGet length of 16

keys (we employ coalesce individual Gets into an MGet). We

set up a small cluster with a single KV store server with 28

workers on a node, and run a total of 112 clients over 4 client

nodes, on Cluster A. From Figure 13b, we can observe that

SCOR-KV can maintain 2.2x performance improvement for

MGet over SIMD-based ‘RDMA-Mem+Cuckoo-Ver (AVX-

512)’ and non-SIMD ‘RDMA-Mem+MemC3’ KV store

designs. Also, we observe that SCOR-KV can maintain

the RDMA KV store’s Set performance, and the hybrid

and partitioned HT layout does not incur any performance

overheads for KV store update operations.

Thus, our proposed SIMD-aware MGet schemes can ben-

efit the overall KV store performance. While SCOR-KV’s

optimizations are presented for MGets, the optimistic client-

centric designs can be applied to any in-memory storage

middleware that needs to scale the server-side performance.

VI. RELATED WORK

The idea of leveraging CPU-SIMD to improve the per-

formance of critical database operations has been well re-

searched in literature. For instance, CPU vector instructions

are being leveraged to accelerate database scan, sort, aggre-

gation [8], [18], [19], [29], hash join operations [19], [20],

and bloom filters [12]. Similarly, network packet processing

applications dealing with batched HT lookups [21], also

leverage CPU-SIMD. Additionally, in-depth performance

analysis and micro-benchmarks for these state-of-the-art

SIMD-aware HT designs on the latest CPU architectures

have been presented in [24]. On the other hand, Zhang

et al. [28] leverage the high memory bandwidth of mod-

ern GPGPUs to scale the KV store server’s performance.

While its GPU-optimized cuckoo HT outperforms its CPU-

optimized counterpart, the client-side latency suffers due to

the GPU kernel launch and server-side batching overheads.

Consequently, several works have proposed on exploiting

RDMA-based communication engines for accelerating KV

store performance [9]–[11], [14], [22], [25]. In addition

to these, holistic designs like MICA [11], that focus on

partitioning data access among cores to avoid concurrency

overheads have been proposed. However, these state-of-the-

art designs are mostly focused on optimizing performance

for point-to-point queries like Set/Get, and are not optimized

for bulk read requests like MGet. Unlike these works, in

this paper, we propose an SIMD-aware RDMA-optimized

KV store that co-designs the client-to-server data processing

pipeline to exploit existing CPU-vectorized HT designs

without compromising on the end-to-end performance.

VII. CONCLUSION & FUTURE WORK

In this paper, we propose an SIMD-Aware Client-Centric

and Optimistic RDMA-based Key-Value Store, SCOR-KV,

that optimally exploits ‘RDMA+SIMD’, to accelerate read-

heavy MGet operations in KV stores on emerging multi-core

CPU architectures. SCOR-KV presents an SIMD-conscious

KV store friendly hash table layout, based on the vertically

vectorized N-way cuckoo hashing design. It proposes op-

timistic KV pair lookups schemes, that enable offloading

server-side pre- and post-processing overheads to the client

while maintaining the end-to-end ‘Multi-Get’ semantics.

265

Authorized licensed use limited to: The Ohio State University. Downloaded on September 19,2020 at 23:18:32 UTC from IEEE Xplore. Restrictions apply.

To complement this, we present ‘Multi-Get’-aware RDMA

schemes to maximize the overall performance.

Our performance evaluations on the latest Intel Skylake

CPUs and IB EDR interconnects, show that our proposed

SCOR-KV can achieve up to 3.7-8.6x improvement in

server-side Get throughput, while improving end-to-end

MGet latencies for read-heavy YCSB workloads by about

2.2x over the state-of-the-art RDMA-based Memcached

server running over non-SIMD cache-optimized MemC3

backend. In the future, we plan to extend our proposed de-

signs to: (a) larger-scale distributed Memcached workloads,

and, (b) leverage SCOR-KV’s generic designs into other

memory-centric key-value stores like Redis [2].

REFERENCES

[1] “memslap,” http://docs.libmemcached.org/bin/memslap.html.

[2] “Redis,” https://redis.io/.

[3] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and
M. Paleczny, “Workload Analysis of a Large-Scale Key-
Value Store,” in ACM SIGMETRICS Performance Evaluation
Review, vol. 40, no. 1. ACM, 2012, pp. 53–64.

[4] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan,
and R. Sears, “Benchmarking Cloud Serving Systems with
YCSB,” in The Proceedings of the ACM Symposium on Cloud
Computing (SoCC ’10), Indianapolis, Indiana, June 2010.

[5] J. Doweck, W. Kao, A. K. Lu, J. Mandelblat, A. Rahatekar,
L. Rappoport, E. Rotem, A. Yasin, and A. Yoaz, “Inside 6th-
Generation Intel Core: New Microarchitecture Code-Named
Skylake,” IEEE Micro, vol. 37, no. 2, pp. 52–62, March 2017.

[6] A. Dragojević, D. Narayanan, M. Castro, and O. Hodson,
“FaRM: Fast Remote Memory,” in 11th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 14),
2014, pp. 401–414.

[7] B. Fan, D. G. Andersen, and M. Kaminsky, “MemC3: Com-
pact and Concurrent MemCache with Dumber Caching and
Smarter Hashing,” in Presented as part of the 10th USENIX
Symposium on Networked Systems Design and Implementa-
tion (NSDI 13). Lombard, IL: USENIX, 2013, pp. 371–384.

[8] P. Jiang and G. Agrawal, “Efficient SIMD and MIMD Paral-
lelization of Hash-based Aggregation by Conflict Mitigation,”
in Proceedings of the International Conference on Supercom-
puting. ACM, 2017, p. 24.

[9] J. Jose, H. Subramoni, M. Luo, M. Zhang, J. Huang, M. Wasi-
ur Rahman, N. S. Islam, X. Ouyang, H. Wang, S. Sur, and
D. K. Panda, “Memcached Design on High Performance
RDMA Capable Interconnects,” in Proceedings of the 2011
International Conference on Parallel Processing, ser. ICPP
’11, Washington, DC, USA, 2011.

[10] A. Kalia, M. Kaminsky, and D. G. Andersen, “Using RDMA
Efficiently for Key-Value Services,” in Proceeding of SIG-
COMM ’14, Aug 2014.

[11] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky, “MICA:
A Holistic Approach to Fast In-memory Key-value Storage,”
in Proceedings of the 11th USENIX Conference on Networked
Systems Design and Implementation (NSDI), April 2014.

[12] J. Lu, Y. Wan, Y. Li, C. Zhang, H. Dai, Y. Wang, G. Zhang,
and B. Liu, “Ultra-Fast Bloom Filters using SIMD tech-
niques,” in 2017 IEEE/ACM 25th International Symposium
on Quality of Service (IWQoS), June 2017, pp. 1–6.

[13] “Memcached: High-Performance, Distributed Memory Object
Caching System,” http://memcached.org/.

[14] C. Mitchell, Y. Geng, and J. Li, “Using One-Sided RDMA
Reads to Build a Fast, CPU-Efficient Key-Value Store,” in
Proceeding of USENIX ATC ’13, Jun 2013.

[15] Mutilate, https://github.com/leverich/mutilate.

[16] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee,
H. C. Li, R. McElroy, M. Paleczny, D. Peek, P. Saab,
D. Stafford, T. Tung, and V. Venkataramani, “Scaling Mem-
cache at Facebook,” in Proceedings of the 10th USENIX Sym-
posium on Networked Systems Design and Implementation
(NSDI ’13), 2013.

[17] NOWLAB, “High-Performance Big Data (HiBD),”
http://hibd.cse.ohio-state.edu, 2019.

[18] M. Pilman, K. Bocksrocker, L. Braun, R. Marroquı́n, and
D. Kossmann, “Fast Scans on Key-Value Stores,” Proceedings
of the VLDB Endowment 10, no. 11, pp. 1526–1537, 2017.

[19] O. Polychroniou, A. Raghavan, and K. A. Ross, “Rethinking
SIMD Vectorization for In-Memory Databases,” in Proceed-
ings of the 2015 ACM SIGMOD International Conference on
Management of Data, 2015, pp. 1493–1508.

[20] K. A. Ross, “Efficient Hash Probes on Modern Processors,”
in IEEE 23rd International Conference on Data Engineering
(ICDE ’07). IEEE, 2007, pp. 1297–1301.

[21] N. L. Scouarnec, “Cuckoo++ Hash Tables: High-Performance
Hash Tables for Networking Applications,” in Proceedings of
the 2018 Symposium on Architectures for Networking and
Communications Systems. ACM, 2018, pp. 41–54.

[22] D. Shankar, X. Lu, N. Islam, M. Wasi-Ur-Rahman, and
D. K. Panda, “High-Performance Hybrid Key-Value Store on
Modern Clusters with RDMA Interconnects and SSDs: Non-
blocking Extensions, Designs, and Benefits,” in 2016 IEEE
International Parallel and Distributed Processing Symposium
(IPDPS), May 2016, pp. 393–402.

[23] D. Shankar, X. Lu, and D. K. Panda, “Boldio: A Hybrid and
Resilient Burst-Buffer Over Lustre for Accelerating Big Data
I/O,” in 2016 IEEE International Conference on Big Data,
Dec 2016, pp. 404–409.

[24] D. Shankar, X. Lu, and D. K. Panda, “SimdHT-Bench: Char-
acterizing SIMD-Aware Hash Table Designs on Emerging
CPU Architectures,” in 2019 IEEE International Symposium
on Workload Characterization (IISWC), November 2019.

[25] M. Su, M. Zhang, K. Chen, Z. Guo, and Y. Wu, “RFP: When
RPC is Faster Than Server-Bypass with RDMA,” in Pro-
ceedings of the Twelfth European Conference on Computer
Systems, ser. EuroSys ’17, 2017, pp. 1–15.

[26] T. Wang, S. Oral, Y. Wang, B. Settlemyer, S. Atchley, and
W. Yu, “BurstMem: A High-Performance Burst Buffer Sys-
tem for Scientific Applications,” in 2014 IEEE International
Conference on Big Data, October 2014.

[27] Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny, “Char-
acterizing Facebook’s Memcached Workload,” IEEE Internet
Computing, vol. 18, no. 2, pp. 41–49, 2014.

[28] K. Zhang, K. Wang, Y. Yuan, L. Guo, R. Lee, and X. Zhang,
“Mega-KV: A Case for GPUs to Maximize the Throughput
of In-Memory Key-Value Stores,” Proceedings of the VLDB
Endowment, vol. 8, no. 11, pp. 1226–1237, 2015.

[29] J. Zhou and K. A. Ross, “Implementing Database Operations
using SIMD Instructions,” in Proceedings of the 2002 ACM
SIGMOD International Conference on Management of Data.
ACM, 2002, pp. 145–156.

266

Authorized licensed use limited to: The Ohio State University. Downloaded on September 19,2020 at 23:18:32 UTC from IEEE Xplore. Restrictions apply.

