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Abstract—With the emergence of modern multi-core CPU
architectures that support data parallelism via vectorization,
several storage systems have been employing SIMD-based tech-
niques to optimize data-parallel operations on in-memory struc-
tures like hash-tables. In this paper, we perform an in-depth
characterization of the opportunities for incorporating AVX
vectorization-based SIMD-aware designs for hash table lookups
on emerging CPU architectures. We analyze the challenges and
design dimensions involved in exploiting vectorization-based par-
allel key searching over cache-optimized non-SIMD hash tables.
Based on this, we design a comprehensive micro-benchmark
suite, SimdHT-Bench, that enables evaluating the performance
and applicability of CPU SIMD-aware hash table designs for
accelerating different read-intensive workloads. With SimdHT-
Bench, we study five different use-case scenarios with varied
workload patterns, on the latest Intel Skylake and Intel Cascade
Lake multi-core CPU nodes. Further, to validate the applicability
of SimdHT-Bench, we employ these performance studies to design
a high-performance SIMD-aware RDMA-based in-memory key-
value store to accelerate the Memcached ‘Multi-Get’ workload.
We demonstrate that the SIMD-integrated designs can achieve
up to 1.45x-2.04x improvement in server-side Get throughput
and up to 34% improvement in end-to-end Multi-Get latencies
over the state-of-the-art CPU-optimized non-SIMD MemC3 hash
table design, on a high-performance compute cluster with Intel
Skylake processors and InfiniBand EDR interconnects.

Index Terms—AVX, SIMD, CPU, Hash Table, Key-Value Store

I. INTRODUCTION

With the emergence of modern multi-core CPU architec-
tures that support data parallelism via vectorization, there
have been several studies directed towards leveraging CPU-
SIMD for accelerating compute for data-intensive workloads.
Using ‘Single-Instruction-Multiple-Data’ (SIMD) instructions
to enable data parallelism has been studied for accelerating
database operators like scan, join, aggregation [1], [2], and
bloom filters [3], [4]. SIMD instructions have also been
leveraged to enable data-parallel key lookups over hash tables
for join operations [1], [S]-[7]. Similarly, network application
scenarios like packet processing, that deal with batched hash
table lookups [8], [9], also exploit high-performance CPU-
optimized hash tables with SIMD-aware accelerations. These
studies make it evident that leveraging SIMD vectorization
for parallelizing key searches across hash tables has immense
potential for accelerating application workloads that need to
facilitate fast in-memory lookup operations.
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On the other hand, distributed and high-performance key-
value stores (KVS) utilize hash tables in their backend, as a
fast index to store (Set) and lookup key-value pairs (Get/Multi-
Get) [10], [11]. They play a vital role in accelerating today’s
data-intensive workloads in multi-tiered data center architec-
tures. Many studies [12], [13] have shown that the performance
of key-value store-based applications is dominated by reads,
i.e., GETs. For instance, based on the real-workload traces
from Facebook [14], [15], we see that a single web page
request from a user can generate up to 521 distinct key-value
pair items that need to be fetched from the remote Memcached
server cluster. The key-value store applications attempt to
minimize the number of network round trips necessary to fetch
all the key-value pairs corresponding to the user requests, by
batching multiple Gets (24 — 96 keys/request) into a single
request. Since most typical key-value stores employ CPU-
centric hash tables [11], [16], this motivates us to consider
if such a ‘Multi-Get’ (MGet) workload can leverage SIMD-
aware designs explored in the literature.

A. Motivation and Challenges

Towards answering the above question, we first explore
SIMD-aware hash table designs in the literature. We find that
the state-of-the-art hash table vectorization approaches [1], [5],
[6], [8], [9], [17] are focused on accelerating batched key-
value pair searches (batched lookups), which is very similar
to the Memcached ‘Multi-Get’ scenario. To better understand
these state-of-the-art CPU-optimized hash table designs, we
summarize them in Table I-B. From Table I-B, we can see
that each of the works propose an SIMD-aware acceleration
that employs a different hash table design (memory layout).
Therefore, it is evident that these hash table designs are tightly
bound to their specific use-case scenarios. Thus, they cannot
be directly leveraged to determine if they fit a newer and
vastly different usage scenario. To be more precise, there
are no studies or benchmarks which provide design guidance
on how to maximally exploit the SIMD-aware hash design
capabilities for varying workload patterns. This leads us to
define our first challenge: Challenge(D: Can we design a
micro-benchmark platform that can enable us to study the
different state-of-the-art (or any new) SIMD-aware hash table
designs on emerging multi-core CPU architectures for varied
application scenarios?

Typically, for non-SIMD variants, the rule-of-thumb is to
choose the hash table layout that enables minimal memory
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and/or cache-line accesses. This has led to heavy reliance on
bucketized cuckoo hash tables, that facilitate cache optimal
designs for CPUs [12], [17], [18] to support better hash table
occupancy (i.e., load factor!). In addition to the application-
specific memory layouts, the research works in Table I-B
also widely differ in how they exploit CPU vectorization
capabilities for accelerating batched hash table lookups. For
instance, networking applications [8], [9], [17] leverage buck-
etized cuckoo hash tables with 4-way or §-way set-associative
designs®>. They mainly leverage SIMD to compare multiple
hashes stored in a hash table bucket in parallel. Similarly, an-
alytical database workloads [1], [6] propose leveraging SIMD
to search multiple distinct input keys across the hash table in
parallel. This defines our second challenge: Challenge®): How
can we determine which SIMD-aware hash table vectorization
approach (software approach or algorithm) can best fit our
application workload? How much performance can they gain
over their non-SIMD hash table counterparts?

Finally, today’s latest Intel Skylake and Cascade Lake
nodes [19], [20] support SSE (128-bit), AVX2 (256-bit), and
AVX-512 (512-bit) vector instructions. Specifically, with 512-
bit extensions to the Advanced Vector Extensions (AVX)
SIMD instructions (AVX-512) for x86 ISA, we have the
opportunity to operate on an entire cache-line in a single
instruction. Thus, with this increasing vector-processing ca-
pability on modern hardware, we have the option to leverage
different CPU-SIMD vector widths to enable different degrees
of data parallelism for a given SIMD vectorization approach.
This is also evident across the different works summarized
in Table I-B. Based on this, we define our third challenge:
Challenge®): How much SIMD parallelism (hardware capa-
bility or CPU vector instructions) can we exploit to accelerate
hash table lookups for a given application workload?

B. Contribution

To address the above research challenges, we first charac-
terize and define SIMD-aware design dimensions that need
to be considered for any application workload. Since we are
mainly interested in enabling faster performance for read-
dominated workloads, we focus our studies on cuckoo hash
tables that enable near-constant lookup time [21], [22]. Based
on these characteristics, we design “SimdHT-Bench”, to help
researchers study the performance of different SIMD-aware
hash table designs in-depth for any use-case involving batched
reads. This proposed micro-benchmark suite presents a:

1) Comprehensive design, that takes hash table memory
layout, workload data access pattern and the CPU-SIMD
capabilities into account, to address Challenge(D),

2) SIMD algorithm validation engine that can help deter-
mine which hash table designs and CPU-SIMD vector
lengths can be leveraged for a given application work-
load and CPU hardware, to address Challenge(®), and,

3) Performance engine that evaluates different viable
SIMD-aware hash table designs, and presents a

!load factor (LF) = (number-of-items-that-can-be-inserted / hash-table-size).
Zno. slots-per-bucket = set-associativity of a cuckoo hash table bucket

performance-centric compare-and-contrast with its non-
SIMD equivalents, towards answering Challenge®).

We present five different use-cases with SimdHT-Bench,
including: (a) two case studies contrasting horizontal and
vertical SIMD-aware parallel lookup approaches for typical
database workloads, (b) performance of different SIMD-aware
hash tables on Intel Skylake and Intel Cascade Lake nodes,
(c) performance with variable length keys/payloads, and, (d)
leveraging different SIMD vector widths to enable different
parallelisms over the same underlying hash table design. From
these experiments, we observe that, irrespective of the hash
table vectorization approach being leveraged, it is vital to
employ SIMD vector widths that enable minimal memory/-
cache accesses for optimal performance. We also observe that:
(a) the vertical SIMD approach over a 3-way cuckoo hash
table with AVX-512 (512-bit vectors), and, (b) the horizontal
AVX2-based SIMD approach (256-bit vectors) over a 2-way
bucketized cuckoo hash table with 4 slots-per-bucket, can
provide the best lookup performance benefits across uniform
and skewed access patterns.

We validate our performance studies with SimdHT-
Bench by integrating these SIMD-aware designs into a
high-performance in-memory key-value store like RDMA-
Memcached [23], [24], and contrast it with the state-of-
the-art non-SIMD CPU-optimized MemC3 [12] backend de-
sign. Our performance evaluations show that ‘SIMD+RDMA-
Memcached’ can achieve about 1.45x-2.04x improvement in
server-side Get throughput and 10%-34% improvement in
the end-to-end ‘Multi-Get’ latencies, over ‘MemC3+RDMA -
Memcached’, on a high-performance compute (HPC) cluster
with Intel Skylake CPUs and InfiniBand EDR interconnects.
The rest of the paper is organized as follows. Section II
presents the necessary background and related work. Sec-
tion III characterizes SIMD-aware cuckoo hash table designs.
Section IV describes SimdHT-Bench and Section V presents
performance studies. Section VI discusses our key-value store
use-case. We conclude in Section VII with future work.

Research Work Moo T Ou]t)emgn Dimensions
-~ ryi Y N-way SIMD-aware
#Slots-Per-Bucket x Hashin Desien
(Key Size, Payload Size) ashing esig
MemC3 [12] 4x (1B,8B) 2-way No
SILT [18] 4x(2B,4B) 2-way No
CuckooSwitch [17] 4x(6B,2B) 2-way No
. Yes
Vectorized 2x(4B,4B)
2- SSE for CPU,
BCHT [1], [25] 8x (4B 4B) way A&/X-Slgrfor Phi)
. Yes
V"’Ctor]'j;d[ IC]“C'“’O 1x@4 B, 4 B) 2-way | (AVX2 for CPU,
AVX-512 for Phi)
8x 2B, 48B ] .
Cuckoo++ [8] *payload = per-bucket-metadata 2-way Yes (SSE)
DPDK [9] 8x (4 B,8B) 2-way Yes (SSE)
TABLE 1

STATE-OF-THE-ART RESEARCH WORKS EMPLOYING CPU-OPTIMIZED
CUCKOO HASH TABLE VARIANTS

II. BACKGROUND & RELATED WORK

In this section, we provide an overview of the basics of
cuckoo hashing and the state-of-the-art SIMD-aware hash table
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designs in the literature.

A. Cuckoo Hashing: The Basics

Since we are interested in read-dominated workloads, we
focus on cuckoo hashing [21], [26], which enables a key-
value pair to be located?®, i.e, a hash table lookup, using a
constant number of memory accesses (unlike other collision
resolution hash table schemes such as chaining, linear probing,
etc.). Cuckoo hashing is a well-known open-addressing based
hashing scheme, that maintains two hash functions (hl and
h2), such that, a key can be found in exactly one of two
locations (or hash buckets). It achieves this simplicity by
shifting the complexity from lookup to insertion.

New insertions can potentially relocate an existing key-value
pair to its alternative bucket if both hl and h2 are occupied.
The “re-hashing” continues until an empty hash table entry
is found. This process is time-consuming and is amortized
only as long as the load factor!-* is below 50%. However, a
small load factor hurts the hit rate and memory occupancy of
the hash table. To overcome this, practical high-performance
variants [12], [17], [18] employ two approaches:

1) N-way Cuckoo Hashing (N-way): This approach enables
a higher load factor by employing more than two hash
functions. This generic variant of the basic cuckoo hash table
is referred to as N-way hashing, as it provides ‘N’ potential
hash buckets to locate a given key. It follows a vertical layout
design, as presented in Figure 1(a).

Hash Table Hash Table
h (o Ka:v4
Ko,V
(key k), =2
hn(k)
Kn:Vn

(a) N-way Cuckoo Hash Table  (b) (N,m) Bucketized Cuckoo Hash Table

Fig. 1. High-Performance Cuckoo Hash Table Variants

2) Bucketized Cuckoo Hash Table (BCHT): Bucketized
cuckoo hash table is a variant of the N-way cuckoo hash
table that enables more than one key-value pair to be stored
into each hash bucket. By doing so, it lowers the probability
of re-location and improves load factor without needing to
increase ‘N’. It follows an (N, m) set-associative hash table
design, with N-way hashing and ‘m’ slots-per-hash bucket as
presented in Figure 1(b). The hash table size is (N*m) for a
bucketized (N,m) cuckoo hashing (NOTE: an N-way cuckoo
HT is intuitively an (N,1) BCHT).

We summarize the load factor improvements observed with
these two variants, based on studies from [22], in Figure 2. For
our discussions, load factor indicates the maximum load factor
(i.e., max. number-of-items that can be inserted) for a given
hash table design. From Figure 2, we can see that different

3¢value’ associated with a key-value pair is also referred to as ‘payload’
4For load factor, ‘number-of-items-that-can-be-inserted” is typically less
than the ‘hash-table-size’ due to probability of cuckoo re-hashing.

cuckoo hash table variants enable different hash table memory
occupancy characteristics. This ‘load factor’ determines the
hit rate of the system whose index it maintains, and can, in
turn, affect performance. For instance, as compared to the non-
bucketized 2-way cuckoo hash table (LF = 0.5):

(a) increasing slots-per-bucket to 4, i.e., a (2,4) BCHT can
increase the load factor to 93%. Additionally, if we can fit
each bucket into fewer cache-lines, as in [8], [12], we can
enable high throughput for look-ups by reducing the number
of memory accesses.

(b) increasing N from two to three, i.e., 3-way cuckoo hashing,
we can improve the load factor to 91%. However, this comes at
the cost of an additional hash bucket access over 2-way cuckoo
hashing (three memory access in the worst-case), spanning
multiple cache-lines.
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Fig. 2. Cuckoo Hash Table Variants [22], [27]: Load Factor vs. N-way
Hashing vs. BCHT; 1 slot-per-bucket = non-bucketized ‘N-way’ cuckoo hash
table (represented in blue); For BCHT, N = 2, 3, 4 and #slots-per-BCHT-
bucket = 2, 4, 8 (represented in yellow)

B. SIMD-Aware Hash Table Designs: Related Work

The idea of employing SIMD vectorization to improve the
performance of critical data structures has been well studied
in the field of database systems. We provide an overview of
some of these related research works, that has served as a
motivation for this paper.

For accelerating hash table lookups for database and
networking application use-cases, various non-SIMD CPU-
optimized and SIMD-aware research works have been pro-
posed, as summarized in Table I-B. Similarly, using SIMD
instructions to enable other data-parallel database operators
such as scan, join, aggregation [1], [2], [28], etc., and for data
structures like bloom filters [3], [4], [6] have also been well
studied. Specific to key-value stores, recent work by Pilman et.
al [28] focuses on improving scan performance for complex
analytical queries. As an orthogonal approach, SIMD-aware
designs have also been studied over offload-based accelerators
like GPGPUs [29], [30]. They leverage the high memory
bandwidth of modern GPUs and its data hiding capabilities to
achieve a higher hash table lookup performance at the server.

III. CHARACTERIZING SIMD-AWARE HT DESIGNS

In this section, we focus on understanding existing high-
performance cuckoo hash table variants, and define newer
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dimensions introduced by SIMD-aware designs.

A. Basic Design Considerations

From the research works presented in Section II-B, we
observe that several application workloads [8], [12], [25], [30]
leverage cuckoo hash table variants to enable faster lookups.
As seen from Table I-B, these high-performance cuckoo hash
table implementations employ different in-memory layouts
that cater to their specific application needs. These workload-
specific design dimensions can be characterized as follows:

1) Memory Layout: If we map the different hash table
layouts in Table I-B to Figure 2, we observe that almost all use-
cases explore hash table designs that ensure a high load factor
(>90%). As detailed in Section II-A and Figure 2, this can
be enabled using two approaches for (N,m) cuckoo hashing:
(a) increasing the number of slots-per-bucket (i.e., ‘m’), or, (b)
increasing the buckets a key is mapped to, i.e., number of hash
functions (i.e., ‘N’); each of which has a different memory
access cost. Based on the key/payload sizes, the choice of ‘N’
and ‘m’ defines a unique ‘memory layout’. This specifies our
first generic design dimension; one that has been well-studied
in the non-SIMD scenario, as seen from Table I-B.

2) Workload Data Access Pattern: While we focus our
studies on read-dominated workloads, various hash table ap-
plication scenarios have vastly different access patterns. For
instance, key-value store workloads are dominated by skewed
data accesses (where some keys are more frequently queried
over others) [12], [15]. Conversely, hash table accesses in
network packet processing applications follow a more uniform
access pattern [8], [17]. Thus, the workload access pattern
defines our second basic design dimension.

B. Defining SIMD-Aware Dimensions

From the research works in Table I-B, that present designs
to exploit CPU’s vectorization capabilities to accelerate hash
table lookups, we observe that leveraging CPU vectorization
introduces two new SIMD-specific hash table design dimen-
sions to consider.

1) SIMD Vectorization Approach — Horizontal vs. Vertical:
For leveraging SIMD to accelerate cuckoo hash tables, the
first question that needs to be answered is: In what ways
can we leverage SIMD vectorization to accelerate hash
table lookups? This defines our first SIMD-Aware design
dimension. As discussed in [1], we find that this can be
achieved along with two software/algorithmic approaches:

(a) Horizontal SIMD Vectorization: Consider a bucketized
cuckoo hash table with two or more slots-per-bucket. Rather
than individually comparing a given key against every single
key in the designated hash bucket(s), we can load an entire
bucket onto a CPU vector and probe all possible hash locations
in parallel. For example, consider the 2-way bucketized cuckoo
hash table with 4 slots-per-bucket with 32-bit keys/payloads,
as depicted in Figure 3(a). With this, we can load both hash
buckets designated for a given key ‘k’ into a 256-bit vector
and search all 8 possible hash table locations in one AVX
compare instruction. Since this approach exploits SIMD for a
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single key-value pair lookup across multiple slots in a bucket,
it can be considered as a reduction operation and is referred
to as the horizontal vectorization approach [5], [8], [30].

(b) Vertical SIMD Vectorization: The fundamental prin-
ciple involved in this approach is to process a different key
per SIMD lane. This enables a true SIMD approach as we can
lookup ‘w’ keys in the hash table in parallel>. For instance,
consider the 2-way cuckoo hash table with 32-bit key and
payload, as depicted in Figure 3(b). With this approach, we
can gather distinct keys from 8 different hash locations (i.e.,
[h(k1), h(k2), ..., h(ky)] with ‘w’=8) corresponding to keys in
the input (i.e., [k1, k2, ..., kw]) , and thus search for 8 different
keys in parallel with one AVX compare instruction. Since this
approach exploits SIMD to process multiple keys in parallel
and returns a vector of values corresponding to the matching
keys, it is referred to as the vertical vectorization approach
(and explored in [1], [6]).

2) SIMD Parallelism — SSE vs. AVX2 vs. AVX-512: Today’s
latest Intel Skylake and Cascade Lake nodes [19], [20] support
SSE (128-bit), AVX2 (256-bit), and AVX-512 (512-bit) vector
instructions. Thus, for a given SIMD vectorization approach,
we have the option to leverage different CPU-SIMD vector
widths. This leads us to our second SIMD-centric question:
How much SIMD parallelism can we exploit from the un-
derlying CPU hardware to accelerate hash table lookups?

For example, for the horizontal vectorization approach pre-
sented in Figure 3(a) for a 2-way bucketized cuckoo hash
table with 4 slots-per-bucket, we could use: (a) 256-bit vectors
to lookup all 8 locations in parallel (w=8) in a pessimistic
fashion, or, (b) use 128-bit vectors to lookup a single bucket
at a time (i.e., 4 hash locations in parallel; w=4) in an
optimistic fashion. Similarly, for the 2-way cuckoo hash table
in Figure 3(b) that employs vertical vectorization via AVX?2 to
lookup 8 keys (w==8) in parallel, we could also employ AVX-
512 to lookup 16 keys (w=16) in parallel instead. Thus, the
choice of ‘w’ is our second SIMD-aware design dimension.

To facilitate studying the different SIMD-aware and
workload-centric hash table design choices, we present the
“SimdHT-Bench” micro-benchmark suite.

IV. BENCHMARKING SIMD-AWARE HT WORKLOADS

Our goals for SimdHT-Bench are two-fold: First, based on
design dimensions discussed in Section III-B, we determine
which SIMD-aware designs fit the desired application work-
load characteristics. Second, we build and study the lookup
performance benefits that can be enabled by each of SIMD-
aware design variants calculated. With such a framework, we
can help determine if SIMD-aware parallel approaches for the
hash table (HT) lookups can benefit the application workload
characteristics in question.

A. Overview of SimdHT-Bench Micro-benchmark Suite

To meet the above goals, we design our proposed SimdHT-
Bench to capture the essence of various aspects of cuckoo

S‘w’ is referred to as the SIMD width
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(Horizontal)

-
b1
b4

b3
b2

(try alternative buckets [3..N] if match not found for k1, when N > 2)

(a) Horizontal Vectorization Example: First Iteration with key k1’ over (2,4)
BCHT; Repeats (n-1) times for ‘n’ keys in input array

(Vertical)

k1

h2 31 . k2
Hashy [n3 [\ g4l ... Gather [K3] Match
-4k (mismatch)
16 | K81 - k6
h7 k7
(mask) k8 '

'\(mask)Lh8
(try alternative bucket [2..N] for keys [k,...k8] with missing matches, when N >=2)
(b) Vertical Vectorization Example: First Iteration with keys kl,..,.k4 over
2-way Cuckoo HT; Repeats (n/w-1) times for ‘n’ keys in input array

Fig. 3. Vectorization-based Parallel Key Lookups for SIMD CPUs: Illustration with 2-way cuckoo hash table with bucketized layout with 4 slots-per-bucket
and non-bucketized 2-way Cuckoo HT); key/payload size (bits) = (32, 32) and length of vector = 256 bits; ‘pink’ in mask refers to a ‘match’

HT workloads. As shown in Figure 4, our proposed micro-
benchmark suite contains the following modules:

1) Configurable Input Parameters: The benchmark’s input
interface enables the user to specify the workload characteris-
tics, like, (a) HT layout and size, (b) key/value sizes (key and
payload stored in the HT), and (c) workload access pattern.
It optionally enables specifying the SIMD vector lengths® and
vectorization approaches (horizontal or vertical) to consider.

2) Workload/Table Generator: The table generator creates
an HT with layout [N = no. of hash functions for cuckoo hash-
ing, m = slots-per-bucket, layout = bucketized/non-bucketized,
k = key’s hash size, v = payload size, b = HT size] and a
desired load factor (LF). The workload generator is designed
as a pluggable module that creates a list of keys to query, to
enable evaluating user-specified access patterns. For this paper,
we focus our design framework for read-only workloads.

We currently support skewed and uniform distributions. For
skewed, we plug-in “mutilate” workload generator [15], [31],
that emulates an access pattern typical to key-value stores like
Memcached. The workload pattern parameter also determines
the number of worker threads (i.e., working cores) and if the
table is shared or dedicated per-core.

(User Input -- Configurable Parameters)
Benchmark Input Interface
*[HT Layout, KV Size, Access Pattern, Load Factor]
*Optional }SIMD width, Vectorization Approach]

(Benchmark Output )

Performance Statistics
*SIMD Design Choices
*HT Perfo‘f"mance Stats

* T
Performance Engine

Table Generator
[HT Layout, Load
Factor, KV Size]

SIMD Algo. Validation
Engine [SIMD width,
Vectorization Algo, KV Size]

SIMD Design Choices -

Workload Generator
[Access Pattern,
KV Size]

Fig. 4. Micro-benchmark Suite Design

3) SIMD Algorithm Validation Engine: The SIMD algo-
rithm validation engine determines which CPU-SIMD vector
lengths and SIMD vectorization approaches fit the given user-
specific HT layout. It creates a list of these viable SIMD-
aware HT design choices that can be used to study the lookup
performance. We describe it in Section I'V-B.

4) Performance Engine: The performance engine loads
and queries the cuckoo HT for each of the design choices

listed, using the workload pattern generated. For each of the
SIMD-based design choices, it does a compare-and-contrast
with the corresponding non-SIMD aware (scalar) version of
the vectorization-based lookup algorithm, and computes the
HT throughput performance. Finally, the SIMD-aware design
choices and their performance comparison stats are returned
to the user.

B. Determining SIMD-Centric Design Choices

From Figure 2, we observe that, for a given load factor,
there are various bucketized (N,m) and non-bucketized (N-
way) cuckoo HT variants. Also, from Section III-B, we see
that the two vectorization-based parallel lookup approaches
can be enabled by varying SIMD vector widths. Based on
these, we can easily determine a list of possible SIMD-
aware design combinations. However, we need to determine
if each of these combinations can be supported by: (a) the
application workload in question (specified by the configurable
input parameters), and, (b) the underlying CPU architecture.
Towards enabling this validation, we present two validators to
help filter out viable SIMD design candidates: (a) Horizontal-
over-BCHT Validator for the bucketized table layout, and,
(b) Vertical-over-CuckooHT Validator for the non-bucketized
cuckoo HT layout.

The ‘Horizontal-over-BCHT’ validator, presented as func-
tion ‘HorV-Valid’ in Algo. 1, checks if one or more hash
buckets (containing keys and payloads) can fit into the CPU
vector of width ‘w’. Similarly, the ‘Vertical-over-CuckooHT’
validator, presented as function ‘VerV-Valid’ in Algo. 2, de-
termines if it can fit two or more keys to probe in-parallel
onto the CPU vector of width ‘w’. For the corresponding
non-SIMD versions, all vector instructions are replaced with
scalar load/store/compare operations. Additionally, for these
scalar counterparts, we have: (a) for the non-SIMD BCHT,
‘bucks-per-vec’=1 in Algo. 1, and, (b) for the non-SIMD N-
way cuckoo HT, ‘keys-per-iter’=1 in Algo. 2.

C. Implementing Generic Templates for SIMD-Aware Designs

To study SIMD-aware HT lookup operations, we design
generic templates for the horizontal and vertical vectorization
approaches discussed in Section III-B, to support varying CPU
vector widths (based on [1]). We generically define the dif-
ferent vector operations as vec_<operation>, y(), wherein,
‘W’ signifies the length of the CPU vector (in bits), and,

182

Authorized licensed use limited to: The Ohio State University. Downloaded on September 20,2020 at 22:00:08 UTC from IEEE Xplore. Restrictions apply.



[

x’ the width of each lane within the vector (such that
‘W’/‘x’= SIMD width ‘w’). We define function wrappers for
the underlying vector instructions supported to enable running
our experiments. For instance, for a 256-bit vector over 32-bit
keys, we have vec_cmpeqss 256, 1.., we need to employ the
AVX2 compare instruction _mm256_cmpeq_epi32.

Now, while these templates give a generic representation of
the vectorization-based lookups, similar to [1], we have:
(a) for vertical, we try to reduce the number of cache accesses
by packing the vec_gather_key and vec_gather_val
gathers into fewer wider gathers (e.g., 16-way 32-bit gathers
vs. 8-way 64-bit gathers for AVX-512), and,
(b) for horizontal, we try to leverage vector instructions to
calculate the hash buckets of multiple keys in parallel (i.e.,
calc_N_hash_buckets).

Algorithm 1: Horizontal Vectorization Template

Result: Returns Lookup Throughput (Lookups/s)

Input : SIMD width ‘w’, HT Layout ‘(N,m)’, Key Size ‘ks’, Val
Size ‘vs’, Workload ‘p_k[n]’

Output: Throughput

Function Horv-valid (w, (N,m), k, v):

if (w >= (k + v) * m) then

Buckets-Per-Vector = ceil (N * ((k + v) *m)/w)
> calculate no. of buckets fit into
vector width ‘w’

return True, Buckets-Per-Vector

1
2
3 assert(m > 1) > check if layout is BCHT
4
5

| return False, 0

6
7 else
8

9 end

11 declare V[1..n]

12 start_timer(t);

13 assert(bucks-per-vec = HorV-Valid(w, N, m, ks, vs)) > HOR-Vec
14 for (each k in p_k[]) {

15 H[1..N] = calc_N_hash_buckets(k)

16 for ( _e}ach i in N/ bucks-per-vec ) {
17 k = vec_set_lanesy; ,(k); > replicated key k
_}onto all lanes of vector

18 b = vec_load_bucketsy ., (H, w, bucks-per-vec) a, ﬁ =

vec_shuffle_and_blend .,(( b, m); > extract and
separate keys and values from bucket

— =
19 match = vec_cmpeqys (g, k)
i

20 Vi = vec_reduceys,w(match, t, > reduce vector

to find matching payload

21 }

2
23 end_timer(t);

24 return calc_thr(t, n);

D. Leveraging SimdHT-Bench for Application Studies

To enable a new application to leverage SimdHT-Bench, we
require the following two steps: (a) plug-in a new workload
pattern that mimics the application into the framework’s plug-
gable workload generator, and, (b) design new templates for
any additional functionality beyond lookups. For instance, if
we want to support HT updates in addition to parallel-lookups,
a new access pattern with HT insert/delete operations can be
easily accommodated into the pluggable workload generator.
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Algorithm 2: Vertical Vectorization Template

Result: Returns Lookup Throughput (Lookups/s)

Input : SIMD width ‘w’, HT Layout ‘N’, Key Size ‘ks’, Val Size
‘vs’, Workload ‘p_k[n]’

Output: Throughput

1 Function verv-valid (w, k, v):

3 assert(is_power_of_two(k)) > check if layout is
N-way HT

4 if (w > (k + v)) then

5 Keys-Per-Iteration = w/k

> calculate number of keys that can be
probed in parallel
6 return True, Keys-Per-Iteration
7 else
s
9 end

return False, 0

11 declare V[1..n]

12 start_timer(t);

13 assert(keys-per-iter = VerV-Valid(w, N, ks, vs)) > VER-Vec
14 for (‘each k[] in p_k[]; steps of ‘keys-per-iter’ ) {

15 k = vec_load_lanesy, ,,(k); > replicated key k onto
all lanes of vecggr
16 h = vec_calc_hashy, ,,(k); > calculate hash with
one key-per-lane from k[]
*>
17 t, = vec_gather_keyys ,(k); > gather key from hash
buckets per lane
— =
18 match = vec_cmpeqys (g, k)
*>
19 ty = vec_gather_valy s, (match, h); > gather key
from hash buckets per lane
20 vec_store_valys(Vi, to)

> store value results computed from vector
to memory

2}
22 end_timer(t);

23 return calc_thr(t, n);

Based on SimdHT-Bench, we present detailed evaluations
over different CPU architectures in the following section.

V. PERFORMANCE STUDIES

In this section, we present the results of our in-depth anal-
ysis of the SIMD-aware cuckoo hash table (HT) designs over
the latest multi-core CPU architectures, with SimdHT-Bench.
We divide our evaluations into the following categories: (1)
Stand-alone HT performance with vectorization-based parallel
searching algorithms, and, (2) Evaluations with RDMA-based
Memcached using Memslap micro-benchmarks with integrated
SIMD-aware HT.

A. Experimental Setup

We use the following three HPC clusters for our evaluations:
Cluster A: Each node in this testbed is provisioned with 40-
core Intel Skylake, with dual 20-cores Gold 6148 processors,
192 GB DRAM, and connected via Dual Port EDR Mellanox
InfiniBand EDR interconnects (100 Gbps).

Cluster B: Each node in this testbed is provisioned with
Intel Skylake dual fourteen-core processors (28-cores), 128 GB
DRAM, connected via Mellanox InfiniBand EDR intercon-
nects (100 Gbps).

Cluster C: In this testbed, each node is provisioned with Intel
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Cascade Lake-SP, with 48 cores on two sockets (24 cores-per-
socket), supporting a total of 96 hardware threads per node
(48 x 2 threads-per-core). It is equipped with 192 GB DRAM.
For all our experiments, we use full-subscription mode,
i.e., we run one-process-per-core for all cores on the test
node over a ‘shared’ HT, unless specified otherwise. For
each experiment, we present the average of five runs and
measure lookup performance as average throughput per core
(per process) in billion lookups/sec. We present studies with
different cuckoo HT variants discussed in Section II-A. We
denote the bucketized cuckoo HT as ‘(N, m) BCHT’ (‘m’>1)
and the non-bucketized cuckoo HT as ‘N-way cuckoo HT’
(‘m’ = 1) in our analysis, and compare each of them with their
non-SIMD counterparts. We refer to the SIMD-aware (N, m)
BCHT and N-way cuckoo HT as “Vector’, and, its non-SIMD
equivalents as ‘Scalar’ in the experimental figures to follow.

B. Case Study (): Horizontal vs. Vertical SIMD Approaches

For our first case study (Case Study(D(a)), we base our
experiments on the SIMD-aware cuckoo HT studies in [1] for
database workloads. While they restrict the load factor to 50%
to explore 2-way cuckoo HT and (2, 2) BCHT, we extend
these studies to a load factor (LF) of 90% to generate our
table and configure the data access pattern with a 90% hit
rate® for both skewed and uniform distributions. This study
also attempts to compare the two different SIMD approaches
(horizontal-vs.-vertical) and also contrasts different access pat-
terns (uniform-vs.-skew) and SIMD widths. To study SimdHT-
Bench’s validation and performance engine, we supply these
input parameters to our benchmark interface, and enable it to
generate different cuckoo HT suitable for this workload.

% (k,v) = (32, 32); ‘w’ = 128, 256, 512

*x*xxskylake

x(2,1) -> V-Ver, Opts: 256 bit - 8 keys/it, Opts:
512 bit - 16 keys/it

*(3,1) —-> V-Ver, Opts: 256 bit - 8 keys/it, Opts:
512 bit - 16 keys/it

*(4,1) -> V-Ver, Opts: 256 bit - 8 keys/it, Opts:

512 bit - 16 keys/it

*(2, 2) —-> V-Hor, Opts: 128 bit - 1 bucket/vec, Opts
: 256 bit - 2 bucket/vec

*(2, 4) —-> V-Hor, Opts: 256 bit - 1 bucket/vec, Opts
: 512 bit - 2 bucket/vec

*(2, 8) —> V-Hor, Opts: 512 bit - 1 bucket/vec

x(3, 2) —-> V-Hor, Opts: 128 bit - 1 bucket/vec, Opts
: 256 bit - 2 bucket/vec

*(3,4) -> V-Hor, Opts: 256 bit - 1 bucket/vec, Opts:
512 bit - 2 bucket/vec

*(3,8) -> V-Hor, Opts: 512 bit - 1 bucket/vec

Listing 1. SIMD-Aware Cuckoo HT Design Choices Output

For this experiment, for each (N, m) cuckoo HT design,
we: (a) vary ‘N between 2—4 for the non-bucketized cuckoo
HT, and, (b) vary ‘N’ between 2-3 and ‘m’ between 2—8. We
run these experiments on a single 40 core node on Cluster
A. Figure 5 presents the performance comparisons for various
SIMD-aware designs based on the Listing 1. For each (N,
m) variant, we present the performance w.r.t the top listed

Ohit rate (or selectivity) refers to the number of input keys that are likely
to be found in the hash table
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SIMD approach that utilizes the smallest SIMD width vector.
We study the performance for both uniform and skewed key
data access distributions. From this figure, for small HT size,
the non-SIMD variants with the smaller ‘m’ seems to give
the best performance. Most importantly, we observe that the
two vectorization-based approaches can benefit up to 2.97x for
uniform distribution.

For skewed distribution, the benefit pattern seems different:

¢ The non-SIMD (scalar) variants can maintain a higher
performance for a skewed pattern as compared to a
uniform distribution. It can leverage the basic temporal
cache locality for frequently accessed keys. Thus, for
BCHT, the benefit of horizontal vectorization is small for
‘m=2’, and increases from 1.23x to 1.98x with ‘m=4".
For N-way hashing, however, we observe benefits of
about 1.67x—1.97x to maintain load factor at around 90%
with ‘N=3 or 4. It can enable up to 2.45x benefits if we
choose to support a very small load factor with ‘N=2".

For the second set of experiments (Case Study(D)(b)), we
extend the above studies to varying key-value pair sizes and
out-of-cache HT sizes. Figure 6 presents the performance
results for varying HT sizes (between 256 KB that fits in
L2 cache of 1 MB to 4 MB and 64 MB). We employ a load
factor of 90% and a hit rate of 90% with the uniform data
access pattern. From this figure, we can observe that as the
HT size increases from 256 KB to 64 MB the benefits of both
horizontal and vertical vectorization approaches reduces from
an average 3.5x to about 1.5x on Intel Skylake nodes.

From an overall perspective, we observe that:
Observation(@): For HT that fits into the cache, contrasting
the different (N, m) variants across bucketized and N-way
hashing, we observe that 3-way cuckoo HT and (2, 4) BCHT
provide the best sustainable benefits of about 1.4x — 1.95x
for a maximum load factor of about 90%. For a load factor
less than 50%, employing 2-way cuckoo HT with a vertical
approach can give the best performance as compared to the
horizontal approach. The latter is also observed in [1], that
compares 2-way cuckoo HT with AVX2 (V-Ver) in contrast to
(2, 2) BCHT (V-Hor) with SSE for LF=50%.

C. Case Study Q): Supporting 16-bit and 64-bit Hash Keys

Various workloads [8], [12] need to support variable-length
keys and payloads. These variable-length keys are stored in
HT as using 32-bit/64-bit/16-bit hashes. We try to illustrate
a scenario and contrast it with Case Study (). Further, this
case study contrasts the two SIMD approaches (horizontal-
vs.-vertical) with the HT size. Figure 7(a) presents the perfor-
mance results for varying key-value pair sizes: (a) for larger-
than-integer, i.e, (K,V) = (64 bits, 64 bits) over 3-way cuckoo
HT, and, (b) mixed payload sizes scenario, i.e., K,V = (16 bits,
32 bits) over (2, 8) BCHT. We employ load factor of 90%, hit
rate of 90%, 512 KB HT size, to showcase both skewed and
uniform data access patterns.

From Figure 7(a), we can see that, for non-SIMD variants
of both (a) and (b), there are no significant variations in
performance as compared to (K,V) = (32, 32) (Figure 5), as the
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number of cache-lines accessed does not change. For (K, V)
= (16, 32), the horizontal SIMD approach over (2, 8) BCHT
observes about 4.16x improvement over its non-SIMD variant
with AVX-256. However, for (K, V) = (64, 64), we observe
that the lookup performance gains only 1.37x with the vertical
approach, i.e., a 40% slower compared to running over (K, V)
= (32, 32). While we do perform the same number of gather
operations (up to three for keys and one for value with 3-way
cuckoo), we lose performance as AVX2/AVX-512 support a
maximum gather size of 64-bits per lane (i.e., eight different
cache-lines per gather) on the latest CPU architectures. Thus,
we can no longer leverage fewer wider gather to minimize the
number of cache-line accesses as in the case of 32-bit keys,
as discussed in Section IV and [1].

Specifically for vertical SIMD, we find that:
Observation): For the vertical SIMD approach over N-
way cuckoo HTs, enabling fewer wider gathers is critical for
performance, irrespective of SIMD vector width. Thus, there
is a need for either: (a) hardware-optimized ‘gather’ intrinsics
can take some prefetching hints, or, (b) wider-than-64 bit
‘gather’ operations.

D. Case Study (3): AVX2 vs. AVX-512

From Figure 5 and Figure 7(a) , we observe that enabling
a larger ‘m’ (e.g., (2, 4) vs. (2, 8)) for BCHT via wider
SIMD vectors does not demonstrate any considerable benefits.
To understand the impact of SIMD vector widths further,
Figure 7(b) extends the above experiment to run performance
comparisons with 3-way cuckoo HT and (2, 8) BCHT, with
256-bit and 512-bit vector instructions. For 3-way cuckoo HT,
this means contrasting the SIMD parallelism of 8 keys/iter-
ation with AVX2 and 16 keys/iteration with AVX-512. For
(2, 8) BCHT, this means looking up each of the two buckets
one at a time with AVX2 vs. loading both designated (N=2)
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hash buckets for probing in parallel with AVX-512. We also
vary the number of concurrent processes (20 cores and 40
cores) probing the HT, to study the corresponding performance
impact. From Figure 7(b), we observe that:

Observation(3): For N-way cuckoo hashing, increasing SIMD
vector width by two improves the performance by as little as
25%, for HTs that fit into the cache. No improvements are
observed for larger HTs, especially for a load factor >90%.
For BCHT, probing multiple hash buckets per-key in parallel
does not demonstrate significant performance benefits over
probing one bucket per vector instruction.

E. Case Study@): Intel Skylake vs. Intel Cascade Lake

To contrast performance on the latest CPU architectures,
across different access patterns (uniform-vs.-skew) and HT
sizes, we study the (2, 4) BCHT with horizontal SIMD
approach and 3-way cuckoo HT with vertical SIMD support on
an Intel Cascade Lake node on Cluster C running 68 processes
and contrast it with Intel Skylake node on Cluster A running 40
processes. Figure 8 presents results for the same, with a 90%
load factor and a 90% hit rate, over 1 MB and 16 MB HT sizes.
From this figure, we can observe that Cascade Lake maintains
a gain of about 1.5x over Skylake across both SIMD-aware
designs. However, for skewed workloads, 3-way vertical SIMD
can enable visible gains while (2, 4) BCHT performs similar
to its non-SIMD equivalent.

FE Case Study(3): Can we use Vertical SIMD on BCHTs and
Horizontal SIMD on N-way Cuckoo HT?

Now, having restricted vertical SIMD to N-way cuckoo HTs
and horizontal SIMD to BCHTs for the previous case studies,
we now to explore if any hybrid vectorization approaches are
viable. Running horizontal SIMD on N-way cuckoo HT is
equivalent to its non-SIMD version as ‘m=1’. However, we
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can enable vertical SIMD over BCHT by looping over the
‘m’ buckets for selective gathers (only gather those keys that
have not matched). We attempt to contrast the 2-way cuckoo
HT with the (2, 2) BCHT using vertical SIMD, on a node on
Cluster A, for 1 MB HT, and 3-way cuckoo HT with (3, 2)
BCHT with vertical SIMD on a node on Cluster C for 16 MB
HT. From Figure 9, we observe that, while the performance
drops by 1.45x when the no. of slots-per-bucket is increased,
it can still outperform the corresponding non-SIMD designs.
Thus, SimdHT-Bench’s unified benchmark platform enables
us to study various use-case scenarios arising in real-world HT
workloads, and extend them to emerging CPU architectures.

VI. BENCHMARK VALIDATION WITH IN-MEMORY
KEY-VALUE STORE USE-CASE

To validate the applicability of SimdHT-Bench, we present
the following key-value store (KVS) use-case. As discussed in
Section I, we focus on workloads with ‘Multi-Get’ requests,
ie., MGet(K1, K2,..,.Kn), which batches together access to
several key-value pairs, towards parallelizing read operations
across the key-value store server cluster.

A. Accelerating KVS Server with SIMD-Aware HT
As shown in Figure 10, the client-to-server pipeline for an
MGet operation can be broken down into three basic phases:
1) Request Phase: 1In this phase, each key in

MGet(K1,..,Kn) is mapped to a specific Memcached
server using consistent hashing, and requests are
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2)

MGet(K1,K2,...,Kn)

(Server)

[2a] Pre-Processing Phase

[1] Request Phase
(RDMA-IB Sends)

[3] Response Phase
(Batched RDMA-IB Sends)

[2] Server Data Access

[2c] Post-Processing Phase

Fig. 10. State-of-the-Art End-to-End Flow for MGet

batched by their respective servers, with key sizes
between 200B to 12 KB.

Server Data Access Phase: Upon receipt of an ‘MGet’
request batch from the server’s communication engine,
the Memcached workers undertake the following steps:
(1) Pre-Processing: The incoming request of ‘N’ keys
(where ‘N’ <= mget size ‘n’) is parsed to extract
the individual keys. For each key, a corresponding 32-
bit hash value is computed to enable hash table (HT)
lookups (i.e., for probing the HT).

(2) Hash Table Lookup: In this phase, the HT is probed
to locate the payload (e.g., a key-value pair memory
pointer) corresponding to the 32-bit key hash. In this
case, we can potentially leverage CPU-SIMD data par-
allelism to accelerate key lookups. Once probing is
successful, the key-value pair identified is located and
read from backend memory slabs (or data cache), and is
verified against the client-supplied key string to ensure a
full match. These matched key-value pairs are returned
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to the communication engine.
(3) Post-Processing: Once the key-value pairs in the
batch are located at the server’s memory slabs, the
server updates its metadata to maintain cache freshness
(e.g., LRU updates for Memcached), and prepares the
response (containing located ‘value’ data per key or
NOT_FOUND) to be communicated to the client.
Response Phase: In this phase, the responses are com-
municated to the server and processed at the client.
With RDMA-Memcached ‘Get’ protocol, the request/re-
sponse phases batch the key/value data into multiple small
message transfers and communicated to the client using fast
two-sided RDMA SENDs. NOTE: The HT key and payload
data are different from the actual key-value pair data stored
in the server memory, which is typically a variable string of
binary data. The HT is indexed to locate this variable-length
key-value pair object, based on the hash value of the variable-
length key (i.e., hash(key) —>payload —>key-value pair data).

3)

B. Performance Evaluations

Based on the performance studies in Figure 5, we choose to
integrate the following two designs into RDMA-Memcached:
(a) (2,4) BCHT with horizontal SIMD support, i.e., Bucket-
Cuckoo-Hor(AVX-256)+RDMA-Mem, and, (b) 3-way Cuckoo
HT with vertical SIMD support over AVX-512, i.e., Cuckoo-
Ver(AVX-512)+RDMA-Mem to accelerate ‘Multi-Get’ work-
loads. We employ HT key and payload® sizes as 32 bits (4
bytes). However, since the key-value store HT lookups need to
return an object pointer (64-bit), we use the 32-bit HT payload
to index a shared array of object pointers. We contrast this
with RDMA-Memcached running with the CPU-optimized
non-SIMD MemC3 backend [12], [23], [33], that follows a
(2,4) BCHT layout with 8-bit hash keys and 64-bit pointers
to key-value pair objects as the value. For our analysis, we
use two nodes on Cluster B (see Section V), that is equipped
with 28-core Intel Skylake nodes and IB EDR (100 Gbps)
interconnects. We undertake this experiment over an RDMA-
Memcached server running 26 workers with an HT of size 2 M.
We use the “memslap” Multi-Get benchmark [34], configured
with 26 clients threads on the client node. We use 20 B keys
and 32 B values, with different MGet sizes (i.e., N keys per
request = 16 or 64).
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From Figure 11(a), we can observe that the SIMD-aware
‘Hash Table Look-up’ phase gains about 1.45x-2.04x as
compared to the non-SIMD MemC3 design in server-side
throughput and up to 10%-34% in end-to-end MGet latencies.
To get a better perspective, Figure 11(b) presents the server-
side latency breakdown, portraying the three sub-phases of
the server’s data access discussed in Section VI-A. From this
figure, it is evident that the data-parallel SIMD-aware HT
lookups can reduce the server-side processing time per-batch
(‘Server Data Access Phase’) by up to 50%. We note that
the horizontal and vertical approaches do not demonstrate any
noticeable performance differences. Upon further analysis, we
find that this is due to the overhead of the non-SIMD key
matching step in the ‘Hash Table Lookup’ phase.

Thus, towards efficient co-designing, SimdHT-Bench can
help us evaluate the opportunities and applicability of SIMD-
aware HT designs for various application scenarios.

VII. CONCLUSION

In this paper, we present ‘SimdHT-Bench’, a micro-
benchmark suite with a holistic approach to studying the ap-
plicability of CPU SIMD-aware hash table designs for varied
application workloads. We analyze the design dimensions in-
volved in exploiting vectorization-based parallel key searching
over cache-optimized non-SIMD hash tables and study five
different use-case scenarios that evaluate varied data access
patterns involving read-dominated workloads on latest Intel
Skylake and Intel Cascade Lake multi-core CPU nodes. To
validate the applicability of SimdHT-Bench, we extend these
performance studies to design a high-performance SIMD-
aware RDMA-based in-memory key-value store to accelerate
the Memcached ‘Multi-Get’ workload. We demonstrate that
our SIMD-integrated designs can achieve about 2x improve-
ment in server-side Get throughput and 34% gain in end-to-end
Multi-Get latencies over CPU-optimized non-SIMD designs
like MemC3, on an HPC cluster equipped with Intel Skylake
CPUs and InfiniBand EDR interconnects.

In the future, we plan to expand our proposed benchmark
to study and model mixed workloads that involve concurrent
reads and updates to the SIMD-aware hash table. We also plan
to extend SimdHT-Bench to other SIMD-friendly hash table
designs beyond cuckoo hashing.
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