
Morpheus: A Deep Learning Framework for the Pixel-level Analysis of Astronomical
Image Data

Ryan Hausen1 and Brant E. Robertson2,3
1 Department of Computer Science and Engineering, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA; rhausen@ucsc.edu

2 Department of Astronomy and Astrophysics, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA; brant@ucsc.edu
3 Institute for Advanced Study, 1 Einstein Drive, Princeton, NJ 08540, USA

Received 2019 June 26; revised 2020 April 2; accepted 2020 April 6; published 2020 May 12

Abstract

We present Morpheus, a new model for generating pixel-level morphological classifications of astronomical
sources. Morpheus leverages advances in deep learning to perform source detection, source segmentation, and
morphological classification pixel-by-pixel via a semantic segmentation algorithm adopted from the field of
computer vision. By utilizing morphological information about the flux of real astronomical sources during
object detection, Morpheus shows resiliency to false-positive identifications of sources. We evaluate Morpheus
by performing source detection, source segmentation, morphological classification on the Hubble Space
Telescope data in the five CANDELS fields with a focus on the GOODS South field, and demonstrate a high
completeness in recovering known GOODS South 3D-HST sources with H<26 AB. We release the code
publicly, provide online demonstrations, and present an interactive visualization of the Morpheus results in
GOODS South.

Unified Astronomy Thesaurus concepts: Galaxy classification systems (582); Galaxies (573); Extragalactic
astronomy (506); Convolutional neural networks (1938); Computational methods (1965); GPU computing (1969)

Supporting material: machine-readable table

1. Introduction

Morphology represents the structural end state of the galaxy
formation process. Since at least Hubble (1926), astronomers
have connected the morphological character of galaxies to the
physics governing their formation. Morphology can reflect the
initial conditions of galaxy formation, dissipation, cosmic
environment and large-scale tidal fields, merger and accretion
history, internal dynamics, star formation, the influence of
supermassive black holes, and a range of other physics
(e.g., Binney 1978; Dressler 1980; Binney & Tremaine 1987;
Djorgovski & Davis 1987; Dressler et al. 1987; Bender et al.
1992; Tremaine et al. 2002). The development of morpholo-
gical measures for galaxies, therefore, comprises an important
task in observational astronomy. To help realize the potential of
current and future surveys for understanding galaxy formation
through morphology, this work presents Morpheus, a deep
learning-based model for the simultaneous detection and
morphological classification of objects through the pixel-level
semantic segmentation of large astronomical image data sets.

The established connections between morphology and the
physics of galaxy formation run deep, and the way these
connections manifest themselves observationally depends on the
measures of morphology used. Galaxy size and surface brightness
profile shape have served as common proxies for morphology, as
quantitatively measured from the light distribution of objects
(Vaucouleurs 1959; Sérsic 1968; Peng et al. 2010). Size, radial
profile, and isophotal shape or ellipticity vary with stellar mass
and luminosity (e.g., Kormendy 1977; Roberts & Haynes 1994;
Shen et al. 2003; Sheth et al. 2010; Bruce et al. 2012; van der Wel
et al. 2012, 2014; Morishita et al. 2014; Huertas-Company et al.
2015; Allen et al. 2017; Jiang et al. 2018; Miller et al. 2019;
Zhang et al. 2019). When controlled for other variables, these
measures of galaxy morphology may show variations with cosmic
environment (Dressler et al. 1997; Smail et al. 1997; Cooper et al.

2012; Huertas-Company et al. 2016; Kawinwanichakij et al.
2017), redshift (Abraham & van den Bergh 2001; Trujillo et al.
2004, 2006; Conselice et al. 2005; Elmegreen et al. 2005;
Lotz et al. 2008; van Dokkum et al. 2010; Patel et al. 2013;
Shibuya et al. 2015), color (Franx et al. 2008; Yano et al. 2016),
star formation rate or quiescence (Toft et al. 2007; Zirm et al.
2007; Wuyts et al. 2011; Bell et al. 2012; Lee et al. 2013;
Whitaker et al. 2015), internal dynamics (Bezanson et al. 2013),
the presence of active galactic nuclei (Kocevski et al. 2012;
Bruce et al. 2016; Powell et al. 2017), and stellar age (Williams
et al. 2017). The presence and size of bulge, disk, and bar
components also vary with mass and redshift (Sheth et al. 2008;
Simmons et al. 2014; Margalef-Bentabol et al. 2016; Dimauro
et al. 2018), and they provide information about the merger rate
(e.g., Lofthouse et al. 2017; Weigel et al. 2017). Galaxy
morphology encodes a rich spectrum of physical processes and
can augment what we learn from other galaxy properties.
While complex galaxy morphologies may be easily

summarized with qualitative descriptions (e.g., “disky,”
“spheroidal,” “irregular”), providing quantitative descriptions
of this complexity represents a long-standing goal for the field
of galaxy formation and has motivated ingenuitive analysis
methods including measures of galaxy asymmetry, concentra-
tion, flux distribution (e.g., Abraham et al. 1994, 1996;
Conselice et al. 2000; Conselice 2003; Lotz et al. 2004),
shapelet decompositions (Kelly & McKay 2004, 2005), mor-
phological principal component analyses (Peth et al. 2016), and
unsupervised morphological hierarchical classifications
(Hocking et al. 2018). These measures provide well-defined
characterizations of the surface brightness distribution of
galaxies and can be connected to their underlying physical
state by, e.g., calibration through numerical simulation
(Huertas-Company et al. 2018). The complementarity between
these quantitative measures and qualitative morphological
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descriptions of galaxies means that developing both classes of
characterizations further can continue to improve our knowl-
edge of galaxy formation physics.

Characterizing large numbers of galaxies with descriptive
classifications simultaneously requires domain knowledge of
galaxy morphology (“expertise”), the capability to evaluate
quickly each galaxy (“efficiency”), a capacity to work on
significant galaxy populations (“scalability”), some analysis of
the data to identify galaxy candidates for classification (“pre-
processing”), a presentation of galaxy images in a format that
enables the characteristic structures to be recognized (“data
model”), and an output production of reliable classifications
(“accuracy”). Methods for the descriptive classification of
galaxy morphology have addressed these challenges in
complementary ways.

Perhaps the most important and influential framework for
galaxy morphological classification to date has been the Galaxy
Zoo project (Lintott et al. 2008; Willett et al. 2013, 2017),
which enrolls the public in the analysis of astronomical data
including morphological classification. This project has
addressed the expertise challenge by training users in the
classification of galaxies and statistically accounting for the
distribution of users’ accuracies. The efficiency of users varies,
but by leveraging the power of the public interest and
enthusiasm, and now machine learning (Beck et al. 2018;
Walmsley et al. 2020), the project can use scalability to offset
variability in the performance of individual users. The pre-
processing and delivery of suitable images to the users has
required significant investment and programming, but has led
to a robust data model for both the astronomical data and the
data provided by user input. Science applications of Galaxy
Zoo include quantitative morphological descriptions of
∼50,000 galaxies (Simmons et al. 2017) in the CANDELS
survey (Grogin et al. 2011; Koekemoer et al. 2011), probes of
the connection between star formation rate and morphology in
spiral galaxies (Willett et al. 2015), and measuring galaxy
merger rates (Weigel et al. 2017).

Other efforts have emphasized different dimensions of the
morphological classification task. Kartaltepe et al. (2015)
organized the visual classification of ∼10,000 galaxies in
CANDELS by a team of dozens of professional astronomers.
This important effort performed object detection and source
extraction on the CANDELS science data, assessed their
completeness, and provided detailed segmentation maps of the
regions corresponding to classified objects. The use of high-
expertise human classifiers leads to high accuracy but poses a
challenge for scalability to larger samples. The work of
Kartaltepe et al. (2015) also leveraged a significant investment
in the preprocessing and presentation of the data to their users
with a custom interface with a high-quality data model for the
results.

Leveraging human classifiers, be they highly expert teams or
well-calibrated legions, to provide descriptive morphologies for
forthcoming data sets will prove challenging. These challenges
motivate a consideration of other approaches, and we present
two salient examples in James Webb Space Telescope (JWST;
Gardner et al. 2006) and the Large Synoptic Survey Telescope
(LSST; Ivezić et al. 2019; LSST Science Collaboration et al.
2009).

JWST enables both sensitive infrared imaging with NIRCam
and multi-object spectroscopy with NIRSpec free of atmo-
spheric attenuation. The galaxy population discovered by

JWST will show a rich range of morphologies, star formation
histories, stellar masses, and angular sizes (Williams et al.
2018), which makes identifying NIRCam-selected samples for
spectroscopic follow-up with NIRSpec challenging. The
efficiency gain of parallel observations with NIRCam and
NIRSpec will lead to programs where the timescale for
constructing NIRCam-selected samples will be very short
(∼2 months) to enable well-designed parallel survey geome-
tries. For this application, the ability to generate quick
morphological classifications for thousands of candidate
sources will enhance the spectroscopic target selection in
valuable space-based observations.
LSST presents a challenge of scale, with an estimated 30

billion astronomical sources, including billions of galaxies over
∼17,000 deg2 (LSST Science Collaboration et al. 2009). The
morphological classification of these galaxies will require the
development of significant analysis methods that can both scale
to the enormity of the LSST data set and perform well enough
to allow imaging data to be reprocessed in pace with the LSST
data releases. Indeed, morphological classification methods
have been identified as keystone preparatory science tasks in
the LSST Galaxies Science Roadmap (Robertson et al. 2017,
see also Robertson et al. 2019).
Recently, advances in the field of machine learning called

“deep learning” have enjoyed success in morphological
classification. Dieleman et al. (2015, hereafter D15) and Dai
& Tong (2018) use deep learning to classify the Galaxy Zoo
Survey. Huertas-Company et al. (2015) used a deep learning
model derived from D15 and the classifications from K15 to
classify the CANDELS survey. González et al. (2018) used
deep learning to perform galaxy detection and morphological
classification, an approach that has also been used to
characterize Dark Energy Survey galaxy morphologies
(Tarsitano et al. 2018). Deep learning models have been
further applied to infer the surface brightness profiles of
galaxies (Tuccillo et al. 2018), measure their fluxes (Boucaud
et al. 2020), and now to simulate entire surveys (Smith &
Geach 2019).
Here, we extend previous efforts by applying a semantic

segmentation algorithm to both classify pixels and identify
objects in astronomical images using our deep learning
framework called Morpheus. The software architecture of the
Morpheus framework is described in Section 2, with the
essential convolutional neural network and deep learning
components reviewed in Appendix A. The Morpheus frame-
work has been engineered by using TensorFlow (Abadi et al.
2016) implementations of these components to perform
convolutions and tensorial operations, and it is not a port of
existing deep learning frameworks or generated via “transfer
learning” (e.g., Pratt 1993) of existing frameworks pre-trained
on nonastronomical data such as ImageNet (Deng et al. 2009).
We train Morpheus using multiband Flexible Image

Transport System (FITS; Wells et al. 1981) images of
CANDELS galaxies visually classified by Kartaltepe et al.
(2015) and their segmentation maps derived from standard
sextractor analyses (Bertin & Arnouts 1996). The training
procedure is described in Section 3, including the “loss
function” used to optimize the Morpheus framework. Since
Morpheus provides local estimates of whether image pixels
contain source flux, the Morpheus output can be used to
perform source segmentation and deblending. We present
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fiducial segmentation and deblending algorithms for Morpheus
in Section 4.

We then applyMorpheus to the Hubble Legacy Fields (HLF;
Illingworth et al. 2016) reduction of the CANDELS and
GOODS data in the GOODS South region and to the v1.0 data
release (Grogin et al. 2011; Koekemoer et al. 2011) for the
other four CANDELS regions, and we generate FITS data files
of the same pixel format as the input FITS images, each
containing the pixel-by-pixel model classifications of the image
data into spheroid, disk, irregular, point source/compact, and
background classes, as described in Section 6. We publicly
release these Morpheus pixel-level classification data products
and detail them in Appendix D. We evaluate the performance
of Morpheus in Section 7, including tests that use the catalog of
3D-HST photometric sources (Skelton et al. 2014; Momcheva
et al. 2016) to measure the completeness of Morpheus in
recovering sources as a function of source magnitude. We find
that Morpheus is highly complete (>90%) for sources up to
one magnitude fainter than objects used to train the model.
Using the Morpheus results, we provide estimates of the
morphological classification of 3D-HST sources as a public
value-added catalog, described in Section 8. In Section 9, we
discuss applications of Morpheus and semantic segmentation,
which extend well beyond morphological classification, and
connect the capabilities of Morpheus to other research areas in
astronomical data analysis. We publicly release the Morpheus
code, provide online tutorials for using the framework via
Jupyter notebooks, and present an interactive website to
visualize the Morpheus classifications and segmentation maps
in the context of the HLF images and 3D-HST catalog. These
software and data releases are described in Appendices B–D. A
summary of our work is presented with some conclusions in
Section 10. Throughout the paper, we have used the AB
magnitude system (Oke & Gunn 1983) and assumed a flat
ΛCDM universe (Ωm=0.3, ΩΛ=0.7) with a Hubble
parameter H0=70 km s−1 Mpc−1 when necessary.

2. Morpheus Deep Learning Framework

Morpheus provides a deep learning framework for analyzing
astronomical images at the pixel level. Using a semantic
segmentation algorithm, Morpheus identifies which pixels in an
image are likely to contain source flux and separates them from
“background” or sky pixels. Morpheus, therefore, allows for
the definition of corresponding segmentation regions or
“segmentation maps” by finding contiguous regions of source
pixels distinct from the sky. Within the same framework,
Morpheus enables for further classification of the source pixels
into additional “classes.” In this paper, we have trained
Morpheus to classify the source pixels into morphological
categories (spheroid, disk, irregular, point source/compact, and
background) approximating the visual classifications per-
formed by the CANDELS collaboration in K15. These source
pixel classes identified by Morpheus could, in principle, be
trained to reproduce other properties of the galaxies, such as,
e.g., photometric redshift, provided a sufficient training data set
is available. In the sections below, we describe the architecture
of the Morpheus deep learning framework. Readers unfamiliar
with the primary computational elements of deep learning
architectures may refer to Appendix A where more details are
provided.

2.1. Input Data

We engineered the Morpheus deep learning framework to
accept astronomical image data as direct input for pixel-level
analysis. Morpheus operates on science-quality FITS images,
with sufficient pipeline processing (e.g., flat-fielding, back-
ground subtraction, etc.) to enable photometric analysis.
Morpheus accepts multiband imaging data, with a FITS file
for each of the nb bands used to train the model (see Section 3).
The pixel format of the input FITS images (or image region)
matches the format of FITS images used to perform training,
reflecting the size of the convolutional layers of the neural
network determined before training. Morpheus allows for
arbitrarily large images to be analyzed by subdividing them
into regions that the model processes in parallel, as described in
Section 2.3 below.
For the example application of morphological classification

presented in this paper, we use the F606W(V ), F850LP(z),
F125W(J), and F160W(H) band images from the Hubble Space
Telescope for training, testing, and our final analysis. Our
training and testing images were FITS thumbnails and
segmentation maps provided by Kartaltepe et al. (2015). Once
trained, Morpheus can be applied to arbitrarily large images via
a parallelization scheme described below in Section 2.3. We
have used the CANDELS public release data (Grogin et al.
2011; Koekemoer et al. 2011) in additional performance tests
and the HLF v2.0 data (Illingworth et al. 2016) for our
Morpheus data release.
We note that the approach taken by Morpheus differs from

deep learning models that use traditional image formats, e.g.,
three-color Portable Network Graphics (PNG) or Joint Photo-
graphic Experts Group (JPEG) images as input. Using PNG or
JPEG files as input is convenient because deep learning models
trained on existing PNG or JPEG data sets, such as ImageNet
(Deng et al. 2009; Russakovsky et al. 2015), can be retrained
via transfer learning to classify galaxies. However, the use of
these inputs requires additional pre-processing beyond the
science pipeline, including arbitrary decisions about how to
weight the FITS images to represent the channels of the
multicolor PNG or JPEG. With the goal of including Morpheus
framework analyses as part of astronomical pipelines, we have
instead used FITS images directly as input to the neural
network.

2.2. Neural Network

Morpheus uses a neural network inspired by the U-Net
architecture (Ronneberger et al. 2015, see Appendix A.5) and is
implemented using Python 3 (Rossum 1995) and the Tensor-
Flow library (Abadi et al. 2016). We construct Morpheus from
a series of “blocks” that combine multiple operations used
repeatedly by the model. Each block performs a sequence of
“block operations.” Figure 1 provides an illustration of a
Morpheus block and its block operations. Block operations are
parameterized by the number Q of convolved output images, or
“feature maps”, they produce, one for each convolutional
artificial neuron in the layer. We describe this process in more
detail below.
Consider input data X, consisting of K layers of images with

N×M pixels. We define a block operation on X as

( ) ( ( ( )) ( )=X XOP ReLU CONV BN , 1Q Q
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where ReLU is the Rectified Linear Unit activation function
(ReLU; Hahnloser et al. 2000; Lecun et al. 2015, see also
Appendix A.1), CONVQ is a convolutional layer (see
Appendix A.3) with a number Q of convolutional artificial
neurons (see Appendix A.3), and BN is the batch normalization
procedure (Ioffe & Szegedy 2015, and Appendix A.4.4). Note
that the values of Q appearing in OPQ and CONVQ are equal.
For example, OP4 would indicate that the convolutional layer
within the OP4 function has four convolutional artificial
neurons. Unless stated otherwise, all inputs into a convolu-
tional layer are zero-padded to preserve the width and height of
the input, and all convolutional artificial neurons have kernel
dimensions 3×3. Given Equation (1), for an input X with
dimensions N×M×K, the output of the function OP4(X)
would have dimensions N×M×4.
Equation (1) allows for a recursive definition of a function

describing a series of block operations, where the input data to
one block operation consist of the output from a previous block
operation. This recursion can be written as

⎧⎨⎩( ) ( ( ( ( )))

( )

=
=
>-X

X

X

P

P
OP

, if 0

ReLU CONV BN OP if 0.

2

Q
P

Q Q
P 1

Equation (2) introduces a new parameter P, shown with a
superscript in OPQ

P. The parameter P establishes the conditions
of a base case for the recursion. Note that in Equation (2), the
input X is processed directly when P=1, and when P>1,
the input to the OPQ

P function is the output from -OPQ
P 1. It can

be seen from the formulation of Equations (1) and (2)
that ( ) ( )=X XOP OPQ Q

1 .
Since a block performs a number P block operations, we can

define a block mathematically as

( ) ( ) ( )=X XQ PBLOCK , , OP . 3Q
P

An example block and its block operations can be seen
diagrammatically in Figure 1. With these definitions, we can
present the neural network architecture used in Morpheus.
Like the U-Net architecture, the Morpheus architecture

consists of a contraction phase and an expansion phase. The
contraction phase consists of three blocks with parameters
(P=4, Q=8), (P=4, Q=16), and (P=4, Q=32). Each
block is followed by a max-pooling operation with
size=(2×2) (see Appendix A.4.1), halving the width and
height of its input. After the contraction phase, there is a single
intermediary block preceding the expansion phase with the
parameters (P=1, Q=16). The expansion phase consists of
three blocks with the parameters (P=2, Q=8), (P=2,
Q=16), and (P=2, Q=32). Each block is preceded by a
bicubic interpolation operation that doubles the width and the
height of its input. Importantly, the output from each block in
the contraction phase is concatenated (see Appendix A.4.3)
with the output from the bicubic interpolation operation in the
expansion phase whose output matches its width and height
(see Figure 2). The output from the final block in the expansion
phase is passed through a single convolutional layer with five
convolutional artificial neurons. A softmax operation (see
Equation (4)) is performed on the values in each pixel, ensuring
that the values sum to unity. The final output is a matrix with
the same width and height as the input into the network, but
where the last dimension, five, now represents a classification
distribution describing the confidence that the corresponding
pixel from the input belongs to one of the five specified
morphological classes.
The blocks in Morpheus are organized into the U-Net

structure, shown in Figure 2. The model proceeds clockwise,
starting from “Input” on the upper left through to “Output” on
the lower left. The very first step involves the insertion of the
input FITS images into the model. Each FITS image is
normalized to have a mean of 0 and unit variance before
processing by Morpheus. We will refer to the number of input
bands as nb, and in the application presented here, we take
nb=4 (i.e., VzJH). The input images each have pixel
dimensions N×M, and we can, therefore, consider the
astronomical input data to have dimensions N×M×nb.
Only the first block operation takes the FITS images as input,
and every subsequent block operation in the model takes the
output from previous blocks as input.
The first convolution in the first block operation convolves

the normalized N×M×nb astronomical data with three-
dimensional kernels of size ´n nk b

2 , and each element of the
kernel is a variable parameter of the model to be optimized.
The convolutions operate only in the two pixel dimensions,
such that nb convolutions are performed, one for each N×M
pixel image, using a different nk×nk kernel for each
convolution. The nb convolved images are then summed pixel
by pixel to create an output feature map of size N×M. The
convolutional layer repeats this process Q times with different
kernels, generating Q output feature maps and an output data
set of size N×M×Q. For the first block inMorpheus, we use
Q=8 (see Figure 2). After the first convolution on the

Figure 1. Diagram of a single block in the Morpheus neural network
architecture (Figure 2). Panel (c) shows a single block from the architecture,
parameterized by the number P (black) of block operations and the number Q
(purple) of convolutional artificial neurons (CANs; Section A.3) in all of the
convolutional layers within the block. Panel (b) shows an example zoom-in
where there are P=2 groups of Q=4 block operations. Panel (a) shows a
zoom-in on a block operation, which consists of batch normalization, Q=4
CANs, and a rectified linear unit (ReLU). In the notation of Equation (1), this
block operation would be written as OP4(X).
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astronomical data, every subsequent convolution in the first
block has both an input and output data of size N×M×Q.
Each block performs a number of block operations P,

resulting in output data with dimensions of N×M×Q
emerging from the block. The number of feature maps Q
changes with each block. For a block producing Q filters, if the
data entering the block has size ´ ´ ¢N M Q with ¢ ¹Q Q,
then the first convolutional layer in the first block operation will
have Q kernels of size ´ ¢n Qk

2 . All subsequent convolutional
layers in the block will then ingest and produce data of size
N×M×Q by using kernels of size ´n Qk

2 .
We can apply further operations on the data in between the

blocks, and the character of these operations can affect the
dimensions of the data. The first half of the model is a
contraction phase, where each block is followed by a max-
pooling operation (Cireşan et al. 2012, and Appendix A.4.1).
The max-pooling operation is applied to each feature map
output by the block, taking the local maximum over small areas
within each feature map (in the version of Morpheus presented
here, a 2×2 pixel region) and reducing the size of the data
input to the next block by the same factor. For this paper, the
contraction phase in the Morpheus framework uses three pairs
of blocks plus max-pooling layers.

After the contraction phase, the model uses a series of
blocks, bicubic interpolation layers, and data concatenations in
an expansion phase to grow the data back to the original
format. Following each block in the expansion phase, a bicubic
interpolation layer expands the feature maps by the same areal
factor as the max-pooling layers applied in the contraction
phase (2×2 in the version of Morpheus presented here). The
output feature maps from the interpolation layers are
concatenated with the output feature maps from the contraction
phase blocks where the data have the same format. Finally, the
output from the last block in the expansion phase is input into a
convolutional layer that produces the final output images that
we call “Morpheus classification images,” one image for each
class. The pixel values in these images contain the model
estimates for their classification, normalized such that the

element-wise sum of the classification images equals unity. For
this paper, where we are performing galaxy morphological
classification, there are five classification images (spheroid,
disk, irregular, point source/compact, and background).
As the data progresses through the model, the number of

feature maps and their shapes change owing to the max-pooling
and interpolation layers. For reference, in Table 1, we list the
dimensions of the data at each stage in the model, assuming
input images in nb bands, each with N×M pixels, and a total
of nc classification images produced by the model.

2.3. Parallelization for Large Images

While the Morpheus neural network performs semantic
segmentation on pixels in FITS images with a size determined
by the training images, the model can process and classify
pixels in arbitrarily large images. To process large images,
Morpheus uses a sliding window strategy by breaking the input
FITS files into thumbnails of size N×M (the size of the
training images) and classifying them individually. Morpheus
proceeds through the large-format image, first column by
column, and then row by row, shifting the active N×M
window by a unit pixel stride and then recomputing the
classification for each pixel.
As the classification process continues with unit pixel shifts,

each pixel is deliberately classified many times. We noticed
heuristically that the output Morpheus classification of pixels
depended on their location within the image and that the pixel
classifications were more accurate relative to our training data
when they resided in the inner np=(N−B)×(M−B)
region of the classification area, where the less accuracte region
consisted of a border about B∼5 pixels wide on each side.
Outside of the very outer B pixels in the large-format image,
Morpheus classifies each pixel np times. For the large FITS
data images used in this paper, this repetition corresponds to
np=900 separate classifications per pixel per output class,
where each classification occurs when the pixel lies at a
different location within the active window. This substantial

Figure 2. Neural network architecture of the Morpheus deep learning framework, following a U-Net (Ronneberger et al. 2015) configuration. The input to the model
Morpheus consists of astronomical FITS images in nb bands (upper left). These images are processed through a series of computational blocks (sky blue rectangles),
each of which appliesP (black numbers) block operations consisting of a batch normalization and multiple convolutional layers producing Q (purple numbers) feature
maps. The blocks are described in more detail in Figure 1. During the contraction phase of the model, max-pooling layers (salmon rectangles) are applied to the data to
reduce the pixel size of the images by taking local maxima of 2×2 regions. The contraction phase is followed by an expansion phase where the output feature maps
from each block are expanded by a 2×2 factor via bicubic interpolation (green rectangles) and concatenated with the output from the corresponding block in the
contraction phase. The output from the last block is processed through a set of convolutional layers (light blue box with Q=5) that result in a feature map for each
classification in the model. These “classification images” are normalized to sum to unity pixel by pixel. In this paper, the classification images are spheroid, disk,
irregular, point source/compact, and background.
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additional information can be leveraged to improve the model,
but storing the full “distribution” of classifications produced by
this method would increase our data volume by roughly three
orders of magnitude.

WhileMorpheus would enable full use of these distributions,
for practical considerations, we instead record some statistical
information as the computation proceeds and do not store the
entire set of np samples. To avoid storing the full distribution,
we track running estimates of the mean and variance of the
distribution.4 Once the mean for each class for each pixel is
computed, we normalize the means across classes to sum to
unity. We further record a statistic we call rank voting, which is
a tally of the number of times each output class was computed
by the model to be the top class for each pixel. The sum of rank
votes across classes for a single pixel equals the number of
times Morpheus processed the pixels (i.e., np for most pixels).
After the computation, the rank votes are normalized to sum to
unity across the classes for each pixel.

The strips of classified regions produce 15 output images,
containing the mean and variance estimators for the classifica-
tion distribution and normalized rank votes for each class. This
striped processing of the image can be performed in parallel
across multiple Morpheus instances and then stitched back

together. The weak scaling of this processing is, in principle,
trivial and is limited only by the number of available GPUs and
the total memory of the computer used to perform the
calculation.

3. Model Training

The training of deep learning frameworks involves important
decisions about the training data, the metrics used to optimize
the network, the numerical parameters of the model, and the
length of training. We provide some rationale for these choices
below.

3.1. Training Data

To train a model to perform semantic segmentation, we
require a data set that provides both information on the
segmentation of regions of interest and classifications asso-
ciated with those regions. For galaxy morphological classifica-
tion, we use 7629 galaxies sampled from the K15 data set.
Their two-epoch CANDELS data provide an excellent
combination of multiband FITS thumbnails, segmentation
maps in FITS format, and visually classified morphologies in
tabulated form. The K15 classifications consisted of votes by
expert astronomers, between 3 and 60 per object, who
inspected images of galaxies and then selected from several
morphological categories to assign to the object. The number of
votes for each category for each object are provided, allowing
Morpheus to use the distribution of votes across classifications
for each object when training. We downloaded and used the
publicly available K15 thumbnail FITS files for the F606W,
F850LP, F125W, and F160W bands as input into the model for
training and testing. In training Morpheus to reproduce the K15
classifications, multiband data approximates the information
provided to the astronomers who performed the K15 classifica-
tions. Morpheus is trained using the same V-, z-, J-, and H-band
image thumbnails used in the K15 classification process. Other
bands or different numbers of bands could be used for training
as necessary, and Morpheus allows for reconfiguration and
retraining depending on the available training images. Of
the K15 data set, we used 80% of the objects to form our
training sample and 20% to form our test sample. Various
statistical properties of the test and training samples are
described throughout the rest of the paper.
The primary K15 classifications spheroid, disk, irregular,

and point source/compact were used in the example Morpheus
application presented here. We added one additional class,
background, to represent sky pixels without a significant source
flux. We classify pixels as belonging to the background
category if those pixels fell outside the K15 segmentation
maps. Pixels inside the segmentation maps were assigned the
distribution of classifications provided by the K15 experts.
The K15 classification scheme also included an unknown

class for objects. Since Morpheus works at the pixel level and
could provide individual pixel classifications that were locally
accurate within a source but that collectively could sum to an
object whose morphology expert astronomers might classify as
unknown, we were posed with the challenge of how to treat
the K15 unknown class. Given our addition of the background
class constructed from large image regions dominated by sky,
one might expect overlap in the features of regions that are
mostly noise and amorphous regions classified as unknown.
Since one might also expect overlap between unknown and

Table 1
Computational Steps in the Morpheus Deep Learning Framework

Layer Input Output Dimensions

Input Images nb Bands, N×M Pixels [N, M, nb]
Block 1a Input Images [N, M, 8]
Block 1b Block 1a [N, M, 8]
Block 1c Block 1b [N, M, 8]
Block 1d Block 1c [N, M, 8]
Max Pooling 1 Block 1d [N/2, M/2, 8]
Block 2a Max Pooling 1 [N/2, M/2, 16]
Block 2b Block 2a [N/2, M/2, 16]
Block 2c Block 2b [N/2, M/2, 16]
Block 2d Block 2c [N/2, M/2, 16]
Max Pooling 2 Block 2d [N/4, M/4, 16]
Block 3a Max Pooling 2 [N/4, M/4, 32]
Block 3b Block 3a [N/4, M/4, 32]
Block 3c Block 3b [N/4, M/4, 32]
Block 3d Block 3c [N/4, M/4, 32]
Max Pooling 3 Block 3d [N/8, M/8, 32]
Block 4a Max Pooling 3 [N/8, M/8, 16]
Interpolation 1 Block 4a [N/4, M/4, 16]
Block 5a Interp. 1 + Block 3d [N/4, M/4, 8]
Block 5b Block 5a [N/4, M/4, 8]
Interpolation 2 Block 5b [N/2, M/2, 8]
Block 6a Interp. 2 + Block 2d [N/2, M/2, 16]
Block 6b Block 6a [N/2, M/2, 16]
Interpolation 3 Block 6b [N, M, 16]
Block 7a Interp. 3 + Block 1d [N, M, 32]
Block 7b Block 7a [N, M, 32]
Convolution Block 7b [N, M, nc]

Note. For each layer (left column), we list its input (center column) and the
output shape of its data (right column). The model takes as its starting input a
set of images in nb bands, each with N×M pixels. The final output of the
model is a set of nc classification images, each with N×M pixels. The
Morpheus block structures are illustrated in Figure 1. The “+” symbol denotes
a concatenation between two layer outputs, as shown in Figure 2.

4 See, e.g.,http://people.ds.cam.ac.uk/fanf2/hermes/doc/antiforgery/stats.
pdffor an example of running mean and variance estimators.
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irregular classifications, we wanted to preserve some distinc-
tion in the object classes. We, therefore, removed the unknown
class by removing any sources that had unknown as their
primary classification from the training sample (213 sources).
For any sources where the nondominant K15 classifications
included unknown, we redistributed the unknown votes
proportionally to the other classes.

3.2. Data Augmentation

To increase the effective size of the training data set,
Morpheus uses a data augmentation method. Augmentation
supplements the input training data set by performing
transformations on the training images to alter them with the
intent of adding similar but not identical images with known
classifications. Augmentation has been used successfully in the
context of galaxy morphological classification (e.g., Dieleman
et al. 2015), and Morpheus adopts a comparable approach to
previous implementations.

During training, Morpheus produces a series of 40×40
pixel augmented versions of the training images. The
augmentation approach is illustrated in Figure 3. For each
band in the original training image, the image is collectively
rotated by a random angle fä[0, 2π], flipped horizontally
with a random 50% probability, and then flipped vertically with
a random 50% probability. A crop of the inner 60×60 pixels
of the resulting image is produced, and then a random 40×40
pixel subset of the image is selected and passed to the model
for training. This method allows us to increase the effective
number of images available for training by a factor of
∼574,400 and helps ameliorate over-training on the original
training image set.

3.3. Loss Function

A standard method for training deep learning frameworks is
to define a loss function that provides a statistic based on the

output classifications to optimize via stochastic gradient
descent with gradients computed using back-propagation
(Rumelhart et al. 1986). Here, we describe how the Morpheus
loss function is constructed.

The first task is to assign a distribution of input classifica-
tions on a per-pixel basis, choosing between the nc classes
available to the Morpheus model. For this work, we choose
nc=5 (background, disk, spheroid, irregular, and point
source/compact), but Morpheus can adopt an arbitrary number
of classes. We use the index k to indicate a given class, with
kä[1, nc]. Consider an N×M image of an astronomical
object that has been visually classified by a collection of
experts, and a segmentation map defining the extent of the
object in the image. Outside the segmentation map of the
object, the pixels are assumed to belong to the sky and are
assigned the background class. Inside the segmentation map,
pixels are assigned the distribution of disk, spheroid, irregular,
and point source/compact classifications determined by the
experts for the entire object. For each pixel ij, with iä[1, N]
rows and jä[1,M] columns, we then have the vector qij whose
elements qijk contain the input distribution of classifications.
Here, the index k runs over the number of classes nc and
å =q 1k ijk for each pixel with indices ij. The goal of the model
is to reproduce this normalized distribution qij of discrete
classes for each pixel of the training images. We wish to define
a total loss functionLtot that provides a single per-image
statistic for the model to optimize when attempting to
reproduce qij. Morpheus combines a weighted cross entropy
loss function with a Dice loss (Milletari et al. 2016; Novikov
et al. 2018) for its optimization statistic, which we describe
below.
At the end of the Morpheus data flow, as outlined in

Figure 2, the raw output of the model consists ofN×M
vectors xij with nc elements per-pixel estimates that represent
unnormalized approximations to the input per-pixel distribu-
tions qij. The model outputs xij for each pixel are then

Figure 3. Data augmentation pipeline used during neural network training. Each training image is processed by the data augmentation pipeline before being presented
to the neural network during training. The pipeline can be described in seven stages (annotated “(a)–(g)” above). First, an image from the training set is selected (panel
(a)). A number of augmentation operations are then applied to the image. The image is rotated by a random angle θä[0, 2π] (panel (b)), flipped horizontally with
50% probability (panel (c)), and flipped vertically with a 50% probability (panel (d)). The centermost 60×60 subset of the resulting image is cropped (panel (e)), and
then a random 40×40 subset is selected from the cropped image (panel (f)). The output 40×40 rotated, flipped, and cropped image is then used for training. This
procedure increases the available images for training by a factor of ∼574,400. Using this process helps reduce overfitting, particularly in the cases of data sets with
limited training sample sizes.
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normalized to form a probability distribution pij using the
softmax function
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The distribution pij then represents the pixel-by-pixel classifi-
cations computed by Morpheus for each of the kä[1, nc]
classes. For a pixel with indices ij, we can define the per-pixel
cross entropy loss function as
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where pij and qij are again the two per-pixel probability
distributions, with qij representing the true distribution of the
input classifications for the pixel ij and pij representing the
model output.

Equation (5) provides the per-pixel contribution to the
entropy loss function. However, for many images, the majority
of pixels lie outside the segmentation maps of sources
identified in the training data and are therefore labeled as
background. To overcome this imbalance and disincentivize
the model from erroneously learning to classify pixels
containing source flux as background, we apply a weighting
to the per-pixel loss. We define an index kij

qmax, that indicates
which class is the maximum of the input classification
distribution for each pixel, written as

( )=k qargmax 6ij
q

ij
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max, . For each class k, we then define a weight

wk that is inversely proportional to the number of pixels with
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Here, δi,j is the Kronecker delta function. The vector w has size
nc and each of its elements wk contain the inverse of the sum of

( )qmax ij for pixels with =k kij
qmax, . In a given image, we

ignore any classes that do not appear in the input classification
distribution (i.e., any class k for which å å =q 0i j ijk ).

Using w, we define a weighted cross entropy loss for each
pixel as
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A mean weighted loss function is then computed by averaging
Equation (8) over all pixels as
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This mean weighted loss function serves as a summary statistic
of the cross entropy between the output of Morpheus and the
input classification distribution.

When segmenting images primarily comprised of back-
ground pixels, the classification distributions of the output
pixels should be highly unbalanced, with the majority having
background≈1. In this case, the mean loss function statistic
defined by Equation (9) will be strongly influenced by a single
class. A common approach to handle unbalanced segmenta-
tions is to employ a Dice loss function to supplement the

entropy loss function (e.g., Milletari et al. 2016; Sudre et al.
2017). The Dice loss function used by Morpheus is written as

( )
( ( )◦ )

( ( ) )
( )= -

å å

å å +
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b m

b m
L

S

S
, 1 2 . 10D i j ij
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Here, ( ) ( ( ))= + - -b bS 1 exp 1 is the sigmoid function (see
Equation (A3)) applied pixel-wise to the background classifi-
cation image output by the model. The image m is the input
mask with values m=1 denoting background pixels and
m=0 indicating source pixels, defined, e.g., by a segmenta-
tion map generated using sextractor. The ◦ symbol indicates a
Hadamard product of the matrices ( )bS and m. Note that the
output background matrix b has not yet been normalized using
a softmax function, and so, [ ]Î -¥ ¥b ,ij and S(bij)ä[0, 1].
The Dice loss then ranges from LD=0 if ( ) »b mS and
LD∼1 when ( )bS and m differ substantially. The addition of
this loss function helps to maximize the spatial coincidence of
the output background pixels assigned bij≈1 with the nonzero
elements of the input segmentation mask m.
To define the total loss function optimized during the

training of Morpheus, the cross entropy and Dice losses are
combined as a sum weighted by two parameters λw and λD.
The total loss function is written as

( )l l= +L L L . 11w
w

D
D

tot

For the implementation of Morpheus used in this paper, the
entropy and Dice loss functions are weighted equally by setting
λw=1 and λD=1.

3.4. Optimization Method

To optimize the model parameters, the Adam stochastic
gradient descent method (Kingma & Ba 2014) was used. The
Adam algorithm uses the first and second moments of first-
order gradients computed via back-propagation to find the
minimum of a stochastic function (in this case, our loss
function, see Section 3.3, which depends on the many
parameters of the neural network). The Adam optimizer, in
turn, depends on hyper-parameters that determine how the
algorithm iteratively finds a minimum. Since the loss function
is stochastic, the gradients change with each iteration, and
Adam uses an exponential moving average of the gradients (m̂)
and squared gradients (v̂) when searching for a minimum. Two
dimensionless hyper-parameters (β1 and β2) set the decay rates
of these exponential averages (see Algorithm 1 of Kingma &
Ba 2014). As the parameters θ of the function being optimized
are iterated between steps t−1 and t, they are updated
according to

· ˆ ( ˆ ) ( )q q a¬ - +- m v . 12t t t t1

Here, ò is a small, dimensionless safety hyper-parameter that
prevents division by zero, and α is a small, dimensionless
hyper-parameter that determines the magnitude of the iteration
step. Table 2 lists the numerical values of the Adam optimizer
hyper-parameters used by Morpheus. We use the default
suggested values for β1, β2, and ò. After some experimentation,
we adopted a more conservative step size for α than that used
by Kingma & Ba (2014).
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3.5. Model Evaluation

As training proceeds, the performance of the model can be
quantified using various metrics and monitored to determine
when training has effectively completed. The actual perfor-
mance of Morpheus will vary depending on the classification
scheme used, and here, we report the performance of the model
relative to the CANDELS images morphologically classified
in K15. Performance metrics reported in this section refer to
pixel-level quantities, and we discuss object-level comparisons
of morphological classifications relative to K15 in Section 5.

While the model training proceeds by optimizing the loss
function defined in Section 3.3, we want to quantify the
accuracy of the model in recovering the per-pixel classification
and the overlap of contiguous regions with the same
classification. First, we will need to define the index kij

max

with maximum probability to reflect either the input classifica-
tion qij or the output classification pij. We define an equivalent
of Equation (6) for pij as

( )=k pargmax . 13ij
p

ij
max,

We can then define a percentage accuracy
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The accuracy  then provides the percentage of pixels for
which the maximum probability classes of the input and output
distributions match.

In addition to accuracy, the intersection-over-union  of
pixels with background probabilities above some threshold is
computed between the input qij and output pij distributions. If
we define the index b to represent the background class, we can
express the input background probabilities as =q qb ijb for

[ ]Îi N1, and jä[1, M] and the equivalent for the output
background probabilities pb. We can refer to qb and pb as the
input and output background images, and the regions of these
images with values above some threshold B are expressed as

( )>q Bb and ( )>p Bb , respectively. Note that the input qb only
contains values of zero or one, whereas the output pb has
continuous values between zero and one. We can then define
the  metric for threshold B as

( )
( ) ( )
( ) ( )

( )Ç
È

=
> >
> >

 B
p B q B

p B q B
. 15b b

b b

Intuitively, this  metric describes how well the pixels assigned
by Morpheus as belonging to a source match up with the input
source segmentation maps. A value of = 1 indicates a perfect

match between source pixels identified by Morpheus and the
input segmentation maps, while a value of = 0 would
indicate no pixels in common between the two sets.
As training proceeds, the accuracy  and intersection-over-

union  are monitored until they plateau with small variations.
For the K15 training data, the model plateaued after about 400
epochs. The training then continues for another 100 epochs to
find a local maximum in  and  , and the model parameters
at this local maximum are adopted for testing. Table 3
summarizes the per-pixel performance of Morpheus in terms
of  for each class separately,  for all classes, and ( ) B for
B=[0.5, 0.6, 0.7, 0.8, 0.9]. We also report the performance of
the training and testing samples separately. The pixel-level
classifications are 70%–90% accurate depending on the class,
and the intersection-over-union is ~ 0.9 for all thresholds
B�0.5. The model shows some evidence for overfitting as
accuracy declines slightly from the training to test sets for most
classes.

4. Segmentation and Deblending

To evaluate the completeness of Morpheus in object
detection and to compute an object-level classification,
segmentation maps must be constructed and then deblended
from the Morpheus pixel-level output. Morpheus uses the
background class from the output of the neural network
described in Section 2.2 to create a segmentation map. The
segmentation algorithm uses a watershed transform to separate
background pixels from source pixels and then assigns
contiguous source pixels a unique label. The deblending
algorithm uses the flux from the input science images and the
output of the segmentation algorithm to deblend under-
segmented regions containing multiple sources. We summarize
these procedures as Algorithms 1 and 2. Figure 4 illustrates the
process for generating and deblending segmentation maps.

4.1. Segmentation

The segmentation algorithm operates on the output back-
ground classification image and identifies contiguous regions
of low background as sources. The algorithm begins with the
background image ºb pb defined in Section 3.5 and an

Table 2
Adam Optimizer (Kingma & Ba 2014) Hyper-parameter Values Used During

the Training of the Neural Network Used in Morpheus

Adam Optimizer Hyper-parameters

Hyper-parameter Value

β1 0.9
β2 0.999
ò 10−8

α 9.929×10−5

Note. See the text for definitions of the hyper-parameters.

Table 3
Morpheus Training and Test Results for Accuracy , and Intersection-over-

union  as a Function of Background Threshold B

Morpheus Training and Test Results

Metric Training Test

Accuracy 
Background 91.5% 91.4%
Disk 74.9% 75.1%
Irregular 80.6% 68.6%
Point source/compact 91.0% 83.8%
Spheroid 72.3% 71.4%
All Classes 86.8% 85.7%
Intersection-over-union 
B>0.5 0.899 0.888
B>0.6 0.900 0.891
B>0.7 0.902 0.893
B>0.8 0.902 0.895
B>0.9 0.900 0.896
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initially empty mask =m 0 of the same size. For every pixel in
the image, if bij=1, we set mij=1, and if bij=0, we set
mij=2. The background mask m then indicates extreme
regions of b. The Sobel & Feldman (1968) algorithm is applied
to the background image b to produce a Sobel edge image s.
Morpheus then applies the watershed algorithm of Couprie &
Bertrand (1997), using the Sobel image s as the “input image”
and the background mask m as the “marker set.” We refer the
reader to Couprie & Bertrand (1997) for more details on the
watershed algorithm; but in summary, the watershed algorithm
collects regions together that have the same marker set value
within basins in the input image. The Sobel image s provides
these basins by identifying edges in the background, and the
background mask m provides the marker locations for
generating the individual sheds. The output of the watershed
algorithm is then an image sm containing distinct regions
generated from areas of low background that are bounded by
edges where the background is changing quickly. The
algorithm then visits each of the distinct regions in sm and
assigns them a unique id, creating the segmentation map sm
before deblending.

Algorithm 1. Segmentation

Input:Background probability map b, Specified
marker set p (optional, same size as b)
Output:Labeled segmentation map sm
 ¬m zero matrix same size as b
formij in mdo
ifbij=1then
 ¬m 1ij

end
else ifbij=0 or pij>0then
 ¬m 2ij

end
end
 ¬s SOBEL(b)
 ¬sm WATERSHED(s, m)
 ¬id 1
foreach contiguous set of pixels >y 0 in smdo
forpixel yij in ydo
 ¬y idij

end

(Continued)

 ¬ +id id 1
end
return sm

Where SOBEL is the Sobel algorithm (Sobel & Feldman 1968) and
WATERSHED is the watershed algorithm (Couprie & Bertrand 1997). The
optional parameter p allows for pixel locations to be specified, such as the
locations of known sources, and used as generating points for the watersheding
operation.

4.2. Deblending

The algorithm described in Section 4.1 provides a collection
of segmented regions of contiguous areas, each with a unique
index. Since this algorithm identifies contiguous regions of low
background, neighboring sources with overlapping flux in the
science images will be blended by the segmentation algorithm.
The deblending algorithm used in Morpheus is ad hoc and is
primarily designed to separate the segmented regions into
distinct subregions containing a single pre-defined object. The
locations of these objects may be externally specified, such as
catalog entries from a source catalog (e.g., 3D-HST sources), or
they may be internally derived from the science images
themselves (e.g., local flux maxima).
The deblending algorithm we use applies another round of

the watershed operation on each of the distinct regions
identified by the segmentation algorithm, using the local flux
distributions from the negative of a science image (e.g.,
F160W) as the basins to fill and object locations as the marker
set. We assign the resulting subdivided segmentations a distinct
subid in addition to their shared id, allowing us to keep track of
adjacent deblended regions that share the same parent
segmentation region. The subid of deblended sources is
indicated by decimal values, and the parent id is indicated by
the whole number of the id. For example, if a source with
id=8 was actually two sources, after deblending, the two
deblended sources would have id values 8.1 and 8.2.
In testing Morpheus, we find that the deblending algorithm

may shred extended sources like large disks or point-source
diffraction spikes. However, the Morpheus algorithm

Figure 4. Segmentation and deblending process used by Morpheus, illustrating Algorithms 1 and 2. The background image (panel (a)) output from the Morpheus
neural network is used as input to a Sobel-filtered image (panel (b)) and a discretized map marking regions of high and low background (panel (c)). These two images
are input to a watershed algorithm to identify and label distinct, connected regions of low background that serve as the highest-level Morpheus segmentation map
(panel (e)). This segmentation map represents the output of Algorithm 1. A flux image and a list of object locations (panel (d)) are combined with the high-level
segmentation map to deblend multicomponent objects using an additional watershed algorithm by using the source locations in the flux image as generating points.
The end result is a deblended segmentation map (panel (f)), corresponding to the output of Algorithm 2.
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successfully deblends some small or faint sources proximate to
bright sources that are missing from the 3D-HST catalog.

Algorithm 2. Deblending

Input:Segmentation map sm, flux image h, minimum
radius between flux peaks r , maximum number
of deblended subregions ndmax, Specified
marker set p (optional, same size as sm)
Output:Deblended segmentation map db
ifp is not specifiedthen
 ⎡⎢ ⎤⎥¬idc 10 ndlog10 max (⌈⌉ indicate ceiling
operation)
 ¬ ´sm idc sm
end
foreach contiguous set of source pixels >s 0 in smdo
 ¬hlocal subset of h corresponding to s
ifp is specifiedthen
 ¬plocal subset of p corresponding to s
ifplocal contains more than one idthen
 ¬s WATERSHED(-hlocal, plocal)
end
else
 ¬s MAX(plocal)
end
end
else
 ¬idx PEAKLOCALMAXIMA(hlocal, r , c)
ifCOUNT(idx)>1then
 ¬subid 1
 ¬m a zero matrix same size as s
forindices i, j in idxdo
 ¬m subidij

 ¬ +subid subid 1
end
 ¬s WATERSHED(-hlocal, m)
end
end
end
ifp is not specifiedthen
 ¬ ´-db idc sm1

(Continued)

end
else
 ¬db sm
end
returndb

Where WATERSHED is the watershed algorithm (Couprie & Bertrand 1997).
PEAKLOCALMAXIMA(x, y, z) returns a list of tuples marking the pixel locations
of at most z local maxima in x that lie at least 2y pixels apart, as implemented
by van der Walt et al. (2014). COUNT returns the number of elements in a
collection. MAX returns the maximum element from a matrix. The optional
parameter p allows for pixel locations to be specified, such as the locations of
known sources, and used as generating points for the watersheding.

5. Object-level Classification

While Morpheus uses a semantic segmentation model to
enable pixel-level classification of astronomical images
using a deep learning framework, some applications, like the
morphological classification of galaxies, additionally require
object-level classification. Morpheus aggregates pixel-level
classifications into an object-level classification by using a
flux-weighted average.
Figure 5 shows the results of the Morpheus pixel-level

classification for an example area of the CANDELS region of
GOODS South. The leftmost panel shows a three-color VzH
composite of the example area for reference, though Morpheus
operates directly on the science-quality VzJH FITS images. The
central panels show the output pixel classifications (i.e., q from
Section 3.3) for the background, spheroid, disk, irregular, and
point source/compact classes, with the intensity of each pixel
indicating the normalized probability qijkä[0, 1]. The
segmentation map resulting from the algorithms described in
Section 4 is also shown in as a central panel. The rightmost
panel shows a color composite of the Morpheus pixel-level
classification, with the color of each pixel indicating its
dominant class and the saturation of the pixel being propor-

Figure 5. Morpheus morphological classification results for a region of the GOODS South field. The far left panel shows a three-color composite VzH image. The
scale bar indicates 1 5. The V, z, J, and H FITS images are supplied to the Morpheus framework, which then returns images for the spheroid (red–black panel), disk
(blue–black panel), irregular (green–black panel), point source/compact (yellow–black panel), and background (white–black panel) classifications. The pixel values
of these images indicate the local dominant Morpheus classification, normalized to sum to one across all five classifications. The panel labeled “Segmentation Map” is
also generated by Morpheus, using the 3D-HST survey sources as generating locations for the segmentation Algorithm 1. The regions in the segmentation map are
color-coded by their flux-weighted dominant class computed from the Morpheus classification values. The far right panel shows the Morpheus “classification color”
image, where the pixel hues indicate the dominant morphological classification, and the intensity indicates 1−background. The saturation of the Morpheus color
image indicates the difference between the dominant classification value and the second-most-dominant classification, such that white regions indicate pixels where
Morpheus returns a comparable result for multiple classes. See Section 6.1.6 for more details.
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tional to the difference Dq between the dominant and second-
most-dominant class. White pixels then indicate regions where
the model did not strongly distinguish between two classes,
such as in transition regions in the image between two objects
with different morphological classes. The pixel intensities in
the pixel-level classification image are set to 1 − background
and are not flux-weighted. The dominant classification for each
object, as determined by Morpheus, is often clear visually. The
brightest objects are well-classified and agree with the intuitive
morphological classifications an astronomer might assign based
on the VzH color composite image. Faint objects in the image
have less morphological information available and are typically
classified as point source/compact, in rough agreement with
their classifications in the K15 training set. However, these
visual comparisons are qualitative, and we now turn to
quantifying the object-level classification from the pixel values.

Consider a deblended object y containing a total of no
contiguous pixels of arbitrary shape within a flux image, and a
single index i=[1, no] scanning through the pixels in y. Each
class kä[1, nc] in the distribution of classification probabil-
ities Q for the object is computed as
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Here, y represents the pixel region in a science image assigned
to the object, and yi is the flux in the ith pixel of the object. The
quantity qik is the kth classification probability of the ith pixel
in y. Equation (16) represents object-level classification
computed as the flux-weighted average of the pixel-level
classifications in the object.

6. Morpheus Data Products

Before turning the quantifications of the object-level
performance, we provide a brief overview of the derived
data products produced by Morpheus. A more detailed
description of the data products is presented in Appendix D,
where we describe a release of pixel-level morphologies for
the five CANDELS fields and 3D-HST value-added catalog,
including object-level morphologies. The HLF (Illingworth
et al. 2016) GOODS South v2.0 release and 3D-HST survey
(Momcheva et al. 2016) are the primary focus of the analysis
of the Morpheus’ performance owing to their depth and
completeness.

As described in Section 5, Morpheus produces a set of nc
“classification images” that correspond to the pixel-by-pixel
model estimates qij for each class, normalized across classes
such that å =q 1k ijk . The value of each pixel is, therefore,
bounded (qijkä[0, 1]). The classification images are stored in
FITS format, and inherit the same (N×M) pixel dimensions as
the input FITS science images provided to Morpheus. When
presenting classification images used in this paper, we represent
background images in negative grayscale, spheroid images in
black–red, disk images in black–blue, irregular images in
black–green, and point source/compact images in black–yellow
color scales. Figure 5 shows spheroid, disk, irregular, point
source/compact, and background images (central panels) for a
region of CANDELS GOODS South.

Given the separate classification images, we can construct
what we deem a “Morpheus morphological color image” that
indicates the local dominant class for each pixel. To produce a
Red–Green–Blue (RGB) false color image to represent the

morphological classes visually, we use the Hue-Saturation-
Value (HSV) color space and convert from HSV to RGB via
standard conversions. In the HSV color space, the “hue” image
indicates a hue on the color wheel, “saturation” provides the
richness of the color (from white or black to a deep color), and
“value” sets the brightness of a pixel (from dark to bright). On a
color wheel of hues, [ ]Î 0, 360 ranges from red ( = 0) to
red ( = 360) through yellow ( = 120), green ( = 180),
and blue ( = 240), and we can assign hue pixel values
corresponding to the dominant morphological class (spheroid
as red, disk as blue, irregular as green, and point source/
compact as yellow). We set the saturation of the image to be the
Δqijk between the dominant class and the second-most-
dominant class, such that cleanly classified pixels ( »q 1ijkij

max ,
Δqijk≈1) appear as deep red, blue, green, or yellow, and
pixels where Morpheus produces an indeterminate classifica-
tion (Δqijk≈0) appear as white or desaturated. The “value”
channel is set equal to 1− background, such that regions of
low background containing sources are bright, and regions with
high background are dark. Figure 5 also shows the Morpheus
morphological color image (far right panel) for a region of
CANDELS GOODS South.

6.1. Morphological Images for GOODS South

As part of our data products, we have produced Morpheus
morphological images of the HLF v2.0 (Illingworth et al. 2016)
reduction of GOODS South. These data products are used in
Section 7 to quantify the performance of Morpheus relative to
standard astronomical analyses, and we, therefore, introduce
them here. The Morpheus morphological classification images
for the HLF were computed as described in Section 2.3,
feeding Morpheus subregions of the HLF VzJH images for
processing and then tracking the distribution of output pixel
classifications to select the best classification for each. The
∼108 pixels in each classification image are then stitched back
together to produce contiguous background, spheroid, disk,
irregular, and point source/compact images for the entire HLF
GOODS South.

6.1.1. Background Image

Figure 6 shows the background image for the Morpheus
analysis of the HLF reduction of GOODS South. The
background classification for each pixel is shown in negative
grayscale, with black corresponding to background=1 and
white regions corresponding to background=0. The back-
ground image is used throughout Section 7 to quantify the
performance of Morpheus in object detection.

6.1.2. Spheroid Image

Figure 7 shows the spheroid image for the Morpheus
analysis of the HLF reduction of GOODS South. The spheroid
classification for each pixel is shown on a black-to-red
colormap, with black corresponding to spheroid=0 and red
regions corresponding to spheroid=1.

6.1.3. Disk Image

Figure 8 shows the disk image for the Morpheus analysis of
the HLF reduction of GOODS South. The disk classification for
each pixel is shown on a black-to-blue colormap, with black

12

The Astrophysical Journal Supplement Series, 248:20 (37pp), 2020 May Hausen & Robertson



corresponding to disk=0 and blue regions corresponding to
disk=1.

6.1.4. Irregular Image

Figure 9 shows the disk image for the Morpheus analysis of
the HLF reduction of GOODS South. The irregular classifica-
tion for each pixel is shown on a black-to-green colormap, with
black corresponding to irregular=0 and green regions
corresponding to irregular=1.

6.1.5. Point Source/Compact Image

Figure 10 shows the point source/compact image for the
Morpheus analysis of the HLF reduction of GOODS South.
The point source/compact classification for each pixel is shown
on a black-to-yellow colormap, with black corresponding to
point source/compact=0 and yellow regions corresponding to
point source/compact=1.

6.1.6. Morphological Color Image

Figure 11 shows the morphological color image for the
Morpheus analysis of the HLF reduction of GOODS South.
The false color image is constructed following Section 6, with

the pixel intensities scaling with 1− background, the pixel
hues set according to the dominant class, and the saturation
indicating the indeterminacy of the pixel classification. Pixels
with a single dominant class appear as bright red, blue, green,
or yellow for spheroid, disk, irregular, or point source/compact
classifications, respectively. Bright white pixels indicate
regions of the image where the model results were indetermi-
nate in selecting a dominant class. Dark regions represent
pixels that the model classified as background. We note that the
pixel intensities are not scaled with the flux in the image, and
the per-object classifications require a local flux weighting
following Equation (16) and the process described in Section 5.
This flux weighting usually results in a distinctive class for
each object, since the bright regions of objects often have a
dominant shared pixel classification. The outer regions of
objects with low flux show more substantial variation in the
per-pixel classifications, but these regions often do not
contribute strongly to the flux-weighted per-object classifica-
tions computed from this morphological color image.

7. Morpheus Performance

Given the data products generated by Morpheus, we can
perform a variety of tests to quantify the performance of the

Figure 6. Morpheusbackground classification image for the HLF (Illingworth et al. 2016) reduction of the CANDELS survey data (Grogin et al. 2011; Koekemoer
et al. 2011) in GOODS South. Shown are the normalized model estimates that each of the ∼108 pixels belongs to the background class. The scale bar indicates 1 5.
The color bar indicates the backgroundä[0, 1], increasing from white to black. Correspondingly, the bright areas indicate regions of low background where sources
were detected by Morpheus.
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model. There are basic performance metrics relevant to how the
model is optimized, reflecting the relative agreement between
the output of the model and the training data classifications.
However, given the semantic segmentation approach of
Morpheus and the pixel-level classification it provides, there
are additional performance metrics that can be constructed to
mirror widely used performance metrics in more standard
astronomical analyses including the completeness of sources
detected by Morpheus as regions of low background. In what
follows, we attempt to address both kinds of metrics and
provide some ancillary quantifications to enable translations
between the performance of Morpheus as a deep learning
framework and as an astronomical analysis tool. In particular,
we focus our analysis on the 3D-HST catalog and HLF
reduction of the GOODS South region in the CANDELS
Survey.

7.1. Object-level Morphological Classifications

The semantic segmentation approach of Morpheus provides
classifications for each pixel in an astronomical image. These
pixel-level classifications can then be combined into object-
level classifications p using the flux-weighted average

described by Equation (16). The Morpheus object-level
classifications can then be compared directly with a test set
of visually classified object morphologies provided by
Kartaltepe et al. (2015).
To understand the performance of Morpheus relative to

the K15 visual classifications, we present some summary
statistics of the training and test sets pulled from the K15
samples. During training, the loss function used by Morpheus
is computed relative to the distribution of input K15 classifica-
tions for each object and not only their dominant classification.
The goal is to retain a measure of the uncertainty in visual
classifications for cases where the morphology of an object is
not distinct.

7.1.1. Distribution of Training Sample Classifications

Galaxies in the K15 training set have been visually classified
by multiple experts, providing a distribution of possible
classifications for each object in the sample. Figure 12 presents
histograms of the fraction of K15 classifiers recording votes for
spheroid, disk, irregular, and point source/compact classes for
each object. Only classes with more than one vote are plotted.

Figure 7. Morpheusspheroid classification image for the HLF (Illingworth et al. 2016) reduction of the CANDELS survey data (Grogin et al. 2011; Koekemoer
et al. 2011) in GOODS South. Shown are the normalized model estimates that each of the ∼108 pixels belongs to the spheroid class. The scale bar indicates 1 5. The
color bar indicates the spheroidä[0, 1], increasing from black to red. Correspondingly, the bright red areas indicate pixels where Morpheus identified spheroid
objects.
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7.1.2. Classification Agreement in Training Sample

To aid these comparisons, we introduce the agreement
statistic

( ) ( )
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where p is the distribution of classifications and nc is the
number of classes. The quantity
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is the self entropy. According to these definitions, ( ) ÎpH
[ ]n0, log c and ( ) [ ]Îpa 0, 1 . The agreement ( ) pa 1 when
the distribution of classifications p is concentrated in a single
class, and ( ) pa 0 when the classifications are equally
distributed. For reference, ( ) »pa 0.57 for two equal classes
and ( ) »pa 0.8 for a 90%/10% split between two classes for
nc=5 possible classes.

7.1.3. Training and Test Set Statistics

The K15 classifications have substantial variation in their
agreement ( )pa . Figure 13 shows histograms and the
cumulative distribution of ( )pa for objects with spheroid, disk,
irregular, and point source/compact dominant classes. These
distributions of ( )pa are roughly bimodal, consisting of a single
peak near ( ) =pa 1 and a broader peak near ( ) »pa 0.5 with a
tail to larger ( )pa . As the cumulative distributions indicate,
roughly 20%–60% of objects in the K15 sample had perfect
agreement in their morphological classification, with disk and
point source/compact being the most distinctive classes.
The breadth in the agreement statistic for the input K15 data

indicates substantial variation in how expert astronomers would
visually classify individual objects. As these data are used to
train Morpheus, understanding exactly what Morpheus should
reproduce requires further analysis of the K15 data. An
important characterization of the input K15 data is the
confusion matrix of object classifications. This matrix describes
the typical classification distribution for objects of a given
dominant class. Figure 14 presents the confusion matrix for
the K15 classifications, showing the typical spread in
classifications for objects assigned spheroid, disk, irregular,

Figure 8. Morpheusdisk classification image for the HLF (Illingworth et al. 2016) reduction of the CANDELS survey data (Grogin et al. 2011; Koekemoer
et al. 2011) in GOODS South. Shown are the normalized model estimates that each of the ∼108 pixels belongs to the disk class. The scale bar indicates 1 5. The color
bar indicates the diskä[0, 1], increasing from black to blue. Correspondingly, the bright blue areas indicate pixels where Morpheus identified disk objects.
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or point source/compact dominant morphologies. For refer-
ence, a confusion matrix for a distribution with perfect
agreement is the identity matrix. Figure 14 provides some
insight into the natural degeneracies present in visually
classified morphologies. Objects with a dominant disk
classification are partially classified as spheroid (10%) and
irregular (11%). The irregular objects frequently receive an
alternative disk classification (19%). The point source/compact
objects also are assigned spheroid classifications (14%).
Objects with a dominant spheroid class have the highest
variation and receive substantial disk (18%) and point source/
compact (11%) classifications. This result is consistent with
Figure 13, which shows a relatively large disagreement for
objects with a dominant spheroid classification.

Since Morpheus is trained to reproduce the distribution
of K15 classifications, the confusion matrix between the
dominant Morpheus classifications and the K15 classification
distributions should be similar to that in Figure 14. Indeed,
Figure 15 shows that the distribution of K15 classifications for
objects with a given dominant Morpheus classification agrees
well with the input K15 distributions shown in Figure 14. This
result demonstrates that Morpheus reproduces well the intrinsic
uncertainty in the K15 classifications, as measured by the

distribution of morphologies, recovered for a given K15
dominant classification.
The ability of Morpheus to reproduce the distribution of K15

classifications is not the only metric of interest, as it does not
indicate whether the object-by-object Morpheus classifications
agree with the K15 classifications for objects with distinctive
morphologies. Figure 13 shows that 20%–60% of objects in
the K15 classifications have an agreement ( ) =pa 1, meaning
that all K15 visual classifiers agreed on the object morphology.
The confusion matrix for these distinctive objects constructed
from the K15 data is diagonal, and the confusion matrix for
these objects constructed from the Morpheus output should
also be diagonal if Morpheus perfectly reproduced the object-
by-object K15 classifications. Further, to ensure that Morpheus
captures the distribution of the K15 morphologies, the
cumulative distributions of dominant K15 morphologies and
dominant Morpheus morphologies as a function of color were
compared using a two-sample Kolmogorov–Smirnov test. For
each morphology, the p-values (p=0.3–0.99) indicate con-
sistency between the Morpheus and K15 distributions as a
function of color. These results suggest that Morpheus
accurately captures the K15 representation of morphology
without significant color bias.

Figure 9. Morpheusirregular classification image for the HLF (Illingworth et al. 2016) reduction of the CANDELS survey data (Grogin et al. 2011; Koekemoer
et al. 2011) in GOODS South. Shown are the normalized model estimates that each of the ∼108 pixels belongs to the irregular class. The scale bar indicates 1 5. The
color bar indicates the irregularä[0, 1], increasing from black to green. Correspondingly, the bright green areas indicate pixels where Morpheus identified irregular
objects.
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To characterize the performance of Morpheus for the
( ) =pa 1 K15 subsample, we used the Morpheus output

classification images computed from the HLF GOODS South
images. The flux-weighted Morpheus morphological classifica-
tions were computed following Equation (16) and using
the K15 segmentation maps to ensure that the same pixels
were being evaluated. Figure 16 presents the resulting
confusion matrix showing the Morpheus dominant classifica-
tion for each object’s dominant classification determined
by K15. As Figure 16 demonstrates, Morpheus achieves
extremely high agreement (�90%) with K15 for spheroid and
point source/compact objects, and good agreement (�80%) for
disk and irregular objects with some mixing ∼15% between
them. This performance is comparable to other object-by-object
morphological classifications in the literature (e.g., Huertas-
Company et al. 2015) but is constructed directly from a flux-
weighted average of pixel-by-pixel classifications byMorpheus
using real FITS image data of differing formats and depth.

7.1.4. Redshift Evolution of Morphology in CANDELS Galaxies

To illustrate the scientific applications of Morpheus, we
examine the morphological distribution of ∼54,000 3D-HST
sources in the five CANDELS fields as a function of redshift

and stellar mass (Figure 17). We combine together the flux-
weighted Morpheus classifications of galaxies identified in
CANDELS with the 3D-HST stellar masses and redshift,
dividing the sample into coarse redshift bins. The fraction of
objects N/Ntot with a flux-weighted classification of spheroid
(red), disk (blue), or irregular (green) is shown as a function of
stellar mass for each redshift bin, along with Poisson
uncertainties on the binned values. The well-established trends
of increasing fractions of irregular objects at small masses and
high redshifts are correctly reproduced by Morpheus, as well as
the growth of the disk population at low redshifts. These results
can be compared with the results reported in Figure 3 of
Huertas-Company et al. (2016, HC16). To ensure comparable
samples between HC16 and this work, the Morpheus-classified
samples in Figure 17 are limited to objects with H<24.5AB.
Since HC16 and Morpheus use similar but not identical
morphological classifications, we adapt the sample definitions
used by HC16 to the Morpheus classification scheme. To be
counted as a part of a morphological class, each galaxy’s flux-
weighted confidence value assigned by Morpheus must be
greater than 0.7. This threshold ensures each classification is
mutually exclusive but low enough to ensure a comparable
sample size to HC16.

Figure 10. Morpheuspoint source/compact classification image for the HLF (Illingworth et al. 2016) reduction of the CANDELS survey data (Grogin et al. 2011;
Koekemoer et al. 2011) in GOODS South. Shown are the normalized model estimates that each of the ∼108 pixels belongs to the point source/compact class. The
scale bar indicates 1 5. The color bar indicates the point source/compactä[0, 1], increasing from black to yellow. Correspondingly, the bright yellow areas indicate
pixels where Morpheus identified point source/compact objects.
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The trends in Figure 17 agree with those found by HC16 in
two important aspects. First, at lower redshifts, disks tend to
dominate spheroids, and as redshift increases, spheroids tend to
dominate disks. Second, irregular sources are a larger portion
of the population than spheroids and disks at lower stellar
masses and more become less abundant than spheroids and
disks as stellar mass increases. The agreement between
Morpheus and the results of HC16, which were based on
object-level classifications, confirms the ability of Morpheus to
capture source-level morphologies by aggregating pixel-level
classifications.

7.2. Simulated Detection Tests

The Morpheus framework enables the detection of astro-
nomical objects by producing a background classification
image, with source locations corresponding to regions where
background<1. If generating points in the form of a source
catalog are not supplied, the segmentation algorithm of
Morpheus uses an even more restrictive condition that regions
near sources must contain pixels with background=0. Given
that the semantic segmentation algorithm of Morpheus was
trained on the K15 sample that has a completeness limit,
whether the regions identified by Morpheus to have back-
ground=0 correspond to an approximate flux limit should be

tested. Similarly, whether noise fluctuations lead to regions
assigned background≈0 in error should also be evaluated.
Below, we summarize detection tests for Morpheus using

simulated images. For these tests, a simulated sky background
was generated using Gaussian random noise with rms scatter
measured in 0 5 apertures after convolving with a model HST
point-spread function (PSF) and scaled to that measured from
the K15 training images. The Tiny Tim software (Krist et al.
2011) software was used to produce the PSF models
appropriate for each band.

7.2.1. Simulated False-positive Test

For a large enough image of the sky, random sampling of the
noise could produce regions with local fluctuation of some
factor f above the rms background σ and lead to a false-positive
detection. A classical extraction technique using aperture flux
thresholds would typically identify such regions as a signal-to-
noise ratio (S/N)=f source. Here, we evaluate whether
Morpheus behaves similarly.
Using the Gaussian random noise field, single-pixel fluctua-

tions were added to the H-band only such that the local flux
measured in a 0 5 aperture after convolving with Tiny Tim
corresponded to S/N=[0.5, 1, 2, 3, 4, 5, 6, 7, 10]. The false
signals were inserted at well-separated locations such that

Figure 11. Morpheus morphological color image for the HLF (Illingworth et al. 2016) reduction of the CANDELS survey data (Grogin et al. 2011; Koekemoer
et al. 2011) in GOODS South. The image intensity is set proportional to 1−background for each pixel, such that regions of high background are black and regions
with low background containing source pixels identified by Morpheus appear bright. The hue of each source pixel indicates its dominant classification, with spheroid
shown as red, disk as blue, irregular as green, and point source/compact as yellow. The color saturation of each pixel is set to the difference between the first and
second most dominant class values, such that regions with indeterminate morphologies as determined as Morpheus appear as white and regions with strongly
determined classifications appear as deep colors. Note that the morphological color image is not flux-weighted, and the per-object classifications assigned by
Morpheus include a flux-weighted average of the per-pixel classifications shown in this image.
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Morpheus evaluated them independently. The V, z, and J
images were left as blank noise, and then all four images were
supplied to Morpheus. We find that Morpheus assigns none of
these fake signals pixels with background=0. However, the
S/N=7 and S/N=10 regions have some background<1

Figure 12. Distribution of morphological classifications in the Kartaltepe et al.
(2015) sample, which serve as a training sample for Morpheus. Shown are
histograms of the fraction of sources with a nonzero probability of belonging to
the spheroid (upper left panel), disk (upper right panel), irregular (lower left
panel), or point source/compact classes (lower right panel), as determined via
visual classification by expert astronomers. The histograms have been
normalized to show the distribution of classification probabilities for each
class, and they consist of ≈7,600 sources.

Figure 13. Histograms (purple) and cumulative distribution (blue lines) of
agreement ( )pa for the Kartaltepe et al. (2015, K15) visual morphological
classifications, for objects with spheroid (upper left panel), disk (upper right
panel), irregular (lower left panel), and point source/compact (lower right
panel) as their dominant classification. Agreement ( )pa (see Equation (17) for a
definition) characterizes the breadth of the distribution of morphological classes
assigned by the K15 classifiers for each object, with ( ) =pa 1 indicating
perfect agreement of a single class and ( ) =pa 0 corresponding to perfect
disagreement with equal probability among classes. The distribution of
agreement in the K15 training classifications is roughly bimodal, with a strong
peak near-perfect agreement and a broader peak near ( ) »pa 0.5, close to the
agreement value for an even split between two classes.

Figure 14. Confusion matrix for the distribution of K15 morphological
classifications. Shown is the distribution of morphologies assigned by K15
visual classifiers for objects of a given dominant classification. Objects with a
dominant spheroid class show the most variation, with frequent additional disk
and point source/compact morphologies assigned. The most distinctive
dominant class is point source/compact, which also receives a spheroid
classification in 14% of objects. The off-diagonal components of the confusion
matrix indicate imperfect agreement among the K15 classifiers, consistent with
the distributions of the agreement statistic shown in Figure 13.

Figure 15. Confusion matrix showing the spread in Morpheus dominant
classifications for objects with given K15 dominant classifications. The
Morpheus framework is trained to reproduce the input K15 distributions, and
this confusion matrix should, therefore, largely match that of Figure 14. The
relative agreement between the two confusion matrices demonstrates that the
Morpheus output can approximate the input K15 classification distributions.
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pixels, and while in the default algorithm, Morpheus would not
assign these regions segmentation maps, a more permissive
version of the algorithm could. An alternative test was
performed by replacing the S/N=10 noise fluctuation in the

H-band image with a Tiny Tim H-band PSF, added after
the convolution step with an amplitude corresponding to
S/N=10 measured in a 0 5 aperture. This test evaluates
whether the shape of flux distribution influences the detection
of single-band noise fluctuations. In this case, the minimum
pixel values decreased to background≈0.05 for a single band
S/N=10 fluctuation shaped like an H-band PSF, but did not
lead to a detection. We conclude that Morpheus is robust to
false positives arising from relatively large (S/N7) noise
fluctuations.

7.2.2. False-negative Test

Given that Morpheus seems insensitive to false positives
from noise fluctuations, it may also miss real but low S/N
sources. By performing a similar test to that presented in
Section 7.2.1 but with sources inserted in all bands rather than
noise fluctuations inserted in a single band, the typical S/N
where Morpheus becomes incomplete for real objects can be
estimated.
Noise images were generated to have the same rms noise as

the K15 images by convolving Gaussian random variates with
the Tiny Tim (Krist et al. 2011) model for the HST PSF. An
array of well-separated point sources modeled by the PSF were
then inserted with a range of S/Nä[1, 25] into all four input
band images. The Morpheus model was then applied to the
images, and the output background image analyzed to find
regions with background below some threshold value.
Figure 18 shows the number of pixels below various
background threshold values assigned to objects with different
S/Ns. Below about S/N∼15, the number of pixels identified
as low background begins to decline rapidly. We therefore
expect Morpheus to show incompleteness in real data for
S/N15 sources. However, we emphasize that this limitation
likely depends on the training sample used. Indeed, the K15
training data set is complete to H=24.5AB in images with
5σsource sensitivities of H≈27AB. If trained on deeper
samples, Morpheus may prove more complete to fainter
magnitudes. We revisit this issue in Section 7.4 below, but
we will explore training Morpheus on deeper training sets in
future work.

7.3. Morphological Classification versus Surface Brightness
Profile

In this paper, the Morpheus framework is trained on the K15
visual classifications to provide pixel-level morphologies for
galaxies. The K15 galaxies are real astronomical objects with a
range of surface brightness profiles for a given dominant
morphology. Correspondingly, the typical classification that
Morpheus would assign to idealized objects with a specified
surface brightness profile is difficult to anticipate without
computing it directly. Understanding how Morpheus would
classify idealized galaxy models can provide some intuition
about how the deep learning framework operates and what
image features are related to output Morpheus classifications.
Figure 19 shows the output Morpheus classification

distribution for simulated objects with circular Sérsic (1968)
surface brightness profiles, for objects with S/N=20, Sérsic
indices ηä[1, 9], and effective radii ranging from three to nine
pixels. Synthetic FITS images for each object in each band
were constructed by assuming zero color gradients and a flat fν
spectrum, populating the image with a Sérsic profile object and

Figure 16. Confusion matrix quantifying the spread in Morpheus dominant
classifications for K15 objects with a distinctive morphology. Shown are the
output Morpheus classification distributions for K15 objects where all visual
classifiers agreed on the input classification. The Morpheus pixel-by-pixel
classifications computed for the HLF GOODS South images were aggregated
into flux-weighted object-by-object classifications following Equation (16)
using the K15 segmentation maps. The results demonstrate that Morpheus can
reproduce the results of the dominant K15 visual classifications for objects with
distinct morphologies, even as the Morpheus classifications were computed
from per-pixel classifications using different FITS images of the same region of
the sky.

Figure 17. Morphology as a function of stellar mass and redshift for 54,000
sources in the five CANDELS fields. Sources included in the plot are those
where H<24.5AB and the Morpheus confidence for spheroid, disk, or
irregular is greater than 0.7. See Section 7.1.4.
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noise consistent with the K15 images, and then convolving the
images with a Tiny Tim point-spread function model appro-
priate for each input HST filter.

The results from Morpheus reflect common expectations for
the typical Sérsic profile of morphological classes. Objects with
η=1 were typically classified as disk or spheroid, while
intermediate Sérsic index objects (e.g., η≈2–3) were
classified as spheroid. More compact objects, with Sérsic
indices η�4, were dominantly classified as point source/
compact. Also, as expected for azimuthally symmetric surface
brightness profiles, Morpheus did not significantly classify any
objects as irregular. Figure 20 provides a complementary
summary of the Morpheus classification of Sérsic profile
objects, showing a matrix indicating the dominant classification
assigned for each pair of [η, Re] values. The Morpheus model
classifies large objects with low η as disk, large objects with
high η as spheroid, and small objects with high η as point
source/compact.

Overall, this test indicates that for objects with circular
Sérsic profiles, Morpheus reproduces the expected morpholo-
gical classifications and that asymmetries in the surface
brightness are needed for Morpheus to return an irregular
morphological classification.

7.4. Source Detection and Completeness

The semantic segmentation capability of Morpheus allows
for the detection of astronomical objects directly from the pixel
classifications. In its simplest form, this object detection
corresponds to regions of the output Morpheus classification
images with low background class values. However, the
Morpheus object detection capability raises several questions.

The model was trained on the K15 sample, which has a
reported completeness of H=24.5AB, and given the pixel-by-
pixel background classifications computed by Morpheus, it is
unclear whether the object-level detection of sources in images
would match the K15 completeness. In regions of low
background, the transition to regions of high background
likely depends on the individual pixel fluxes, but this transition
should be characterized.
In what follows below, we provide some quantification of

the Morpheus performance for identifying objects with
different fluxes. To do this, we use results from the 3D-HST
catalog of sources for the GOODS South (Skelton et al. 2014;
Momcheva et al. 2016). Given the output Morpheusback-
ground classification images computed from the HLF GOODS
South FITS images in F606W, F850LP, F125W, and F160W,
we can report the pixel-by-pixel background values and typical
background values aggregated for objects. These measure-
ments can be compared directly with sources in the Momcheva
et al. (2016) catalog to characterize how Morpheus detects
objects and the corresponding completeness relative to
3D-HST.
In a first test, we can locate the Momcheva et al. (2016)

catalog objects based on their reported coordinates in the
Morpheusbackground image and then record the background
pixel values at those locations. Figure 21 shows the two-
dimensional histogram of the Morpheusbackground value and

Figure 18. False-negative test for the Morpheus source detection scheme.
Simulated sources with different S/Ns were inserted into a noise image and
then recovered by Morpheus, which assigns a low background value to regions
it identifies as containing source flux (see Section 7.2.2). Shown are lines
corresponding to the number of pixels assigned to sources of different S/Ns, as
a function of the background threshold. As trained on the K15 sample,
Morpheus becomes incomplete for objects with S/N15, and it is more
complete if the threshold for identifying sources is made more permissive (i.e.,
at a higher background value).

Figure 19. Morphological classifications as a function of simulated source
surface brightness profile Sérsic index. Shown are the Morpheus classification
distributions for simulated S/N=20 objects with circular Sérsic (1968)
profiles, as a function of the Sérsic index ηä[1, 9]. The experiment was
repeated on objects with effective radii of three (upper left panel), five (upper
right panel), seven (lower left panel), and nine (lower right panel) pixels.
Objects with η=1 were dominantly classified as disk or spheroid.
Intermediate Sérsic profiles (η∼2–3) were mostly classified as spheroid.
Objects with high Sérsic index (η�4) were classified as point source/
compact. These simulated objects with azimuthally symmetrical surface
brightness profiles were assigned almost no irregular classifications by
Morpheus.

21

The Astrophysical Journal Supplement Series, 248:20 (37pp), 2020 May Hausen & Robertson



3D-HST source H-band AB magnitude, along with the
marginal distributions of both quantities. The figure also
indicates the reported K15 sample and 3D-HST 90%
completeness flux levels. The results demonstrate that for the
majority of 3D-HST sources and for the vast majority of bright
3D-HST sources with H<25, the local Morpheusback-
ground=0. The low background values computed by
Morpheus extend to extremely faint magnitudes (e.g.,
H≈29), indicating that for some faint sources, Morpheus
reports background=0 and that background is not a simple
function of the local S/N of an object. For many objects with
fluxes below the 3D-HST completeness, the Morpheusback-
ground value does increase with decreasing flux, and there is a
rapid transition between detected sources at H≈26.5 to
undetected sources at H�27.5.

Owing to this transition in background with decreasing flux,
the completeness of Morpheus relative to 3D-HST will depend
on a threshold in background used to define a detection.
Figure 22 shows the completeness of Morpheus in recovering
3D-HST objects as a function of H-band source flux for
different background levels defining a Morpheus detection.
The completeness flux limits for K15 and 3D-HST are
indicated for reference. For magnitudes H<25AB, where
3D-HST and K15 are complete, Morpheus is highly complete
and recovers more than 99% of all 3D-HST sources.
The Morpheus completeness declines rapidly at fluxes
H>26.5AB, where Morpheus is 90% relative to 3D-HST
for background thresholds of P�0.5. Perhaps remarkably, for
all background thresholds P�0.01–0.5, Morpheus detects

some objects as faint as H≈29, about 100×fainter in flux
than the training set objects.
We further examined the detection of 3D-HST sources as a

function of color (V−H) to evaluate bias that may have been
inherited as result of the training data set. In our tests, we found
that Morpheus is not biased with respect to color for those
sources that are brighter than the K15 magnitude limit
(Figure 23). When considering all sources within the 3D-
HST catalog, Morpheus detects sources well, with a slight bias
for bluer sources, but it performs less well for very red
((V−H)�9) and ((V−H)<0) sources. However, it should
be noted that there are very few such sources in the training set,
and with a more extensive training sample, Morpheus could be
more complete.

7.5. Morphological Classification versus Source Magnitude

The tests of Morpheus on simulated Sérsic objects of
different effective radii and the completeness study suggest that
the ability of Morpheus to provide informative morphological
information about astronomical sources will depend on the size
and S/N of the object. While these are intuitive limitations on
any morphological classification method, the distribution of
morphological classifications with source flux determined by
Morpheus should be quantified.
Figure 24 shows the fraction of 3D-HST objects detected

and classified by Morpheus as spheroid, disk, irregular, and
point source/compact as a function of their H-band magnitude.
Most of the brightest objects in the image are nearby
stars, classified as point source/compact. At intermediate

Figure 20. Dominant morphological classification as a function of simulated
source surface brightness profile Sérsic index η and effective radius Re in
pixels. Each element of the matrix is color-coded to indicate the dominant
Morpheus classification assigned for each [η, Re] pair, with the saturation of the
color corresponding to the difference between the dominant and second
Morpheus classification values. Large objects with low Sérsic index are
classified as disk (blue). Large objects with high Sérsic index are classified as
spheroid (red). Small objects with high Sérsic index are classified as point
source/compact (yellow). None of the symmetrical objects in the test were
classified as irregular (green).

Figure 21. Two-dimensional histogram of Morpheusbackground values and
3D-HST source flux in GOODS South. Shown is the distribution of
background at the location of 3D-HST sources (Skelton et al. 2014; Momcheva
et al. 2016) in GOODS South of various H-band magnitudes, along with the
marginal histograms for both quantities (side panels). For reference, the K15
completeness (green line) and 3D-HST 90% completeness (red line) flux limits
are also shown. The 3D-HST sources most frequently have background=0,
and the majority of 3D-HST sources of any flux H<29 have back-
ground<0.5. The background values for objects where K15 and 3D-HST are
complete is frequently zero. The Morpheusbackground values increase for
many objects at flux levels H>26AB.
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magnitudes, Morpheus classifies the objects as primarily a mix
of disk (∼50%) and spheroid (∼30%), with contributions from
irregular (∼10%–30%) and point source/compact (∼5%–

15%). For fainter objects, below the completeness limit of
the K15 training sample, Morpheus increasingly classifies
objects as irregular and point source/compact. This behavior is
in part physical, in that many low-mass galaxies are irregular
and distant galaxies are physically compact. In part, it reflects a
natural bias in how the morphologies are defined during
training. In K15, the class point/source compact can describe
bright stars and compact unresolved sources (see Section 3.1
of K15). However, the trend also reflects how Morpheus
becomes less effective at distinguishing morphologies in small,
faint objects and returns either point source/compact and
irregular for low S/N and compact sources. While training
Morpheus on fainter objects with well-defined morphologies
could enhance the ability of Morpheus to distinguish the
features of faint sources, the results of this test make sense in
the context of the completeness limit of the K15 training
sample used.

7.6. False Positives in GOODS South

The segmentation and deblending of real astronomical data
sets are challenging tasks. An important test of the efficacy of
the Morpheus segmentation and deblending algorithms is to
examine false positives generated when Morpheus is applied
to a real image. To quantify the propensity for Morpheus to
generate false positives, the segmentation and deblending
algorithms were run on the HLF GOODS South image without
the specified marker set parameter p (see Algorithms 1 and 2).
For the purposes of this test, a false positive is then defined as a
set of pixels classified by the Morpheus segmentation and
deblending algorithms as a source, but one that does not
contain a source from the 3DHST and CANDELS (Guo et al.
2013) catalogs. Additionally, since the edges of the GOODS

South classified image are a frayed mix of pixels, to minimize
the effects of data artifacts, sources less than 20 pixels from the
edge of the classified area were excluded from the analysis.

Figure 22. Completeness of Morpheus in source detection relative to 3D-HST
(Skelton et al. 2014; Momcheva et al. 2016) in GOODS South. Shown is the
fraction of 3D-HST sources in GOODS South detected by Morpheus brighter
than some H-band source magnitude, for different background thresholds
defining a detection (purple lines). The inset shows theMorpheus completeness
for the brightest objects where 3D-HST (red line and arrow) and K15 (green
line and arrow) are both highly complete. The completeness of Morpheus
relative to 3D-HST is >90% where 3D-HST is highly complete. The
completeness of Morpheus declines rapidly at faint magnitudes (H26.5),
but some objects are detected to H∼29, about 100×fainter than objects in the
training set.

Figure 23. Source detection completeness as a function of color for sources
with an H-band (F160W) AB magnitude of H<24.5. Sources that had a V-
band flux less than the V-band error had their flux replaced with three times the
error value to limit unrealistically large V − H values.Morpheus does not show
bias in the detection of objects with respect to color. There is a dip in
completeness at V−H∼0.2, where the completeness is ∼75%. However,
this bin only has four sources, indicating thatMorpheus only missed one source
at this color.

Figure 24. Morphological classification as a function of object flux in GOODS
South. Shown are the fraction of 3D-HST objects (see left axis) with Morpheus
dominant, flux-weighted classifications of spheroid (red line), disk (blue line),
irregular (green line), and point source/compact (yellow line), each as a
function of their H-band (F160W) AB magnitude. The brightest objects in the
image are stars that are classified as point source/compact. The faintest objects
in the image are compact faint galaxies classified as point source/compact or
irregular. At intermediate fluxes, the objects are primarily classified as disk and
spheroid. Also shown as a gray histogram (see right axis) is the number of 3D-
HST objects detected and classified by Morpheus with source magnitude.
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Further, we conservatively use the “default” Morpheus
algorithms that identify sources with background=0, i.e.,
when Morpheus indicates a source detection with high
confidence. With these choices, the sample used for the false-
positive analysis was a total of 19,481 sources.

Among the objects classified by the segmentation and
deblending algorithms, 123 sources were not present in the
CANDELS or 3D-HST catalogs. Upon visual inspection of
these sources, each can be categorized as an image artifact, a
poor deblend, a missed source, or an actual false positive. We
list the number of sources in each category in Table 4.

Sources in the image artifiact category are false positives
caused by image artifacts. The poor deblend category
represents false positives caused by the Morpheus deblending
algorithm, where single sources in the CANDELS or 3D-HST
catalogs were shredded into multiple Morpheus sources. The
missed sources are Morpheus sources that upon visual
inspection correspond to real objects missed by the 3D-HST
or CANDELS catalogs. Sources in the actual false-positive
category are false positives not associated with any image
artifact or real source after visual inspection.

As Table 4 shows, Morpheus can identify real sources that
other methods that are used to generate catalogs can miss;
although, the algorithms used by Morpheus can very rarely
cause actual false positives (at roughly the 0.1% rate). Given
the delicate nature of deblending, this analysis suggests that the
Morpheus deblending algorithm could be integrated with other
methods to generate more robust segmentation maps.

8. Value-added Catalog for 3D-HST Sources with
Morpheus Morphologies

The Morpheus framework provides a system for performing
the pixel-level analysis of astronomical images and has been
engineered to allow for the processing of large-format scientific
FITS data. As described in Section 6.1, Morpheus was applied
to the HLF (Illingworth et al. 2016) reduction of HST imaging
in GOODS South5 and a suite of morphological classification
images produced. Using the Morpheusbackground in GOODS

South, the detection efficiency of Morpheus relative to the
Momcheva et al. (2016) 3D-HST catalog was computed (see
Section 7.4) and a high level of completeness was demon-
strated for objects comparably bright to the Kartaltepe et al.
(2015) galaxy sample used to train the model. By segmenting
and deblending the HLF images, Morpheus can then compute
flux-weighted morphologies for all of the 3D-HST sources.
Table 5 provides the Morpheus morphological classifications

for 50,506 sources from the 3D-HST catalog of Momcheva
et al. (2016). This value-added catalog lists the 3D-HST ID, the
source R.A. and decl., the F160W-band AB magnitude (or −1
for negative flux objects), and properties for the sources
computed by Morpheus. The value-added properties include a
flag denoting whether and how Morpheus detected the object,
the area in pixels assigned to each source, and the spheroid,
disk, irregular, point source/compact, and background flux-
weighted classifications determined by Morpheus. The size of
the segmentation regions assigned to each 3D-HST object
following Algorithms 1 and 2 is reported for all objects. If the
segmentation region assigned to an object was smaller than a
circle with a 0 36 radius, or the object was undetected, instead,
we used a 0 36 radius aperture (about 109 pixels) to measure
flux-weighted quantities. Only objects with joint coverage in
the HLF V, z, J, and H FITS images are classified and receive
an assigned pixel area. The full results for the Morpheus
morphological classifications of 3D-HST objects are released
as a machine-readable table. Appendix D describes the
Morpheus Data Release associated with this paper, including
FITS images of the classification images, the value-added
catalog, and segmentation maps generated by Morpheus for the
3D-HST sources used to compute flux-weighted morphologies.
Additionally, we release an interactive online map athttps://
morpheus-project.github.io/morpheus/, which provides an
interface to examine the data and overlay the 3D-HST catalog
on the Morpheus classification images, morphological color
images, and segmentation maps.

9. Discussion

The analysis of astronomical imagery necessarily involves
pixel-level information to be used to characterize sources. The
semantic segmentation approach of Morpheus delivers pixel-
level separation between sources and the background sky, and
provides an automated classification of the source pixels. In
this paper, we trained Morpheus with the visual morphological
classifications from Kartaltepe et al. (2015). We then
characterized the performance of Morpheus in reproducing
the object-level classifications of K15 after aggregating the
pixel information through flux-weighted averages of pixels in
Morpheus-derived segmentation maps, and in detecting objects
via completeness measured relative to the 3D-HST catalog
(Momcheva et al. 2016). The potential applications of
Morpheus extend well beyond object-level morphological
classification. Below, we discuss some applications of the
pixel-level information to understanding the complexities of
galaxy morphology and future applications of the semantic
segmentation approach of Morpheus in areas other than
morphological classification. We also comment on some
features of Morpheus specific to its application on astronomical
images.

Table 4
Summary of Sources Identified by Morpheus in GOODS-S That Were Absent

in the CANDELS or 3D-HST Catalogs

False Positives in GOODS South

Category Count % of False Positives % of All Sources

Image Artifact 27 21.95% 0.139%
Poor Deblend 31 25.20% 0.159%
Missed Source 47 38.21% 0.241%
Actual False Positive 18 14.64% 0.092%
Total 123 100% 0.631%

Note. Of the 19,481 sources identified byMorpheus in a subregion of GOODS-
S, 123 sources did not have CANDELS or 3D-HST counterparts. Upon visual
inspection, these objects could be categorized as either image artifacts, poor
deblends where Morpheus had shredded sources, missed sources corresp-
onding to real objects missed by CANDELS and 3D-HST, or actual false
positives incorrectly identified by Morpheus as real sources. The false-positive
rate for the Morpheus algorithm is only roughly 0.09%, defined relative to the
CANDELS and 3D-HST catalogs. See Section 7.6 for more discussion.

5 Some bright pixels in the released HLF images are censored with zeros. For
the purpose of computing the segmentation maps only, we replaced these
censored pixels with nearby flux values.
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9.1. Pixel-level Morphology

The complex morphologies of astronomical objects have
been described by both visual classification schemes and
quantitative morphological measures for many years. Both
Hubble (1926) and Vaucouleurs (1959) sought to subdivide
broad morphological classifications into more descriptive
categories. Quantitative morphological decompositions of
galaxies (e.g., Peng et al. 2010) also characterize the relative
strength of bulge and disk components in galaxies, and
quantitative morphological classifications often measure the
degree of object asymmetry (e.g., Abraham et al. 1994;
Conselice et al. 2000; Lotz et al. 2004).

The object-level classifications computed by Morpheus
provide a mixture of the pixel-level morphologies from the
Morpheus classification images. The classification distributions
reported in the Morpheus value-added catalog in GOODS
South provide many examples of flux-weighted measures of
morphological type. However, more information is available in
the pixel-level classifications than the flux-weighted summaries
provide.

Figure 25 shows an example object for which the Morpheus
pixel-level classifications provide direct information about its
complex morphology. The figure shows a disk galaxy with a
prominent central bulge. The pixel-level classifications capture
both the central bulge and the extended disk, with the pixels in
each structural component receiving dominant bulge or disk
classifications from Morpheus. Note that Morpheus was not
trained to perform this automated bulge–disk decomposition, as
in the training process, all pixels in a given object are assigned
the same distribution of classifications as determined by
the K15 visual classifiers. As the use of pixel-level morpho-
logical classifications becomes widespread, the development of
standard data sets that include labels at the pixel-level will be
needed to evaluate the efficacy of classifiers. Simulations of
galaxy formation may be useful for generating such training
data sets (e.g., Huertas-Company et al. 2019). We leave a more
thorough analysis of automated morphological decompositions
with Morpheus to future work.

9.2. Morphological Deblending

The ability of Morpheus to provide pixel-level morphologi-
cal classifications has applications beyond the bulk categoriza-
tion of objects. One potential additional application is the
morphological deblending of overlapping objects, where the
pixel-level classifications are used to augment the deblending
process. Figure 26 shows an example of two blended objects,
3D-HST IDs 543 and 601, where the Morpheus pixel-level
classifications could be used to perform or augment star-galaxy
separation. As the figure makes clear, whenMorpheus correctly
assigns dominant classifications to pixels, there exists an
interface region between regions with distinctive morphologies
(in this case,spheroid and point source/compact) that could
serve as an interface between segmented regions in the image.
The deblending algorithm used in this work could include other
forms of machine-learning (e.g., Masters et al. 2015; Hemmati
et al. 2019) information in the deblending process. If Morpheus
was trained on information other than morphology, such as
photometric redshift, those pixel-level classifications could be
used in the deblending process as well. We plan to explore this
idea in future applications of Morpheus.

9.3. Classifications Beyond Morphology

The semantic segmentation approach ofMorpheus allows for
complex features of astronomical objects to be learned from the
data, as long as those features can be spatially localized by
other means. In this paper, we used the segmentation maps
of K15 to separate source pixels from the sky, and then we
assigned pixels within the segmentation maps the morpholo-
gical classification determined by K15 on an object-by-object
basis. In principle, this approach can be extended to identify
regions of pixels that contain a wide variety of features. For
instance, Morpheus could be trained to identify image artifacts,
spurious cosmic-rays, or other instrumental or data effects that
lead to distinctive pixel-level features in images. Of course, real
features in images could also be identified, such as the pixels
containing arcs in gravitational lenses, or perhaps low-surface

Table 5
Morpheus + 3D-HST Value-added Catalog for GOODS South

ID R.A. Decl. H160 Detection Area Spheroid Disk Irregular PS/Compact Background Min (Background)
(deg) (deg) (AB mag) Flag (pixels)

1 53.093012 −27.954546 19.54 1 4408 0.092 0.797 0.106 0.003 0.003 0.000
2 53.089613 −27.959742 25.49 0 L L L L L L L
3 53.102913 −27.959642 25.37 1 121 0.013 0.033 0.894 0.025 0.034 0.000
4 53.101709 −27.958481 21.41 1 725 0.001 0.874 0.120 0.004 0.001 0.000
5 53.102277 −27.958683 24.62 1 144 0.098 0.003 0.020 0.746 0.133 0.000
6 53.090577 −27.958515 25.07 2 109 0.000 0.831 0.034 0.000 0.134 0.001
7 53.099964 −27.958278 23.73 1 266 0.000 0.712 0.284 0.000 0.003 0.000
8 53.096144 −27.957583 21.41 1 1322 0.001 0.752 0.238 0.003 0.006 0.000
9 53.091572 −27.958367 25.90 2 109 0.000 0.044 0.083 0.081 0.792 0.431
10 53.091852 −27.958181 25.88 2 109 0.000 0.000 0.038 0.186 0.776 0.570

Note.Column 1 provides the 3D-HST source ID. Columns 2 and 3 list the R.A. and decl. in degrees. Column 4 shows the F160W AB magnitude of the 3D-HST
source, with −1 indicating a negative flux reported by 3D-HST. Column 5 lists the detection flag, with 0 indicating that the object was not within the region of
GOODS South classified by Morpheus, 1 indicating a detection with background=0 at the source location, 2 indicating a possible detection with
0<background<1 at the source location, and 3 indicating a non-detection with background=1 at the source location. Column 6 reports the area in pixels for the
object determined by the Morpheus segmentation algorithm. For non-detections and objects with very small segmentation regions, we instead use a 0 36 radius circle
(about 109 pixels) for their segmentation region. Columns 7–11 list the flux-weightedMorpheus morphological classifications of the objects within their assigned area.
These columns are normalized such that the classifications sum to one for objects where the detection flag=2. Column 12 reports the minimum background value
within the segmentation region.

(This table is available in its entirety in machine-readable form.)
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brightness features in interacting systems and stellar halos.
These pixel-level applications of Morpheus complement
machine-learning-based methods already deployed, such as
those that discover and model gravitational lenses (Agnello
et al. 2015; Hezaveh et al. 2017; Morningstar et al.
2018, 2019). Pixel-level photometric redshift estimates could
also be adopted by Morpheus and compared with existing
methods based on SED fitting or other forms of machine
learning (e.g., Masters et al. 2015; Hemmati et al. 2019).

9.4. Deep Learning and Astronomical Imagery

An important difference in the approach of Morpheus, where
a purpose-built framework was constructed from TensorFlow
primitives, compared with the adaptation and retraining of
existing frameworks like Inception (e.g., Szegedy et al. 2016) is
the use of astronomical FITS images as training, test, and input
data rather than preprocessed PNG or JPG files. The

incorporation of deep learning into astronomical pipelines will
benefit from the consistency of the data format. The output data
of Morpheus are also FITS classification images, allowing
pixel-by-pixel information to be easily referenced between the
astronomical science images and the Morpheus model images.
As indicated in Section 2.2, the Morpheus framework is
extensible and allows for any number of astronomical filter
images to be used, as opposed to a fixed RGB set of layers in
PNG or JPG files. The Morpheus framework has been
engineered to allow for the classification of arbitrarily sized
astronomical images. The same approach also provides
Morpheus with a measure of the dispersion of the classifica-
tions of individual pixels, allowing the user to choose a metric
for the “best” pixel-by-pixel classification. The combination of
these features allows for immense flexibility in adapting the
Morpheus framework to problems in astronomical image
classification.

Figure 25. Example automated morphological decomposition by Morpheus. The left panel shows the VzH multicolor image of a galaxy in GOODS South from the
HLF. The disk galaxy, 3D-HST ID 46386, has a prominent central bulge. The right panel shows the Morpheus classification color image, with pixels displaying
spheroid, disk, irregular, or point source/compact dominant morphologies shown in red, blue, green, and yellow, respectively. The figure demonstrates thatMorpheus
correctly classifies the spheroid and disk structural components of the galaxy, even though the training process for Morpheus does not involve spatially varying
morphologies for galaxy interiors. We note that there is a large-scale image artifact in F850LP that appears green in the left image but does not strongly affect the
Morpheus pixel-level classifications.

Figure 26. Example of morphological deblending by Morpheus. The leftmost panel shows the VzH image of a star-galaxy blend in GOODS South from the HLF. The
star, 3D-HST ID 601, overlaps with a spheroidal galaxy 3D-HST ID 543. The center panel shows the Morpheus classification color image, with pixels displaying
spheroid, disk, irregular, or point source/compact dominant morphologies shown in red, blue, green, and yellow, respectively. The pixel regions dominated by the star
or spheroid are correctly classified by Morpheus. The right panel shows the resulting Morpheus segmentation map, illustrating that the dominant object classification
in each segmentation region is also correct. The pixel-level classifications could be used to refine the segmentation to more precisely include only pixels that contained
a single dominant class. The green feature in the left panel is an image artifact in F850LP.
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10. Summary and Conclusions

In this paper, we presented Morpheus, a deep learning
framework for the pixel-level analysis of astronomical images.
The architecture of Morpheus consists of our original
implementation of a U-Net (Ronneberger et al. 2015)
convolutional neural network. Morpheus applies the semantic
segmentation technique adopted from computer vision to
enable pixel-by-pixel classifications, and by separately identi-
fying background and source pixels, Morpheus combines
object detection and classification into a single analysis.
Morpheus represents a new approach to astronomical data
analysis, with wide applicability in enabling per-pixel classi-
fication of images where suitable training data sets exist.
Important results from this paper include:

1. Morpheus provides pixel-level classifications of astro-
nomical FITS images. By using user-supplied segmenta-
tion maps during training, the model learns to distinguish
background pixels from pixels containing source flux.
The pixels associated with astronomical objects are then
classified according to the classification scheme of the
training data set. The entire Morpheus source code has
been publicly released, and a Python package installer for
Morpheus provided. Further, we have a citable “frozen”
version of code available through Zenodo (Hausen 2020).

2. As a salient application, we trained Morpheus to provide
pixel-level classifications of galaxy morphology by using
the Kartaltepe et al. (2015) visual morphological
classifications of galaxies in the CANDELS data set
(Grogin et al. 2011; Koekemoer et al. 2011) as our
training sample.

3. Applying Morpheus to the HLF (Illingworth et al. 2016)
v2.0 reduction of the CANDELS data in GOODS South
and the v1.0 data (Grogin et al. 2011; Koekemoer et al.
2011) for COSMOS, EGS, GOODS North, and UDS, we
generated morphological classifications for every pixel in
the HLF mosaics. The resulting Morpheus morphological
classification images have been publicly released.

4. The pixel-level morphological classifications in GOODS
South were then used to compute and publicly release a
value-added catalog of morphologies for all objects in the
public 3D-HST source catalog (Skelton et al. 2014;
Momcheva et al. 2016).

5. The CANDELS HLF and 3D-HST data were used to
quantify the performance of Morpheus, both for mor-
phological classification and its completeness in object
detection. As trained, the Morpheus code shows high
completeness at magnitudes H26.5AB. We demon-
strate that Morpheus can detect objects in astronomical
images at flux levels up to 100×fainter than the
completeness limit of its training sample (H∼29AB).

6. Tutorials for using the Morpheus deep learning frame-
work have been created and publicly released as Jupyter
notebooks.

7. An interactive visualization of the Morpheus model
results for GOODS South, including the Morpheus
segmentation maps and pixel-level morphological classi-
fications of 3D-HST sources, has been publicly released.

We expect that semantic segmentation will be increasingly
used in astronomical applications of deep learning, and
Morpheus serves as an example framework that leverages this

technique to identify and classify objects in astronomical
images. We caution that Morpheus may be most effective at
wavelengths similar to the data on which the model was trained
(i.e., the F606W, F850LP, F125W, and F160W bands).
However, Domínguez Sánchez et al. (2019) have shown recent
success in applying transfer learning on astronomical data sets
with morphological labels. With the advent of large imaging
data sets such as those provided by the Dark Energy Survey
(Dark Energy Survey Collaboration et al. 2016) and Hyper
Suprime-Cam (Aihara et al. 2018a, 2018b), and next-genera-
tion surveys to be conducted by Large Synoptic Survey
Telescope (Ivezić et al. 2019; Robertson et al. 2019), Euclid
(Laureijs et al. 2011; Rhodes et al. 2017), and the Wide Field
Infrared Survey Telescope (Akeson et al. 2019), pixel-level
analysis of massive imaging data sets with deep learning will
find many applications. While the details of the Morpheus
neural network architecture will likely change and possibly
improve, we expect the approach of using semantic segmenta-
tion to provide pixel-level analyses of astronomical images
with deep learning models will be broadly useful. The public
release of the Morpheus code, tutorials, and example data
products should provide a basis for future applications of deep
learning for astronomical data sets.
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Appendix A
Deep Learning

TheMorpheus deep-learning framework incorporates a variety
of technologies developed for machine-learning applications. The
following descriptions of deep-learning techniques complement
the overview of Morpheus provided in Section 2 and are useful
for understanding optional configurations of the model.

A.1. Artificial Neuron

The basic unit of the Morpheus neural network is the
artificial neuron (AN), which transforms an input vector x to a
single output AN(x). The AN is designed to mimic the
activation of a neuron, producing a nonlinear response to an
input stimulus value when it exceeds a rough threshold.
The first stage of an AN consists of a function

( ) ( )å= +
=

xz w x b A1
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n

i i
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that adds the dot product of the n-element vector x with a
vector of weights w to a bias b. The values of the w elements
and b are parameters of the model that are set during
optimization. The function z(x) is equivalent to a linear
transformation on input data x.

In the second stage, a nonlinear function a is applied to the
output of z(x). We write

( ) ( ( )) ( )ºx xAN a z , A2

where a(z) is called the activation function. The Morpheus
framework allows the user to specify the activation function,
including the sigmoid
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the hyperbolic tangent
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and the rectified linear unit

( ) ( ) ( )=z zrelu max 0, . A5

These functions share a thresholding behavior, such that the
function activates a nonlinear behavior at a characteristic value
of z, but the domains of these functions differ. For the
morphological classification problem presented in this paper,
the rectified linear unit (Equation (A5)) was used as the
activation function.

A.2. Neural Networks

Increasingly complex computational structures can be
constructed from ANs. Single ANs are combined into layers,
which are collections of distinct ANs that process the same
input vector x. A collection of layers forms a neural network
(NN), with the layers ordered such that the outputs from one
layer provide the inputs to the neurons in the subsequent layer.
Figure A1 shows a schematic of an NN and how the initial
input vector x is processed by multiple layers. As shown, these
layers are commonly called “fully connected” since each

neuron in a given layer receives the outputs z from all neurons
in the previous layer.

A.3. Convolutional Neural Networks

The Morpheus framework operates on image data with a
convolutional neural network (CNN). A CNN includes at least
one layer of ANs whose z function uses a discrete cross-
correlation (convolution) in place of the dot product in
Equation (A1). For a convolutional artificial neuron (CAN),
we write

( ) ( ) ( )= * +X X W Jz b , A6

where X ∗ W represents the convolution of an input image X
and a kernelW. The elements of the kernelW are parameters of
the model, and W may differ in dimensions from X. In
Morpheus, the dimensions ofW are set to be 3×3 throughout.
The bias b is a scalar as before, and J represents a matrix of 1s
with the same dimensions as the result of the convolution. In
Morpheus, the convolution is zero-padded to maintain the
dimensions of the input data.
The activation function of the neuron is computed element-

wise after the convolution and bias have been applied to the
input. We write

( ) ( ( )) ( )ºX Xa zCAN . A7

We refer to the output from a CAN as a feature map.
As with fully connected layers, convolutional layers consist

of a group of CANs that process the same input data X.
Convolutional layers can also be arranged sequentially such
that the output from one convolutional layer serves as input to
the next. Morpheus’ neural network architecture, being U-Net
based, is comprised of CANs (see Figure A2 for a schematic).
In typical convolutional neural network topologies, CANs are
used to extract features from input images. The resulting
feature maps are eventually flattened into a single vector and
processed by a fully connected layer to produce the output
classification values.

Figure A1. Schematic of a simple neural network. Given an input vector x, the neural network applies a series of reductions and nonlinear transformations through a
collection of layers L to produce an output o. Each layer L consists of a set of artificial neurons AN that perform a linear rescaling of their input data, followed by a
nonlinear transformation via the application of an activation function (see Equation (A2)). The activation function may vary across layers.
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A.4. Other Functions in Neural Networks

The primary computational elements of Morpheus are a
convolutional neural network (Appendix A.3) and a fully
connected layer (Appendix A.2). In detail, other layers are used
to reformat or summarize the data, renormalize it, or combine
data from different stages in the network.

A.4.1. Pooling

Pooling layers (Figure A3) are composed of functions that
summarize their input data to reduce its size while preserving
some information. These layers perform a moving average
(average pooling) or maximum (max pooling) over a window of
data elements, repeating these reductions as the window scans
through the input image with a stride equal to the window size.
In the morphological classification tasks described in this paper,
Morpheus uses 2×2 windows and max pooling.

A.4.2. Up-sampling

Up-sampling layers expand the size of feature maps by a
specified factor through an interpolation between input data

elements. The up-sampling layers operate in the image
dimensions of the feature map and typically employ bicubic
and bilinear interpolation. In the morphological classification
application explored in this paper, Morpheus used 2×2 up-
sampling and bicubic interpolation.

A.4.3. Concatenation

Concatenation layers combine multiple feature maps by
appending them without changing their contents. For instance,
the concatenation of RGB channels into a three-color image
would append three N×M images into an RGB image with
dimensions N×M×3. This operation is used in Morpheus to
combine together data from the contraction phase with the output
from bicubic interpolations in the expansion phase (see Figure 2).

A.4.4. Batch Normalization

A common preprocessing step for neural network architec-
tures is to normalize the input data x using, e.g., the operation

ˆ ( ) ( )m s= -x x A82

Figure A2. Schematic of a convolutional neural network (CNN). Shown is a simplified CNN consisting of a convolutional layer feeding a fully connected layer. Each
artificial neuron (AN) in the convolutional layer outputs a feature map as described by Equation (A7). Each output feature map is flattened and concatenated into a
single vector. This vector is processed by each AN in the fully connected layer (see Equation (A2)). The curly brace represents connections from all elements of the
vector input.

Figure A3. Comparison of max and average pooling layers. Pooling layers perform reductions on subsets of feature maps, providing a local average or maximum of
data elements in a window (2×2 in this schematic). Shown are cells of an input feature map (left), color-coded within a window to match the corresponding regions
of the output feature map (right). The pooling layers perform a simple reduction with these windows, taking either a maximum (upper branch) or average (lower
branch).
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where x̂ is the normalized data, and μ and σ are parameters of
the model. Ioffe & Szegedy (2015) extended this normalization
step to apply to the inputs of layers within the network, such
that activations (AN) and feature maps (CAN) are normalized
over each batch. A batch consists of a subset of the training
examples used during the training process. Simple normal-
ization operations like Equation (A8) can reduce the range of
values represented in the data provided to a layer, which can
inhibit learning. Ioffe & Szegedy (2015) addressed this issue by
providing an alternative normalization operation that introduces
additional parameters to be learned during training. The input
data elements xi are first rescaled as

ˆ ( )
m

s
=

-

+ 
x

x
. A9x

x

i
i

2

Here, xi is a single element from the data output by a single AN
or CAN over a batch, μ x is their mean, and s x

2 is their variance.
The parameter ò is learned during optimization. The new
normalization ˆBNxi is then taken to be a linear transformation

ˆ ( )ˆ g b= +BN x . A10x x i xi

The parameters γx and βx are also learned during optimization.
Ioffe & Szegedy (2015) demonstrated that batch normalization,
in the form of Equation (A10), can increase overall accuracy
and decrease training time, and we adopt this approach in the
Morpheus framework.

A.5. U-Net Architecture

The Morpheus framework uses a U-Net architecture, first
introduced by Ronneberger et al. (2015). The U-Net archi-
tecture was originally designed for segmentation of medical
imagery but has enjoyed success in other fields. The U-Net
takes as input a set of images and outputs a classification image
of pixel-level probability distributions. The architecture begins
with a contraction phase composed of a series of convolutional
and pooling layers, followed by an expansion phase composed
of a series of convolutional and up-sampling layers. Each of the
outputs from the down-sampling layers is concatenated with
the output of an up-sampling layer when the height and width
dimensions of the feature maps match. These concatenations
help preserve the locality of learned features in the output of
the NN.

Appendix B
Code Release

The code for Morpheus has been release via GitHub
(https://github.com/morpheus-project/morpheus). Morpheus
is also available as a python package installable via pip
(https://pypi.org/project/morpheus-astro/) and as Docker
images available via Docker Hub (https://hub.docker.com/r/
morpheusastro/morpheus). Morpheus includes both a Python
API and a command-line interface, the documentation of which
can be found online athttps://morpheus-astro.readthedocs.io/
en/latest/.

Appendix C
Code Tutorial

An online tutorial demonstrating the Morpheus Python API
in the form of a Jupyter notebook can be found at
https://github.com/morpheus-project/morpheus/blob/master/
examples/example_array.ipynb. The tutorial walks through the
classification of an example image. Additionally, the tutorial
explores other features of Morpheus, including generating
segmentation maps and morphological catalogs.

Appendix D
Data Release

The data release associated with this work consists of
multiple data products. For each field in the CANDELS survey,
we provide the following data products: pixel-level morpho-
logical classifications, segmentation maps, and value-added
catalogs (see also Section 8) for the 3D-HST catalogs.
Tables D1–D5 provide the URLs for each of the data products;
these data products are also archived on Zenodo [doi:10.5281/
zenodo.3746665]. Each of the fields has two types of
segmentation maps, a segmentation map informed by the 3D-
HST survey and a segmentation map informed only by the
background values provided by Morpheus (see Algorithm 1).
The classifications for the EGS and UDS fields may vary as a
result of using the F W814 band in place of the F850LP due to
availability. Further, Figures D1–D4 show color morphological
images (see Section 6.1.6) for the COMOS, EGS, GOODS
North, and UDS fields.
An interactive online visualization of the HST images,

Morpheus classification images, and 3D-HST sources is
available athttps://morpheus-project.github.io/morpheus/.

Table D1
Data Release Files Generated by Morpheus and Associated URLs for the COSMOS CANDELS Field

Morpheus Data Products for the COSMOS Field

File Name URL

Pixel-level Morphological Classifications
morpheus_COSMOS_spheroid.v1.0.fits morpheus-project.github.io/morpheus/data-release/cosmos/spheroid.html
morpheus_COSMOS_disk.v1.0.fits morpheus-project.github.io/morpheus/data-release/cosmos/disk.html
morpheus_COSMOS_irregular.v1.0.fits morpheus-project.github.io/morpheus/data-release/cosmos/irregular.html
morpheus_COSMOS_ps_compact.v1.0.fits morpheus-project.github.io/morpheus/data-release/cosmos/ps_compact.html
morpheus_COSMOS_background.v1.0.fits morpheus-project.github.io/morpheus/data-release/cosmos/background.html
morpheus_COSMOS_mask.v1.0.fits morpheus-project.github.io/morpheus/data-release/cosmos/mask.html
Segmentation Maps
morpheus_COSMOS_segmap.v1.0.fits morpheus-project.github.io/morpheus/data-release/cosmos/segmap.html
morpheus_COSMOS_3dhst-segmap.v1.0.fits morpheus-project.github.io/morpheus/data-release/cosmos/3dhst-segmap.html
3D-HST Value Added Catalog
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Table D1
(Continued)

Morpheus Data Products for the COSMOS Field

File Name URL

morpheus_COSOMS_3dhst_catalog.v1.0.csv morpheus-project.github.io/morpheus/data-release/cosmos/value-added-catalog.html
morpheus_COSOMS_3dhst_catalog.v1.0.txt morpheus-project.github.io/morpheus/data-release/cosmos/value-added-catalog-mrt.html
All Files
morpheus_COSMOS_all.v1.0.tar.gz morpheus-project.github.io/morpheus/data-release/cosmos/all.html

Note. The data release files for each field are organized into three groups: pixel-level morphological classifications, segmentation maps, and 3D-HST value-added catalogs.
The pixel-level morphological classification files are named according to the following scheme morpheus_COSMOS_[morphology].v1.0.fits, where
[morphology] can be one of the morphological classes (spheroid, disk, irregular, ps_compact, background) or mask, a binary image mask indicating which pixels in the
image we are classified by Morpheus. The segmentation map files are named according to the following scheme morpheus_COSMOS_[segmap_type].v1.0.fits ,
where [segmap_type] can be 3dhst-segmap (indicating the 3D-HST informed segmap) or segmap (indicating a segmap based only on background class/flux values).
Finally, the 3D-HST value-added catalog files are named according to the following scheme morpheus_COSMOS_3dhst-catalog.v1.0.[file_type], where
[file_type] can be csv for a comma-separated-value version of the value-added catalog and txt for the machine-readable table version described in Table 5. Additionally,
a link to an archive containing all of the files associated with the COSMOS field is available in an additional section called All Files. See Appendix D for details.

Table D2
Data Release Files Generated by Morpheus and Associated URLs for the EGS CANDELS Field

Morpheus Data Products for the EGS Field

File Name URL

Pixel-level Morphological Classifications
morpheus_EGS_spheroid.v1.0.fits morpheus-project.github.io/morpheus/data-release/egs/spheroid.html
morpheus_EGS_disk.v1.0.fits morpheus-project.github.io/morpheus/data-release/egs/disk.html
morpheus_EGS_irregular.v1.0.fits morpheus-project.github.io/morpheus/data-release/egs/irregular.html
morpheus_EGS_ps_compact.v1.0.fits morpheus-project.github.io/morpheus/data-release/egs/ps_compact.html
morpheus_EGS_background.v1.0.fits morpheus-project.github.io/morpheus/data-release/egs/background.html
morpheus_EGS_mask.v1.0.fits morpheus-project.github.io/morpheus/data-release/egs/mask.html
Segmentation Maps
morpheus_EGS_segmap.v1.0.fits morpheus-project.github.io/morpheus/data-release/egs/segmap.html
morpheus_EGS_3dhst-segmap.v1.0.fits morpheus-project.github.io/morpheus/data-release/egs/3dhst-segmap.html
3D-HST Value Added Catalogs
morpheus_EGS_3dhst_catalog.v1.0.csv morpheus-project.github.io/morpheus/data-release/egs/value-added-catalog.html
morpheus_EGS_3dhst_catalog.v1.0.txt morpheus-project.github.io/morpheus/data-release/egs/value-added-catalog-mrt.html
All Files
morpheus_EGS_all.v1.0.tar.gz morpheus-project.github.io/morpheus/data-release/egs/all.html

Note. The data release files for each field are organized into three groups: pixel-level morphological classifications, segmentation maps, and 3D-HST value-added
catalogs. The pixel-level morphological classification files are named according to the following scheme morpheus_EGS_[morphology].v1.0.fits, where
[morphology] can be one of the morphological classes (spheroid, disk, irregular, ps_compact, background) or mask, a binary image mask indicating which pixels in
the image we are classified byMorpheus. The segmentation map files are named according to the following scheme morpheus_EGS_[segmap_type].v1.0.fits ,
where [segmap_type] can be 3dhst-segmap (indicating the 3D-HST informed segmap) or segmap (indicating a segmap based only on background class/flux values).
Finally, the 3D-HST value-added catalog files are named according to the following scheme morpheus_EGS_3dhst-catalog.v1.0.[file_type], where
[file_type] can be csv for a comma-separated-value version of the value-added catalog and txt for the machine-readable table version described in Table 5.
Additionally, a link to an archive containing all of the files associated with the EGS field is available in an additional section called All Files. See Appendix D for details.

Table D3
Data Release Files Generated by Morpheus and Associated URLs for the GOODS North CANDELS Field

Morpheus Data Products for the GOODS North Field

File Name URL

Pixel-level Morphological Classifications
morpheus_GOODS-N_spheroid.v1.0.fits morpheus-project.github.io/morpheus/data-release/goods-n/spheroid.html
morpheus_GOODS-N_disk.v1.0.fits morpheus-project.github.io/morpheus/data-release/goods-n/disk.html
morpheus_GOODS-N_irregular.v1.0.fits morpheus-project.github.io/morpheus/data-release/goods-n/irregular.html
morpheus_GOODS-N_ps_compact.v1.0.fits morpheus-project.github.io/morpheus/data-release/goods-n/ps_compact.html
morpheus_GOODS-N_background.v1.0.fits morpheus-project.github.io/morpheus/data-release/goods-n/background.html
morpheus_GOODS-N_mask.v1.0.fits morpheus-project.github.io/morpheus/data-release/goods-n/mask.html
Segmentation Maps
morpheus_GOODS-N_segmap.v1.0.fits morpheus-project.github.io/morpheus/data-release/goods-n/segmap.html
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http://morpheus-project.github.io/morpheus/data-release/cosmos/value-added-catalog.html
http://morpheus-project.github.io/morpheus/data-release/cosmos/value-added-catalog.html
http://morpheus-project.github.io/morpheus/data-release/cosmos/all.html
http://morpheus-project.github.io/morpheus/data-release/egs/spheroid.html
http://morpheus-project.github.io/morpheus/data-release/egs/disk.html
http://morpheus-project.github.io/morpheus/data-release/egs/irregular.html
http://morpheus-project.github.io/morpheus/data-release/egs/ps-compact.html
http://morpheus-project.github.io/morpheus/data-release/egs/background.html
http://morpheus-project.github.io/morpheus/data-release/egs/mask.html
http://morpheus-project.github.io/morpheus/data-release/egs/segmap.html
http://morpheus-project.github.io/morpheus/data-release/uds/3dhst-segmap.html
http://morpheus-project.github.io/morpheus/data-release/egs/value-added-catalog.html
http://morpheus-project.github.io/morpheus/data-release/egs/value-added-catalog.html
http://morpheus-project.github.io/morpheus/data-release/egs/all.html
http://morpheus-project.github.io/morpheus/data-release/goods-n/spheroid.html
http://morpheus-project.github.io/morpheus/data-release/goods-n/disk.html
http://morpheus-project.github.io/morpheus/data-release/goods-n/irregular.html
http://morpheus-project.github.io/morpheus/data-release/goods-n/ps-compact.html
http://morpheus-project.github.io/morpheus/data-release/goods-n/background.html
http://morpheus-project.github.io/morpheus/data-release/goods-n/mask.html
http://morpheus-project.github.io/morpheus/data-release/goods-n/segmap.html


Table D3
(Continued)

Morpheus Data Products for the GOODS North Field

File Name URL

morpheus_GOODS-N_3dhst-segmap.v1.0.fits morpheus-project.github.io/morpheus/data-release/goods-n/3dhst-segmap.html
3D-HST Value Added Catalogs
morpheus_GOODS-N_3dhst_catalog.v1.0.csv morpheus-project.github.io/morpheus/data-release/goods-n/value-added-catalog.html
morpheus_GOODS-N_3dhst_catalog.v1.0.txt morpheus-project.github.io/morpheus/data-release/goods-n/value-added-catalog-mrt.html
All Files
morpheus_GOODS-N_all.v1.0.tar.gz morpheus-project.github.io/morpheus/data-release/goods-n/all.html

Note. The data release files for each field are organized into three groups: pixel-level morphological classifications, segmentation maps, and 3D-HST value-added catalogs.
The pixel-level morphological classification files are named according to the following scheme morpheus_GOODS-N_[morphology].v1.0.fits, where
[morphology] can be one of the morphological classes (spheroid, disk, irregular, ps_compact, background) or mask, a binary image mask indicating which pixels in the
image we are classified byMorpheus. The segmentation map files are named according to the following scheme morpheus_GOODS-N_[segmap_type].v1.0.fits ,
where [segmap_type] can be 3dhst-segmap (indicating the 3D-HST informed segmap) or segmap (indicating a segmap based only on background class/flux values).
Finally, the 3D-HST value-added catalog files are named according to the following scheme morpheus_GOODS-N_3dhst-catalog.v1.0.[file_type], where
[file_type] can be csv for a comma-separated-value version of the value-added catalog and txt for the machine-readable table version described in Table 5. Additionally,
a link to an archive containing all of the files associated with the GOODS North field is available in an additional section called All Files. See Appendix D for details.

Table D4
Data Release Files Generated by Morpheus and Associated URLs for the GOODS South CANDELS Field

Morpheus Data Products for the GOODS South Field

File Name URL

Pixel-level Morphological Classifications
morpheus_GOODS-S_spheroid.v1.0.fits morpheus-project.github.io/morpheus/data-release/goods-s/spheroid.html
morpheus_GOODS-S_disk.v1.0.fits morpheus-project.github.io/morpheus/data-release/goods-s/disk.html
morpheus_GOODS-S_irregular.v1.0.fits morpheus-project.github.io/morpheus/data-release/goods-s/irregular.html
morpheus_GOODS-S_ps_compact.v1.0.fits morpheus-project.github.io/morpheus/data-release/goods-s/ps_compact.html
morpheus_GOODS-S_background.v1.0.fits morpheus-project.github.io/morpheus/data-release/goods-s/background.html
morpheus_GOODS-S_mask.v1.0.fits morpheus-project.github.io/morpheus/data-release/goods-s/mask.html
morpheus_GOODS-S_spheroid.v1.0.fits morpheus-project.github.io/morpheus/data-release/goods-s/spheroid.html
Segmentation Maps
morpheus_GOODS-S_segmap.v1.0.fits morpheus-project.github.io/morpheus/data-release/goods-s/segmap.html
morpheus_GOODS-S_3dhst_segmap.v1.0.fits morpheus-project.github.io/morpheus/data-release/goods-s/3dhst-segmap.html
3D-HST Value Added Catalogs
morpheus_GOODS-S_3dhst_catalog.v1.0.csv morpheus-project.github.io/morpheus/data-release/goods-s/value-added-catalog.html
morpheus_GOODS-S_3dhst_catalog.v1.0.txt morpheus-project.github.io/morpheus/data-release/goods-s/value-added-catalog-mrt.html
All Files
morpheus_GOODS-S_all.v1.0.tar.gz morpheus-project.github.io/morpheus/data-release/goods-s/all.html

Note. The data release files for each field are organized into three groups: pixel-level morphological classifications, segmentation maps, and 3D-HST value-added catalogs. The pixel-level
morphological classification files are named according to the following scheme morpheus_GOODS-S_[morphology].v1.0.fits, where [morphology] can be one of the morphological
classes (spheroid, disk, irregular, ps_compact, background) ormask, a binary image mask indicating which pixels in the image we are classified byMorpheus. The segmentation map files are named
according to the following scheme morpheus_GOODS-S_[segmap_type].v1.0.fits , where [segmap_type] can be 3dhst-segmap (indicating the 3D-HST informed segmap) or segmap
(indicating a segmap based only on background class/flux values). Finally, the 3D-HST value-added catalog files are named according to the following scheme morpheus_GOODS-S_3dhst-
catalog.v1.0.[file_type], where [file_type] can be csv for a comma-separated-value version of the value-added catalog and txt for the machine-readable table version described in
Table 5. Additionally, a link to an archive containing all of the files associated with the GOODS South field is available in an additional section called All Files. See Appendix D for details.

Table D5
Data Release Files Generated by Morpheus and Associated URLs for the UDS CANDELS Field

Morpheus Data Products for the UDS Field

File Name URL

Pixel-level Morphological Classifications
morpheus_UDS_spheroid.v1.0.fits morpheus-project.github.io/morpheus/data-release/uds/spheroid.html
morpheus_UDS_disk.v1.0.fits morpheus-project.github.io/morpheus/data-release/uds/disk.html
morpheus_UDS_irregular.v1.0.fits morpheus-project.github.io/morpheus/data-release/uds/irregular.html
morpheus_UDS_ps_compact.v1.0.fits morpheus-project.github.io/morpheus/data-release/uds/ps_compact.html
morpheus_UDS_background.v1.0.fits morpheus-project.github.io/morpheus/data-release/uds/background.html
morpheus_UDS_mask.v1.0.fits morpheus-project.github.io/morpheus/data-release/uds/mask.html
Segmentation Maps
morpheus_UDS_segmap.v1.0.fits morpheus-project.github.io/morpheus/data-release/uds/segmap.html
morpheus_UDS_3dhst-segmap.v1.0.fits morpheus-project.github.io/morpheus/data-release/uds/3dhst-segmap.html
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http://morpheus-project.github.io/morpheus/data-release/goods-n/3dhst-segmap.html
http://morpheus-project.github.io/morpheus/data-release/goods-n/value-added-catalog.html
http://morpheus-project.github.io/morpheus/data-release/goods-n/value-added-catalog.html
http://morpheus-project.github.io/morpheus/data-release/goods-n/all.html
http://morpheus-project.github.io/morpheus/data-release/goods-s/spheroid.html
http://morpheus-project.github.io/morpheus/data-release/goods-s/disk.html
http://morpheus-project.github.io/morpheus/data-release/goods-s/irregular.html
http://morpheus-project.github.io/morpheus/data-release/goods-s/ps-compact.html
http://morpheus-project.github.io/morpheus/data-release/goods-s/background.html
http://morpheus-project.github.io/morpheus/data-release/goods-s/mask.html
http://morpheus-project.github.io/morpheus/data-release/goods-s/spheroid.html
http://morpheus-project.github.io/morpheus/data-release/goods-s/segmap.html
http://morpheus-project.github.io/morpheus/data-release/goods-s/3dhst-segmap.html
http://morpheus-project.github.io/morpheus/data-release/goods-s/value-added-catalog.html
http://morpheus-project.github.io/morpheus/data-release/goods-s/value-added-catalog.html
http://morpheus-project.github.io/morpheus/data-release/goods-s/all.html
http://morpheus-project.github.io/morpheus/data-release/uds/spheroid.html
http://morpheus-project.github.io/morpheus/data-release/uds/disk.html
http://morpheus-project.github.io/morpheus/data-release/uds/irregular.html
http://morpheus-project.github.io/morpheus/data-release/uds/ps-compact.html
http://morpheus-project.github.io/morpheus/data-release/uds/background.html
http://morpheus-project.github.io/morpheus/data-release/uds/mask.html
http://morpheus-project.github.io/morpheus/data-release/uds/segmap.html
http://morpheus-project.github.io/morpheus/data-release/uds/3dhst-segmap.html


Table D5
(Continued)

Morpheus Data Products for the UDS Field

File Name URL

3D-HST Value Added Catalogs
morpheus_UDS_3dhst_catalog.v1.0.csv morpheus-project.github.io/morpheus/data-release/uds/value-added-catalog.html
morpheus_UDS_3dhst_catalog.v1.0.txt morpheus-project.github.io/morpheus/data-release/uds/value-added-catalog-mrt.html
All Files
morpheus_UDS_all.v1.0.tar.gz morpheus-project.github.io/morpheus/data-release/uds/all.html

Note. The data release files for each field are organized into three groups: pixel-level morphological classifications, segmentation maps, and 3D-HST value-added catalogs. The pixel-level
morphological classification files are named according to the following scheme morpheus_UDS_[morphology].v1.0.fits, where [morphology] can be one of the morphological classes
(spheroid, disk, irregular, ps_compact, background) or mask, a binary image mask indicating which pixels in the image we are classified by Morpheus. The segmentation map files are named
according to the following scheme morpheus_UDS_[segmap_type].v1.0.fits , where [segmap_type] can be 3dhst-segmap (indicating the 3D-HST informed segmap) or segmap
(indicating a segmap based only on background class/flux values). Finally, the 3D-HST value-added catalog files are named according to the following scheme morpheus_UDS_3dhst-
catalog.v1.0.[file_type], where [file_type] can be csv for a comma-separated-value version of the value-added catalog and txt for the machine-readable table version described in
Table 5. Additionally, a link to an archive containing all of the files associated with the UDS field is available in an additional section called All Files. See Appendix D for details.

Figure D1. Color composite of the Morpheus morphological classifications for the COSMOS field from the CANDELS survey (Grogin et al. 2011; Koekemoer
et al. 2011).
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http://morpheus-project.github.io/morpheus/data-release/uds/value-added-catalog.html
http://morpheus-project.github.io/morpheus/data-release/uds/value-added-catalog.html
http://morpheus-project.github.io/morpheus/data-release/uds/all.html


Figure D2. Color composite of theMorpheus morphological classifications for the EGS field from the CANDELS survey (Grogin et al. 2011; Koekemoer et al. 2011).
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Figure D3. Color composite of the Morpheus morphological classifications for the GOODS North field from the CANDELS survey (Grogin et al. 2011; Koekemoer
et al. 2011).
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