Dynamic Model Based Malicious Collaborator
Detection in Cooperative Tracking

Wang Pi'2, Pengtao Yang!, Dongliang Duan®, Chen Chen', Xiang Cheng!?, and Liuging Yang*
1. State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronics,
School of Electronics Engineering and Computer Science, Peking University, Beijing China
2. Key Laboratory of Wireless Sensor Network & Communication,
Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
3. Department of Electrical and Computer Engineering, University of Wyoming, Laramie, WY, USA
4. Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO, USA.

Abstract—The mobility status of vehicles play a crucial role
in most tasks of Autonomous Vehicles (AVs) and Intelligent
Transportation System (ITS). To operate securely, a precise,
stable and robust mobility tracking system is essential. Compared
with self-tracking that relies only on mobility observations from
on-board sensors (e.g. Global Positioning System (GPS), Inertial
Measurement Unit (IMU) and camera), cooperative tracking
increases the precision and reliability of mobility data greatly by
integrating observations from road side units and nearby vehicles
through V2X communications. Nevertheless, cooperative tracking
can be quite vulnerable if there are malicious collaborators
sending bogus observations in the network. In this paper, we
present a dynamic sequential detection algorithm, dynamic model
based mean state detection (DMMSD), to exclude bogus mobility
data. Simulations validate the effectiveness and robustness of the
proposed algorithm as compared with existing approaches.

I. INTRODUCTION

Autonomous vehicles (AVs) and intelligent transportation
system (ITS) are expected to greatly improve the efficiency
of transportation systems and reduce fatal accidents in the
near future. In the past decade, both industry and academia
have paid increasing attention to many fundamental issues for
AVs and ITS. Among those issues, obtaining precise mobility
status, such as location, velocity and acceleration, of the self
and surrounding vehicles is one of the most essential.

In practice, current prevailing tracking techniques often
rely exclusively on the on-board sensors, such as Global
Positioning System (GPS), Inertial Measurement Unit (IMU)
and Lighting Detection and Ranging (LIDAR) to conduct
single-vehicle independent tracking. In [1], the state-of-the-
art single-vehicle non-cooperative localization techniques are
investigated and summarized. As the authors stated, though
fusing data from on-board sensors could potentially achieve
the required accuracy for autonomous vehicles, the cost of
a single vehicle may be too high. In addition, the perfor-
mance may be compromised in some extreme scenarios. Thus,
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cooperative localization and tracking methods (see e.g. [2]-
[9]) were proposed to utilize off-board information from V2X
communications (see e.g. [10]-[14]) to augment the precision
and reliability. However, those works assume that the mobility
information sent by other collaborators are always trustworthy,
which might not be the case in many scenarios. It is true that
V2X communications authentication and verification protocols
such as those summarized in [15], [16] can prevent unauthen-
ticated and unverified collaborators to inject bogus mobility
data into the cooperative network to some extent. Malicious
collaborators that can bypass those protection protocols may
still exist. Therefore, it is desirable to add an additional level
of defense against malicious collaborators in the cooperative
mobility tracking process so that it could be robust against
bogus mobility data.

Most related work in the literature fall into two categories:
1) mobility data verification; 2) secure localization. Mobility
data verification (see e.g. [17]-[20]) seems to be similar with
the problem of interest, while they differ in terms of main
objective and trust assumptions. The main task of mobility data
verification is to verify other vehicles’ self-claimed mobility
status using its own observations, while the main objective
of cooperative mobility tracking is to enhance the precision
and reliability of the mobility tracking with observations from
cooperating vehicles. In data verification the observations
made by the vehicle itself are assumed to be precise or some
fully trustworthy collaborators are previously identified, while
in cooperative mobility tracking the observations made by the
vehicle itself are highly likely to be quite noisy or totally
unavailable in some scenarios and none of the cooperating
vehicles is fully trustworthy. Thus, the algorithms proposed
for mobility data verification are not suitable for the problem
of interest in this paper.

A more related topic covered in the literature would be the
problem of secure localization in VANET and Wireless Sensor
Network (WSN), which considers how to detect and remove
the bogus data during the cooperative positioning process.

In the survey papers [21], [22], secure localization algo-
rithms are classified into two categories: 1) filtering algo-
rithms and 2) detection algorithms. Filtering algorithms select
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a possible subset of precise observations to form the final
estimate, such as gridding and voting in [23], [24], or use
some robust loss functions in the formulation of the location
estimate to minimize the influences of bogus data, such the
least median square (LMS) proposed in [25] and the minimum
mean absolute error (MMAE) used in [26], [27]. In contrast,
the goal of detection algorithms is to find out all bogus data
and exclude them from the cooperative positioning process.

Early detection algorithms are mostly based on the mini-
mum mean square error (MMSE) consistency check, which
was first proposed in [24] as a part of the attack-resistant
minimum mean square estimation (ARMMSE) algorithm.
However, ARMMSE is sometimes regarded as a filtering
algorithm since it only selects a subset of the benign data.
Cluster-based minimum mean square estimation (CMMSE)
in [28] utilizes the consistency check and extends it to a
true detection algorithm. Recently, hypothesis testing based
detection algorithms, such as generalized likelihood ratio test
(GLRT) and malicious node detection algorithm (MNDC) are
proposed in [29], [30].

However, the algorithms in WSN either work on the single
snap-shot data at a particular time instant (e.g. LMS, AR-
MMSE,CMMSE) or are only applicable to static scenario (e.g.
GLRT, MNDC). This means that previous algorithms aren’t
capable to utilize temporal correlations of the mobility data to
improve the detection accuracy in dynamic cooperative track-
ing scenario. Thus, a dynamic sequential detection algorithm,
Dynamic Model based Malicious Detection (DMMSD), is
proposed in this paper to detect bogus data and corresponding
malicious collaborators in cooperative tracking.

Though some previous works have simply applied detection
approaches used in WSN to VANET and ITS, there is no
existing work that concentrates on malicious collaborator
detection from the point view of dynamic sequential analysis
in the literature. So the major contributions in this paper are:

o We proposed a sequential detection algorithm, namely the
dynamic model based mean state detection (DMMSD),
to identify malicious collaborators more precisely by
utilizing the temporal correlation of mobility data. And
to the best of our knowledge, this is the first time se-
quential malicious user detection algorithm are proposed
in cooperative mobility tracking.

e We proposed a secure cooperative mobility tracking
process to integrate proposed detection algorithm with
existing cooperative tracking algorithms.

The proposed algorithm is tested under the most threatening
attacks, the coordinated trajectory attacks, and compared with
the existing algorithms. Simulations validate the effectiveness
and robustness of the proposed algorithm as compared with
existing approaches.

II. SYSTEM MODEL

In general, the physical motion of a vehicle can be modeled
as a first-order hidden Markov model [31]:

s[j] = £ (slj — 1], ulj], wlj]),

2] = g (sljl, o)) . M

where j is the discrete time index, s is the state of the vehicle
which includes position and velocity, w is the command
process or equivalently the driving input, and w is the state
noise; z is the observations through measurement devices such
as GPS, IMU, LIDAR etc. and v is the measurement noise; f
and g are the state and measurement functions which can be
obtained by the physical laws of the motion and the properties
of the sensing devices, respectively.

We assume that all vehicles in cooperation are equipped
with GPS, IMU, and the integrated sensing system which may
include LIDAR, radar, camera and so on. Each vehicle obtains
its own position estimate from GPS, its own velocity estimate
from IMU and wheel encoders, and the relative position and
velocity with respect to other vehicles through the sensing
system. To develop the mobility tracking algorithm, here we
develop the detailed observation and state transfer model as
follows:

A. System State Transfer Model
For a vehicle V;, we can describe its mobility in a system
state transfer equation [31]:

silj] = Asi[j — 1] + Buywi[j] + wilj], (2)
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x;,y; are the Cartesian coordinates of V;, @;, y; are the velocity
of Vi; F; . and Fj, are the vehicle command process that
provides acceleration, which can be provided by the IMU; w
is the state noise which can be usually modeled as additive
white Gaussian noise (AWGN); At is the discrete time step.

B. Observation Model

The observation at an arbitrary vehicle V is composed of
two parts: 1) the observation of its own mobility status, such
as those provided by GPS and IMU, denoted as zg; 2) the
observation of the relative mobility status between another
vehicle V; and itself, such as those provided by the integrated
sensing system, denoted as z;_, 5. For z,, we have

Zs[j] :Hsss[j]+vs[j] ) (5)
where H  is the measurement matrix and v, is the measure-
ment noise, both of which can be determined by the properties
of the sensing devices. For z;_,,, we have

zi—>s[j] =H; 8 []] + Vis []] ) 6)

where s,_,4[j] = si[j] — ss[j] is the relative state between
vehicles s and . The detailed value of H,_,, and the statistical
property of v,_,, depend on the sensing device and the way
to extract the related information from the raw data. Without
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loss of generality, in this paper we assume that in both cases,
the sensing devices have direct measurement of the state and
the measurement noise is AWGN with known variance.

C. Secure Cooperative Mobility Tracking Process

The cooperative tracking model used here is the integration
of our previous model [7] and the proposed malicious col-
laborator detection algorithm. The vehicle observed by other
vehicles is called the target vehicle and denoted as V and the
collaborators are denoted as V; (i = 1,2,---, N), where N is
the number of vehicles in cooperation. At each time instant, Vp
feeds the received state observations from N vehicles to the
proposed DMMSD algorithm. The current and previous K —1
observations of each vehicle form the observation sequence.
Then DMMSD analyzes the sequence of all collaborators to
detect potential malicious ones. At the same time, current
observations are also sent to N independent Kalman filters
on Vp to generate current state estimates of Vrp. Finally, the
detection results will decide the estimates from which Kalman
filters will be trusted and hence used to form the fused global
state estimate as the mobility tracking result.

D. Threat Model
The threat model adopted here is similar to the threat models

in WSN and VANET. In general, malicious attacks can be
classified into two categories: 1) uncoordinated attacks: there
is no communication among malicious vehicles, and thus the
bogus data from each malicious vehicle are independent; and
2) coordinated attacks: before reporting their own bogus data
to the target vehicle, the malicious vehicles will first confirm
a mutual bogus state that deviates from the true state of V.
Then each vehicle randomly choose a state near the confirmed
mutual state to manufacture its bogus data. In this paper, we
will consider the much more threatening coordinated attacks.
Particularly, if the data reported by malicious vehicles
during the attack can form a plausible state trajectory that
is close to the true state trajectory of Vi, the precision and
stability of the global mobility estimation of Vr could be
greatly degraded. Here, we term it as the trajectory attack.
Combining the two most threatening attack pattern above
together, we can obtain the coordinated trajectory attack:
Zmi [J} = S(m_traj)[j] + 6mz[]]? (.7 € Tm) ) (7)
where © € M and M is the set of identities of malicious
vehicles; zm;[j] is the state observations from the i-th mali-
cious vehicle at discrete time t; = jAt; Ty, = [tstart, tend] 18
the duration of the coordinated trajectory attack; S(m_graj) 1S
the mutual bogus state trajectory confirmed by all malicious
vehicles; independent small noise d,,; is added by each
malicious vehicle to make the spatial distribution of the bogus
data at each time instant not abnormally dense.

III. THE PROPOSED ALGORITHM
Sequential algorithms are also recently proposed to improve
the performance of secure localization in WSN, e.g. previously
mentioned MNDC algorithm. It averages data received over
a period of time to reduce the influence of measurement
noise and increase the accuracy of detection. However, the
static node and fixed position assumption of MNDC makes

it inapplicable in the dynamic cooperative mobility tracking
scenario where all vehicles are moving in most of time.

To address the dynamic property of vehicles and form our
dynamic sequential detection algorithm DMMSD, we rely on
the state transfer function (2) in the dynamic model which
completely describes the theoretical trajectory of the target
vehicle. DMMSD consists of three main steps: 1) prediction
with dynamic model, 2) variance reduction with averaging, 3)
detection with consistency check and clustering.

A. Prediction with Dynamic Model

The predication with dynamic model is motivated by the fact
that acceleration of the target vehicle at each time instant can
be measured by its own on-board IMU precisely and regarded
as trustworthy. Therefore, once we know the mobility state
observation of Vr at a specific time instant, we can predict
the possible observation for any future time with acceleration
measurements and the dynamic model.

For instance, consider any particular cooperating vehicle
V; observing V. In a period of time {t1,to, -t} (tx
is the current time instant). Vi can use state observation
z;1 received from V; at ¢; and acceleration measurements
{a1,a2,---ax_1} from its IMU to predict the observation V;
may send at . We denote this predication as 2;(;_, k). Note
that we write the state observation sent by V; at time ¢; as z;
instead of zp_,;[j] + z;[j] for simplicity. Similarly, other state
predictions {2;2 k), Zi(3— k), Zi(k—K)} can also be ob-
tained from {z;o, 23, - - - 2ix }. Note that 2; x k) = ZiK.

After prediction, state observations from V; at different time
instants are converted into state predictions at the same time
instant, which eliminates the influence of the motion of V1 and
turns the dynamic sequential analysis problem into a static
problem. Therefore, averaging strategy can be subsequently
utilized to process those predictions.

B. Variance Reduction with the Averaging

The core idea of DMMSD is using correlated observation
sequence to reduce the measurement noise and improve the
detection accuracy. Thus, after converting state observations
into state predictions, the second step is to use averaging
strategy on multiple predictions to reduce the measurement
noise. The mean of the state predictions of V;, or equivalently
the mean state, in this period is written as z;x:

_ Zi1sK) T Ziesk) T T ZiK oK)
Zik = )
K
Iteratively, Vr will compute the mean of state predictions of
all cooperating vehicle and store them in the mean state vector
Z = (z21k  Z2k 2NK)T 1 )
which will be analyzed in the third step of detection. Quali-
tatively speaking, the variance of z;x is surely much smaller
than variance of any single prediction Z;(;_, k) or single
observation z;;. However, to determine the optimal sequence
length K that achieves the maximum variance reduction, one
needs to obtain the quantitative relation between the variance
of z;j, the variance of z;x and the sequence length K. The
relation is presented as the following theorem:
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Theorem 1: Considering the accumulative noise brought in
by the prediction, the variance of mean of state predictions
given by a specific cooperating vehicle is approximately:

:<D($K)> 1 <Koi+<m>2azzf_?j2) |

D(z ~
Z)=\ Do) Ko? + (At)202 K01 52

T K2
10)
where D(Zg), D(Ux) are variance of mean position and
velocity predictions, 02, 02 are the variance of single position,
velocity measurement of cooperating vehicle and o2 is the
variance of single acceleration measurement.
Proof 1: See Appendix A.
To get a clear vision of the amount of reduction in variance,
we adopt a practical observation interval At = 0.1s and

assume that 02 = 02 = ¢? and in practice, 02 > o2,
Accordingly
D(g) 1 (600+(K1)(2K1)) (an
o2 600K 600 ’

We can see that D(vx)/o? keeps decreasing as K increases,
while D(Zf)/0? has a minimum value due to accumulative
noise brought by prediction process. Therefore, under the
assumptions above, K = 16 is the optimal sequence length
to minimize D(Zx)/o>.

C. Detection Using the Consistency Check and Clustering

First two steps enlarge the difference among the bogus
and normal observations by reducing the variance of the
observations. However, we are yet to set a criteria to determine
whether there are bogus observations and a tool to separate the
bogus and normal observations. For this task, we propose the
following two-step procedure: 1) Consistency Check: deter-
mine whether there are bogus observations by analyzing the
distribution of the mean states of all cooperative vehicles; and
2) Clustering: if the step above indicates the existence of bogus
data, then we apply a clustering algorithm to classify the mean
states into two clusters.

In the consistency check, the mean square error (MSE)
consistency which was firstly proposed in [24] is adopted.
Its core idea is concisely explained here, while the detailed
derivation can be found in the original paper: since normal
observations are the sum of the true target state and zero-
mean Gaussian noise, MSE of mean state vector Z should
satisfy P{MSE < 72} — 1 if all collaborators are benign and
the normalized threshold 72 is properly selected. However, if
there are bogus observations, the MSE would be very likely
to exceed 72. Thus, the MSE of Z is computed to determine
whether observations from cooperating vehicles are consistent
with each other.

If the consistency check indicates the existence of bogus
data, clustering algorithm will be conducted on Z. If not, all
observations will be regarded as normal. The goal of clustering
is to distinguish normal and bogus mean states, then identify
benign and malicious vehicles, so the number of cluster is
always two. In this case, K-means clustering is a very effective
algorithm and adopted here. However, any other clustering
algorithms are also fully compatible with this framework.

The vehicles in the larger cluster are regarded as benign,
and those in the smaller one are marked as malicious. This
means that, like all other algorithms which assume “No one is
absolutely trustworthy”, DMMSD only handles the scenario
where ratio of malicious users is less than 0.5. The final
result of Consistency Check and Clustering are concluded as
a boolean vector, or equivalently a trust table, which describes
each vehicle as benign or malicious.

I'V. PERFORMANCE EVALUATION

In this section, we evaluate DMMSD by comparing its
performance with popular secure localization algorithms in
WSN. Algorithms selected here include a detection algorithm,
the SeqMMSE, an enhanced sequential version of CMMSE
from [28] and two filtering algorithms, LMS from [25] and the
MMAE used in [26], [27]. Though recently proposed MNDC
algorithm in WSN can achieve high detection accuracy in
static scenario, it’s inherently inapplicable to dynamic scenario
like cooperative tracking, thus, not adopted here.

Since previous and proposed algorithm all process position
and velocity information in the state vector separately, without
loss of generality, in the evaluation we assume bogus obser-
vations only exist in the position information for better result
visualization. The true trajectory of the target vehicle can be
seen as the blue line in Fig 2a, which is a typical lane changing
action. Parameters of our simulation are listed in Table 1.

TABLE I: Simulation Parameters

Simulation Parameters Value
Discrete time step 0.1 [s]
Duration of simulation 20 [s]

Length of sequence for analyzing 16

Malicious deviation 5 [m] in Fig. 1b, 2
3.6-8.4 [m] in Fig. 1a

Number of total collaborators 20

Number of malicious collaborators 8 in Fig. 1,2a
0-9 in Fig. 2b
Variance of single normal observation 9 [m?]

9 [m?] in Fig. 2, 2
3.6-18 [m?] in Fig. 1b

Variance of single bogus observation

In the coordinated trajectory attack, the malicious trajectory
Ym|J] is assumed to be obtained by adding a constant devia-
tion, €,,, to the true trajectory y[j] of the target vehicle in Y
direction, i.e., Ym[j] = yt[j] + €m-

True positive rate (TPR) and false positive rate (FPR) are
essential indicators to evaluate the performance of detection
algorithms. Thus, we firstly compare the TPR and FPR of
SeqMMSE and DMMSD with varying malicious deviation €,
and variance of bogus data o2, in Fig. 1. As we can see,
DMMSD significantly outperform SeqMMSE with better and
more robust TPR and FPR.

To compare DMMSD with filtering algorithms, trajectory
estimates and the root mean square error (RMSE) of esti-
mates are used for evaluation. Trajectory estimates of different
algorithms in Fig. 2a clearly demonstrates that the estimate
of DMMSD is more stable and closer to the ground truth
than LMS and MMAE. The estimate from LMS is not stable
enough and the estimate from MMAE has an observable
deviation in the Y direction due to the malicious attack. The
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advantages of DMMSE are further verified in comparison of
RMSE of estimates when number of malicious vehicles varies.

In Fig. 2b, the RMSE of DMMSD is always lower than that
of LMS and stays much closer to the ground truth until the
ratio of malicious vehicle approaches 0.5 where all algorithm
has a larger increase in RMSE. As compared with MMAE,
DMMSD has substantial advantage in most ratios. Though
it’s noticed that the RMSE of DMMSD is slightly higher
than that of MMAE when the ratio of malicious users is very
low, that is actually a reasonable result caused by balanced
detection nature of DMMSD. A very brief explanation is:
to make DMMSD more generalized and resistant to different
types of attack, it is desirable to make the detection rate more
balanced,i.e., make the TPR slightly smaller than 1 and FPR
slightly larger than 0, instead of pushing one of them to the
best. Therefore, when the ratio of malicious users is low,
few malicious users may be classified as benign and some
benign ones may be regarded as malicious. Consequently,
RMSE of the DMMSD is slightly higher than MMAE. Though
one is able to increase TPR or decrease FPR by fine-tuning
parameters in the Consistency Check step, it often comes
with the price of significant increase in FPR or decrease TPR
according to our test. Thus, to get a balanced performance
in all malicious ratio, a little bit higher RMSE in the low
malicious ratio case is completely acceptable.

Quantitatively, RMSE of DMMSD is at least 11.5% and at
most 25.8% lower than RMSE of LMS. As compared with
MMAE, it’s at most 10% higher in the low malicious ratio,
while it can be 51% lower than MMAE when the malicious
ratio approaches 0.5. Considering the mobility tracking has a
fundamental impact on the safety and reliability of AVs and
ITS, more robust and precise DMMSD is apparently better
candidate for securing the cooperative tracking.

V. CONCLUSIONS

In this paper, we presented a dynamic sequential detection
algorithm termed as DMMSD. Dynamic model based pre-
diction and averaging strategies are introduced to utilize the
temporal correlation of observations to increase the detection
accuracy. Compared with sequential version of classical de-
tection algorithms, DMMSD has much better TPR and FPR
performance. Compared with the filtering algorithms used
in WSN, DMMSD is much more robust under coordinated
trajectory attack. Possible improvements in the future may
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Fig. 2: Performance under coordinated trajectory attacks.

include: 1) the integration of filtering algorithm and DMMSD
by adding an adaptive switching module, which can utilize the
low RMSE advantage of filtering algorithm in low malicious
ratio scenario and robustness of DMMSD in high malicious ra-
tio; and 2) the utilization of the correlation among acceleration,
velocity and position to conduct hierarchical joint detection.

APPENDIX A
PROOF OF THEOREM 1

The four dimensions of s and z are: position and velocity in
X direction, position and velocity in Y direction as introduced
in (3),(5),(6). Without loss of generality, we assume the
motions in X and Y direction are independent, so we only
consider X direction in the following derivations.

Firstly, the variance of single prediction 2(;_,g) from any
particular cooperating vehicle is derived. For simplicity, we
use scalar z,v,a as the position, velocity observation from
cooperating vehicle and acceleration observation from IMU
of V. According to the state transfer function (2) we have:

12)
(13)
Then we can get position and velocity prediction at ¢x from

the observation at t1: K1
(At)2 >
j=1

1
.Tj+1 = CCj + ’UjAt + §aj(At)2
Vi1 = V5 + ajAt

xl—)K =2+ At Z U] (14)

V1 K :vl—i—AtZaj

S J=1 .
Considering that we only have the velocity at ¢;, we need to
write T1_ g as

5)

K—-1j—1

Tl K= x1+Ath1+At ZZak+ (At) Za] (16)
Jj=1k=1

All noises of x, v, a in (15),(16) are assumed to be AWGN with

known variance as mentioned in Section II-B. Use 02,02, o2

to represent their variances. Thus, the variances of 2;_, 5 and
U1k can be derived as:

K—-1 1 K—1
D(#15k) = D(z1) + (At)zD(Z v1) + Z(At)“D( a;)
K— 1]—1]:1 =1
> ax) (17a)
]=1 k=1
K-—1
D(d15x) = D(v1) + (A)?D( Y  aj) (17b)
Jj=1

Authorized licensed use limited to: University of Wyoming Libraries. Downloaded on September 23,2020 at 20:01:16 UTC from IEEE Xplore. Restrictions apply.



With further simplifications,
N 1
D(#1,x) = 02 + (K — 1)*(At)?02 + Z(Az&)‘l(K —1)o?
+HAY 212+ 22 4+ (K —2)?]  (18a)
D(ty k) = 02 + (K — 1)*(At)?0?2 (18b)

A practical observation interval At = 0.1s is used in our
assumption. The variance of the observations of IMU is quite
small and the length of sequence K won’t be larger than 30.
Therefore, the last two terms in (18a) are high-order small
amount and can be neglected. Then the approximation of
D(i1_ k) have the same form as D(?01_ k), SO we can use
state vector to integrate them and simplify the expression.

. (D(@1ok)\ (02 + (K —1)*(At)?0?
D(zlﬁK)(D(@laK) ~ 0_12) + (K— 1)2(At)20'3 (19)
The form of variance of other prediction D(2,_, ) is similar:

: oy + (K —j)*(At)%07
D0~ (31 T vy
Eventually, the variance of the mean of state predictions
D(zZk) can be obtained:
D(z15k) + D(225k) + ... + D(2xK))

(20)

D(zk) = e
1 (Ko + (An2e2(S1 )
T K2 \Ko? + (A0%a2(3 0 52)
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