
Early Experience in Benchmarking Edge
AI Processors with Object

Detection Workloads

Yujie Hui1(B), Jeffrey Lien2, and Xiaoyi Lu1

1 Department of Computer Science and Engineering,
The Ohio State University, Columbus, OH, USA

{hui.82,lu.932}@osu.edu
2 NovuMind Inc., Santa Clara, CA, USA

jlien@novumind.com

Abstract. Nowadays, GPGPU plays an important role in data centers
for Deep Learning training. However, GPU might not be suitable for
many Deep Learning inference applications, especially for Edge Comput-
ing scenarios, due to its high power consumption and high cost. Thus,
researchers and engineers have spent a lot of effort on designing edge-side
artificial intelligence (AI) processors recently. Because of different edge-
side application requirements, edge AI processors are designed with dif-
ferent approaches, which make these processors very diversified. This sce-
nario makes it hard for customers to decide what kind of processors may
be more beneficial for their requirements. To provide a selection guid-
ance, this paper proposes a three-dimensional benchmarking methodology
and shares the early experience of evaluating three different kinds of edge
AI processors (i.e., Edge TPU, NVIDIA Xavier, and NovuTensor) with
object detection workloads (i.e., Tiny-YOLO and YOLOv2 with Microsoft
COCO dataset). We also characterize a GPU platform (i.e., GTX 1080
Ti) from the three dimensions of accuracy, latency, and energy efficiency.
Based on our experimental observations, we find that edge AI processors
are able to deliver better energy efficiency (e.g., Edge TPU has the highest
energy efficiency in our experiments.), while NovuTensor and Xavier, can
also provide comparable performance in latency as GPU. Further, all these
edge AI processors can achieve similar accuracy as GPU. The differences
among these processors and GPU are less than 3%.

Keywords: Benchmarking · Edge Computing · AI Processor · Deep
Learning

1 Introduction

The advancement of Deep Learning has been significantly taking advantage of
high-performance computing technologies, such as multi-/many-core processors

This research is supported in part by National Science Foundation grant CCF#
1822987.

c© Springer Nature Switzerland AG 2020
W. Gao et al. (Eds.): Bench 2019, LNCS 12093, pp. 32–48, 2020.
https://doi.org/10.1007/978-3-030-49556-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49556-5_3&domain=pdf
https://doi.org/10.1007/978-3-030-49556-5_3


Early Experience in Benchmarking Edge AI Processors 33

and accelerators, high-speed interconnects, etc. General Purpose GPUs (GPG-
PUs) recently have become the most popular platforms for Deep Learning train-
ing workloads. Many modern data centers in the world provide efficient solutions
for Deep Learning training with GPUs. However, Deep Learning infrastructures
in data centers might not be suitable for Deep Learning inference workloads,
due to the high power consumption and high cost of modern data centers, espe-
cially with many of the GPGPUs on cloud servers. Thus, Edge Computing based
AI platforms are replacing GPGPUs for many Deep Learning inference applica-
tions [29]. The convergence of AI and Edge Computing provides more opportu-
nities to businesses by efficiently running Deep Learning inference applications
on edge-side AI platforms.

Edge-side AI platforms are typically equipped with specialized edge AI pro-
cessors, which can support diverse Deep Learning inference applications, elimi-
nate the high response time from data centers, and provide much cheaper solu-
tions than GPU-based solutions for end users. Thus, more and more research
and development activities have been spent on designing edge-side AI processors
for Deep Learning inference applications and scenarios [11].

Due to different requirements from diversified Deep Learning applications,
edge AI processors are typically designed with different approaches. For example,
an edge AI processor may have a larger design space to have more memory. Or an
edge AI processor may be designed to support only some specific Deep Learning
operations in different requirements of performance, accuracy, and cost. Different
designs of edge AI processors may lead to different performances. Thus, it is hard
for customers to select an edge AI processor that may be most beneficial for their
requirements. This scenario implies that the Deep Learning community needs
more standard benchmarks, data-sets, and open research studies to evaluate
and compare different edge AI processors for diverse applications.

However, we find that such kind of benchmark-oriented studies for edge AI
processors are still not yet prevalent in the community. For example, the study in
[1] has run several deep learning models on multiple edge devices, but the work
mainly measures the latencies of running object detection workloads on those
devices, which does not cover other important aspects for evaluating edge-side
AI processors, such as accuracy and energy efficiency.

In order to provide more guidance to the community about how to select
more appropriate edge AI processors for end users, this paper proposes a three-
dimensional benchmarking methodology (i.e., accuracy, latency, and energy effi-
ciency) on evaluating and comparing different edge AI processors. Deep Learning
inference applications are usually customer-facing, which means the inference
response time (i.e., latency) and the response accuracy may be more impor-
tant than other performance metrics. In addition, since these AI processors are
designed for Edge Computing platforms, energy efficiency will also be a very
important factor for customers in selecting a device.

Based on our benchmarking methodology, we deploy Tiny-YOLO and
YOLOv2, which are two popular object detection applications, on three different
edge AI platforms (i.e., Edge TPU, NVIDIA Xavier, and NovuMind’s NovuTen-
sor). Accurate object detection is one of the most essential challenges for the



34 Y. Hui et al.

Deep Learning community to solve. YOLO-based Deep Learning solutions are
extremely fast one-stage object detection systems in the Convolutional Neural
Networks (CNN) architecture to detect objects efficiently from an image [37]. To
mimic real object detection scenarios, we choose an open data-set from industry,
i.e., Microsoft COCO [30] , which provides both training and validation images.
We also compare these edge AI processors with a GPU platform (i.e., GTX
1080 Ti) from the three dimensions. These edge AI processors and GPUs typ-
ically support different machine learning frameworks and provide deployment
tools individually. Note that Edge TPU and NovuTensor do not support some
Deep Learning operations (e.g., leaky ReLU) in YOLO’s neural network. We
retrain a neural network model that is fully supported by these processors in
our experiments.

Through our benchmarking experience, the major observations we find
include: 1) All edge AI devices can provide similar-accuracy inference results
with only 1% to 3% accuracy differences due to lower precision arithmetic. 2)
All edge AI processors have better energy efficiency than the GTX 1080 Ti GPU.
3) NovuTensor and Xavier have good and comparable performance in latency as
well as energy efficiency. 4) Edge TPU can achieve 6.7X higher energy efficiency
but may be 14.79X slower than the GTX 1080 Ti GPU.

Overall, this paper makes the following specific contributions:

– We successfully deploy Tiny-YOLO and YOLOv2 inference applications on
multiple edge AI platforms by leveraging deployment tools and modifying
standard models to be hardware friendly. Then we compare multiple edge
AI processors’ performance through running representative object detection
workloads (Sect. 5).

– Through our experimental results and observations (Sect. 5.4), we provide
guidance to select edge AI platforms for consumers with our proposed three-
dimensional benchmarking methodology.

– We share our early experience in benchmarking edge AI processors to the
community and encourage more benchmarking efforts to promote the evolu-
tion of edge AI processors.

The rest of this paper is organized as follows. Section 2 provides the necessary
background for this paper. Section 3 gives a high-level overview of modern edge
AI processors. The benchmarking methodology is stated in Sect. 4. Section 5
gives our experiments results and observations. Section 6 introduces related work.
Section 7 concludes the paper.

2 Background

In this section, we introduce inference and object detection task in deep learning
as well as the edge AI platforms in our experiments.



Early Experience in Benchmarking Edge AI Processors 35

2.1 Inference in Deep Learning

Training and inference are two important steps in Deep Learning. A Deep Learn-
ing model usually has millions of parameters to train. Modern GPGPUs can exe-
cute billions of floating-point operations per second (FLOPS), which has made
GPGPUs the most popular training platforms for deep learning models. Deep
Learning models are usually trained with Big Data in tens of hours to even
hundreds of hours. Using multiple GPUs with large training batch sizes can
accelerate training time. Trained models can be loaded on edge AI processors or
GPUs to do real-time inference. Inference takes new input data to infer results
using trained models. Deep Learning training requires high throughput while
inference requires low latency. Thus, GPU-based clusters are used to train mod-
els because of their parallel computing capabilities, while a single edge device
can be used to do inference. Inference brings Deep Learning models to many
aspects in our real life. For example, a face recognition system takes a small
batch of face images as input each time and infers the identities of the images
in a short response time.

2.2 Object Detection and YOLO-Based Systems

Object detection is a typical inference workload that combines localization and
classification tasks. For example, an autonomous driving system needs to detect
objects in a short time using deep learning models. An object detection system
can correctly infer several bounding boxes, which contain the object’s location
and category in the input image. Each training image is labeled with rectangu-
lar bounding boxes that annotate the locations and categories of the objects.
Inference will predict multiple bounding boxes. A predicted bounding box with
location and category information represents an inferred object. Gradient-based
learning approach is used in CNNs to solve object detection tasks [27]. CNN has
stronger expressive capability since it has deeper architecture compared with
traditional models [41]. Multiple methods on object detection tasks have been
proposed in these years such as R-CNN [19], Fast R-CNN [18], YOLO [36],
YOLOv2 [37], and SSD [31].

YOLOv2 is a state-of-the-art object detection system [37]. Tiny-YOLO is a
lite version of YOLOv2. Tiny-YOLO is faster but less accurate than YOLOv2,
since YOLOv2 has more convolutional layers than Tiny-YOLO. Applications
of YOLO are able to predict the location and category of objects from any
input images. YOLOv2 has two main training components. The first pre-trained
model has trained on ImageNet [16] dataset for the classification task. The second
component is trained from the previous pre-trained model in the first component.
The output of YOLO’s neural networks is a feature map with multiple grid cells.
Each grid cell predicts five bounding boxes with the probabilities of each class.

3 Overview of Edge AI Processors

This section provides a high-level overview of three different kinds of modern
Edge AI processors.



36 Y. Hui et al.

3.1 Edge TPU

TensorFlow model
32-bit float numbers

TensorFlow Lite
8-bit fixed numbers

Po
st

-T
ra

in
in

g
In

te
ge

r
Q

ua
nt

iz
at

io
n

Caliration data

Edge TPU model
.tflite file

Ed
ge

TP
U

C
om

pi
le

r

Edge TPU model
.tflite file

D
ep

lo
y

On Host
On Edge

TPU

Fig. 1. Workflow to Create an Edge TPU
Model

Edge TPU from Google provides an
end-to-end edge AI solution. Edge
TPU integrates onboard TPUs to exe-
cute neural networks (e.g., CNNs).
TPU consists of Matrix Multiplier
Unit (MXU), Unified Buffer (UB), and
Activation Unit (AU) to execute con-
volutional calculations [25]. The key
technology in TPU is called Systolic
Array. Multiple ALUs are combined
together in the systolic array and input
data can be reused from one single reg-
ister. But TPU can only execute a few
specific operations in a trade-off between performance and energy efficiency.
The workflow to create an Edge TPU compatible model is shown in Fig. 1. A
quantized TensorFlow Lite model is converted from a TensorFlow model using
some calibration data. TensorFlow Lite is a lightweight version of TensorFlow
designed for mobile and embedded devices. Then this quantized model needs to
be compiled to a hardware compatible model via the Edge TPU compiler before
deployment on the board. Edge TPU only supports INT8 or INT16 based quan-
tization models and the quantization method can be found in this paper [24].
Some pre-trained and pre-compiled models for image classification and object
detection tasks are provided in this project [5], which can be deployed on Edge
TPU directly.

3.2 NVIDIA Xavier

NVIDIA Jetson AGX Xavier is an embedded system on a module, containing
a Volta GPU, dual Deep Learning accelerators, a Carmel ARMv8.2 CPU, and
16GB memory [7]. Jetson AGX Xavier is an edge computing device for deploy-
ing AI applications and providing end-to-end AI solutions. Xavier allows users
to configure operating modes at 10 W, 15 W, and max 30 W. Xavier supports AI
software libraries like CUDA [35], cuDNN [12], and TensorRT to improve the
inference performance. With the speeding up by TensorRT, Xavier can achieve
high performance according to our experiments. NVIDIA TensorRT is a runtime
for high-performance Deep Learning inference. Developers can use TensorRT to
optimize their Deep Learning models and deploy them on any platforms that
have TensorRT runtime from NVIDIA. TensorRT supports INT8 and FLOAT16
optimizations for Deep Learning models as well as the original FLOAT32 data
type. TensorRT supports almost all the popular frameworks like TensorFlow,
PyTorch, and Caffe. TensorRT takes trained models from those popular frame-
works, optimizes the neural network models, and generates light-weight runtime
engines for GPUs. Developers only need to deploy the generated runtime engines
on the NVIDIA platforms like Jetson Xavier. Figure 2 illustrates the workflow
to deploy a model on an NVIDIA platform using TensorRT.



Early Experience in Benchmarking Edge AI Processors 37

TensorRT Optimizer

TensorRT 
Runtime
Engine

Trained Nerual Network Deploy

NVIDIA
platforms

Jetson AGX Xavier

Fig. 2. Deployment using TensorRT

3.3 NovuTensor

NovuMind’s NovuTensor uses domain specific architecture focusing on perform-
ing 3D tensor computations. Traditional tensor processors like TPU implement
convolution layer using 2D matrix multiplication. TPU and GPU calculate 3D
convolution multiplication by unfolding the matrix into a 2D matrix and then
multiplying the 2D matrix with convolution kernels. NovuTensor’s architecture
includes a patented design that natively performs 3D tensor computations on
the chip, which can avoid the overhead of unfolding 3D tensors into 2D matrices
that is inherent in other chips [32]. Processing natively 3D tensor computations
achieves high performance and less memory usage. The native tensor processors
inside NovuTensor chip convolve 3D tensors of input feature maps with 3 × 3
convolution kernels. 3 × 3 convolution kernels are very common in CNNs in
previous work [13]. Thus, native tensor processors in NovuTensor can gain much
bigger performance improvements for CNN models.

4 Benchmarking Methodology

This section presents workload, platform, and metric selection in our three-
dimensional benchmarking methodology.

4.1 Workload Selection

A representative workload for benchmarking AI systems needs a real dataset.
Microsoft COCO [30] (MS COCO) is one of the most popular open dataset in
the community, which has been widely used in the computer vision field. MS
COCO contains hundreds of thousand images from the real world for training,
validation, and testing. The training and validation images are labeled with
segmentation and bounding boxes. Annotations of MS COCO are arranged in
the JSON format. MS COCO mainly contains three tasks (i.e., object detection,
key-point detection, and segmentation). MS COCO has 80 categories, which
is larger than other datasets like PASCAL VOC [17]. Object instances in MS
COCO are also annotated more than those in PASCAL VOC. Developers can
use C++ or Python APIs provided by MS COCO to load images and calculate
the accuracy [6]. Based on these advantages of MS COCO, this paper chooses it
to construct our object detection workloads with YOLOv2 and Tiny-YOLO.



38 Y. Hui et al.

4.2 Platform Selection

We choose GTX 1080 Ti, which is a general-purpose GPU, as our baseline to
compare with Edge TPU, Xavier, and NovuTensor, which are edge-side AI plat-
forms using application-specific integrated circuit (ASIC) for inference. These
platforms are popular in the industry and use innovative technologies in their
designs. Developers can deploy Deep Learning applications on these platforms.
They have similar low power consumption (e.g., 20 W for NovuTensor and 30 W
for Xavier). We also consider the software support when we select platforms in
our experiments. These platforms support different Deep Learning frameworks
(e.g., Caffe, TensorFlow, TensorFlow Lite, and PyTorch).

4.3 Metrics and Dimensions

To evaluate the performance of different edge AI processors, we record real-
time statistics in our experiments. These statistics help us compare and explore
characteristics of these platforms from the three dimensions we have selected in
this paper, which include:

– Accuracy: This is typically the most important factor (i.e., how well the pro-
cessor can infer correct answers) to consider for end users to select appropriate
edge AI processors for their applications. We take the accuracy into account
since the accuracy may be influenced by different hardware restrictions on
Deep Learning operations, such as supporting lower-precision data types. A
standard metric for the accuracy dimension is called mean Average Precision
(i.e., mAP). mAP has been popularly used to evaluate the accuracy with
object detection workloads [17]. mAP is the mean value of Average Precision
(AP). One AP value is calculated for one category of images. To introduce
mAP further, we first introduce the basic concepts of precision and recall in
the following equations.

Precision =
TruePositives

TruePositives + FalsePositives
(1)

Recall =
TruePositives

TruePositives + FalseNegatives
(2)

Based on Eq. 1 and Eq. 2, we can draw a precision-recall curve for all pre-
dictions from validation dataset. In the curve, we can choose 11 points in
the axis of recall, ranging from 0, 0.1, 0.2 until to 1.0. Then the correspond-
ing 11 precision values will be used to calculate the Average Precision value.
Equation 3 calculates an AP value for one category of images based on the
11 interpolated precision values, where Pr is the interpolated precision value
in Eq. 1 and r corresponds to the recall in Eq. 2.

AP =
1
11

∑

r∈{0,0.1,...1.0}
Pr (3)



Early Experience in Benchmarking Edge AI Processors 39

mAP =
∑N

i=1 AP

N
(4)

Then, mAP can be calculated by Eq. 4, where N is the total number of cate-
gories. The MS COCO dataset contains 80 categories, which means N equals
80 in Eq. 4. The mAP for MS COCO is the mean value of these 80 average
precision values.

– Latency: The time to complete an inference on the input images in one batch is
defined as latency. Latency is one of the most important and critical dimension
for inference since Deep Learning inference applications are usually customer-
facing.

– Energy Efficiency: This means the number of input images can be fully pro-
cessed per unit-power, which is usually expressed as performance/watt or
images/second/watt. Energy efficiency is another key factor to be considered
for choosing edge AI devices, since Edge Computing environments usually
need lower energy-consumption technologies.

The dimensions and corresponding metrics mentioned above can help us
benchmark different edge AI processors. Through these metrics, we are able
to evaluate the performance of these edge AI processors and provide selection
guidance for end users.

4.4 Experimental Methodology

To capture the real inference execution time on hardware, our experiments split
the whole execution flow of running an inference application into three steps:

– Pre-processing time: is the time of the pre-processing step (e.g., normalization
of input images).

– Execution time: measures the time of transferring the input feature maps into
devices, execution, and receiving the output feature maps from devices.

– Post-processing time: is the time of the post-processing step (e.g., parse the
output tensors to get readable prediction results).

To evaluate the performance of edge AI processors, only the execution time
should be accounted. As for YOLO-based applications, the pre-processing step
includes getting input images and normalization. The post-processing step gets
a 3-dimensional tensor from neural network’s output and decodes this tensor to
get the prediction results.

5 Experiments

This section presents our experimental configuration and setup to perform the
benchmarking on edge AI processors.



40 Y. Hui et al.

5.1 Hardware Configuration

The specifications of edge AI processors in our experiments are shown in Table 1.
Table 1 illustrates the theoretical metrics for comparing these edge AI processors.
Tera Operations per Second (TOPs) is a common metric for evaluating the
throughput of AI processors, which represents the processing capability of an AI
processor.

5.2 Setup

We deploy Tiny-YOLO and YOLOv2 applications on three edge AI plat-
forms as shown in Table 1. The YOLO-based applications include three com-
ponents, which are image pre-processing, trained CNN models, and inference
post-processing. We select five thousands images in MS COCO’s 2014 valida-
tion dataset as the inference workload for all AI platforms. We evaluate the AI
devices with input images of both regular and large sizes. Thus, input images
will be re-sized to 416 × 416 and 1024 × 1024 before feeding them into the neural
network models. Every edge AI platform processes the same five thousands val-
idation images and generates a JSON file with all the inferred bounding boxes.
We use MS COCO API to parse the JSON file and calculate the mAP, which is
the common accuracy evaluation metric for object detection task [6].

Edge TPU: We first convert Tiny-YOLO and YOLOv2 applications from Dark-
net framework to TensorFlow framework using DarkFlow [2], as Egde TPU
only supports TensorFlow Lite. Darknet is the framework that supports orig-
inal YOLO-based applications [3]. A model in Darknet includes two compo-
nents, a configuration file and a binary file. The configuration file defines the
architecture of the neural network and the binary file is the trained weights
of convolutional kernels. We combine the configuration file and binary file into
a TensorFlow SavedModel format file via DarkFlow. TensorFlow provides two
ways to do quantization (i.e., post-training quantization and quantization-aware
training). Post-training quantization creates a small model by using 8-bit values,
but during inference, it is converted back to 32-bit floats. Quantization-aware
training creates fake quantization nodes containing the minimum and maximum
values of layers’ weights during training. Edge TPU utilizes the quantized values
to do inference. However, developers have to modify the training source code to
do training-aware quantization. We use a new quantization toolkit without mod-
ifying training source code [8]. We feed 80 calibration images into the models,
which can quantize and generate a TensorFlow Lite model. Then we compile the
TensorFlow Lite model to an Edge TPU model that has instructions supported
by Edge TPU.

Edge TPU does not support dynamic tensor sizes and only supports 3-
dimensional tensors. If a tensor has more than three dimensions, only the three
innermost dimensions can have a size greater than one. In this case, the batch
size for inference could only be one when the input image has three channels.



Early Experience in Benchmarking Edge AI Processors 41

YOLOv2 and Tiny-YOLO use leaky rectification (leaky ReLU) [26] as the acti-
vation function for all the convolutional layers. But leaky ReLU is not supported
by Edge TPU. We replace leaky ReLU with ReLU and retrain the models, using
four GTX 1080 Ti GPUs. Reorganization and route layers are also not sup-
ported by Edge TPU. Before deploying the models on Edge TPU, it is necessary
to make sure that all the operations are supported with INT8 data type, because
operations that do not have quantized implementations will not work with Edge
TPU.

In addition, Edge TPU only supports 8-bit input data. As a consequence,
the input image’s pixels can not be normalized to Float32 data type between 0
and 1. So we modify the weights of the first convolutional layer to additionally
transform input tensors to appropriate forms without normalization, which can
match with the input requirements of Edge TPU.

Table 1. Specifications of platforms

Specification Edge TPU Xavier NovuTensor 1080 Ti

Precision INT8 INT8/FP16/FP32 INT8 FP32

TOPS 4 22.6/11.3/1.3 15 11.3

Memory 1 GB
32-bit
LPDDR4

16 GB
256-bit
LPDDR4X

2 GB
128-bit
DDR4

11 GB
352-bit
GDDR5X

Power (watt) – 10/15/30 20 250

Process (nm) – 12 28 16

Note that TOPS stands for Tera Operations per Second. We found or calculated
from official specifications according to the corresponding precision. The power
and process of Edge TPU are not reported by Google. We approximate the power
as 2.5 W by our experimental devices.

Xavier: Our experiments deploy NVIDIA’s deepstream reference applica-
tions [4], which contain YOLO-based applications implemented by TensorRT,
on Xavier platforms. TensorRT 5.0.3 is installed in our experimental Xavier
device. TensorRT is able to parse Deep Learning models and deploy optimized
models on Xavier. TensorRT provides a plugin layer for developers to implement
customized operations that are not supported by TensorRT (e.g., leaky ReLU).
Using the plugin layer, we are able to deploy the original YOLO-based applica-
tion on Xavier without modifying and retraining the model. We evaluate Xavier
in both 15-W and 30-W modes. We set the INT8 data type in the deepstream
application to compare with other hardware devices.

NovuTensor: NovuMind’s NovuTensor is a special-purpose processor for AI
inference applications. Designed for convolutional neural networks, it achieves
high throughput and low latency for convolution computations. NovuTensor con-
volves the feature map with 3 × 3 kernels using the native tensor processors.



42 Y. Hui et al.

In our experiments, we deploy Tiny-YOLO and YOLOv2 applications on
NovuTensor using NovuSDK. Hardware-friendly YOLOv2 and Tiny-YOLO
models are deployed on NovuTensor by replacing the activation functions by
ReLU and removing reorganization and route layers. NovuSDK provides APIs
for developers to control the hardware.

5.3 Results

Figure 3 illustrates the mAPs of Tiny-YOLO and YOLOv2 applications running
on different edge AI processors with 416 × 416 resolution input images. After
quantization, the accuracy of YOLOv2 drops 2% to 3% and the accuracy of Tiny-
YOLO drops 1% to 2% on all edge AI processors compared to the accuracy on
GPU. Low precision arithmetic like INT8 reduces accuracy but accelerates the
execution time [22]. The differences of accuracy degradation among different edge
AI processors are varied, which is because these edge AI processors implement
the quantization in different ways.

0

0.2

0.4

0.6

Edge TPU Xavier 15w Xavier MAXW NovuTensor 1080Ti+TensorRT 1080Ti

m
A

P

Fig. 3. Accuracy of YOLOv2 and Tiny-YOLO with 416 × 416 image size

Figure 4 shows the latency of processing a batch of input images. Edge
TPU is slower than other edge AI processors, which are 28.74 ms and 94.37 ms
for Tiny-YOLO and YOLOv2 applications, respectively. The architecture of
YOLOv2 is more complex than Tiny-YOLO. The latency of Edge TPU increases
more than other edge AI processors, when the neural network’s architecture
becomes complex. NovuTensor can achieve 14.08 ms and 24.78 ms for one batch
of input images, which is faster than Xavier in the 15-W mode (i.e., 16.68 ms
and 38.39 ms) and similar with (i.e., 14.16 ms for Tiny-YOLO) or slower than
(i.e., 17.85 ms for YOLOv2) Xavier in the 30-W mode, respectively.

0
20
40
60
80

100

Edge TPU Xavier 15w Xavier MAXW NovuTensor 1080Ti+TensorRT 1080Ti

La
te

nc
y 

(m
s)

Fig. 4. Latency of YOLOv2 and Tiny-YOLO with 416 × 416 image size



Early Experience in Benchmarking Edge AI Processors 43

Figure 5 illustrates the energy efficiency by taking the energy consumption
into account. Edge TPU achieves relatively higher energy efficiency consider-
ing its very low power usage and GTX 1080 Ti seems not very energy-efficient
since its large power consumption. NovuTensor has better energy-efficiency than
Xavier in both 15-W and 30-W modes for the YOLOv2 application. NovuTen-
sor also shows better energy-efficiency than Xavier in the 30-W (max) mode and
comparable energy-efficiency as Xavier in the 15-W mode for the Tiny-YOLO
application.

0

5

10

15

Edge TPU Xavier 15w Xavier MAXW NovuTensor 1080Ti+TensorRT 1080Ti

En
er

gy
 

Ef
fic

ie
nc

y
(im

ag
e/

se
c/

w
at

t)

Fig. 5. Energy Efficiency of YOLOv2 and Tiny-YOLO with 416 × 416 image size

We also evaluate the performance of these edge AI processors with larger
input images (i.e., 1024 × 1024), as shown in Fig. 6. All the devices can pro-
vide similar-accuracy inference results compared with GPU, thus the accuracy
results are not shown here. Through our experiments, Xavier and NovuTensor
can achieve comparable low latency and high energy efficiency.

(a) Latency (b) Energy Efficiency

0

100

200

Xav
ier

 15
w

Xav
ier

 M
AXW

Nov
uT

en
sor

10
80

Ti+Ten
sor

RT
10

80
Ti

La
te

nc
y 

(m
s)

0
0.2
0.4
0.6
0.8

1

Xav
ier

 15
w

Xav
ier

 M
AXW

Nov
uT

en
sor

10
80

Ti+Ten
sor

RT
10

80
Ti

En
er

gy
 E

ff
ic

ie
nc

y
(im

ag
e/

se
c/

w
at

t)

Fig. 6. Performance of YOLOv2 with 1024 × 1024 image size

5.4 Observations and Summary

We combine all the measured results in our experiments and demonstrate them
in three-dimensional charts as shown in Fig. 7. In order to compare edge AI
processors clearly, we normalize the experimental results into these three dimen-
sions. Performance, one of the three dimensions, is defined as the reciprocal of
latency. In this way, if an edge AI processor can achieve a bigger score in the



44 Y. Hui et al.

three-dimensional charts, it means the edge AI processor can be a better choice
in the corresponding dimension. Through these two radar charts, we obtain some
interesting observations as follows:

– All these edge AI processors are able to provide similar-accuracy inference
results compared with the GTX 1080 Ti. Quantization from FP32 to INT8
data type during inference causes an accuracy drop around 1% to 3%.

– These edge AI processors are slower than GTX 1080 Ti GPU due to less com-
puting cores and less power consumption. Edge TPU is 9.5X and 14.79X
slower than GTX 1080 Ti with running Tiny-Yolo and YOLOv2, respec-
tively. Despite Xavier and NovuTensor are slower than the GPU, Xavier is
2X and 5.28X faster than Edge TPU in the max power mode, and NovuTen-
sor is 2.04X and 3.8X faster than Edge TPU, respectively, when running
with Tiny-Yolo and YOLOv2 applications.

– Edge TPU exceeds other edge AI processors in energy efficiency, and it deliv-
ers 2.9X and 1.13X higher energy efficiency than Xavier as well as 1.96X
and 1.04X higher energy efficiency than NovuTensor for Tiny-Yolo and
YOLOv2, respectively.

As specified by our observations, these edge AI processors can perform Tiny-
YOLO and YOLOv2 applications within a 3% accuracy drop. NovuTensor and
Xavier achieve low latency and relatively high energy efficiency for object detec-
tion workloads. Edge TPU has the advantage of energy efficiency.

6 Related Work

This section presents related work about benchmarking AI processors.

Edge TPU Xavier 15w Xavier MAXW NovuTensor 1080Ti+TensorRT 1080Ti

0
0.2
0.4
0.6
0.8

1
1.2

Accuracy

PerformanceEnergy
Efficiency

0
0.2
0.4
0.6
0.8

1
1.2

Accuracy

PerformanceEnergy
Efficiency

(a) YOLOv2 (b) Tiny-YOLO

Fig. 7. Comparison of factors on YOLOv2 and Tiny-YOLO with 416 × 416 image size



Early Experience in Benchmarking Edge AI Processors 45

6.1 Modern AI Processors

Deep learning especially neural networks have been proven in many state-of-the-
art application systems to solve classification and object detection tasks [23,28].
The opportunity to design AI processors with high performance and efficiency
attracts more and more researchers and engineers [10]. Multiple methods can
execute deep learning workloads on modern AI processors, such as GPUs [14],
FPGAs [9], or ASICs [11,20,25]. Some customized AI processors have been effec-
tively studied such as k-NN accelerator on FPGA [39], k-NN classifier of IP cores
design [34,38].

6.2 Edge AI Benchmarking

Due to the emergence of different edge AI processors for inference, we do see the
effort of benchmarking these devices in the community. AIoT Bench [33] contains
benchmarks for image classification, speech recognition, transformer translation,
and micro workloads on Android-based systems and Raspberry Pi. The urgent
requirements of edge AI benchmarking are also discussed in this paper [33].
The study in [1] runs several Deep Learning models on multiple edge devices
and it mainly measures the latency of object detection workloads. A survey
on different Deep Learning benchmarks summarizes multiple popular available
benchmarks in the community [40]. EdgeAI Bench [21] contains four different
benchmarking frameworks. These frameworks aim at benchmarking four specific
scenarios using Deep Learning technologies in Edge Computing environments.
EdgeBench [15] compares two serverless edge computing services on a standard
Raspberry Pi 3B model. Compared to these related studies, this paper focuses
on benchmarking three modern edge AI processors (i.e., Edge TPU, NVIDIA
Xavier, and NovuTensor) with object detection workloads.

7 Conclusion and Future Work

We propose a benchmarking methodology to systematically evaluate three differ-
ent kinds of edge AI processors (i.e., Edge TPU, NVIDIA Xavier, and NovuTen-
sor) from the three dimensions of accuracy, latency, and energy efficiency. Based
on our experimental results, we observe that NovuTensor and Xavier can pro-
vide comparable performance in latency and energy efficiency, which satisfy the
major requirements for Deep Learning inference applications. They also have
comparable performance in latency compared with GTX 1080 Ti. Edge TPU
consumes less energy but is much slower for inference, which may influence the
consumers’ usage experience. Accuracy is important but seems not a major fac-
tor to make a selection on these edge AI processors, since they all can provide
similar inference accuracy.

In the future, we will evaluate more combinations of different neural networks
and edge AI platforms. We plan to propose an easy-to-use benchmarking toolkit
for different edge AI processors.



46 Y. Hui et al.

References

1. Benchmarking Edge Computing. https://medium.com/@aallan/benchmarking-
edge-computing-ce3f13942245

2. DarkFlow. https://github.com/thtrieu/darkflow
3. Darknet. https://github.com/pjreddie/darknet
4. Deepstream Reference Applications. https://github.com/NVIDIA-AI-IOT/deep

stream reference apps
5. Models Built for Edge TPU. https://coral.withgoogle.com/models/
6. MS COCO API. https://github.com/cocodataset/cocoapi
7. NVIDIA Jetson AGX Xavier. https://developer.nvidia.com/embedded/jetson-agx-

xavier-developer-kit
8. Post-Training Integer Quantization. https://medium.com/tensorflow/tensorflow-

model-optimization-toolkit-post-training-integer-quantization-b4964a1ea9ba
9. Chakradhar, S., Sankaradas, M., Jakkula, V., Cadambi, S.: A dynamically config-

urable coprocessor for convolutional neural networks. In: ACM SIGARCH Com-
puter Architecture News, vol. 38, pp. 247–257. ACM (2010)

10. Chen, T., et al.: BenchNN: on the broad potential application scope of hardware
neural network accelerators. In: 2012 IEEE International Symposium on Workload
Characterization (IISWC), pp. 36–45. IEEE (2012)

11. Chen, Y., Chen, T., Zhiwei, X., Sun, N., Temam, O.: DianNao family: energy-
efficient hardware accelerators for machine learning. Communi. ACM 59(11), 105–
112 (2016)

12. Chetlur, S., et al.: cuDNN: efficient primitives for deep learning. arXiv preprint
arXiv:1410.0759 (2014)

13. Ciresan, D.C., Meier, U., Masci, J., Gambardella, L.M., Schmidhuber, J.: Flexi-
ble, high performance convolutional neural networks for image classification. In:
Twenty-Second International Joint Conference on Artificial Intelligence (2011)

14. Coates, A., Huval, B., Wang, T., Wu, D., Catanzaro, B., Andrew, N.: Deep learning
with COTS HPC systems. In: International Conference on Machine Learning, pp.
1337–1345 (2013)

15. Das, A., Patterson, S., Wittie, M.: Edgebench: benchmarking edge computing plat-
forms. In: 2018 IEEE/ACM International Conference on Utility and Cloud Com-
puting Companion (UCC Companion), pp. 175–180. IEEE (2018)

16. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale
hierarchical image database. In: 2009 IEEE Conference on Computer Vision and
Pattern Recognition, pp. 248–255. IEEE (2009)

17. Everingham, M., Gool, L.V., KI Williams, C., Winn, J., Zisserman, A.: The pascal
visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)

18. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference
on Computer Vision, pp. 1440–1448 (2015)

19. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accu-
rate object detection and semantic segmentation. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

20. Han, S., et al.. EIE: efficient inference engine on compressed deep neural network.
In: 2016 ACM/IEEE 43rd Annual International Symposium on Computer Archi-
tecture (ISCA), pp. 243–254. IEEE (2016)

21. Hao, T., et al.: EdgeAI bench: towards comprehensive end-to-end edge computing
benchmarking. In: 2018 Bench Council International Symposium on Benchmark-
ing, Measuring and Optimizing (Bench 2018) (2018)

https://medium.com/@aallan/benchmarking-edge-computing-ce3f13942245
https://medium.com/@aallan/benchmarking-edge-computing-ce3f13942245
https://github.com/thtrieu/darkflow
https://github.com/pjreddie/darknet
https://github.com/NVIDIA-AI-IOT/deepstream_reference_apps
https://github.com/NVIDIA-AI-IOT/deepstream_reference_apps
https://coral.withgoogle.com/models/
https://github.com/cocodataset/cocoapi
https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit
https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit
https://medium.com/tensorflow/tensorflow-model-optimization-toolkit-post-training-integer-quantization-b4964a1ea9ba
https://medium.com/tensorflow/tensorflow-model-optimization-toolkit-post-training-integer-quantization-b4964a1ea9ba
http://arxiv.org/abs/1410.0759


Early Experience in Benchmarking Edge AI Processors 47

22. Hashemi, S., Anthony, N., Tann, H., Bahar, I.R., Reda, S.: Understanding the
impact of precision quantization on the accuracy and energy of neural networks.
In Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017,
pp. 1474–1479. IEEE (2017)

23. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.:
Improving neural networks by preventing co-adaptation of feature detectors. arXiv
preprint arXiv:1207.0580 (2012)

24. Jacob, B., et al.: Quantization and training of neural networks for efficient integer-
arithmetic-only inference. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2704–2713 (2018)

25. Jouppi, N.P., et al.: In-datacenter performance analysis of a tensor processing
unit. In: 2017 ACM/IEEE 44th Annual International Symposium on Computer
Architecture (ISCA), pp. 1–12. IEEE (2017)

26. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097–1105 (2012)

27. Wick, C.: Deep learning. Informatik-Spektrum 40(1), 103–107 (2016). https://doi.
org/10.1007/s00287-016-1013-2

28. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al.: Gradient-based learning
applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

29. Lee, Y.-L., Tsung, P.-K., Wu, M.: Techology trend of edge AI. In: 2018 Interna-
tional Symposium on VLSI Design, Automation and Test (VLSI-DAT), pp. 1–2.
IEEE (2018)

30. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D.,
Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp.
740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1 48

31. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe,
N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46448-0 2

32. Lu, C.P., Tang, Y.-S.: Native Tensor Processor, and Partitioning of Tensor Contrac-
tions. https://patentscope.wipo.int/search/en/detail.jsf?docId=US225521272&
tab=NATIONALBIBLIO

33. Luo, C., et al.: AIoT bench: towards comprehensive benchmarking mobile and
embedded device intelligence. In: 2018 Bench Council International Symposium
on Benchmarking, Measuring and Optimizing (Bench 2018) (2018)

34. Manolakos, E.S., Stamoulias, I.: IP-Cores design for the kNN classifier. In: Pro-
ceedings of 2010 IEEE International Symposium on Circuits and Systems, pp.
4133–4136. IEEE (2010)

35. Nickolls, J., Buck, I., Garland, M.: Scalable parallel programming. In: 2008 IEEE
Hot Chips 20 Symposium (HCS), pp. 40–53. IEEE (2008)

36. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified,
real-time object detection. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 779–788 (2016)

37. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7263–7271
(2017)

38. Stamoulias, I., Manolakos, E.S.: Parallel architectures for the kNN classifier-design
of soft IP cores and FPGA implementations. ACM Trans. Embedded Comput.
Syst. (TECS) 13(2), 22 (2013)

http://arxiv.org/abs/1207.0580
https://doi.org/10.1007/s00287-016-1013-2
https://doi.org/10.1007/s00287-016-1013-2
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/978-3-319-46448-0_2
https://patentscope.wipo.int/search/en/detail.jsf?docId=US225521272&tab=NATIONALBIBLIO
https://patentscope.wipo.int/search/en/detail.jsf?docId=US225521272&tab=NATIONALBIBLIO


48 Y. Hui et al.

39. Yeh, Y.-J., Li, H.-Y., Hwang, W.-J., Fang, C.-Y.: FPGA implementation of kNN
classifier based on wavelet transform and partial distance search. In: Ersbøll, B.K.,
Pedersen, K.S. (eds.) SCIA 2007. LNCS, vol. 4522, pp. 512–521. Springer, Heidel-
berg (2007). https://doi.org/10.1007/978-3-540-73040-8 52

40. Zhang, Q., et al.: A survey on deep learning benchmarks: do we still need new ones?
In: 2018 Bench Council International Symposium on Benchmarking, Measuring and
Optimizing (Bench 2018) (2018)

41. Zhao, Z.-Q., Zheng, P., Xu, S.-T., Wu, X.: A review. IEEE Transactions on Neural
Networks and Learning Systems, Object Detection with Deep Learning (2019)

https://doi.org/10.1007/978-3-540-73040-8_52

	Early Experience in Benchmarking Edge AI Processors with Object Detection Workloads
	1 Introduction
	2 Background
	2.1 Inference in Deep Learning
	2.2 Object Detection and YOLO-Based Systems

	3 Overview of Edge AI Processors
	3.1 Edge TPU
	3.2 NVIDIA Xavier
	3.3 NovuTensor

	4 Benchmarking Methodology
	4.1 Workload Selection
	4.2 Platform Selection
	4.3 Metrics and Dimensions
	4.4 Experimental Methodology

	5 Experiments
	5.1 Hardware Configuration
	5.2 Setup
	5.3 Results
	5.4 Observations and Summary

	6 Related Work
	6.1 Modern AI Processors
	6.2 Edge AI Benchmarking

	7 Conclusion and Future Work
	References




