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Abstract

We present the fourth simulation of the Cholla Galactic OutfLow Simulations suite. Using a physically motivated
prescription for clustered supernova feedback, we successfully drive a multiphase outflow from a disk galaxy. The
high resolution (<5 pc) across a relatively large domain (20 kpc) allows us to capture the hydrodynamic mixing
and dynamical interactions between the hot and cool (T∼104 K) phases in the outflow, which in turn leads to
direct evidence of a qualitatively new mechanism for cool gas acceleration in galactic winds. We show that mixing
of momentum from the hot phase to the cool phase accelerates the cool gas to 800 km s−1 on kiloparsec scales,
with properties inconsistent with the physical models of ram pressure acceleration or bulk cooling from the hot
phase. The mixing process also affects the hot phase, modifying its radial profiles of temperature, density, and
velocity from the expectations of radial supersonic flow. This mechanism provides a physical explanation for the
high-velocity, blueshifted, low-ionization absorption lines often observed in the spectra of starburst and high-
redshift galaxies.

Unified Astronomy Thesaurus concepts: Active galaxies (17); Starburst galaxies (1570); Hydrodynamical
simulations (767); Stellar feedback (1602); Circumgalactic medium (1879); Galaxy evolution (929); Galactic
winds (594)

1. Introduction

Theories of galaxy formation now commonly accept that
stellar feedback is a necessary ingredient in understanding the
way that galaxies evolve (e.g., Somerville & Davé 2015; Naab
& Ostriker 2017, and references therein). On the scale of
individual dense star-forming clouds and the surrounding
diffuse interstellar medium (ISM), radiation, stellar winds, and
supernovae are invoked to explain the low star formation
efficiency within clouds and the low star formation rates in
galaxies (e.g., Mac Low & Klessen 2004; Thompson et al.
2005; McKee & Ostriker 2007; Murray et al. 2010; Ostriker
et al. 2010; Hopkins et al. 2011, 2014; Kim et al. 2011, 2018;
Ostriker & Shetty 2011; Grudić et al. 2018; Li et al. 2019). On
larger scales, feedback in the form of galactic winds and
outflows5 is implicated in the dearth of baryons in galaxies
(e.g., Larson 1974; White & Rees 1978; Dekel & Silk 1986;
Kereš et al. 2005; Genel et al. 2014; Hopkins et al. 2014;
Vogelsberger et al. 2014; Schaye et al. 2015; Davé et al. 2016),
as well as the distribution of metals throughout the circumga-
lactic medium (CGM) and intergalactic medium (IGM; e.g.,
Oppenheimer & Davé 2006; Steidel et al. 2010; Davé et al.
2011; Peeples & Shankar 2011; Hummels et al. 2013; Ford
et al. 2014; Hafen et al. 2019). Despite its perceived
importance, the details of star formation–driven feedback are
less clear. What physical processes drive galactic outflows?
How much mass and energy are actually removed from
galaxies via star formation feedback? How universal are these
properties as a function of galaxy mass and morphology? These
are complex questions that require further study.

Observations have shown that outflows are a common
feature of star-forming galaxies across a wide range of masses
and redshifts (e.g., Martin 1998; Pettini et al. 2001; Rubin et al.
2010; Heckman et al. 2015; Heckman & Borthakur 2016;
McQuinn et al. 2019). Early work using optical spectroscopy
found that cool ionized gas can be driven out of galaxies at
speeds higher than the escape velocity (Lynds & Sandage 1963;
Burbidge et al. 1964). In low-mass galaxies, such as the iconic
M82 starburst, the discovery of extended soft X-ray emission
(Watson et al. 1984) led theorists to point to supernovae as the
driver of these outflows, positing that an unseen hot
(T∼107 K) phase existed that could be removing vast
quantities of energy from the galaxy in the form of a fast,
supersonic wind (Chevalier & Clegg 1985). With the launch of
the high-resolution Chandra X-ray Observatory, this theorized
hot plasma was observed directly (Griffiths et al. 2000;
Strickland & Heckman 2007), implicating supervirial gas
created by supernovae as a potentially important driver of
galactic outflows.
Although models of hot winds explained the process by

which metal-rich, supernova-heated gas could be driven out of
a galaxy, observations of the cooler phases continued to reveal
a host of theoretical questions. Taking M82 as an example, in
addition to the hot X-ray plasma, outflowing gas has been
observed at every wavelength probed, from soft X-ray emission
(e.g., Strickland et al. 2004), to cool (T∼104 K) ionized gas
(e.g., McKeith et al. 1995; Westmoquette et al. 2009), to
neutral hydrogen and cold molecular outflows (e.g., Walter
et al. 2002; Leroy et al. 2015; Martini et al. 2018). While a
fountain flow can explain the decreasing flux of the low-
velocity molecular gas as a function of height (Leroy et al.
2015), a separate mechanism is required to explain the
velocities of the faster-moving cool ionized phase, which tend to
increase as a function of distance from the galaxy and can exceed
the halo escape velocity (Shopbell & Bland-Hawthorn 1998).
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4 Hubble Fellow.
5 In this work, we use the term “wind” to describe gas that is moving fast
enough to escape the galactic halo potential (provided it does not encounter an
additional surrounding medium) and “outflow” to describe gas that is moving
away from the galaxy at any speed. In other words, all winds are outflows, but
not all outflows are winds.
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Down-the-barrel absorption line studies of star-forming galaxies
also frequently observe blueshifted gas in low ionization states,
indicating cool outflowing material. This cool ionized gas is
observed over a range of velocities, but speeds often reach or
exceed 500 km s−1, and some observations see gas moving in
excess of 1000 km s−1 (e.g., Weiner et al. 2009; Diamond-Stanic
et al. 2012; Martin et al. 2012; Rubin et al. 2014; Sell et al. 2014;
Heckman et al. 2015; Chisholm et al. 2017).

Given that the hot gas in winds is theorized to be moving at
v�1000 km s−1, one potential explanation is that the cool
phase is simply ISM gas that has been accelerated via ram
pressure from the hot gas. A number of idealized studies of
cool clouds in hot winds have challenged that explanation,
however. These simulations have demonstrated that ram
pressure alone is not effective at accelerating the cool gas,
given the competing effects of radiative cooling and subsequent
cloud compression that ensue from shocks and the effects of
shear flow interactions on lateral faces. Rather than accelerating
clouds, the hot wind tends to heat and destroy them via a
combination of shocks and hydrodynamic instabilities (e.g.,
Nittmann et al. 1982; Stone & Norman 1992; Klein et al. 1994;
Mac Low et al. 1994; Xu & Stone 1995; Cooper et al. 2009;
Scannapieco & Brüggen 2015; Brüggen & Scannapieco 2016;
Schneider & Robertson 2017; Zhang et al. 2017). However, a
few recent studies have noted that, given large enough clouds
and appropriate background conditions, cool gas can persist in
these simulations as a result of a mixing and cooling cycle.
Under the right circumstances, this may result in an increased
flux of cool gas as hot gas condenses out, effectively growing
the cloud rather than destroying it (Armillotta et al. 2016;
Gritton et al. 2017; Gronke & Oh 2018, 2020). Unfortunately,
the idealized nature of the background flow in these
simulations makes it difficult to tell whether this mechanism
is viable in the turbulent, high-pressure environment of a
galactic wind (Fielding et al. 2018; Schneider & Robert-
son 2018). In an alternative model, Thompson et al. (2016)
suggested that the hot wind itself could cool to T∼104 K,
provided it was sufficiently mass-loaded via the destruction of
cool gas at small radii.

The combination of uncertainties about the physical nature
of gas in outflows and the theoretical uncertainties about the
mechanisms for accelerating cool gas motivated the Cholla
Galactic OutfLow Simulations (CGOLS) project, a series of
extremely high-resolution global disk simulations of galaxy
outflows. By simulating a whole galaxy, the CGOLS project
aims to avoid uncertainties related to the limited domain
present in cloud–wind or ISM patch simulations while
maintaining high enough resolution to sufficiently capture the
hydrodynamic instabilities associated with the destruction of
cool gas in winds. In earlier work, we tested the effect of
including a central feedback source in a galaxy disk, both with
and without radiative cooling, in order to elucidate how well
analytic models for supernova-driven winds could predict wind
properties (Schneider & Robertson 2018; Schneider et al. 2018,
hereafter Paper I and Paper II). These simulations showed that
theoretical wind models work well in scenarios where the hot
wind is unaffected by interactions with the gas in the disk but
do not accurately reproduce the properties of the wind in cases
where it has experienced significant mass loading or when the
spherical symmetry of the feedback injection scheme is broken.
In part, this is because none of the analytic models tested in our

earlier work account for the multiphase nature of gas in winds
at a single radius.
In this work, we present a new CGOLS simulation that

includes a multiphase wind, as well as a two-phase analytic
model capable of fitting the properties of the wind as a function
of radius. The primary difference between this simulation and
those presented in Papers I and II is the nature of the feedback
injection mechanism, which is described in Section 2.1. We
present the details of the analytic model in Section 3. Section 4
contains the primary results of the simulations, including a
discussion of the radial profiles of both the hot and cool phases,
as well as radially averaged outflow rates, both of which are
components in the analytic model. We also show the mass and
energy loading in different phases, as well as phase diagrams
demonstrating the relationships between various physical
quantities. We then address the mechanism by which the cool
gas is accelerated to velocities comparable to those seen in
observations, highlighting our method for demonstrating the
role of hydrodynamic mixing in the momentum transfer
process from hot to cool phases. We conclude the section with
a discussion of convergence in our simulations. In Section 5,
we discuss some observational implications of this work, as
well as our model dependence and the relationship between our
results and previous simulations presented in the literature. We
conclude with a brief summary of our results in Section 6.

2. Simulations

Here we briefly describe the overall setup of the simulation;
further details of the CGOLS suite can be found in Paper I. Each
simulation is carried out in a box with a uniform grid of cells. The
box has dimensions (Lx, Ly, Lz)=(10 kpc, 10 kpc, 20 kpc), with
(Ncells,x, Ncells,y, Ncells,z)=(2048, 2048, 4096), resulting in a
constant cell width of Δx=Δy=Δz=10 kpc/ 2048≈
4.9 pc.
Centered within the box, we place a disk of 104 K isothermal

gas, distributed with an exponential surface density profile with
scale radius Rgas=1.6 kpc and total mass Mgas=2.5×
109Me. This corresponds to a central surface density of
Σ0≈150Me pc−2. The gas disk is initially in vertical
hydrostatic and rotational equilibrium with a static gravitational
potential composed of a Miyamoto–Nagai profile for the
galaxy’s stellar disk component (Miyamoto & Nagai 1975) and
a Navarro–Frenk–White profile for the dark matter component
(Navarro et al. 1996). The disk potential is given by
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where r and z are the radial and vertical cylindrical coordinates,
Mstars=1010Me is the mass of the stellar disk, Rstars= 0.8 kpc is
the stellar scale radius, and zstars=0.15 kpc is the stellar scale
height. The values for the gas mass, stellar mass, scale radii, and
stellar scale height were set to mimic those of the local starburst
galaxy, M82 (Mayya & Carrasco 2009; Greco et al. 2012; Lim
et al. 2013). The dark matter potential is likewise defined by
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where r is the radius in spherical coordinates, Mhalo=
5×1010Me is the assumed dark matter mass of the halo,
c=10 is the halo concentration, and Rhalo is the scale radius of
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the halo, which we set to Rhalo=Rvir/c=5.3 kpc. Outside of
the disk, we place a static hot halo in hydrostatic equilibrium
with the potential; this gas is quickly blown away when the
simulation starts.

All simulations in the CGOLS suite are carried out using the
GPU-based Cholla hydrodynamics code (Schneider & Robertson
2015), using piecewise-linear interface reconstruction, an HLLC
Riemann solver, and an unsplit Van Leer integrator (Stone &
Gardiner 2009). The gas is allowed to cool to a floor of 104 K
according to a cooling curve that is a piecewise-parabolic fit to a
Cloudy curve assuming collisional ionization equilibrium for solar
metallicity gas (Ferland et al. 2013; Paper I). Below this
temperature, it is assumed that background heating from ionizing
sources within the galaxy and the metagalactic UV background
maintain the heating in the gas.

2.1. Cluster Feedback

The primary difference between this work and earlier
simulations in the CGOLS suite is the implementation of the
stellar feedback. In Paper II, we described a method of
clustered feedback where mass and energy were deposited in
eight spherical regions within the disk, each with R=150 pc.
The values of the mass and energy injection were defined
arbitrarily such that the volume-filling gas in the resulting hot
outflow either would have high enough density to cool
efficiently down to 104 K at a relatively small radius (the
“high mass-loading state”) or would not cool efficiently (the
“low mass-loading state”), as described in Thompson et al.
(2016). We defined these mass and energy injection rates Minj

and Einj in relation to the star formation rate: mass loading is
quantified by β,

( )

b =
M

M
, 3

inj

SFR

and energy loading is quantified by α, such that
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where we have assumed that there is one supernova per 100Me

of star formation, and each supernova generates 1051 erg of
energy. In each state, we held the values of α and β steady for
many millions of years.

In this work, in addition to using a significantly smaller
cluster radius, Rcl=30 pc, we relax these assumptions about
the values of α and β. Now, we set the mass and energy
injection rates in the clusters using physically motivated values
determined by running a separate “superbubble” simulation.
This simulation will be described in detail in a future paper (E.
E. Schneider & E. C. Ostriker 2020, in preparation), but in
brief, we use a Starburst99 single-burst stellar population
synthesis model (Leitherer et al. 1999) to inject mass and
energy into a box containing clouds that represent a well-
resolved multiphase ISM, and we then track the interaction
between phases as the resulting bubble driven by the cluster
feedback propagates through the box (see Kim et al. 2017, for
an example of such simulations). The ISM gas that is swept up
as the bubble expands before breaking out of the disk can
therefore contribute to the mass loading at early times.

In order to compare with our earlier, more idealized models, we
use very large clusters for the feedback in this simulation—each

cluster is assumed to host 107 M of stars—and each cluster is
turned “on” for 10Myr, as in our previous work. For the first
105 yr that the cluster is on, the mass and energy injection rates are
defined by the equations
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where t is measured in Myr; thereafter,  = -M M0.1 yr 1 and
 = ´ -E 3 10 erg s41 1. These mass and energy injection rates
are plotted in Figure 1.
In terms of an injected αinj and βinj for each cluster, this

corresponds to a mass loading that peaks at βinj=1.2 as the
cluster is breaking out of the disk, accounting for interactions
with swept-up cold clouds in the multiphase ISM (not present
in the CGOLS simulation), then lowers to a value of βinj=0.1,
which is approximately the average for the mass return from
supernovae and stellar winds at late times (Leitherer et al.
1999). With this model, approximately 10% of the total mass
injection for each cluster occurs during the initial breakout
phase. Meanwhile, the energy loading is a steadily increasing
function that reaches αinj=1 after 105 yr, by which time a
cluster of this size will have broken out of the disk, and energy
losses within the Rcl=30 pc injection region should be very
low (Fielding et al. 2018). Note that these values for αinj and
βinj are defined in terms of an assumed “star formation rate” of
1 M yr−1 in each cluster, defined as the total mass divided by
the time the cluster is turned on,  =M M10 10 yrSFR

7 7 . These
functions for M and E are fits to the actual measured M and E
values at a radius corresponding to a cluster in the CGOLS
simulation (Rcl=30 pc) as measured in a superbubble
simulation with a similar average gas density (E. E. Schneider
& E. C. Ostriker 2020, in preparation). We emphasize that
these are the injected mass and energy rates within the clusters;
the effective α and β measured in the wind can be very
different as a result of interactions with gas in the disk.

Figure 1. Mass and energy injection rates for each cluster. The blue solid line
shows the mass injection rate per cluster (left axis), and the green dashed line
shows the energy injection rate (right axis).
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Clusters are turned on every million years at a rate
corresponding to 20 M yr−1 of star formation from 5 to
35Myr and 5 M yr−1 for the remainder of the simulation,
which runs to 70Myr. The clusters are randomly distributed in
radius and azimuthal angle throughout the central R=1 kpc of
the disk and up to z=5 pc above or below the midplane. (We
note that this 1 kpc radius for cluster distribution is significantly
larger than that of the central starburst in M82; despite using it
to model our initial conditions, we are not attempting to
replicate that system in detail.) After being turned on, each
cluster rotates with the disk at a speed set by the gravitational
potential. At the end of its 10Myr life span, each cluster is
turned off. This cluster life span was chosen to match our
previous simulations, and we will investigate the effects of a
longer cluster lifetime in future work.

While this model represents a rather extreme mode of
centralized star cluster feedback, it is not wholly unphysical. In
any given starburst, the energetics of the wind will be driven by
the most massive clusters. In the CGOLS simulations, we do
not resolve the details of the multiphase ISM, and therefore any
smaller clusters that would not break out of the disk may be
neglected for the purposes of studying the outflow—their
primary effect would be to inject momentum into the ISM. On
the other hand, including a large number of more moderately
sized (M*∼105–106 M ), longer-lived clusters would have
the effect of significantly increasing the surface area of
interaction between clusters and disk gas and could therefore
plausibly increase the mass-loading rate substantially while
lowering the effective value of α in the outflow for a given star
formation rate. We will test the effects of these assumptions in
future work by examining a simulation with a distribution of
cluster masses.

2.2. The Passive Scalar

Like the previous CGOLS simulations, the simulation
presented in this work was carried out using the Cholla
hydrodynamics code (Schneider & Robertson 2015), using a
PLM reconstruction scheme, an HLLC Riemann solver, and an
unsplit predictor-corrector integration method (Stone &
Gardiner 2009). We also employ a dual-energy method to
track the internal energy of the gas, given the high Mach
numbers attained by cool gas in the outflow (Bryan et al. 1995;
Schneider & Robertson 2017). Unlike the previous simulations,
in addition to evolving the conserved quantities of density,
momentum, and total energy, in this simulation, we also evolve
a passive scalar variable, s, which is advected with the fluid.
The primary purpose of this variable is to trace where the gas in
the outflow originated. Gas that is present at the start of the
simulation, i.e., disk and halo gas, is initialized with a scalar
value of zero. Gas that is injected in the cluster regions is given
a scalar value of 1. Thus, at any later time, the fraction of mass
in a cell that was originally injected via a cluster can be
determined by the value of the scalar in that cell; that is, if a cell
has s=0.5, then half the mass in the cell was injected.
Therefore, the scalar directly represents the fraction of gas in a
given cell that was injected within a cluster as “hot.” Because
our cluster injection accounts for unresolved interactions
between the superbubble and the ISM, this value is distinct
from the fraction of the mass that represents pure supernova
ejecta, which varies as a function of βinj.

3. Analytics

Early analytic work identified hot thermalized plasma as a
potential mechanism for driving gas out of galaxies at
supersonic velocities (Johnson & Axford 1971; Wolfe 1974).
As mentioned in Section 1, a particularly useful model to
describe a supernova-driven wind was described by Chevalier
& Clegg (1985, hereafter CC85). In brief, the CC85 model
adopted the hydrodynamic equations of mass, momentum, and
energy conservation in spherical symmetry, with the addition
of constant source terms for mass and energy applied within a
given “driving radius.” They showed that there is an analytic
steady-state solution that consists of a supersonic flow—a fast,
hot wind—outside the driving region. Other authors have since
built on this model to incorporate various additional physical
effects, including gravity, radiative cooling, inflows, and
nonuniform mass and energy driving regions (Wang 1995;
Efstathiou 2000; Silich et al. 2003, 2004; Bustard et al. 2016;
Thompson et al. 2016).
In this section, we work out the expected relationships

between the average physical parameters of interest (density,
velocity, energy, etc.) and the mass, momentum, and energy
fluxes as a function of radius for both the hot and cool phases
of the outflow. We follow the approach of previous authors in
applying the various continuity equations in a spherical
geometry, and we allow mass and energy to transfer from
one phase to another via the inclusion of source terms. In other
words, we assume that these source terms are present at all
radii, rather than just within the wind-driving region. We begin
by writing down the relevant equations for a single phase,
which we consider the hot phase of the wind. We then address
the effects of interactions between phases on the cool gas.

3.1. The Hot Phase

Unless otherwise noted, all of the variables in this subsection
should be understood to have an implied “h” subscript,
denoting that they refer to the hot phase of the outflow.
Mass. The mass continuity equation can be written

( ) · ( ) ( )r r r¶ +  =v . 7t

Here the source term on the right-hand side captures changes in
mass per unit time per unit volume and can include both mass
gained in the hot phase from shocked ambient material and
cool gas destruction and losses from hot gas cooling out or
mixing with the cool phase. Under the assumptions of a time-
steady flow and spherical symmetry, this equation becomes

( ) ( )r r=
r
d r v

1
. 8r r2

2

Neither of these assumptions have to be true in an outflow; we
will evaluate their validity in our simulations later. By
integrating from r=0 to r=r over a cone, we can relate
the radial profiles of density and velocity to the net mass per
unit time flowing outward within the cone,

( )rW =r v M , 9r
2

net

where all variables are assumed to be functions of r. Here Ω is
the actual solid angle within the cone that is filled with hot gas,
i.e., allowing for a filling factor <1.
For clarity, we denote mass flow rates measured at an

arbitrary point in the flow as Mnet (and similar rates for other
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quantities) to indicate that this allows for both gains and losses
since the injection at the base of the flow. We denote the rate of
mass and energy injected in the cluster region as Minj and Einj,
respectively.

Energy. The energy continuity equation is

⎛
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The energy source term on the right-hand side accounts for any
energy added, in addition to energy lost from cooling of the gas
or mixing into the cooler phases. Assuming steady-state
spherical symmetry and integrating over the cone, we get

⎛
⎝⎜

⎞
⎠⎟ ( )r

g
g r

W +
-

=r v v
P

E
1

2 1
, 11r r

2 2
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where again, all variables are assumed to be functions of radius,
and the right-hand side is the net energy per unit time flowing
through the cone, consisting of the initial value in the injection
region plus any gains and minus any losses.

Scalar mass. As described in Section 2, all gas in the
simulation has an associated scalar value, s, which is passively
advected with the fluid. For material injected in a cluster,
s=1, while material that was originally in the disk was
assigned s=0. Thus, the scalar value within a given cell
identifies how much of the mass in that cell was originally
injected in the clusters (when βinj=0.1, this injected mass is
the same as supernova ejecta). We can write a continuity
equation for the scalar density, ρs, that is identical to the density
continuity equation,

( ) · ( ) ( )r r r¶ +  =v . 12t s s s

Following the same procedure as above relates the scalar mass
flux to the scalar density and velocity profile:

( )rW =r v M . 13s r
2

s,net

The right-hand side measures the total scalar mass per unit time
flowing outward in the cone, which will allow for any initial
material injected, minus losses.

An advantage of tracking this scalar mass is that it allows us
to examine the relationships between total measured outflow
rates at a given radius, Mnet and Enet, and the mass and energy
that was injected by the clusters at the base of the flow. We
note that for r approaching the source region, in the idealized
perfectly spherical case, we would have   = =M M Mnet s,net inj.
Taking the ratio of Equation (13) to Equation (9) gives

( )



r
r

=
M

M
, 14s s,net

net

where ρs/ρ≡s is the definition of the scalar. We therefore
have

( )


=M
M

s
, 15net

s,net

and in the case that none of the hot gas has cooled out,
 =M Ms,net inj. Thus, if s<1 in the hot medium at some large
radius and there have been negligible losses to cooling, Mnet

will exceed the initial injected value due to mixing in of
originally cool gas. Likewise, the ratio of Equation (11) to

Equation (13) gives

⎛
⎝⎜

⎞
⎠⎟ ( )
g

g r
= +

-
E v

P M

s

1

2 1
. 16rnet

2 s,net

Momentum. Momentum continuity states

( ) · ( ) ( )r r r¶ +  + = - F +v vv IP q. 17t

While there is no (significant) momentum directly injected by
the clusters, there are potentially momentum source and sink
terms associated with mixing. For example, when hot gas is
mixed into the cool medium (thereafter cooling), there will be a
momentum sink term (negative q) for the hot medium. If a
small enough amount of cool gas is mixed into the hot such that
it does not subsequently cool, this will be a positive q for the
hot medium. The spherical and steady-state assumptions yield

( ) ( ) ( ) ( )r r¶ + ¶ = - ¶ F +
r

r v P q
1

. 18r r r r2
2 2

There is no straightforward way to integrate the pressure term,
so we will continue with the differential version of the
momentum equation. A bit of algebra translates it into a more
usable form,

( ) ( ) ( ) ( ) 
r

r
r r

¶ +
¶

= -¶ F - +v v
P

v
q
, 19r r r

r
r r

from which we can assess the importance of each term in
setting the velocity profile.
Entropy. Substituting Equation (9) into Equation (11) gives

( )



g
g r

+
-

=v
P E

M

1

2 1
. 20r

2 net

net

Meanwhile, from Equation (19), we have
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r r

2

Combining the two gives a differential equation describing the
entropy profile:

⎛
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⎡
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2
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In general, we do not expect the gravitational term on the right-
hand side to affect the properties for the hot phase, so it may be
omitted.
Effective α and β. We can use the above relationships to

determine an “effective” α and β at each radius. (Recall that α
is the ratio of energy in the outflow to the total energy injected
by supernovae, and β is the ratio of mass flux in the outflow to
star formation rate.)
We can define an effective mass loading in the wind at any

radius by

( )







b b

b
º = =

M

M

M

M s

M

M
. 22eff

net
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net

inj

inj s,net

inj
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Similarly,

( )
( )





a aº =

E

E M m

E

E
, 23eff

net

SN SFR
inj

net

inj*

where ESN is the energy injected per supernova, m* is the mass
of stars formed per supernova, and MSFR is the total star
formation rate. We can use Equation (20) to rewrite this as

⎛
⎝⎜

⎞
⎠⎟ ( )


a

g
g r

b
= +

-
v

P m

E

M
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1

2 1
. 24reff

2

SN

s,net

inj

inj*

Hence, the scalar variable allows us to distinguish between the
injected mass and energy rates set by our cluster prescription
and the effective mass and energy loading actually measured in
the simulation at any point in the wind.

In the absence of cooling,  =E Enet inj, and there is no
reduction of total scalar mass in the hot medium with distance,
so that   = =M M Ms,net s,inj inj. In this case, we have αeff=αinj

and βeff=βinj/s. That is, the effective mass loading can be
different from the injected value due to mixing of previously
cool gas into the hot medium.

3.2. The Cool Phase

Completely analogous equations to those of Section 3.1
could be written for the cool gas. However, beyond the
injection region, we know that for mass, scalar mass, and
momentum, there are no “exogenous” sources or sinks. Thus,
any losses from the hot must be gains for the cool, and
vice versa. That is,  r r= -c h,  r r= -s s,c ,h, and  = -q qc h. For
the energy, however, the total energy summed over the phases
is not conserved due to radiation.

In order to accelerate the cool gas, momentum must be
transferred to it from the hot phase. We assume that the cool
gas is supersonic, and therefore we can neglect the pressure
term in the “cool” version of Equation (18). The continuity
equation for momentum then states

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( ) ( )r r r¶ + ¶ F = - ¶ + ¶

r
r v

r
r v P

1 1
,r r r r r r2

2 2

c
2

2 2

h

where the source term on the right-hand side is the rate of
momentum transferred per unit volume from the hot gas
(subscript h) to the cool gas (subscript c). This is  = -q qc h,
and we have neglected the gravitational potential term for the
hot medium. We can rewrite the right-hand side of this
equation as

⎡
⎣⎢

⎤
⎦⎥( ) ( )r

r= - + ¶ + ¶v
s

v v P ,r
s

r r r r
h

where we have used  r r= ssh ,h h. Conservation of the scalar
variable combined with mass conservation for the cool (see
Equation (8)) yields

⎡
⎣⎢

⎤
⎦⎥( ) r r r- = = ¶

r
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1
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Thus, we can rewrite the momentum equation as
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The left-hand side is the rate of increase of momentum flux in the
cool gas as a function of r, while the first term on the right-hand
side accounts for deceleration of the cool gas due to gravity. The
second term on the right-hand side describes the rate of increase of
the cool momentum flux transferred from the hot medium at a rate
proportional to the rate of increase of scalar in the cool gas
resulting from mixing in the hot gas. The last term on the right-
hand side is the thermal pressure work from the hot on the cool.
The second-to-last term on the right-hand side describes the
deceleration of the hot gas; this is the term that represents the ram
pressure work of the hot on the cool. If the hot gas is a supersonic
wind, its deceleration and pressure gradients will be small.
If we assume that the mixing is the dominant source term for

the cool gas momentum flux, and that the hot wind velocity and
scalar have reached constant values, Equation (25) gives a linear
relationship between the velocity of the cool gas and its scalar
value,

( )r r=v
v

s
v , 26r

r
s rc ,c

2 ,h

h
,c ,c

or

( )=v
v

s
s , 27r

r
,c

,h

h
c

which is normalized by the velocity of the hot gas.

4. Results

We first present a qualitative overview of the simulation,
focusing on snapshots at two characteristic times. Following
the overview, we expand on the radial dependence of density,
velocity, pressure, and temperature in Section 4.2, as well as
the radial mass, momentum, and energy fluxes split by gas
phase in Section 4.3. We then show phase diagrams and their
relationship to the gas velocity in Section 4.5 and finish with a
discussion of convergence in our model (Section 4.7).

4.1. Simulation Overview

As with previous CGOLS simulations, we endeavor to make
the most of this (expensive) simulation by running in two
different states. We begin the cluster feedback at 5 Myr in the
high star formation rate state, with  = -M M20 yrSFR

1,
equivalent to turning on two clusters every million years for
30Myr. After that point, we turn on clusters at a rate
corresponding to  = -M M5 yrSFR

1, our low star formation
rate state. These values were chosen to match our previous
simulations. In the following, we primarily present results for
two characteristic times: at 35Myr, when the star formation
rate has been high for its maximum time, and at 65Myr, when
it has been low for the same length of time.
Figure 2 shows a rendering of the density field at 35Myr that

highlights many general features of the outflow. At small radii,
high-density clouds of disk gas are being driven out by the
central clusters. At larger radii, the outflowing material is more
diffuse, but there are still high-density filaments permeating the
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volume-filling low-density phase. These high-density filaments
are clearly associated with the cool gas in the outflow, as can be
seen in Figure 3, which shows off-axis density and temperature
projections of the full volume at 35Myr. Movies showing the
density and temperature projections for the full time evolution
can be found online.6

In addition to the projections, slices through the box reveal
interesting relationships between the density, velocity, temper-
ature, and scalar values of gas in the outflow. In Figure 4, we
show density, temperature, velocity, and scalar slices along the
x−z plane during the high star formation rate state, while
Figure 5 shows the same slices during the low star formation
rate state. A few salient features of the outflow can be
determined immediately upon inspection of these slices. First,

at both times, the outflow is multiphase, characterized by a
volume-filling hot phase at T>106 K punctuated by small,
dense clouds of cool gas at T∼104 K. There is a clear
correlation between the gas density, velocity, and temperature,
with the lower-density channels corresponding to the hottest,
fastest-moving gas. The outflow features are roughly biconical,
though determining an opening angle is not straightforward and
would likely depend on which snapshot was being examined.
Regardless, the opening angle appears to be large, and the
outflow does not show evidence of any sort of fountain, with
cool gas raining back down onto the disk at larger radii. We
note that this may be a result of our choice to position the
clusters within the central R=1 kpc of the disk, and that our
limited horizontal volume prevents us from assessing whether a
fountain flow would arise at large angles at larger radii.
In contrast with our previous simulations, at no point in this

simulation does the volume-filling hot phase become mass-
loaded enough to undergo significant radiative cooling. While
the simulations in Paper II employed an arbitrary βinj=0.4 for
the hot phase, in this simulation, we set the mass loading for the
injected material to a physically motivated value determined by
massive star winds, supernova ejecta, and cluster breakout.
This average β is close to 0.1 most of the time, and mixing with
the disk gas at small radii is not efficient enough to increase the
density of the majority of the hot gas enough for it to cool. This
does not mean none of the hot gas cools, however. As we will
demonstrate later, there is strong evidence that hot gas that does
interact with cool clouds creates a mixed phase with
intermediate temperatures, which can cool under the right
circumstances.
Comparing Figures 4 and 5, we see that overall, the

simulation during the higher star formation rate state is
characterized by a higher-density, lower-velocity outflow, and
the biconical outflow region is filled with more clouds of cool
gas. At late times, when the star formation rate is lower, there is
not enough interaction between the clusters and the disk gas to
contribute significant mass loading to the outflow, as we will
show directly when we examine the fluxes in Section 4.3. This
lower mass loading leads to a lower-density hot phase and
fewer cool clouds in the outflow.

4.2. Radial Profiles

Throughout the remainder of the results, we will examine the
properties of the gas split by phase. We define three phases of
interest: hot gas (T>5×105 K), intermediate-temperature
gas (2×104 K<T<5×105 K), and cool gas (T<2×
104 K). Most of our analysis focuses on the hot and cool
phases, as they are the longest-lived and represent the majority
of the mass in the outflow (see Section 4.5).
In Figures 6 and 7, we show radial profiles for the hot and

cool phases, respectively, for a number of physical parameters
of interest: the number density n, passive scalar s, pressure P,
temperature T, radial velocity vr, sound speed cs, Mach number
, and entropy K∝Pρ− γ, where γ is the adiabatic index of
the gas, taken to be 5/3 through this work. Note that in
Figures 6 and 7, we plot the entropy as = -TnK

kb

2
3 . Each profile

is measured within a cone with a half-opening angle Ω=30°
above and below the disk, as shown with dashed white lines in
the density panels of Figures 4 and 5. Within the cone, we
expect the properties of the outflow to be approximately
spherically symmetric once we reach a radius equal to our
cluster seeding radius within the disk, R=1 kpc.

Figure 2. Rendering of the density field at 35 Myr, highlighting the disk, high-
density clouds being driven out at the center, and lower-density, more diffuse
clouds at larger radii. The highest-density gas is peach; the lower-density, more
diffuse gas is white; and the lowest densities are blue/black. Figure made using
the NVIDIA IndeX software.

6 Movies showing the time evolution of all of the CGOLS simulations are
located athttp://evaneschneider.org/simulation-gallery.

7

The Astrophysical Journal, 895:43 (24pp), 2020 May 20 Schneider et al.

http://evaneschneider.org/simulation-gallery


In each panel, we show the median and mean values, as well
as the first and third quartiles, to give an idea of the spread in
the gas properties. We use density-weighted values for all
quantities, unless otherwise noted. For example, the velocity
average is calculated as ( ) ( )á ñ = å á ñv v n n Nr r cells , with

( )á ñ = ån n Ncells for all cells within the cone that meet the
relevant temperature criterion. The choice of density-weighted
versus volume-weighted averages has no effect on the cool gas
profiles, but there are some differences for the hot phase. Thus,
we also include the volume-averaged median quantities on the
relevant panels in Figure 6. However, we note that the largest
differences are at small radii, where we do not interpret our
results as complete, because we are still within the gain region.
The biggest differences between the mass- and volume-
weighted profiles arise in the scalar variable, which tends to
be higher in the hot gas if we use a volume-weighted average
for the hot phase, and the velocities, which are also higher, on
average. We further explore the relationship between the scalar
and velocity in Section 4.6.

The hot phase. On average, the profiles for the hot phase
follow relationships that are close to, but not exactly, what one
would expect given adiabatic expansion of the gas. For
example, Chevalier & Clegg (1985) calculated the radial
solution for a hot outflow given mass and energy injection
within a spherical region. In that model, density decreases as
r−2, while velocity quickly asymptotes to a value set by

 =v E M2term inj inj , as would be predicted by Equation (20)
(assuming mass and energy are conserved after injection). With
an adiabatic index γ=5/3, adiabatic cooling implies that
pressure decreases as r−10/3 (as Equation (21) implies when

source terms are zero), and thus temperature decreases as r−4/3.
We have plotted these relationships with black lines in Figure 6
to demonstrate their deviations, with the adiabatic profiles
normalized to the measured values at 1 kpc. As the first panel
shows, the density is falling off with radius but at a shallower
rate than r−2. This reflects the fact that mass is being added to
the hot phase as a function of radius, as we will show in
Section 4.3. Similarly, the pressure and temperature are
decreasing with radius but at a slower rate than is implied by
pure adiabatic expansion.
If we account for the mass addition to the hot phase by

allowing a shallower density profile, we can accommodate
changes in the pressure and temperature profiles as well. For
example, we can scale the radial dependence of the density
profile such that it is an arbitrary function of r that provides a
good fit to the density profile. In the case of the plots in
Figure 6, we use n∝r f, with f=−0.05r−1.08, and r
measured in kiloparsecs. Then P∝r fγ, and T∝r f ( γ−1). We
have plotted these additional relationships as black dashed lines
in Figure 6. While the slope of the density profile is now an
arbitrary function, the slopes of the pressure and temperature
profiles are set by the adiabatic physics and provide a much
better fit to the data than the pure expansion wind model. In this
framework, the hot phase of the wind can be understood
entirely as adiabatic expansion with a mass source that depends
on mixing in gas from cooler phases.
Although these new scalings do provide a much better fit to

the density, pressure, and temperature profiles, they still
underestimate the pressure and temperature. The entropy
profiles displayed in the final panel of Figure 6 provide an

Figure 3. Off-axis density and density-weighted temperature projections of the full simulation volume at 35 Myr.
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Figure 4. Number density, temperature, velocity, and scalar slices through the y=0 plane at 35 Myr.
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Figure 5. Number density, temperature, velocity, and scalar slices at 65 Myr.
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explanation. While the volume-averaged entropy profile for the
hot gas is quite flat, the density-weighted median entropy in the
hot phase is an increasing function of radius. This increasing
slope reflects the fact that low-entropy gas from the cool phase

is being mixed into the hot gas, with the highest-density hot gas
having experienced the most mixing. As the cool gas is added
to the hot, its entropy rises, as would be expected in the case
where the cool gas experiences a shock. This rising entropy

Figure 6. Density-weighted average radial profiles for the hot phase (T>5×105 K) at 35 Myr within a biconical region with a half-opening angle of 30°. From top
left to bottom right, the profiles show number density, scalar, pressure, temperature, radial velocity, sound speed, Mach number, and entropy. In addition to the mean
and median, the upper and lower quartiles of the distributions are shown. For profiles where they differ significantly, median values for the volume-averaged quantities
are also displayed. Solid black lines in the density, pressure, and temperature panels show the expected radial profiles assuming adiabatic expansion, normalized to the
average values from the simulation at 1 kpc. Dashed black lines show alternative profiles, accommodating additional mass transfer into the hot phase at all radii.
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profile then violates the assumption that the relationship
between n, P, and T is adiabatic and, in particular, will result
in a flatter temperature slope than predicted by adiabatic
physics.

The expectation for the terminal value of the velocity is set
by our choice of input E and M . If we use our values of αinj

and βinj, we find that  = » -v E M2 3000 km sterm
1, about a

factor of 2 too high. However, if we measure the effective α

Figure 7. Density-weighted average radial profiles for the cool phase (T<2×104 K) within a 30° cone at 35 Myr. From top left to bottom right, the profiles show
number density, scalar, pressure, temperature, radial velocity, sound speed, Mach number, and entropy. Black solid lines show the expected density and pressure
scalings for isothermal radial expansion, while the black dashed line in the pressure panel shows the best-fit scaling from Figure 6.
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and β in the wind at R=1 kpc, we find that αeff=0.5, while
βeff=0.2 (see Section 4.4), which leads to a terminal velocity
of vterm≈1500 km s−1, approximately the measured velocity
in the volume-averaged hot phase. The hot gas velocity as
measured by the density-weighted median is slightly lower,
which can naturally be explained by higher energy losses
associated with higher-density gas (resulting in a lower αeff).

Another direct indication of the mass transfer between
phases is the radial profile of the scalar variable in Figures 6
and 7. By a radius of 1 kpc, the median density-weighted
scalar value of the hot phase has already decreased from 1 to
a value of 0.4, indicating significant mixing from the cool
phase. Similarly, the median scalar value in the cool phase
has risen from zero to 0.15. At first look, the relatively flat
value of the density-averaged scalar in the hot phase
combined with the rising scalar value in the cool phase
might seem to be discrepant. However, the volume-averaged
scalar in the hot phase tells the full story. Here we see a rapid
decrease down to s=0.5 at R<2 kpc. At larger radii, s
continues to decrease, although at a slower rate. This is
consistent with rapid mixing between the hot and cool gas as
the clusters initially accelerate cool material out of the disk,
followed by more gradual mixing at larger radii as the
volume density of cool gas goes down. The outflow rates
presented in Section 4.3 bear out this explanation. However,
we caution that this interpretation is dependent on the
assumption that the outflow is steady-state. While we have
purposely selected a time for this analysis where that
appears to be the case, it is certainly not true for the entire
simulation.

The cool phase. The profiles for the cool phase can be
interpreted as a radially expanding isothermal gas. Density
falls off approximately as n∝r−2, and the temperature is a
constant value set by our temperature floor. (In reality, we
expect photoionization from the local ionizing sources within
the galaxy to play this role at small radii and from the cosmic
UV background to provide heating of the cool medium
at larger radii.) The pressure also falls off approximately as
P∝r−2. However, the pressure in the cool phase is
consistently lower than that in the hot phase, with larger
differences at smaller radii. We highlight this by plotting the
fit to the hot phase pressure from Figure 6 on the pressure
panel in Figure 7.

Physically, the lower pressure of the cool phase can be
understood if the cooling time for intermediate-temperature gas
in individual cool clouds is shorter than the time it takes for
them to equilibrate to the background wind pressure via
pressure waves or shocks. In this scenario, cool gas in the
simulation continuously interacts with the hot phase via mixing
or shocks. If the interaction heats the cool gas to temperatures
at the low end of the intermediate-temperature range, the
relatively high density leads to very fast cooling. Because the
interactions between the hot and cool phase are frequent, there
is insufficient time for the cool gas to equilibrate to the
background hot pressure before experiencing a subsequent
interaction. In particular, given the average values of the
profiles at 1 kpc, the sound-crossing time for cool gas at our
resolution limit Δx=5 pc is tsc≈5×105 yr, which is an
order of magnitude longer than the cooling time of gas at a
density of n∼1 cm−3 (see Section 4.5). The relevant timescale
may instead be the slightly shorter cloud-crushing time,
tcc=(nc/nh)

1/2 (Δx/vh)≈105 yr (Klein et al. 1994), but this

is still longer than the cooling time. In either case, the cool gas
would then experience compression from the hot phase, as it is
out of equilibrium. The fact that the slopes of both the density
and pressure for the cool phase are slightly shallower than r−2

could be explained by this compression. We note that it is
plausible that with higher resolution, the cool clouds may
further “shatter” (McCourt et al. 2018), leading to faster
equilibration with the pressure of the hot phase. This
explanation is consistent with our previous work investigating
cool clouds at much higher resolution (Schneider &
Robertson 2017).
An important implication of this work is shown in the

velocity panel of Figure 7. In this panel, we see that the
velocities of the cool gas are a rising function of radius, with
maximum velocities reaching 1000 km s−1. In fact, almost all
cool gas at large radius is moving with velocities of at least
400 km s−1, which is approximately the escape velocity of the
system. The scalar value of the cool gas is also increasing with
radius; we will explore the origin of the cool gas acceleration in
Section 4.6.

4.3. Outflow Rates

As discussed in Section 3, the radial profiles of the quantities
shown in Section 4.2 are related to total mass and energy
outflow rates. We have measured these outflow rates in the
simulation within the same cone used to calculate the radial
profiles. Each flux is averaged within a radial bin of width
Δr=0.125 kpc. So, to calculate the mass flux, for example,
we sum the total M in a given phase within the cone between r
and r+Δr and then divide by the bin width,  =M

( )å DMv rr , where the sum is taken over individual cells.
Our cone opening angle corresponds to a solid angle of
Ω=2×2π[1−cos(30°)]≈1.68, or just over 1/8 of the full
spherical area. If the outflow were perfectly spherical, then we
might expect these fluxes to be 1/8 of the total. However, when
we measure over the full 4π, we find fluxes that are only a
factor of ∼3 larger. Hence, we conclude that the outflow is
preferentially biconical, with a modest opening angle.
We show the radial outflow rates in the biconical region for

mass, scalar mass, momentum, and energy at 35Myr in Figure 8
and 65Myr in Figure 9. For the momentum outflow rate, we only
include the kinetic component, that is, ( ) = å Dp Mv rr

2 . The
energy outflow rate is calculated using the total energy and
including both the kinetic and thermal components,  =E

( )å DEv rr , where ( )r= +E v e1

2
2

th , and eth is the specific
internal energy.7 The outflow rates are split according to the
temperature of the gas into hot (T>5×105 K), intermediate
(2×104 K<T<5×105 K), and cool (T<2×104 K)
phases. Including the intermediate phase allows us to better
understand the amount of mixing that is happening in the
outflow, since much of the gas in this temperature range has a
relatively short cooling time and is therefore a transient phase
(see Section 4.5). We scale down the vertical axes by a factor
of 4 in Figure 9 relative to Figure 8 to better compare given
the lower “star formation rate” at late times:  =MSFR,early


-M20 yr 1 versus  = -M M5 yrSFR,late

1. Accounting for that
normalization, we see that the total outflow rates are fairly

7 For both the momentum and energy outflow rates, we are not including the
additional pressure contribution to the flux. Hence, the term “flux” as applied in
this section is for convenience, but all rates should be assumed to be calculated
as defined here.
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consistent between the early and late stages of the outflow, but
the intermediate and cool fractions are much smaller at lower
outflow rates.

Figures 8 and 9 also demonstrate some natural relationships
for the outflow. Most of the energy and momentum are carried
by the hot phase of the wind at all times, as would be expected
for an energy-driven wind model. At small radii and early
times, when the average density in the wind is high, there are
comparable amounts of mass in both the hot and cool phases
(particularly if we include the intermediate-temperature gas

Figure 8. Radial outflow rates for mass, scalar mass, momentum, and total
energy at 35 Myr. The outflow rates are measured in a bicone with a half-
opening angle of 30° and split by phase: hot (T>5×105 K; red line),
intermediate (2×104 K<T<5×105 K; green line), and cool (T<2×
104 K; blue line). The orange line shows the sum. The dashed horizontal line in
the energy panel shows the total energy injection rate normalized by the total
scalar outflow rate that is measured in the cone.

Figure 9. Radial outflow rates for mass, scalar mass, momentum, and energy at
65 Myr. All lines are the same as in Figure 8.

14

The Astrophysical Journal, 895:43 (24pp), 2020 May 20 Schneider et al.



with the cool). There are times when the mass outflow rate in
the cool gas is larger than that of the hot gas (not shown in
these figures), but they are always within a factor of ∼2 in our
simulations. That is to say, the mass outflow rate is never
dominated by the cool gas. In each of the energy outflow rate
panels, we have added a dotted line showing the total energy
available given our input energy injection rate and assuming no
losses (so, αeff=1). At both early and late times, we see that
the total energy outflow rate is below this line by a factor of
∼2. It is interesting to note that the total momentum outflow
rate in the cone, despite representing only a fraction of the total
outflow, is nevertheless within a factor of 2 of L/c that would
be expected for a freely expanding hot wind, which would
be  » - -p M4000 km s yr1 1.

We can also use these outflow rates to assess the validity of the
time-steady assumption that went into our analytic model. At
35Myr, the total outflow rates are all fairly flat as a function of
radius outside of R=2–3 kpc. Thus, we interpret the outflow at
this time as an approximately time-steady flow. The flatness does
depend on phase, however. While the mass outflow rate of the hot
phase is increasing with radius, the cool phase is decreasing, and
the intermediate-temperature gas remains roughly constant. This
is a clear indication that mass is being transferred from the cool
phase to the hot as a result of mixing between the phases. In
addition, the slight decrease in the total mass outflow rate
between R=4 and 8 may indicate the presence of a fountain
flow in the cool phase, as lower-velocity gas drops out at higher
radii (see, e.g., Kim & Ostriker 2018).

Returning to the momentum outflow rates in Figure 8, we see
that although the total momentum outflow rate is roughly constant
outside of R∼4 kpc, the momentum outflow rate in the cool
phase is actually decreasing. This may seem counterintuitive,
since the profiles in Figure 7 showed that the velocity of the cool
gas is increasing as a function of radius, and we have attributed
this increase to a transfer of momentum from the hot phase. In
addition, the energy outflow rate in the hot phase stays roughly
constant outside of R∼2 kpc, which would seem to call into
question an explanation in which the mixed intermediate-
temperature gas radiates away its thermal energy and adds mass
to the cool phase with an increased velocity (i.e., Gronke &
Oh 2018). In that case, we might expect the hot phase to show a
decreasing energy flux with radius, reflecting this lost energy.

To shed some light on the matter, we show in Figure 10
versions of the momentum and energy outflow rates normalized
by the mass outflow rate in each phase. This corresponds to a
velocity as a function of radius in the top panel and a specific
total energy ( = +e v eT

1

2
2

th) as a function of radius in the
bottom panel. With the total mass normalized out, we see that
the gas in each phase behaves exactly as we would expect
given the mixing model we have outlined. While the velocity in
the hot phase stays roughly constant as a function of r, the
velocity in the intermediate and cool phases is consistently
rising. The specific energy of the cool and intermediate phases
is also rising, reflecting the higher kinetic energy at larger radii.
Meanwhile, the specific energy in the hot phase decreases
slightly as a function of radius, reflecting the fact that low-
energy cool gas is being mixed in with the hot, lowering the
average specific energy of the hot gas as a function of radius.
The energy loss from cooling by the hot phase is fractionally
quite small, such that the outward decrease in the specific
energy is mainly due to the outward mass increase of the hot,
and thus we do not see a decrease in Figure 8.

4.4. Mass and Energy Loading

Using the profiles measured in Section 4.2 and the relationships
defined in Section 3, we can calculate the effective mass and
energy loading in the different phases of the outflow. Using
Equation (22), we can straightforwardly calculate the effective
mass loading in the hot outflow as the injected mass-loading
factor (βinj∼0.1) divided by the passive scalar, s, and multiplied
by the factor  M Ms,net,h inj. Because we have measured the outflow
rates in a cone, we must “correct” the denominator, Minj, which
represents the total injected mass rate (all hot), to the total mass
injected in the cone, which is just Ms (all phases). This correction
factor is plotted in Figure 11. Carrying out this calculation, we
find βeff,h=0.17, approximately a factor of 6 below the star
formation rate. We note, however, that βeff,h ranges from 0.1 at
small radii to 0.2 at 8 kpc as a result of the additional mass loading
of the hot phase taking place as some of the cool gas is mixed in.
We plot these values as a function of radius in Figure 12.
Similarly, we can calculate the effective energy loading in the hot
outflow using Equations (23) or (24), again corrected for the
amount of mass injected into the cone. Using Equation (23), we
find a roughly constant value of energy loading within the hot
phase, αeff=0.4–0.5, implying that ∼50%–60% of the input
energy has been radiated away in the outflow.8 While this implies
a robust energy-driven wind, we caution against overinterpret-
ing the exact measured values, since they may be sensitive to
the cluster input scheme, in the sense that having only a few

Figure 10. Radial outflow rates for momentum and energy at 35 Myr,
normalized by mass outflow rates in each phase.

8 Technically, this is the fraction of the energy in the hot phase, but because
most of the energy is contained in the hot phase, it is a decent approximation
for the radiative losses as a whole.
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massive clusters minimizes the interaction of supernovae with
the ISM and thus is likely to maximize the value of αeff while
potentially minimizing βeff. We will explore this possibility in
future work.

Following the same procedure (applying Equations (22) and
(24) corrected for the mass injected into the cone), we also
calculate the effective mass and energy loading for the cool
phase, as shown in Figure 12. The loading factors for the hot
and cool phases demonstrate the same relationships seen in the
profiles and outflow rates: at small radii, a significant fraction
of the outflow is in the cool phase, but at larger radii, that gas
has mostly been incorporated into the hot phase or dropped out
of the flow. As a result, the mass-loading factor for the hot
phase increases, while the cool phase decreases. As demon-
strated by αeff,c, at the maximum point around r=4 kpc, the
cool phase has coupled a few percent of the total energy
available.

Given these mass- and energy-loading factors, we can now
explain why this CGOLS simulation does not lead to the large-
scale cooling of the hot wind seen in Paper II. Following

Thompson et al. (2016), we estimated the cooling radius of the
hot wind as

⎛
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⎞
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In contrast with our previous work, where mass- and energy-
loading values were assumptions of the model, we can now use
the measured values of α and β in the hot phase to calculate the
derived cooling radius for the wind. With α=0.5 and
β=0.2, and using R=1 kpc for the injection radius, we
calculate = W pr 170 kpccool 4

0.789. While we have demonstrated
that Ω may be significantly smaller than 4π, a conservative
lower limit of 1/8 still gives rcool=33 kpc, well outside the
bounds of our simulation box. Thompson et al. (2016) also
estimated a minimum β below which cooling of the hot wind
would not take place at any radius (see their Equation (7)),
which with these same values would be β=0.17. Given that Ω
is likely underestimated in this case, the volume-filling hot
wind in this simulation is therefore unlikely to cool. Never-
theless, we note that this cooling radius depends strongly on the
exact values of α, β, and Ω. Using the same β and Ω but a
slightly lower α=0.1, rcool∼1 kpc, so we do not conclude
that the simulation analyzed in this work rules out cooling of
the volume-filling hot wind in other scenarios.
In addition to allowing us to calculate effective loading factors

within the cone, the correction factor  M Ms inj also gives us an
estimate for what fraction of the total outflow is contained within
the cone. As shown in Figure 11, this factor steadily increases at
small radii, plateauing at around 0.35 at r∼3–4 kpc. This means
that roughly 1/3 of the total injected cluster mass is escaping
within the biconical region, more than twice the rate that would be
expected in a spherical outflow, implying that the disk is having a
significant collimating effect. Of course, this analysis would not
capture the impact of a higher rate of mass loading outside the
biconical region or a lower energy loading. In fact, when we look
at the mass, momentum, and energy outflow rates outside of the
bicone, we do find higher values of βeff, particularly for the cool
phase at small radii. However, we also find that the total mass
outflow rate falls from  =M 6 to 

-M5 yr 1 between r=1 and
5 kpc within the full sphere, implying that the effects of a cool
fountain are perhaps more significant at larger angles, making the
large-angle contributions to the total mass outflow rate less
important at larger radii.

4.5. Phase Diagrams

In addition to looking at the properties of the outflow as a
function of radius, we can use 2D histograms to better
characterize the relationships between different physical
properties. In this section, we explore how density, velocity,
and temperature relate to one another.
In Figure 14, we show a phase diagram of the gas within the

biconical region during the high star formation state. The bins
are weighted by total mass to highlight the regions where the
bulk of the mass resides. We additionally exclude the regions
within 0.5 kpc of the midplane to avoid including pure disk gas
or the interior of a cluster in our analysis. The histogram shows
two clear peaks, demonstrating the primarily two-phase nature
of the outflow. Integrating these regions, we find that there is
slightly more total mass in the cool phase than the hot:
2.5×107 and 1.7×107 M , respectively. The ratio reverses

Figure 11. Fraction of the total injected mass that is captured in our conical
selection region.

Figure 12. Effective mass- and energy-loading factors as a function of radius
for the hot and cool phases of the wind at 35 Myr. Loading factors are
measured within the same 30° bicone used to measure the profiles.
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during the low star formation state, however. The same
integration at 65Myr yields 3.1×106 and 4.6×106 M for
cool vs. hot. These total values are consistent with there being
about four times more outflowing gas during the high star
formation state (SFR=20 M yr−1) than the low (SFR=
5 M yr−1), indicating a roughly constant mass-loading factor,
as indeed is seen in Figure 13.

We can estimate the cooling time of the gas as

( )
( )=

L
t

k T

n n T,
, 29cool

B

where Λ(n, T) is the density and temperature-dependent cooling
function measured in erg s−1 cm3. We show these cooling times
plotted over the phase diagram in Figure 14. While this
demonstrates that the hot gas in the wind has very long cooling
times, and the temperature floor of T=104 K means that the
cool gas in our simulations has an effectively infinite cooling
time, there exists significant mass in gas at intermediate
temperatures (2×104 K<T<5×105 K) that is in an
interesting regime. Given an approximate number density of
n=10−1 cm−3 and a temperature at the peak of the cooling
curve of T≈105 K, the approximate cooling time (assuming
solar metallicity) is tcool∼10 kyr. For gas traveling at the hot
gas speed of v�1000 km s−1, this is comparable to the
dynamical time of the wind,
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We therefore conclude that a significant fraction of the
intermediate-temperature gas (which tends to be moving at
v<1000 km s−1; see Figure 15) can cool to T∼104 K while
in the outflow. In particular, the gas that is most prone to
cooling is the highest-density, lowest-temperature portion of
the intermediate-temperature gas that is created by mixing and
shocks. The flat nature of the Mint flux seen in Figures 8 and 9
is an indication that this mixing is taking place at all radii, and
the mixing rate is roughly balanced by the cooling rate. We

expect this to hold as long as there is T∼104 K gas present at
that radius.
In addition to the relationship between density and

temperature, we can also investigate how velocity and
temperature correlate in the outflowing gas. In Figure 15, we
show a mass-weighted velocity temperature histogram. Again,
the two peaks highlight that the bulk of the gas is either in the
hot, fast-moving wind (v>1000 km s−1, T>106 K) or a
cooler, slower phase (v<800 km s−1). By mass, the bulk of
the cool gas has velocities less than 500 km s−1, but there is a
substantial tail with velocities all the way up to 1000 km s−1, as
was also demonstrated in the velocity profiles shown in
Figure 7. This stands in contrast to our previous work using
idealized cloud–wind simulations (Schneider & Robertson
2017), where only high-temperature gas attained high velo-
cities. However, we note that these simulations are lower
resolution than that work, and hence there is more numerical
diffusion. We address this discrepancy in Section 5.

Figure 13. Effective mass- and energy-loading factors as a function of radius
for the hot and cool phases of the wind at 65 Myr. Loading factors are
measured within the 30° cone used to measure the profiles.

Figure 14. Mass-weighted phase diagram for gas within the biconical outflow
region at 35 Myr. Contours label the approximate cooling time of the gas in
years.

Figure 15. Mass-weighted velocity temperature histogram for gas within the
biconical outflow region at 35 Myr.
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In Figure 16, we show a mass-weighted density velocity
histogram, again at 35Myr. In addition to the correlation between
velocity and radius demonstrated in Figure 7, this figure shows
that there is also a correlation between density and velocity. In
other words, lower-density gas appears to be more effectively
accelerated, which is certainly consistent with intuition. The sharp
cutoff for high-velocity (v>1000 km s−1) gas at n∼10−2 cm−3

mirrors the cutoff in density for cool gas in Figure 14, possibly
indicating that this is the maximum velocity that can be achieved
by cool gas in a starburst-driven outflow. We investigate the
physical mechanism by which this cool gas is accelerated in the
following subsection.

4.6. Cool Gas Acceleration

A goal of this work is to assess the potential contributions of
both mixing and ram pressure to acceleration of the cool gas, as
those are the two primary theories for cool gas acceleration via
hydrodynamic processes. We have excluded other potential
sources of acceleration in this work (e.g., magnetic drag,
radiation pressure, and cosmic-ray pressure) in order to focus
on the two processes most commonly invoked in the M82-like
outflows we are studying here.

First, we consider the velocities we would expect for the cool
gas if all of its momentum were gained via mixing with the hot
phase of the wind. In this case, we would expect the
momentum density of the cool gas, ρcvc, to reflect the fraction
of hot gas that has been mixed into the cool medium (and then
cooled). Since the cool gas initially has zero “scalar mass,” we
can use the scalar variable to determine the fraction of material
in any cool cell that was previously hot. From Equation (27),
under the assumption of mixing-driven acceleration, we obtain
a linear relationship between the cool gas velocity and its scalar
value:

( )=v
v

s
s . 31c

h

h
c

This relation is normalized by the velocity of the hot wind and
its scalar value (this sh does not have to be 1, because it reflects
mixing of cool material into the hot gas at small radii).

To test the validity of this hypothesis, we plot in Figure 17 a
mass-weighted histogram showing the radial velocity of the

cool gas versus its scalar value for all gas with T<2×104

within the same cone used for the earlier profiles and fluxes
(see also Melso et al. 2019). We also plot the linear relationship
expected given Equation (31). Because vh and sh are radially
dependent quantities, we use their average values outside of
1 kpc to normalize the slope of the line, which yields a slope
vh/sıh≈2900 km s−1.
We see from Figure 17 that the slope of the line is a

reasonably good fit to the locus of the cool gas, particularly at
larger values of sc, although the whole line is displaced upward
slightly. The fact that very little gas sits above the line
demonstrates that ram pressure cannot have a dominant effect
on the acceleration of the cool gas. Ram pressure without
mixing would transfer momentum from the hot gas to the cool
by accelerating it without raising its scalar value, which would
move gas straight up on the plot. On the other hand, several
effects could push gas below the line, including gravity,
nonradial acceleration, and a lower value of the normalization
vh/sh. Gravity is important only for the larger column density
clouds near the disk that are moving slowly; these also have the
lowest value of s, and this is the part of the locus that lies the
furthest from the line. Nonradial acceleration is expected given
that the clusters are not distributed in a spherically symmetric
way, though they are concentrated at the center of the disk.
Within the distribution radius, R<1 kpc, mixing can accel-
erate gas in all directions, leading to an initial shift below the
linear relation in Figure 17 as scalar mass gets mixed in without
producing radial acceleration. Lastly, the slope vh/sh is not
necessarily constant; indeed, we see from Figure 6 that it
should increase with radius. Because the histogram contains
gas at all radii, we cannot directly represent this in the line
plotted in Figure 17. That said, we see from Figure 7 that sc is
also increasing slightly with radius. In this case, we would
expect the slope of the line to be shallower at low values of sc
and to steepen at higher values. This is consistent with the
nature of the curve traced by the locus of the cool gas in
Figure 17, which does appear flattest at small s and increases in
slope at larger s.

Figure 16. Mass-weighted density velocity histogram for gas within the
biconical outflow region at 35 Myr.

Figure 17. Mass-weighted histogram showing scalar value of the cool
(T<2×104 K) gas vs. its radial velocity. The black line shows the linear
relationship expected if all of the momentum in the cool gas was transferred by
mixing and cooling gas from the hot phase.
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4.7. Convergence

Given that these results depend on the hydrodynamic mixing
of gas with a large range of temperatures and densities, the

question of whether they would hold at even higher resolutions
is an important one. In order to assess convergence, we have
run the same simulation at two additional resolutions, with
Δx≈10 and 20 pc. Because the input radius of the clusters
themselves is R=30 pc in this simulation, we expect that they
are marginally resolved even in the lowest-resolution case. Any
resolution dependence in the results is therefore likely to be a
result of not capturing the mixing between the hot and cool gas
in the disk and wind, as opposed to an unresolved feedback
model.
We investigate the issue of convergence by comparing the

mass, momentum, and energy outflow rates as a function of
radius for each of the simulations. Figure 18 shows the
resulting outflow rates for each simulation averaged between
33 and 37Myr. In addition to averaging in time, we have
additionally smoothed the radial fluxes using a third-order
Savitzky–Golay filter before time-averaging them to damp
some of the small-scale spatial variability and ease
comparisons.
A primary result demonstrated in Figure 18 is that the mass,

momentum, and energy outflow rates vary by less than 50% for
all phases at all radii between the three simulations. The biggest
differences are in the cool gas, and the smallest are in the hot
gas. The mass outflow rates do not show an obvious trend with
resolution, though it is the case that the highest-resolution
simulation has the highest cool mass outflow rate. However,
there are some potential trends that become apparent in the
momentum and energy panels. At intermediate radii, the
momentum and energy outflow rates in the cool and
intermediate phases are higher in the Δx=5 pc simulation
than at lower resolution. This indicates that momentum transfer
from the hot to the cool gas is more efficient in the higher-
resolution simulation, as would be expected if that transfer is
primarily a result of mixing. Such a relationship would not be
expected if the momentum transfer was primarily a result of
ram pressure, since the lower-resolution simulations tend to
have larger clouds with more surface area perpendicular to the
wind. At higher resolution, the cool clouds break up more,
leading to less (perpendicular) surface area relative to total
column density and hence less efficient acceleration (see
Schneider & Robertson 2017). The fact that the mass outflow
rates for all phases are approximately equal at larger radii
implies that although the details of the mixing process depend
on the spatial resolution, the overall trend toward mass transfer
from cool to hot gas as a function of radius holds.
We can see this relationship more clearly in Figure 19, where

we again normalize the momentum and energy outflow rates by
the corresponding mass outflow rate. Here the trend with
resolution is obvious in both panels. As the resolution
increases, the momentum in the hot phase decreases, while
the momentum in the cooler phase increases. Similarly, the
specific energy decreases faster in the hot phase at high
resolution and increases faster in the cool phase, indicating that
the momentum transfer is more efficient at higher resolution,
because mixing is more efficient.

5. Discussion

In this section, we discuss some of the potential implications
of these results and compare our findings to previous work.

Figure 18. Mass, scalar mass, momentum, and energy outflow rates split by
phase for simulations at three resolutions. The outflow rates are calculated in
0.25 kpc radial bins as in previous figures, but here we smooth over three
bandwidths and average from 33 to 37 Myr to mask out small-scale time and
spatial variability.
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5.1. Gas Velocity and Metallicity

In Section 4.6 we demonstrate using the scalar mass variable
that acceleration of cool gas can be accounted for by mixing in
some of the fast hot gas. Those results also imply an expected
relationship between the metallicity of the gas and its velocity.
In Figure 20, we show a velocity slice normalized by the
associated scalar mass from the simulation at 35Myr. While
the correspondence between scalar mass and velocity is clear
from Figure 4, Figure 20 shows this directly; when normalized
by the scalar, most of the large-scale velocity structure in the
outflow is wiped out.

Because the injected gas in our model includes the directly
deposited ejecta from supernovae, we expect the high scalar
gas to be highly enriched in metals, while the disk gas has
lower metallicity. Given a plausible metallicity for the disk and
injected gas, it may thus be possible to back out a metallicity
estimate for the cool gas observed in outflows based on its
velocity, as follows. In the case that all acceleration is due to
mixing with hot gas that originally had velocity vh and scalar
value sh, it can be shown that
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where Zej=Mmet,ej/Mej is the metallicity of the supernova
ejecta and ZISM is the original metallicity of the ISM. So,
assuming that Zej and ZISM are known, we can use the roughly
constant value of sh=0.4 from the simulation to estimate the

metallicity of the hot gas:
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For the cool gas, one could use Equation (32) to obtain an
estimate for its metallicity based on its observed velocity v and
the observed or estimated values of vh and sh. Alternatively, in
the case that Zh is known from observations, Equation (33) can
be used to estimate sh in terms of Zh, which can then be used in
Equation (32) to estimate the metallicity of the cool gas.

5.2. Dependence on the Feedback Model

Given the sophisticated treatment of the ISM in many current
stellar feedback simulations (e.g., Gatto et al. 2017; Colling
et al. 2018; Kannan et al. 2020; Kim & Ostriker 2018), the
simplicity of the feedback model employed in this work may
present a source of uncertainty. As mentioned in Section 2, we
do not attempt to resolve low-temperature (T<104 K) gas in
these simulations due to the additional computational expense,
so we cannot model a full three-phase ISM or self-consistent

Figure 19. Radial outflow rates for momentum and energy normalized by the
mass outflow rates. Rates are split by phase and shown for simulations at three
resolutions. The outflow rates are calculated in 0.25 kpc radial bins as in
previous figures, but here we smooth over three bin widths and average from
33 to 37 Myr to mask out small-scale time and spatial variability.

Figure 20. Velocity slice normalized by scalar mass at 35 Myr. The
correspondence between scalar mass and velocity leads to a relatively
featureless outflow and implies a correlation between metallicity and velocity
in outflows.
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star formation. Nevertheless, we expect our results for gas in
the outflow to be reasonable, given that higher-resolution
simulations that do take this lower-temperature gas into
account find that the majority of outflowing gas is in the cool
or hot phase (Kim & Ostriker 2018). It then remains to
determine whether our simplified model of cluster feedback is
sufficient to produce a realistic outflow.

As described in Section 2, the model employed in this work
assumed that a small (<20) number of very massive
(Mcl=107 M ) clusters were responsible for driving the wind.
Our rationale was that in systems like M82, a few of the biggest
clusters tend to dominate the energy input in the wind.
Additionally, only massive clusters are expected to break out
from the disk (Mac Low & McCray 1988; Kim et al. 2017;
Fielding et al. 2018), so while modeling smaller mass clusters
is critical for accurately calculating momentum input in the
ISM, we expect them to be less important in determining the
physical characteristics of the outflow. Keeping the clusters
centralized in the disk also allowed us to analyze these results
in a spherical framework, considerably simplifying the analytic
description. However, real star-forming galaxies have clusters
with a range of masses, and they are often distributed more
widely throughout the disk.

To test the extent to which our results depend on the
simplifying assumptions made in our feedback model, we have
run an additional CGOLS simulation with a more realistic
cluster mass function ranging from Mcl=104 to 5×106 M .
We additionally allowed these clusters to be distributed
throughout the disk, assigning their radial locations such that
the integrated star formation rate surface density profile
matched the gas density profile. Each cluster was turned “on”
for a more realistic 40Myr, and the mass and energy injection
rates were set according to a Starburst99 single-burst popula-
tion synthesis model. In a sense, this distributed model can be
thought of as similar to the clustered model presented here but
with a lower net star formation rate, given that a smaller
fraction of the “star formation” is in clusters large enough to
break out of the disk and contribute significant energy to
driving the outflow.

While a full discussion of the results of that simulation is
outside the scope of this paper, we note that the results are
qualitatively very similar to those reported here. Both
simulations produce multiphase outflows with similar profiles
in mass, momentum, and energy outflow rate as a function of
phase. The velocities in the hot gas are slightly lower
(v∼1000 km s−1) in the distributed cluster simulation, which
is expected given the smaller maximum cluster masses, and the
net energy outflow rate, while still dominated by the hot gas, is
lower by about a factor of 3, implying a lower αeff.
Nevertheless, cool gas is accelerated to similar velocities as
those found here, and we observe a similar linear relationship
between velocity and scalar mass in the cool gas. Thus, we
conclude that the results presented in this work are reasonable,
given that quantitative adjustments to our reported quantities
would be expected for different star formation rates regardless.

5.3. Comparison to Previous Work

Although the CGOLS simulations are unique in their resolution
over the volume captured here, several recent numerical studies
have addressed similar questions, and a comparison to their
conclusions is warranted. These include both global wind
simulations (Fielding et al. 2017; Vijayan et al. 2018) and

higher-resolution simulations that focus on patches of the ISM
(Kim et al. 2017; Li et al. 2017; Fielding et al. 2018; Kim &
Ostriker 2018; Vasiliev et al. 2019; Vijayan et al. 2020). We are
excluding from this discussion zoom-in simulations and cosmo-
logical models, as their subgrid prescriptions for supernova
feedback and winds generally do not allow for a hot phase to
form, making a comparison less relevant.
Generally speaking, the global disk simulations that have

been carried out to date do not have self-consistent star
formation and feedback (nor do the CGOLS simulations). Both
Fielding et al. (2017) and Vijayan et al. (2018) prescribed a
smooth galactic disk, similar to our work here, and then
injected discrete supernovae (Fielding et al. 2017) or OB
associations (Vijayan et al. 2018) in order to generate winds.
Because both methods of feedback lacked the large, powerful
clusters employed here, they both found less energetic winds.
Fielding et al. (2017) found very low-energy winds with
α∼0.01, which they attribute to their single supernova
injection model. This is consistent with our results, in which
clustering reduces the energy losses and increases α. Both
Fielding et al. (2018) and Vijayan et al. (2018) found values of
the mass-loading factor, β, that are consistent with ours, with β
ranging from a few percent to approximately 50% of the star
formation rate and never exceeding it. While Fielding et al.
(2017) did not have high enough resolution outside the disk to
capture the multiphase nature of the winds, Vijayan et al.
(2018) showed that their winds had a primarily two-phase
structure, similar to those presented in this work. They
additionally noted some acceleration of the cool gas in the
wind to speeds of ∼300 km s−2 but were unable to track the
cool gas further due to the constraints of their box size and
shorter run time of the simulation. The cool gas acceleration
seen is consistent with that presented here. While Fielding et al.
(2017) found maximum velocities of a few hundred km s−1,
Vijayan et al. (2018) found maximum velocities of 800 km s−1

for the hot phase, in contrast to the maximum velocities
presented here, which exceed 1500 km s−1. This is also
consistent with the increased energy of the winds resulting
from our maximally clustered configuration versus the OB
association clustering in Vijayan et al. (2018) and the discrete
supernovae in Fielding et al. (2017).
We now turn our attention to an analysis of work that

focuses on wind properties using simulations that do not
capture a full galactic disk but rather simulate a smaller region
(usually ∼1 kpc) at higher resolution. These studies generally
have resolutions comparable to the CGOLS simulations, of
order a few pc, and follow the winds out to distances of several
kpc. Although most of the studies focus on Milky Way–like
gas surface densities, Li et al. (2017) explored higher surface
density environments more similar to our disk. In that work, the
authors found low mass-loading rates (β∼0.2) and moderate
energy loading (α∼0.3), which is consistent with our results.
They also found that most of the energy stayed in the hot phase,
leading to fast, hot outflows with velocities comparable to those
presented here. However, little acceleration of the cooler phases
was seen. The authors attributed to this to lower resolution
outside the disk (they used adaptive mesh refinement to
decrease the resolution above and below the midplane). This
led to little mixing between the phases. While mostly focused
on the physics of superbubble breakout, Fielding et al. (2018)
also studied a higher surface density environment with
explicitly added clusters that reach 106 M . The results they
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found for their high surface density, high cluster mass
simulations are very consistent with ours, with energy-loading
factors between 10% and 50% that decrease slightly with radius
and mass-loading factors of around 0.3 at their largest radii
(0.5 kpc).

Although they focus on lower surface density environments
representative of the solar neighborhood, we also compare our
results to those of the TIGRESS model, presented in Kim &
Ostriker (2018), and specifically the focus on wind properties
in Vijayan et al. (2020), as these simulations represent the state
of the art in physical realism, incorporating MHD, self-
consistent star formation and stellar feedback, and shearing box
periodic boundary conditions. The TIGRESS simulations were
carried out in a 1 kpc×1 kpc box that extended to 4 kpc on
either side of the disk. In their analysis, the authors split the gas
into the same temperature bins used here, allowing us to
compare the results directly (though note that our “cool” gas is
their “warm”). As in our simulations, the TIGRESS models
show that the energy budget of the wind is dominated by the
hot phase. At high velocities, the authors found that the
acceleration of the cool gas is not consistent with a ballistic
model, as the velocities are too high; hence, acceleration due to
mixing with the hot phase must be at play. In our CGOLS
simulations, the cool gas mass flux appears to increase out to a
radius of ∼4 kpc, after which it decreases. Because this
increase is present in all phases, we have attributed the increase
primarily to our conical geometry, and as demonstrated in
Figure 11, we are continuously capturing more of the total
outflow out to approximately this radius. In TIGRESS, which
features a planar geometry, the authors find a decreasing cool
gas mass flux as a function of radius out to 4 kpc, which they
attribute to a fountain flow. This is consistent with our findings
at larger radii, where the total mass outflow rate decreases
slightly. As in our simulations, this indicates that despite the
transfer of momentum due to mixing, the total cool gas mass
flux is not increasing with distance as a result of mixing with
the hot phase.

At small radii, the TIGRESS simulation generally shows a
larger loss of energy in the hot phase, with an effective energy
loading of <0.1 by the time the hot gas reaches the scale height
of 400 pc. By contrast, in our model, αeff has decreased to 0.5
by 400 pc and only decreases by a small fraction at larger radii,
indicating that our extreme clustering model leads to maximal
hot gas energy loading. In the case where supernovae are less
highly clustered, more remnants are expected to cool without
breaking out of the disk, and more interaction between the hot
bubbles and disk gas is expected in general, which appears to
be the source of most of the energy loss in the wind. As a result
of these increased energy losses, the TIGRESS models show an
α of only a few percent at large radii, more than 10 times
smaller than that predicted here. Between 1 and 4 kpc,
however, the energy flux measured in the hot phase in
TIGRESS decreases by less than a factor of 2, which is more
consistent with our results at larger radii. Nevertheless (and
despite a much lower gas surface density and star formation
rate), they find a similar mass-loading factor for the hot
medium, βeff∼0.1.

5.4. On Cloud Acceleration, Mixing, and Destruction

In recent years, a number of studies have focused
particularly on the survival, acceleration, and mixing of cool

gas moving through a hot background (see Section 1 for
references). In particular, several studies, including Armillotta
et al. (2016), Gritton et al. (2017), and Gronke & Oh
(2018, 2020), predict the increasing mass of cool gas clouds
as the cool gas mixes with the hot background and the resulting
intermediate-temperature gas cools and condenses. While we
observe evidence of substantial mixing in this CGOLS
simulation, and the correspondence between the velocity of
the cool gas and its scalar value indicates that the momentum is
being transferred via this process, we do not see evidence of the
total cool gas mass flux increasing with distance in the wind;
rather, we find a decreasing cool gas outflow rate with a radius
beyond a radius of 4 kpc. So, what might be the cause of this
discrepancy?
First, we note that even with the unprecedented resolution

we have employed for a global model, many of the cool gas
clouds in our simulation are still unresolved relative to the
criterion for mass growth outlined in Gronke & Oh (2018).
There, the size required for a cool cloud to grow in mass is
estimated as a function of the cloud size, overdensity relative to
the background, background pressure, wind Mach number, and
cloud temperature. Using the numbers relevant for cool clouds
in our simulations as measured from the radial profiles in
Figures 6 and 7, we find that at small radii (∼300 pc), clouds
larger than roughly 0.1 pc are expected to grow in size and
accrete material from the background wind. While we do not
capture sizes this small, we do note several large clouds near
the base of the outflow in, e.g., Figure 4, which should be
resolved by at least eight cells per cloud radius, the resolution
quoted in Gronke & Oh (2018) to capture cloud growth. At
these radii, the cool gas mass outflow rate is indeed rising (see
Figure 8). However, our simulation analysis at these radii is
incomplete, since the spatial arrangement of our clusters means
gas is still feeding into the cone at these radii. The fact that the
total gas mass outflow rate continues to rise until R∼3 kpc
means that we cannot distinguish between cool cloud mass
growth and increasing total mass outflow rates. However, at
larger radii, R∼6 kpc, M has plateaued, and this should not be
a problem. Here we find that cool clouds with sizes larger than
a few parsecs should be growing in mass according to the
Gronke & Oh (2018) criterion. Again, we see clouds with radii
larger than this that should be resolved in our simulations, but
we find no evidence for increasing cool gas mass outflow rates
at these radii; rather, we find the exact opposite (mass transfer
from the cool phase to the hot).
Besides resolution, a primary difference between the clouds

in our simulations and those in the simulations discussed above
is the nature of the background wind. Whereas the winds are
laminar and (in most cases) unchanging in the idealized
simulations that see cloud mass growth, our winds are radially
expanding and have substantial transverse velocity components
that could contribute to disrupting cool clouds and preventing
their growth. This is particularly true at small radii, as
demonstrated in Figure 21, which shows Δv=v−vr for a
slice through the simulation at 35Myr. As the figure
demonstrates, the difference between the total and radial
velocity can be as much as 1000 km s−1, particularly at small
radii. As a result, it is not clear whether our simulations actually
contradict the results of these more idealized cloud–wind
studies or the turbulent background conditions in winds imply
that substantially larger cool cloud sizes are needed in order to
see cool gas mass growth. In particular, it is entirely plausible
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that the process outlined in Gronke & Oh (2018) is happening
in our winds and indeed is the reason for the cool gas
acceleration, but the cool gas growth via mixing and cooling is
balanced or overpowered by destructive processes owing to the
turbulent structure of the background wind. In addition, Gronke
& Oh (2020) also pointed out that the rate of cool gas mass
growth is sensitive to the background pressure profile in the hot
wind. While an adiabatically expanding hot wind leads to
growth in their idealized simulations, a shallower pressure
profile as measured in Figure 6 would tend to inhibit it. This
reinforces the notion that global processes that are not captured
in small box simulations may profoundly influence the survival
of cool clouds in galactic winds.

6. Summary and Conclusions

In this work, we have presented the fourth simulation in the
CGOLS suite of global galactic wind simulations. By employ-
ing a unique cluster feedback scheme, we are able to drive
energetic hot winds from a high surface density galaxy disk
that give rise to a complex, multiphase outflow. We investigate
in detail the properties of this outflow, focusing on separation

into two main phases: hot T>5×105 K and cool T<2×
104 K gas. In particular, we find the following.

1. Hot and cool gas coexist at all radii probed by this
simulation, 0–10 kpc. While the cool gas densities as a
function of radius are well represented by radial
expansion, mass transfer from the cool phase to the hot
leads to a shallower density profile than r−2 for the hot
phase.

2. Hot and cool gas are not in pressure equilibrium in the wind.
The cool gas is underpressurized by up to a factor of 10
relative to the hot, particularly at small radii, where cooling
times of clouds are short relative to sound-crossing times.
This may be an artifact of numerical resolution.

3. Mixing between hot and cool gas in the wind is an
effective way of transferring momentum from one phase
to another and occurs at all radii. In cases where the
mixed gas has a high enough density to be able to cool
again, it does so with a higher velocity, leading to a linear
relationship between mixed fraction and velocity. This
process accelerates cool gas to >600 km s−1 by 8 kpc.

4. The winds produced are highly energetic, with small
(<60%) energy losses relative to the available supernova
energy. This likely depends on the degree of clustering in
the model employed for feedback. Only a small fraction
(1%) of the available energy is transferred to kinetic
energy of the cool gas. The hot phase dominates both the
energy and momentum outflow rates.

5. All of the above conclusions hold at both star formation
rates investigated (5 and 20 M yr−1), but the fraction of
gas in the cool versus the hot phase is lower for lower star
formation rates, as is the radial extent of the cool gas.

Further work remains to be done in comparing the results of
these simulations to a framework with a more realistic star
formation and supernova feedback model and, ultimately, a
more realistic three-phase ISM. Additionally, comparisons with
observables such as absorption lines and covering fractions will
further discriminate between these models and others. We will
investigate both of these directions in future work.
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