
SimdHT-Bench: Characterizing SIMD-Aware Hash

Table Designs on Emerging CPU Architectures*

Dipti Shankar, Xiaoyi Lu, Dhabaleswar K. (DK) Panda

Department of Computer Science and Engineering, The Ohio State University

{shankar.50, lu.932, panda.2}@osu.edu

Abstract—With the emergence of modern multi-core CPU
architectures that support data parallelism via vectorization,
several storage systems have been employing SIMD-based tech-
niques to optimize data-parallel operations on in-memory struc-
tures like hash-tables. In this paper, we perform an in-depth
characterization of the opportunities for incorporating AVX
vectorization-based SIMD-aware designs for hash table lookups
on emerging CPU architectures. We analyze the challenges and
design dimensions involved in exploiting vectorization-based par-
allel key searching over cache-optimized non-SIMD hash tables.
Based on this, we design a comprehensive micro-benchmark
suite, SimdHT-Bench, that enables evaluating the performance
and applicability of CPU SIMD-aware hash table designs for
accelerating different read-intensive workloads. With SimdHT-
Bench, we study five different use-case scenarios with varied
workload patterns, on the latest Intel Skylake and Intel Cascade
Lake multi-core CPU nodes. Further, to validate the applicability
of SimdHT-Bench, we employ these performance studies to design
a high-performance SIMD-aware RDMA-based in-memory key-
value store to accelerate the Memcached ‘Multi-Get’ workload.
We demonstrate that the SIMD-integrated designs can achieve
up to 1.45x–2.04x improvement in server-side Get throughput
and up to 34% improvement in end-to-end Multi-Get latencies
over the state-of-the-art CPU-optimized non-SIMD MemC3 hash
table design, on a high-performance compute cluster with Intel
Skylake processors and InfiniBand EDR interconnects.

Index Terms—AVX, SIMD, CPU, Hash Table, Key-Value Store

I. INTRODUCTION

With the emergence of modern multi-core CPU architec-

tures that support data parallelism via vectorization, there

have been several studies directed towards leveraging CPU-

SIMD for accelerating compute for data-intensive workloads.

Using ‘Single-Instruction-Multiple-Data’ (SIMD) instructions

to enable data parallelism has been studied for accelerating

database operators like scan, join, aggregation [1], [2], and

bloom filters [3], [4]. SIMD instructions have also been

leveraged to enable data-parallel key lookups over hash tables

for join operations [1], [5]–[7]. Similarly, network application

scenarios like packet processing, that deal with batched hash

table lookups [8], [9], also exploit high-performance CPU-

optimized hash tables with SIMD-aware accelerations. These

studies make it evident that leveraging SIMD vectorization

for parallelizing key searches across hash tables has immense

potential for accelerating application workloads that need to

facilitate fast in-memory lookup operations.

This research is supported in part by NSF grants #CCF-1822987, #CNS-
1513120, #ACI-1450440, #CCF-1565414, and NSF ACI1664137.

On the other hand, distributed and high-performance key-

value stores (KVS) utilize hash tables in their backend, as a

fast index to store (Set) and lookup key-value pairs (Get/Multi-

Get) [10], [11]. They play a vital role in accelerating today’s

data-intensive workloads in multi-tiered data center architec-

tures. Many studies [12], [13] have shown that the performance

of key-value store-based applications is dominated by reads,

i.e., GETs. For instance, based on the real-workload traces

from Facebook [14], [15], we see that a single web page

request from a user can generate up to 521 distinct key-value

pair items that need to be fetched from the remote Memcached

server cluster. The key-value store applications attempt to

minimize the number of network round trips necessary to fetch

all the key-value pairs corresponding to the user requests, by

batching multiple Gets (24 – 96 keys/request) into a single

request. Since most typical key-value stores employ CPU-

centric hash tables [11], [16], this motivates us to consider

if such a ‘Multi-Get’ (MGet) workload can leverage SIMD-

aware designs explored in the literature.

A. Motivation and Challenges

Towards answering the above question, we first explore

SIMD-aware hash table designs in the literature. We find that

the state-of-the-art hash table vectorization approaches [1], [5],

[6], [8], [9], [17] are focused on accelerating batched key-

value pair searches (batched lookups), which is very similar

to the Memcached ‘Multi-Get’ scenario. To better understand

these state-of-the-art CPU-optimized hash table designs, we

summarize them in Table I-B. From Table I-B, we can see

that each of the works propose an SIMD-aware acceleration

that employs a different hash table design (memory layout).

Therefore, it is evident that these hash table designs are tightly

bound to their specific use-case scenarios. Thus, they cannot

be directly leveraged to determine if they fit a newer and

vastly different usage scenario. To be more precise, there

are no studies or benchmarks which provide design guidance

on how to maximally exploit the SIMD-aware hash design

capabilities for varying workload patterns. This leads us to

define our first challenge: Challenge 1©: Can we design a

micro-benchmark platform that can enable us to study the

different state-of-the-art (or any new) SIMD-aware hash table

designs on emerging multi-core CPU architectures for varied

application scenarios?

Typically, for non-SIMD variants, the rule-of-thumb is to

choose the hash table layout that enables minimal memory

978-1-7281-4045-2/19/$31.00 ©2019 IEEE 178

Authorized licensed use limited to: The Ohio State University. Downloaded on September 20,2020 at 22:00:08 UTC from IEEE Xplore. Restrictions apply.

and/or cache-line accesses. This has led to heavy reliance on

bucketized cuckoo hash tables, that facilitate cache optimal

designs for CPUs [12], [17], [18] to support better hash table

occupancy (i.e., load factor1). In addition to the application-

specific memory layouts, the research works in Table I-B

also widely differ in how they exploit CPU vectorization

capabilities for accelerating batched hash table lookups. For

instance, networking applications [8], [9], [17] leverage buck-

etized cuckoo hash tables with 4-way or 8-way set-associative

designs2. They mainly leverage SIMD to compare multiple

hashes stored in a hash table bucket in parallel. Similarly, an-

alytical database workloads [1], [6] propose leveraging SIMD

to search multiple distinct input keys across the hash table in

parallel. This defines our second challenge: Challenge 2©: How

can we determine which SIMD-aware hash table vectorization

approach (software approach or algorithm) can best fit our

application workload? How much performance can they gain

over their non-SIMD hash table counterparts?

Finally, today’s latest Intel Skylake and Cascade Lake

nodes [19], [20] support SSE (128-bit), AVX2 (256-bit), and

AVX-512 (512-bit) vector instructions. Specifically, with 512-

bit extensions to the Advanced Vector Extensions (AVX)

SIMD instructions (AVX-512) for x86 ISA, we have the

opportunity to operate on an entire cache-line in a single

instruction. Thus, with this increasing vector-processing ca-

pability on modern hardware, we have the option to leverage

different CPU-SIMD vector widths to enable different degrees

of data parallelism for a given SIMD vectorization approach.

This is also evident across the different works summarized

in Table I-B. Based on this, we define our third challenge:

Challenge 3©: How much SIMD parallelism (hardware capa-

bility or CPU vector instructions) can we exploit to accelerate

hash table lookups for a given application workload?

B. Contribution

To address the above research challenges, we first charac-

terize and define SIMD-aware design dimensions that need

to be considered for any application workload. Since we are

mainly interested in enabling faster performance for read-

dominated workloads, we focus our studies on cuckoo hash

tables that enable near-constant lookup time [21], [22]. Based

on these characteristics, we design “SimdHT-Bench”, to help

researchers study the performance of different SIMD-aware

hash table designs in-depth for any use-case involving batched

reads. This proposed micro-benchmark suite presents a:

1) Comprehensive design, that takes hash table memory

layout, workload data access pattern and the CPU-SIMD

capabilities into account, to address Challenge 1©,

2) SIMD algorithm validation engine that can help deter-

mine which hash table designs and CPU-SIMD vector

lengths can be leveraged for a given application work-

load and CPU hardware, to address Challenge 3©, and,

3) Performance engine that evaluates different viable

SIMD-aware hash table designs, and presents a

1load factor (LF) = (number-of-items-that-can-be-inserted / hash-table-size).
2no. slots-per-bucket = set-associativity of a cuckoo hash table bucket

performance-centric compare-and-contrast with its non-

SIMD equivalents, towards answering Challenge 2©.

We present five different use-cases with SimdHT-Bench,

including: (a) two case studies contrasting horizontal and

vertical SIMD-aware parallel lookup approaches for typical

database workloads, (b) performance of different SIMD-aware

hash tables on Intel Skylake and Intel Cascade Lake nodes,

(c) performance with variable length keys/payloads, and, (d)

leveraging different SIMD vector widths to enable different

parallelisms over the same underlying hash table design. From

these experiments, we observe that, irrespective of the hash

table vectorization approach being leveraged, it is vital to

employ SIMD vector widths that enable minimal memory/-

cache accesses for optimal performance. We also observe that:

(a) the vertical SIMD approach over a 3-way cuckoo hash

table with AVX-512 (512-bit vectors), and, (b) the horizontal

AVX2-based SIMD approach (256-bit vectors) over a 2-way

bucketized cuckoo hash table with 4 slots-per-bucket, can

provide the best lookup performance benefits across uniform

and skewed access patterns.

We validate our performance studies with SimdHT-

Bench by integrating these SIMD-aware designs into a

high-performance in-memory key-value store like RDMA-

Memcached [23], [24], and contrast it with the state-of-

the-art non-SIMD CPU-optimized MemC3 [12] backend de-

sign. Our performance evaluations show that ‘SIMD+RDMA-

Memcached’ can achieve about 1.45x–2.04x improvement in

server-side Get throughput and 10%–34% improvement in

the end-to-end ‘Multi-Get’ latencies, over ‘MemC3+RDMA-

Memcached’, on a high-performance compute (HPC) cluster

with Intel Skylake CPUs and InfiniBand EDR interconnects.

The rest of the paper is organized as follows. Section II

presents the necessary background and related work. Sec-

tion III characterizes SIMD-aware cuckoo hash table designs.

Section IV describes SimdHT-Bench and Section V presents

performance studies. Section VI discusses our key-value store

use-case. We conclude in Section VII with future work.

Research Work
Design Dimensions

Memory Layout
#Slots-Per-Bucket x

(Key Size, Payload Size)

N-way
Hashing

SIMD-aware
Design

MemC3 [12] 4 x (1 B, 8 B) 2-way No

SILT [18] 4 x (2 B, 4 B) 2-way No

CuckooSwitch [17] 4 x (6 B, 2 B) 2-way No

Vectorized
BCHT [1], [25]

2 x (4 B, 4 B)
8 x (4 B ,4 B)

2-way

Yes
(SSE for CPU,

AVX-512 for Phi)

Vectorized Cuckoo
HT [1]

1x(4 B, 4 B) 2-way

Yes
(AVX2 for CPU,
AVX-512 for Phi)

Cuckoo++ [8]
8x 2B, 48B

*payload = per-bucket-metadata
2-way Yes (SSE)

DPDK [9] 8 x (4 B, 8 B) 2-way Yes (SSE)

TABLE I
STATE-OF-THE-ART RESEARCH WORKS EMPLOYING CPU-OPTIMIZED

CUCKOO HASH TABLE VARIANTS

II. BACKGROUND & RELATED WORK

In this section, we provide an overview of the basics of

cuckoo hashing and the state-of-the-art SIMD-aware hash table

179

Authorized licensed use limited to: The Ohio State University. Downloaded on September 20,2020 at 22:00:08 UTC from IEEE Xplore. Restrictions apply.

designs in the literature.

A. Cuckoo Hashing: The Basics

Since we are interested in read-dominated workloads, we

focus on cuckoo hashing [21], [26], which enables a key-

value pair to be located3, i.e, a hash table lookup, using a

constant number of memory accesses (unlike other collision

resolution hash table schemes such as chaining, linear probing,

etc.). Cuckoo hashing is a well-known open-addressing based

hashing scheme, that maintains two hash functions (h1 and

h2), such that, a key can be found in exactly one of two

locations (or hash buckets). It achieves this simplicity by

shifting the complexity from lookup to insertion.

New insertions can potentially relocate an existing key-value

pair to its alternative bucket if both h1 and h2 are occupied.

The “re-hashing” continues until an empty hash table entry

is found. This process is time-consuming and is amortized

only as long as the load factor1,4 is below 50%. However, a

small load factor hurts the hit rate and memory occupancy of

the hash table. To overcome this, practical high-performance

variants [12], [17], [18] employ two approaches:

1) N-way Cuckoo Hashing (N-way): This approach enables

a higher load factor by employing more than two hash

functions. This generic variant of the basic cuckoo hash table

is referred to as N-way hashing, as it provides ‘N’ potential

hash buckets to locate a given key. It follows a vertical layout

design, as presented in Figure 1(a).

h1(k)

kn,vn
hN(k)

: :

k2,v2

k1,v1
h1(k)

bN
hN(k)

:
:

b

b1

k1 k2 .. km v1 v2 .. vm

(key `k')

Hash Table Hash Table

(key `k')

(a) N-way Cuckoo Hash Table (b) (N,m) Bucketized Cuckoo Hash Table

Fig. 1. High-Performance Cuckoo Hash Table Variants

2) Bucketized Cuckoo Hash Table (BCHT): Bucketized

cuckoo hash table is a variant of the N-way cuckoo hash

table that enables more than one key-value pair to be stored

into each hash bucket. By doing so, it lowers the probability

of re-location and improves load factor without needing to

increase ‘N’. It follows an (N, m) set-associative hash table

design, with N-way hashing and ‘m’ slots-per-hash bucket as

presented in Figure 1(b). The hash table size is (N*m) for a

bucketized (N,m) cuckoo hashing (NOTE: an N-way cuckoo

HT is intuitively an (N,1) BCHT).

We summarize the load factor improvements observed with

these two variants, based on studies from [22], in Figure 2. For

our discussions, load factor indicates the maximum load factor

(i.e., max. number-of-items that can be inserted) for a given

hash table design. From Figure 2, we can see that different

3‘value’ associated with a key-value pair is also referred to as ‘payload’
4For load factor, ‘number-of-items-that-can-be-inserted’ is typically less

than the ‘hash-table-size’ due to probability of cuckoo re-hashing.

cuckoo hash table variants enable different hash table memory

occupancy characteristics. This ‘load factor’ determines the

hit rate of the system whose index it maintains, and can, in

turn, affect performance. For instance, as compared to the non-

bucketized 2-way cuckoo hash table (LF = 0.5):

(a) increasing slots-per-bucket to 4, i.e., a (2,4) BCHT can

increase the load factor to 93%. Additionally, if we can fit

each bucket into fewer cache-lines, as in [8], [12], we can

enable high throughput for look-ups by reducing the number

of memory accesses.

(b) increasing N from two to three, i.e., 3-way cuckoo hashing,

we can improve the load factor to 91%. However, this comes at

the cost of an additional hash bucket access over 2-way cuckoo

hashing (three memory access in the worst-case), spanning

multiple cache-lines.

49%

91%

97%

86%

97%

99%

93%

98%

99%

96%

99%

100%

1

2

3

4

5

-2^1 2^ 2^1 2^2 2^3 2^4
N

o
.

o
f

H
a

s
h

 F
u

n
c
ti

o
n

s

No. of Slots-Per-Bucket

1 2 4 8

Fig. 2. Cuckoo Hash Table Variants [22], [27]: Load Factor vs. N-way
Hashing vs. BCHT; 1 slot-per-bucket = non-bucketized ‘N-way’ cuckoo hash
table (represented in blue); For BCHT, N = 2, 3, 4 and #slots-per-BCHT-
bucket = 2, 4, 8 (represented in yellow)

B. SIMD-Aware Hash Table Designs: Related Work

The idea of employing SIMD vectorization to improve the

performance of critical data structures has been well studied

in the field of database systems. We provide an overview of

some of these related research works, that has served as a

motivation for this paper.

For accelerating hash table lookups for database and

networking application use-cases, various non-SIMD CPU-

optimized and SIMD-aware research works have been pro-

posed, as summarized in Table I-B. Similarly, using SIMD

instructions to enable other data-parallel database operators

such as scan, join, aggregation [1], [2], [28], etc., and for data

structures like bloom filters [3], [4], [6] have also been well

studied. Specific to key-value stores, recent work by Pilman et.

al [28] focuses on improving scan performance for complex

analytical queries. As an orthogonal approach, SIMD-aware

designs have also been studied over offload-based accelerators

like GPGPUs [29], [30]. They leverage the high memory

bandwidth of modern GPUs and its data hiding capabilities to

achieve a higher hash table lookup performance at the server.

III. CHARACTERIZING SIMD-AWARE HT DESIGNS

In this section, we focus on understanding existing high-

performance cuckoo hash table variants, and define newer

180

Authorized licensed use limited to: The Ohio State University. Downloaded on September 20,2020 at 22:00:08 UTC from IEEE Xplore. Restrictions apply.

dimensions introduced by SIMD-aware designs.

A. Basic Design Considerations

From the research works presented in Section II-B, we

observe that several application workloads [8], [12], [25], [30]

leverage cuckoo hash table variants to enable faster lookups.

As seen from Table I-B, these high-performance cuckoo hash

table implementations employ different in-memory layouts

that cater to their specific application needs. These workload-

specific design dimensions can be characterized as follows:

1) Memory Layout: If we map the different hash table

layouts in Table I-B to Figure 2, we observe that almost all use-

cases explore hash table designs that ensure a high load factor

(>90%). As detailed in Section II-A and Figure 2, this can

be enabled using two approaches for (N,m) cuckoo hashing:

(a) increasing the number of slots-per-bucket (i.e., ‘m’), or, (b)

increasing the buckets a key is mapped to, i.e., number of hash

functions (i.e., ‘N’); each of which has a different memory

access cost. Based on the key/payload sizes, the choice of ‘N’

and ‘m’ defines a unique ‘memory layout’. This specifies our

first generic design dimension; one that has been well-studied

in the non-SIMD scenario, as seen from Table I-B.

2) Workload Data Access Pattern: While we focus our

studies on read-dominated workloads, various hash table ap-

plication scenarios have vastly different access patterns. For

instance, key-value store workloads are dominated by skewed

data accesses (where some keys are more frequently queried

over others) [12], [15]. Conversely, hash table accesses in

network packet processing applications follow a more uniform

access pattern [8], [17]. Thus, the workload access pattern

defines our second basic design dimension.

B. Defining SIMD-Aware Dimensions

From the research works in Table I-B, that present designs

to exploit CPU’s vectorization capabilities to accelerate hash

table lookups, we observe that leveraging CPU vectorization

introduces two new SIMD-specific hash table design dimen-

sions to consider.

1) SIMD Vectorization Approach – Horizontal vs. Vertical:

For leveraging SIMD to accelerate cuckoo hash tables, the

first question that needs to be answered is: In what ways

can we leverage SIMD vectorization to accelerate hash

table lookups? This defines our first SIMD-Aware design

dimension. As discussed in [1], we find that this can be

achieved along with two software/algorithmic approaches:

(a) Horizontal SIMD Vectorization: Consider a bucketized

cuckoo hash table with two or more slots-per-bucket. Rather

than individually comparing a given key against every single

key in the designated hash bucket(s), we can load an entire

bucket onto a CPU vector and probe all possible hash locations

in parallel. For example, consider the 2-way bucketized cuckoo

hash table with 4 slots-per-bucket with 32-bit keys/payloads,

as depicted in Figure 3(a). With this, we can load both hash

buckets designated for a given key ‘k’ into a 256-bit vector

and search all 8 possible hash table locations in one AVX

compare instruction. Since this approach exploits SIMD for a

single key-value pair lookup across multiple slots in a bucket,

it can be considered as a reduction operation and is referred

to as the horizontal vectorization approach [5], [8], [30].

(b) Vertical SIMD Vectorization: The fundamental prin-

ciple involved in this approach is to process a different key

per SIMD lane. This enables a true SIMD approach as we can

lookup ‘w’ keys in the hash table in parallel5. For instance,

consider the 2-way cuckoo hash table with 32-bit key and

payload, as depicted in Figure 3(b). With this approach, we

can gather distinct keys from 8 different hash locations (i.e.,

[h(k1), h(k2), ..., h(kw)] with ‘w’=8) corresponding to keys in

the input (i.e., [k1, k2, ..., kw]) , and thus search for 8 different

keys in parallel with one AVX compare instruction. Since this

approach exploits SIMD to process multiple keys in parallel

and returns a vector of values corresponding to the matching

keys, it is referred to as the vertical vectorization approach

(and explored in [1], [6]).

2) SIMD Parallelism – SSE vs. AVX2 vs. AVX-512: Today’s

latest Intel Skylake and Cascade Lake nodes [19], [20] support

SSE (128-bit), AVX2 (256-bit), and AVX-512 (512-bit) vector

instructions. Thus, for a given SIMD vectorization approach,

we have the option to leverage different CPU-SIMD vector

widths. This leads us to our second SIMD-centric question:

How much SIMD parallelism can we exploit from the un-

derlying CPU hardware to accelerate hash table lookups?

For example, for the horizontal vectorization approach pre-

sented in Figure 3(a) for a 2-way bucketized cuckoo hash

table with 4 slots-per-bucket, we could use: (a) 256-bit vectors

to lookup all 8 locations in parallel (w=8) in a pessimistic

fashion, or, (b) use 128-bit vectors to lookup a single bucket

at a time (i.e., 4 hash locations in parallel; w=4) in an

optimistic fashion. Similarly, for the 2-way cuckoo hash table

in Figure 3(b) that employs vertical vectorization via AVX2 to

lookup 8 keys (w=8) in parallel, we could also employ AVX-

512 to lookup 16 keys (w=16) in parallel instead. Thus, the

choice of ‘w’ is our second SIMD-aware design dimension.

To facilitate studying the different SIMD-aware and

workload-centric hash table design choices, we present the

“SimdHT-Bench” micro-benchmark suite.

IV. BENCHMARKING SIMD-AWARE HT WORKLOADS

Our goals for SimdHT-Bench are two-fold: First, based on

design dimensions discussed in Section III-B, we determine

which SIMD-aware designs fit the desired application work-

load characteristics. Second, we build and study the lookup

performance benefits that can be enabled by each of SIMD-

aware design variants calculated. With such a framework, we

can help determine if SIMD-aware parallel approaches for the

hash table (HT) lookups can benefit the application workload

characteristics in question.

A. Overview of SimdHT-Bench Micro-benchmark Suite

To meet the above goals, we design our proposed SimdHT-

Bench to capture the essence of various aspects of cuckoo

5‘w’ is referred to as the SIMD width

181

Authorized licensed use limited to: The Ohio State University. Downloaded on September 20,2020 at 22:00:08 UTC from IEEE Xplore. Restrictions apply.

(pack two buckets into a vector)

k1
k1 ReduceHash1

...
k1
k2
k3
k4
...

h1
h2

b1
b4
...
b3
b2
...

...

...

...

...

...

...

(Horizontal)

Load

k2
k1
k5
k7

(try alternative buckets [3..N] if match not found for k1, when N > 2)

(bucket
b1, b2)

Match

:

v1
k10
k9
k8

k12

v2
v1
v5
v7

v10
v9
v8

v12

k1

k1
k1
k1
k1
k1
k1

(a) Horizontal Vectorization Example: First Iteration with key ‘k1’ over (2,4)
BCHT; Repeats (n-1) times for ‘n’ keys in input array

GatherHash1

...
k1
k2
k3
:

k8

Load
k1
k4
...
k2
k8
...

...

...

...

...

...

...

Match

(try alternative bucket [2..N] for keys [k1,..,k8] with missing matches, when N >= 2)

(Vertical)

Gather

(mask) (mask)

:
:

(mask)

k2
k1

k3
k4
k5
k6
k7
k8

k2
k1

k3
k4

k12
k6
k7
k8

v2
v1

v3
v4

v6
v7
v8

h2
h1

h3
h4
h5
h6
h7
h8

(mismatch)

...

:
:

(b) Vertical Vectorization Example: First Iteration with keys k1,..,k4 over
2-way Cuckoo HT; Repeats (n/w-1) times for ‘n’ keys in input array

Fig. 3. Vectorization-based Parallel Key Lookups for SIMD CPUs: Illustration with 2-way cuckoo hash table with bucketized layout with 4 slots-per-bucket
and non-bucketized 2-way Cuckoo HT); key/payload size (bits) = (32, 32) and length of vector = 256 bits; ‘pink’ in mask refers to a ‘match’

HT workloads. As shown in Figure 4, our proposed micro-

benchmark suite contains the following modules:

1) Configurable Input Parameters: The benchmark’s input

interface enables the user to specify the workload characteris-

tics, like, (a) HT layout and size, (b) key/value sizes (key and

payload stored in the HT), and (c) workload access pattern.

It optionally enables specifying the SIMD vector lengths5 and

vectorization approaches (horizontal or vertical) to consider.

2) Workload/Table Generator: The table generator creates

an HT with layout [N = no. of hash functions for cuckoo hash-

ing, m = slots-per-bucket, layout = bucketized/non-bucketized,

k = key’s hash size, v = payload size, b = HT size] and a

desired load factor (LF). The workload generator is designed

as a pluggable module that creates a list of keys to query, to

enable evaluating user-specified access patterns. For this paper,

we focus our design framework for read-only workloads.

We currently support skewed and uniform distributions. For

skewed, we plug-in “mutilate” workload generator [15], [31],

that emulates an access pattern typical to key-value stores like

Memcached. The workload pattern parameter also determines

the number of worker threads (i.e., working cores) and if the

table is shared or dedicated per-core.

Benchmark Input Interface
*[HT Layout, KV Size, Access Pattern, Load Factor]

*Optional [SIMD width, Vectorization Approach]

Performance Statistics
*SIMD Design Choices
*HT Performance Stats

(User Input -- Configurable Parameters) (Benchmark Output)

Table Generator
[HT Layout, Load
Factor, KV Size]

Workload Generator
[Access Pattern,

KV Size]

SIMD Algo. Validation
Engine [SIMD width,

Vectorization Algo, KV Size]

Performance Engine

SIMD Design Choices

Scalar
BCHT

Horizontal Vectorized
(V-Hor)

Scalar
N-way

Vertical Vectorized
(V-Ver)

SIMD-Capable Multi-Core CPUs DRAM

Fig. 4. Micro-benchmark Suite Design

3) SIMD Algorithm Validation Engine: The SIMD algo-

rithm validation engine determines which CPU-SIMD vector

lengths and SIMD vectorization approaches fit the given user-

specific HT layout. It creates a list of these viable SIMD-

aware HT design choices that can be used to study the lookup

performance. We describe it in Section IV-B.

4) Performance Engine: The performance engine loads

and queries the cuckoo HT for each of the design choices

listed, using the workload pattern generated. For each of the

SIMD-based design choices, it does a compare-and-contrast

with the corresponding non-SIMD aware (scalar) version of

the vectorization-based lookup algorithm, and computes the

HT throughput performance. Finally, the SIMD-aware design

choices and their performance comparison stats are returned

to the user.

B. Determining SIMD-Centric Design Choices

From Figure 2, we observe that, for a given load factor,

there are various bucketized (N,m) and non-bucketized (N-

way) cuckoo HT variants. Also, from Section III-B, we see

that the two vectorization-based parallel lookup approaches

can be enabled by varying SIMD vector widths. Based on

these, we can easily determine a list of possible SIMD-

aware design combinations. However, we need to determine

if each of these combinations can be supported by: (a) the

application workload in question (specified by the configurable

input parameters), and, (b) the underlying CPU architecture.

Towards enabling this validation, we present two validators to

help filter out viable SIMD design candidates: (a) Horizontal-

over-BCHT Validator for the bucketized table layout, and,

(b) Vertical-over-CuckooHT Validator for the non-bucketized

cuckoo HT layout.

The ‘Horizontal-over-BCHT’ validator, presented as func-

tion ‘HorV-Valid’ in Algo. 1, checks if one or more hash

buckets (containing keys and payloads) can fit into the CPU

vector of width ‘w’. Similarly, the ‘Vertical-over-CuckooHT’

validator, presented as function ‘VerV-Valid’ in Algo. 2, de-

termines if it can fit two or more keys to probe in-parallel

onto the CPU vector of width ‘w’. For the corresponding

non-SIMD versions, all vector instructions are replaced with

scalar load/store/compare operations. Additionally, for these

scalar counterparts, we have: (a) for the non-SIMD BCHT,

‘bucks-per-vec’=1 in Algo. 1, and, (b) for the non-SIMD N-

way cuckoo HT, ‘keys-per-iter’=1 in Algo. 2.

C. Implementing Generic Templates for SIMD-Aware Designs

To study SIMD-aware HT lookup operations, we design

generic templates for the horizontal and vertical vectorization

approaches discussed in Section III-B, to support varying CPU

vector widths (based on [1]). We generically define the dif-

ferent vector operations as vec <operation>x,W (), wherein,

‘W’ signifies the length of the CPU vector (in bits), and,

182

Authorized licensed use limited to: The Ohio State University. Downloaded on September 20,2020 at 22:00:08 UTC from IEEE Xplore. Restrictions apply.

‘x’ the width of each lane within the vector (such that

‘W’/‘x’= SIMD width ‘w’). We define function wrappers for

the underlying vector instructions supported to enable running

our experiments. For instance, for a 256-bit vector over 32-bit

keys, we have vec cmpeq32,256, i.e., we need to employ the

AVX2 compare instruction _mm256_cmpeq_epi32.

Now, while these templates give a generic representation of

the vectorization-based lookups, similar to [1], we have:

(a) for vertical, we try to reduce the number of cache accesses

by packing the vec_gather_key and vec_gather_val

gathers into fewer wider gathers (e.g., 16-way 32-bit gathers

vs. 8-way 64-bit gathers for AVX-512), and,

(b) for horizontal, we try to leverage vector instructions to

calculate the hash buckets of multiple keys in parallel (i.e.,

calc_N_hash_buckets).

Algorithm 1: Horizontal Vectorization Template

Result: Returns Lookup Throughput (Lookups/s)
Input : SIMD width ‘w’, HT Layout ‘(N,m)’, Key Size ‘ks’, Val

Size ‘vs’, Workload ‘p k[n]’
Output: Throughput

1 Function HorV-Valid(w, (N,m), k, v):
2

3 assert(m > 1) ⊲ check if layout is BCHT

4 if (w >= (k + v) ∗m) then
5 Buckets-Per-Vector = ceil(N ∗ ((k + v) ∗m)/w)

⊲ calculate no. of buckets fit into

vector width ‘w’

6 return True, Buckets-Per-Vector
7 else
8 return False, 0
9 end

10

11 declare V[1..n]
12 start timer(t);
13 assert(bucks-per-vec = HorV-Valid(w,N,m, ks, vs)) ⊲ HOR-Vec

14 for (each k in p k[]) {
15 H[1..N] = calc N hash buckets(k)
16 for (each i in N / bucks-per-vec) {

17
−→
k = vec set lanesks,w(k); ⊲ replicated key k

onto all lanes of vector

18
−→
b = vec load bucketsks,w(H , w, bucks-per-vec)

−→
tk ,

−→
tv =

vec shuffle and blendks,w((
−→
b , m); ⊲ extract and

separate keys and values from bucket

19
−−−−→
match = vec cmpeqks,w(

−→
tk ,

−→
k)

20 Vk = vec reducevs,w(
−−−−→
match,

−→
tv ⊲ reduce vector

to find matching payload

21 }
22 }
23 end timer(t);

24 return calc thr(t, n);

D. Leveraging SimdHT-Bench for Application Studies

To enable a new application to leverage SimdHT-Bench, we

require the following two steps: (a) plug-in a new workload

pattern that mimics the application into the framework’s plug-

gable workload generator, and, (b) design new templates for

any additional functionality beyond lookups. For instance, if

we want to support HT updates in addition to parallel-lookups,

a new access pattern with HT insert/delete operations can be

easily accommodated into the pluggable workload generator.

Algorithm 2: Vertical Vectorization Template

Result: Returns Lookup Throughput (Lookups/s)
Input : SIMD width ‘w’, HT Layout ‘N’, Key Size ‘ks’, Val Size

‘vs’, Workload ‘p k[n]’
Output: Throughput

1 Function VerV-Valid(w, k, v):

2

3 assert(is power of two(k)) ⊲ check if layout is

N-way HT

4 if (w > (k + v)) then

5 Keys-Per-Iteration = w/k
⊲ calculate number of keys that can be

probed in parallel

6 return True, Keys-Per-Iteration
7 else

8 return False, 0
9 end

10

11 declare V[1..n]
12 start timer(t);
13 assert(keys-per-iter = VerV-Valid(w,N, ks, vs)) ⊲ VER-Vec

14 for (each k[] in p k[]; steps of ‘keys-per-iter’) {

15
−→
k = vec load lanesks,w(k); ⊲ replicated key k onto

all lanes of vector

16
−→
h = vec calc hashks,w(

−→
k); ⊲ calculate hash with

one key-per-lane from k[]

17
−→
tk = vec gather keyks,w(

−→
k); ⊲ gather key from hash

buckets per lane

18
−−−−→
match = vec cmpeqks,w(

−→
tk ,

−→
k)

19
−→
tv = vec gather valvs,w(

−−−−→
match,

−→
h); ⊲ gather key

from hash buckets per lane

20 vec store valvs(Vk ,
−→
tv)

⊲ store value results computed from vector

to memory

21 }
22 end timer(t);

23 return calc thr(t, n);

Based on SimdHT-Bench, we present detailed evaluations

over different CPU architectures in the following section.

V. PERFORMANCE STUDIES

In this section, we present the results of our in-depth anal-

ysis of the SIMD-aware cuckoo hash table (HT) designs over

the latest multi-core CPU architectures, with SimdHT-Bench.

We divide our evaluations into the following categories: (1)

Stand-alone HT performance with vectorization-based parallel

searching algorithms, and, (2) Evaluations with RDMA-based

Memcached using Memslap micro-benchmarks with integrated

SIMD-aware HT.

A. Experimental Setup

We use the following three HPC clusters for our evaluations:

Cluster A: Each node in this testbed is provisioned with 40-

core Intel Skylake, with dual 20-cores Gold 6148 processors,

192 GB DRAM, and connected via Dual Port EDR Mellanox

InfiniBand EDR interconnects (100 Gbps).

Cluster B: Each node in this testbed is provisioned with

Intel Skylake dual fourteen-core processors (28-cores), 128 GB

DRAM, connected via Mellanox InfiniBand EDR intercon-

nects (100 Gbps).

Cluster C: In this testbed, each node is provisioned with Intel

183

Authorized licensed use limited to: The Ohio State University. Downloaded on September 20,2020 at 22:00:08 UTC from IEEE Xplore. Restrictions apply.

Cascade Lake-SP, with 48 cores on two sockets (24 cores-per-

socket), supporting a total of 96 hardware threads per node

(48 x 2 threads-per-core). It is equipped with 192 GB DRAM.

For all our experiments, we use full-subscription mode,

i.e., we run one-process-per-core for all cores on the test

node over a ‘shared’ HT, unless specified otherwise. For

each experiment, we present the average of five runs and

measure lookup performance as average throughput per core

(per process) in billion lookups/sec. We present studies with

different cuckoo HT variants discussed in Section II-A. We

denote the bucketized cuckoo HT as ‘(N, m) BCHT’ (‘m’>1)

and the non-bucketized cuckoo HT as ‘N-way cuckoo HT’

(‘m’ = 1) in our analysis, and compare each of them with their

non-SIMD counterparts. We refer to the SIMD-aware (N, m)

BCHT and N-way cuckoo HT as ‘Vector’, and, its non-SIMD

equivalents as ‘Scalar’ in the experimental figures to follow.

B. Case Study 1©: Horizontal vs. Vertical SIMD Approaches

For our first case study (Case Study 1©(a)), we base our

experiments on the SIMD-aware cuckoo HT studies in [1] for

database workloads. While they restrict the load factor to 50%

to explore 2-way cuckoo HT and (2, 2) BCHT, we extend

these studies to a load factor (LF) of 90% to generate our

table and configure the data access pattern with a 90% hit

rate6 for both skewed and uniform distributions. This study

also attempts to compare the two different SIMD approaches

(horizontal-vs.-vertical) and also contrasts different access pat-

terns (uniform-vs.-skew) and SIMD widths. To study SimdHT-

Bench’s validation and performance engine, we supply these

input parameters to our benchmark interface, and enable it to

generate different cuckoo HT suitable for this workload.

*(k,v) = (32, 32); ‘w’ = 128, 256, 512

*****skylake

*(2,1) -> V-Ver, Opts: 256 bit - 8 keys/it, Opts:

512 bit - 16 keys/it

*(3,1) -> V-Ver, Opts: 256 bit - 8 keys/it, Opts:

512 bit - 16 keys/it

*(4,1) -> V-Ver, Opts: 256 bit - 8 keys/it, Opts:

512 bit - 16 keys/it

*(2, 2) -> V-Hor, Opts: 128 bit - 1 bucket/vec, Opts

: 256 bit - 2 bucket/vec

*(2, 4) -> V-Hor, Opts: 256 bit - 1 bucket/vec, Opts

: 512 bit - 2 bucket/vec

*(2, 8) -> V-Hor, Opts: 512 bit - 1 bucket/vec

*(3, 2) -> V-Hor, Opts: 128 bit - 1 bucket/vec, Opts

: 256 bit - 2 bucket/vec

*(3,4) -> V-Hor, Opts: 256 bit - 1 bucket/vec, Opts:

512 bit - 2 bucket/vec

*(3,8) -> V-Hor, Opts: 512 bit - 1 bucket/vec

Listing 1. SIMD-Aware Cuckoo HT Design Choices Output

For this experiment, for each (N, m) cuckoo HT design,

we: (a) vary ‘N’ between 2–4 for the non-bucketized cuckoo

HT, and, (b) vary ‘N’ between 2–3 and ‘m’ between 2–8. We

run these experiments on a single 40 core node on Cluster

A. Figure 5 presents the performance comparisons for various

SIMD-aware designs based on the Listing 1. For each (N,

m) variant, we present the performance w.r.t the top listed

6hit rate (or selectivity) refers to the number of input keys that are likely
to be found in the hash table

SIMD approach that utilizes the smallest SIMD width vector.

We study the performance for both uniform and skewed key

data access distributions. From this figure, for small HT size,

the non-SIMD variants with the smaller ‘m’ seems to give

the best performance. Most importantly, we observe that the

two vectorization-based approaches can benefit up to 2.97x for

uniform distribution.

For skewed distribution, the benefit pattern seems different:

• The non-SIMD (scalar) variants can maintain a higher

performance for a skewed pattern as compared to a

uniform distribution. It can leverage the basic temporal

cache locality for frequently accessed keys. Thus, for

BCHT, the benefit of horizontal vectorization is small for

‘m=2’, and increases from 1.23x to 1.98x with ‘m=4’.

• For N-way hashing, however, we observe benefits of

about 1.67x–1.97x to maintain load factor at around 90%

with ‘N=3 or 4’. It can enable up to 2.45x benefits if we

choose to support a very small load factor with ‘N=2’.

For the second set of experiments (Case Study 1©(b)), we

extend the above studies to varying key-value pair sizes and

out-of-cache HT sizes. Figure 6 presents the performance

results for varying HT sizes (between 256 KB that fits in

L2 cache of 1 MB to 4 MB and 64 MB). We employ a load

factor of 90% and a hit rate of 90% with the uniform data

access pattern. From this figure, we can observe that as the

HT size increases from 256 KB to 64 MB the benefits of both

horizontal and vertical vectorization approaches reduces from

an average 3.5x to about 1.5x on Intel Skylake nodes.

From an overall perspective, we observe that:

Observation 1©: For HT that fits into the cache, contrasting

the different (N, m) variants across bucketized and N-way

hashing, we observe that 3-way cuckoo HT and (2, 4) BCHT

provide the best sustainable benefits of about 1.4x – 1.95x

for a maximum load factor of about 90%. For a load factor

less than 50%, employing 2-way cuckoo HT with a vertical

approach can give the best performance as compared to the

horizontal approach. The latter is also observed in [1], that

compares 2-way cuckoo HT with AVX2 (V-Ver) in contrast to

(2, 2) BCHT (V-Hor) with SSE for LF=50%.

C. Case Study 2©: Supporting 16-bit and 64-bit Hash Keys

Various workloads [8], [12] need to support variable-length

keys and payloads. These variable-length keys are stored in

HT as using 32-bit/64-bit/16-bit hashes. We try to illustrate

a scenario and contrast it with Case Study 1©. Further, this

case study contrasts the two SIMD approaches (horizontal-

vs.-vertical) with the HT size. Figure 7(a) presents the perfor-

mance results for varying key-value pair sizes: (a) for larger-

than-integer, i.e, (K,V) = (64 bits, 64 bits) over 3-way cuckoo

HT, and, (b) mixed payload sizes scenario, i.e., K,V = (16 bits,

32 bits) over (2, 8) BCHT. We employ load factor of 90%, hit

rate of 90%, 512 KB HT size, to showcase both skewed and

uniform data access patterns.

From Figure 7(a), we can see that, for non-SIMD variants

of both (a) and (b), there are no significant variations in

performance as compared to (K,V) = (32, 32) (Figure 5), as the

184

Authorized licensed use limited to: The Ohio State University. Downloaded on September 20,2020 at 22:00:08 UTC from IEEE Xplore. Restrictions apply.

5.51

5.09

4.65

5.04

5.57

4.33

3.65

3.12

3.09

1

2

3

4

5

1 2 4 8

3.58

3.23

2.44

2.44

2.09

2.03

1.89

1.85

1.78

1

2

3

4

5

-2^1 2^ 2^1 2^2 2^3 2^4

N
o

.
o

f
H

a
sh

 F
u

n
ct

io
n

s

1 2 4 8

12.64

9.93

7.72

6.22

5.84

7.26

7.07

5.27

4.97

1

2

3

4

5

1 2 4 8

8.74

9.60

5.01

4.49

3.59

6.11

5.09

4.49

3.93

1

2

3

4

5

No. of Slots-Per-Bucket (Bubble = Billion Lookups / Second)

1 2 4 8

(Uniform - Scalar) (Uniform - Vector)

(Skew- Scalar) (Skew - Vector)

Vertical Horizontal

Fig. 5. Case Study 1©(a): Contrasting SIMD Vectorization Approaches on Intel Skylake: 1
MB HT Size, (K,V) = (32 bits, 32 bits) LF=90% and Hit Rate 90%; Each ‘bubble’ in this
graph represents the lookup performance in billion lookups/sec; ‘Blue’ represents vertical
vectorization over N-way cuckoo HT (1 slot-per-bucket / non-bucketized) and ‘Yellow’
represents (N, m) bucketized cuckoo HT variants; Best performance marked in ‘Red’ and
best LF-performance combination in ‘Green’

0

4

8

12

16

20

(2
,4

)

(2
,8

)

(2
,4

)

(2
,8

)

(2
,4

)

(2
,8

)

2
-w

ay

3
-w

ay

2
-w

ay

3
-w

ay

2
-w

ay

3
-w

ay

256
KB

4
MB

64
MB

256
KB

4
MB

64
MB

Horizontal +
BCHT

Vertical +
Cuckoo-HT

T
h
ro

u
g
h
p
u
t

b
il

li
o
n
 l

o
o
k
u
p
s/

se
co

n
d

Hash
Table
Size

Scalar Vector

Fig. 6. Case Study 1©(b): Performance with Varying
Hash Table Sizes on Intel Skylake for Uniform Data
Access Pattern

number of cache-lines accessed does not change. For (K, V)

= (16, 32), the horizontal SIMD approach over (2, 8) BCHT

observes about 4.16x improvement over its non-SIMD variant

with AVX-256. However, for (K, V) = (64, 64), we observe

that the lookup performance gains only 1.37x with the vertical

approach, i.e., a 40% slower compared to running over (K, V)

= (32, 32). While we do perform the same number of gather

operations (up to three for keys and one for value with 3-way

cuckoo), we lose performance as AVX2/AVX-512 support a

maximum gather size of 64-bits per lane (i.e., eight different

cache-lines per gather) on the latest CPU architectures. Thus,

we can no longer leverage fewer wider gather to minimize the

number of cache-line accesses as in the case of 32-bit keys,

as discussed in Section IV and [1].

Specifically for vertical SIMD, we find that:

Observation 2©: For the vertical SIMD approach over N-

way cuckoo HTs, enabling fewer wider gathers is critical for

performance, irrespective of SIMD vector width. Thus, there

is a need for either: (a) hardware-optimized ‘gather’ intrinsics

can take some prefetching hints, or, (b) wider-than-64 bit

‘gather’ operations.

D. Case Study 3©: AVX2 vs. AVX-512

From Figure 5 and Figure 7(a) , we observe that enabling

a larger ‘m’ (e.g., (2, 4) vs. (2, 8)) for BCHT via wider

SIMD vectors does not demonstrate any considerable benefits.

To understand the impact of SIMD vector widths further,

Figure 7(b) extends the above experiment to run performance

comparisons with 3-way cuckoo HT and (2, 8) BCHT, with

256-bit and 512-bit vector instructions. For 3-way cuckoo HT,

this means contrasting the SIMD parallelism of 8 keys/iter-

ation with AVX2 and 16 keys/iteration with AVX-512. For

(2, 8) BCHT, this means looking up each of the two buckets

one at a time with AVX2 vs. loading both designated (N=2)

hash buckets for probing in parallel with AVX-512. We also

vary the number of concurrent processes (20 cores and 40

cores) probing the HT, to study the corresponding performance

impact. From Figure 7(b), we observe that:

Observation 3©: For N-way cuckoo hashing, increasing SIMD

vector width by two improves the performance by as little as

25%, for HTs that fit into the cache. No improvements are

observed for larger HTs, especially for a load factor >90%.

For BCHT, probing multiple hash buckets per-key in parallel

does not demonstrate significant performance benefits over

probing one bucket per vector instruction.

E. Case Study 4©: Intel Skylake vs. Intel Cascade Lake

To contrast performance on the latest CPU architectures,

across different access patterns (uniform-vs.-skew) and HT

sizes, we study the (2, 4) BCHT with horizontal SIMD

approach and 3-way cuckoo HT with vertical SIMD support on

an Intel Cascade Lake node on Cluster C running 68 processes

and contrast it with Intel Skylake node on Cluster A running 40

processes. Figure 8 presents results for the same, with a 90%

load factor and a 90% hit rate, over 1 MB and 16 MB HT sizes.

From this figure, we can observe that Cascade Lake maintains

a gain of about 1.5x over Skylake across both SIMD-aware

designs. However, for skewed workloads, 3-way vertical SIMD

can enable visible gains while (2, 4) BCHT performs similar

to its non-SIMD equivalent.

F. Case Study 5©: Can we use Vertical SIMD on BCHTs and

Horizontal SIMD on N-way Cuckoo HT?

Now, having restricted vertical SIMD to N-way cuckoo HTs

and horizontal SIMD to BCHTs for the previous case studies,

we now to explore if any hybrid vectorization approaches are

viable. Running horizontal SIMD on N-way cuckoo HT is

equivalent to its non-SIMD version as ‘m=1’. However, we

185

Authorized licensed use limited to: The Ohio State University. Downloaded on September 20,2020 at 22:00:08 UTC from IEEE Xplore. Restrictions apply.

0

3

6

9

12

Scalar
3-way

V-Ver
(3way)-512

Scalar
BCHT(2,8)

V-Hor
(2,8)-256

(64,64) (16,32)

T
h

ro
u

g
h

p
u

t
b

il
li

o
n

 l
o

o
k

u
p

s/
se

co
n

d

KV Sizes vs. Vectorization Approach

Unif Skew

(a) Case Study 2©: (K,V) = (64, 64) and (K,V) = (16, 32)

0

4

8

12

16

20

V
-V

e
r

(3
w

ay
)

V
-H

o
r

(2
,8

)

V
-V

e
r

(3
w

ay
)

V
-H

o
r

(2
,8

)

V
-V

e
r

(3
w

ay
)

V
-H

o
r

(2
,8

)

V
-V

e
r

(3
w

ay
)

V
-H

o
r

(2
,8

)

512 KB 8 MB 512 KB 8 MB

20 cores 40 cores

T
h
ro

u
g
h
p
u
t

b
il

li
o
n
 l

o
o
k
u
p
s/

se
co

n
d

SIMD width vs. Vectorization Approaches

256-bit Vector 512-bit Vector

(b) Case Study 3©: SIMD widths (AVX2 vs AVX-512)

Fig. 7. Lookup Performance with varying Key-Value Pair Sizes

0

4

8

12

16

Unif Skew Unif Skew Unif Skew Unif Skew

2,4 3-way 2,4 3-way

1 MB 16 MB

T
h
ro

u
g
h
p
u
t

b
il

li
o
n
 l

o
o
k
u
p
s/

se
c

Scalar (Skylake) Vector (Skylake)
Scalar (Cascade Lake) Vector (Cascade Lake)

Fig. 8. Case Study 4©: Contrasting Lookup Performance on Intel
Cascade Lake and Intel Skylake; Horizontal SIMD on (2, 4) BCHT
and Vertical SIMD on 3-way Cuckoo HT

0

4

8

12

16

Unif Skew Unif Skew Unif Skew Unif Skew

2-way 2,2 3-way 3,2

1 MB (Skylake) 16 MB (Cascade Lake)
T

h
ro

u
g
h
p
u
t

b
il

li
o
n
 l

o
o
k
u
p
s/

se
c Scalar Vector

Fig. 9. Case Study 5©: Applying Vertical Vectorization to (2, 2)
BCHT on Intel Skylake (1 MB HT size) and (3, 2) BCHT on Intel
Cascade Lake (16 MB HT size)

can enable vertical SIMD over BCHT by looping over the

‘m’ buckets for selective gathers (only gather those keys that

have not matched). We attempt to contrast the 2-way cuckoo

HT with the (2, 2) BCHT using vertical SIMD, on a node on

Cluster A, for 1 MB HT, and 3-way cuckoo HT with (3, 2)

BCHT with vertical SIMD on a node on Cluster C for 16 MB

HT. From Figure 9, we observe that, while the performance

drops by 1.45x when the no. of slots-per-bucket is increased,

it can still outperform the corresponding non-SIMD designs.

Thus, SimdHT-Bench’s unified benchmark platform enables

us to study various use-case scenarios arising in real-world HT

workloads, and extend them to emerging CPU architectures.

VI. BENCHMARK VALIDATION WITH IN-MEMORY

KEY-VALUE STORE USE-CASE

To validate the applicability of SimdHT-Bench, we present

the following key-value store (KVS) use-case. As discussed in

Section I, we focus on workloads with ‘Multi-Get’ requests,

i.e., MGet(K1, K2,..,Kn), which batches together access to

several key-value pairs, towards parallelizing read operations

across the key-value store server cluster.

A. Accelerating KVS Server with SIMD-Aware HT

As shown in Figure 10, the client-to-server pipeline for an

MGet operation can be broken down into three basic phases:

1) Request Phase: In this phase, each key in

MGet(K1,..,Kn) is mapped to a specific Memcached

server using consistent hashing, and requests are

(Client)

MGet(K1,K2,...,Kn)

(Server)

[2
] S

er
ve

r D
at

a
A

cc
es

s

[3] Response Phase
(Batched RDMA-IB Sends)

[2a] Pre-Processing Phase

[2b] HT Lookup Phase
Non SIMD vs. SIMD

(Horizontal Vectorization vs.
Vertical Vectorization)

[2c] Post-Processing Phase

[1] Request Phase
(RDMA-IB Sends)

Fig. 10. State-of-the-Art End-to-End Flow for MGet

batched by their respective servers, with key sizes

between 200 B to 12 KB.

2) Server Data Access Phase: Upon receipt of an ‘MGet’

request batch from the server’s communication engine,

the Memcached workers undertake the following steps:

(1) Pre-Processing: The incoming request of ‘N’ keys

(where ‘N’ <= mget size ‘n’) is parsed to extract

the individual keys. For each key, a corresponding 32-

bit hash value is computed to enable hash table (HT)

lookups (i.e., for probing the HT).

(2) Hash Table Lookup: In this phase, the HT is probed

to locate the payload (e.g., a key-value pair memory

pointer) corresponding to the 32-bit key hash. In this

case, we can potentially leverage CPU-SIMD data par-

allelism to accelerate key lookups. Once probing is

successful, the key-value pair identified is located and

read from backend memory slabs (or data cache), and is

verified against the client-supplied key string to ensure a

full match. These matched key-value pairs are returned

186

Authorized licensed use limited to: The Ohio State University. Downloaded on September 20,2020 at 22:00:08 UTC from IEEE Xplore. Restrictions apply.

0

50
100
150

200
250

300
350
400

0

5

10

15

20

25

30

35

16 keys 96 keys 16 keys 96 keys 16 keys 96 keys

MemC3 (Scalar) +
RDMA-Mem

Bucket-Cuckoo-Hor
(AVX-512) +
RDMA-Mem

Cuckoo-Ver (AVX-
512) + RDMA-Mem

S
e

rv
e

r-
S

id
e

 T
h

ro
u

g
h

p
u

t
(M

g
e

ts
/s

)

C
li

e
n

t-
S

id
e

 L
a

te
n

cy
 (

u
s)

Average Latency (us) Throughput (Mget/s)

(a) End-to-End Multi-Get Latency and Server-Side Get Throughput

0

5

10

15

20

25

16 keys 96 keys 16 keys 96 keys 16 keys 96 keys

MemC3 (Scalar) +
RDMA-Mem

Bucket-Cuckoo-Hor
(AVX-512) + RDMA-

Mem

Cuckoo-Ver (AVX-512)
+ RDMA-Mem

L
a
te

n
c
y
 B

re
a
k
d
o
w

n
 (

u
s) Pre-Processing Look-Up Post-Processing

(b) Server-Side Timewise Breakdown per Multi-Get request

Fig. 11. Integrating SIMD-Aware Cuckoo Hash Table Variants into RDMA-based Key-Value Store (RDMA-Memcached) [23], [32], [33]; Contrasting with
non-SIMD CPU-Optimized MemC3 [12] with Batch-Size (#Keys/Multi-Get) = 16 keys and 96 keys

to the communication engine.

(3) Post-Processing: Once the key-value pairs in the

batch are located at the server’s memory slabs, the

server updates its metadata to maintain cache freshness

(e.g., LRU updates for Memcached), and prepares the

response (containing located ‘value’ data per key or

NOT_FOUND) to be communicated to the client.

3) Response Phase: In this phase, the responses are com-

municated to the server and processed at the client.

With RDMA-Memcached ‘Get’ protocol, the request/re-

sponse phases batch the key/value data into multiple small

message transfers and communicated to the client using fast

two-sided RDMA SENDs. NOTE: The HT key and payload

data are different from the actual key-value pair data stored

in the server memory, which is typically a variable string of

binary data. The HT is indexed to locate this variable-length

key-value pair object, based on the hash value of the variable-

length key (i.e., hash(key) –>payload –>key-value pair data).

B. Performance Evaluations

Based on the performance studies in Figure 5, we choose to

integrate the following two designs into RDMA-Memcached:

(a) (2,4) BCHT with horizontal SIMD support, i.e., Bucket-

Cuckoo-Hor(AVX-256)+RDMA-Mem, and, (b) 3-way Cuckoo

HT with vertical SIMD support over AVX-512, i.e., Cuckoo-

Ver(AVX-512)+RDMA-Mem to accelerate ‘Multi-Get’ work-

loads. We employ HT key and payload3 sizes as 32 bits (4

bytes). However, since the key-value store HT lookups need to

return an object pointer (64-bit), we use the 32-bit HT payload

to index a shared array of object pointers. We contrast this

with RDMA-Memcached running with the CPU-optimized

non-SIMD MemC3 backend [12], [23], [33], that follows a

(2,4) BCHT layout with 8-bit hash keys and 64-bit pointers

to key-value pair objects as the value. For our analysis, we

use two nodes on Cluster B (see Section V), that is equipped

with 28-core Intel Skylake nodes and IB EDR (100 Gbps)

interconnects. We undertake this experiment over an RDMA-

Memcached server running 26 workers with an HT of size 2 M.

We use the “memslap” Multi-Get benchmark [34], configured

with 26 clients threads on the client node. We use 20 B keys

and 32 B values, with different MGet sizes (i.e., N keys per

request = 16 or 64).

From Figure 11(a), we can observe that the SIMD-aware

‘Hash Table Look-up’ phase gains about 1.45x–2.04x as

compared to the non-SIMD MemC3 design in server-side

throughput and up to 10%-34% in end-to-end MGet latencies.

To get a better perspective, Figure 11(b) presents the server-

side latency breakdown, portraying the three sub-phases of

the server’s data access discussed in Section VI-A. From this

figure, it is evident that the data-parallel SIMD-aware HT

lookups can reduce the server-side processing time per-batch

(‘Server Data Access Phase’) by up to 50%. We note that

the horizontal and vertical approaches do not demonstrate any

noticeable performance differences. Upon further analysis, we

find that this is due to the overhead of the non-SIMD key

matching step in the ‘Hash Table Lookup’ phase.

Thus, towards efficient co-designing, SimdHT-Bench can

help us evaluate the opportunities and applicability of SIMD-

aware HT designs for various application scenarios.

VII. CONCLUSION

In this paper, we present ‘SimdHT-Bench’, a micro-

benchmark suite with a holistic approach to studying the ap-

plicability of CPU SIMD-aware hash table designs for varied

application workloads. We analyze the design dimensions in-

volved in exploiting vectorization-based parallel key searching

over cache-optimized non-SIMD hash tables and study five

different use-case scenarios that evaluate varied data access

patterns involving read-dominated workloads on latest Intel

Skylake and Intel Cascade Lake multi-core CPU nodes. To

validate the applicability of SimdHT-Bench, we extend these

performance studies to design a high-performance SIMD-

aware RDMA-based in-memory key-value store to accelerate

the Memcached ‘Multi-Get’ workload. We demonstrate that

our SIMD-integrated designs can achieve about 2x improve-

ment in server-side Get throughput and 34% gain in end-to-end

Multi-Get latencies over CPU-optimized non-SIMD designs

like MemC3, on an HPC cluster equipped with Intel Skylake

CPUs and InfiniBand EDR interconnects.

In the future, we plan to expand our proposed benchmark

to study and model mixed workloads that involve concurrent

reads and updates to the SIMD-aware hash table. We also plan

to extend SimdHT-Bench to other SIMD-friendly hash table

designs beyond cuckoo hashing.

187

Authorized licensed use limited to: The Ohio State University. Downloaded on September 20,2020 at 22:00:08 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] O. Polychroniou, A. Raghavan, and K. A. Ross, “Rethinking SIMD
Vectorization for In-Memory Databases,” in Proceedings of the 2015

ACM SIGMOD International Conference on Management of Data, 2015,
pp. 1493–1508.

[2] J. Zhou and K. A. Ross, “Implementing Database Operations using
SIMD Instructions,” in Proceedings of the 2002 ACM SIGMOD interna-

tional conference on Management of data. ACM, 2002, pp. 145–156.

[3] O. Polychroniou and K. A. Ross, “Vectorized Bloom filters for Advanced
SIMD Processors,” in Proceedings of the Tenth International Workshop

on Data Management on New Hardware. ACM, 2014, p. 6.

[4] J. Lu, Y. Wan, Y. Li, C. Zhang, H. Dai, Y. Wang, G. Zhang, and B. Liu,
“Ultra-Fast Bloom Filters using SIMD techniques,” IEEE Transactions

on Parallel and Distributed Systems, 2018.

[5] K. A. Ross, “Efficient Hash Probes on Modern Processors,” in IEEE

23rd International Conference on Data Engineering (ICDE ’07). IEEE,
2007, pp. 1297–1301.

[6] T. Behrens, V. Rosenfeld, J. Traub, S. Breß, and V. Markl, “Efficient
SIMD Vectorization for Hashing in OpenCL,” Positions, vol. 3, no. 4,
2018.

[7] T. Gubner and P. A. Boncz, “Exploring Query Compilation Strategies
for JIT, Vectorization and SIMD,” in ADMS@VLDB, 2017.

[8] N. L. Scouarnec, “Cuckoo++ Hash Tables: High-Performance Hash
Tables for Networking Applications,” in Proceedings of the 2018 Sym-

posium on Architectures for Networking and Communications Systems.
ACM, 2018, pp. 41–54.

[9] “Hash Library - Documentation - DPDK,”
https://doc.dpdk.org/guides/prog guide/hash lib.html.

[10] A. Dragojević, D. Narayanan, M. Castro, and O. Hodson, “FaRM: Fast
Remote Memory,” in 11th USENIX Symposium on Networked Systems

Design and Implementation (NSDI 14), 2014, pp. 401–414.

[11] “Memcached: High-Performance, Distributed Memory Object Caching
System,” http://memcached.org/, 2003.

[12] B. Fan, D. G. Andersen, and M. Kaminsky, “MemC3: Compact and
Concurrent MemCache with Dumber Caching and Smarter Hashing,” in
Presented as part of the 10th USENIX Symposium on Networked Systems

Design and Implementation (NSDI 13). Lombard, IL: USENIX, 2013,
pp. 371–384.

[13] Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny, “Characterizing
Facebook’s Memcached Workload,” IEEE Internet Computing, vol. 18,
no. 2, pp. 41–49, 2014.

[14] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee,
H. C. Li, R. McElroy, M. Paleczny, D. Peek, P. Saab,
D. Stafford, T. Tung, and V. Venkataramani, “Scaling Memcache
at Facebook,” in Presented as part of the 10th USENIX

Symposium on Networked Systems Design and Implementation

(NSDI 13). Lombard, IL: USENIX, 2013, pp. 385–398. [On-
line]. Available: https://www.usenix.org/conference/nsdi13/technical-
sessions/presentation/nishtala

[15] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny, “Work-
load Analysis of a Large-Scale Key-Value Store,” in ACM SIGMETRICS

Performance Evaluation Review, vol. 40, no. 1. ACM, 2012, pp. 53–64.

[16] “Redis,” https://redis.io/.

[17] D. Zhou, B. Fan, H. Lim, M. Kaminsky, and D. G. Andersen, “Scalable,
High Performance Ethernet Forwarding with CUCKOOSWITCH,” in
Proceedings of the ninth ACM conference on Emerging networking

experiments and technologies. ACM, 2013, pp. 97–108.

[18] H. Lim, B. Fan, D. G. Andersen, and M. Kaminsky, “SILT: A Memory-
efficient, High-performance Key-value Store,” in Proceedings of the

23rd ACM Symposium on Operating Systems Principles, ser. SOSP ’11,
Cascais, Portugal, October 2011, pp. 1–13.

[19] J. Doweck, W. Kao, A. K. Lu, J. Mandelblat, A. Rahatekar, L. Rap-
poport, E. Rotem, A. Yasin, and A. Yoaz, “Inside 6th-Generation
Intel Core: New Microarchitecture Code-Named Skylake,” IEEE Micro,
vol. 37, no. 2, pp. 52–62, March 2017.

[20] M. Arafa, B. Fahim, S. Kottapalli, A. Kumar, L. P. Looi, S. Mandava,
A. Rudoff, I. M. Steiner, B. Valentine, G. Vedaraman et al., “Cascade
Lake: Next Generation Intel Xeon scalable processor,” IEEE Micro,
vol. 39, no. 2, pp. 29–36, 2019.

[21] R. Pagh and F. F. Rodler, “Cuckoo Hashing,” Journal of Algorithms,
vol. 51, no. 2, pp. 122–144, 2004.

[22] U. Erlingsson, M. Manasse, and F. McSherry, “A Cool and Practical
Alternative to Traditional Hash Tables,” in Proceedings of the 7th

Workshop on Distributed Data and Structures (WDAS’06), 2006.
[23] D. Shankar, X. Lu, N. Islam, M. Wasi-Ur-Rahman, and D. K. Panda,

“High-Performance Hybrid Key-Value Store on Modern Clusters with
RDMA Interconnects and SSDs: Non-blocking Extensions, Designs,
and Benefits,” in 2016 IEEE International Parallel and Distributed

Processing Symposium (IPDPS), May 2016, pp. 393–402.
[24] NOWLAB, “High-Performance Big Data (HiBD),” http://hibd.cse.ohio-

state.edu, 2019.
[25] S. Blanas, Y. Li, and J. M. Patel, “Design and Evaluation of Main

Memory Hash Join Algorithms for Multi-core CPUs,” in Proceedings

of the 2011 ACM SIGMOD International Conference on Management

of data. ACM, 2011, pp. 37–48.
[26] R. Panigrahy, “Efficient Hashing with Lookups in two Memory

Accesses,” CoRR, vol. cs.DS/0407023, 2004. [Online]. Available:
http://arxiv.org/abs/cs.DS/0407023

[27] M. Mitzenmacher, “Some Open Questions Related to Cuckoo Hashing,”
in European Symposium on Algorithms. Springer, 2009, pp. 1–10.

[28] M. Pilman, K. Bocksrocker, L. Braun, R. Marroquı́n, and D. Kossmann,
“Fast Scans on Key-Value Stores,” Proceedings of the VLDB Endow-

ment, vol. 10, no. 11, pp. 1526–1537, 2017.
[29] K. Zhang, K. Wang, Y. Yuan, L. Guo, R. Lee, and X. Zhang, “Mega-KV:

A Case for GPUs to Maximize the Throughput of In-Memory Key-Value
Stores,” Proceedings of the VLDB Endowment, vol. 8, no. 11, pp. 1226–
1237, 2015.

[30] A. D. Breslow, D. P. Zhang, J. L. Greathouse, N. Jayasena, and D. M.
Tullsen, “Horton Tables: Fast Hash Tables for In-Memory Data-Intensive
Computing,” in 2016 USENIX Annual Technical Conference (USENIX

ATC 16), Denver, CO, 2016, pp. 281–294.
[31] Mutilate: High-Performance Memcached Load Generator,

https://github.com/leverich/mutilate.
[32] X. Lu, D. Shankar, and D. K. Panda, “Scalable and Distributed Key-

Value Store-based Data Management Using RDMA-Memcached,” IEEE

Data Eng. Bull., vol. 40, no. 1, pp. 50–61, 2017.
[33] J. Jose, H. Subramoni, M. Luo, M. Zhang, J. Huang, M. Wasi-ur

Rahman, N. S. Islam, X. Ouyang, H. Wang, S. Sur et al., “Memcached
design on high performance rdma capable interconnects,” in 2011

International Conference on Parallel Processing. IEEE, 2011, pp. 743–
752.

[34] “memslap,” http://docs.libmemcached.org/bin/memslap.html.

188

Authorized licensed use limited to: The Ohio State University. Downloaded on September 20,2020 at 22:00:08 UTC from IEEE Xplore. Restrictions apply.

