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Abstract—The mobility status of vehicles play a crucial role
in most tasks of Autonomous Vehicles (AVs) and Intelligent
Transportation System (ITS). To operate securely, a precise,
stable and robust mobility tracking system is essential. Compared
with self-tracking that relies only on mobility observations from
on-board sensors (e.g. Global Positioning System (GPS), Inertial
Measurement Unit (IMU) and camera), cooperative tracking
increases the precision and reliability of mobility data greatly by
integrating observations from road side units and nearby vehicles
through V2X communications. Nevertheless, cooperative tracking
can be quite vulnerable if there are malicious collaborators
sending bogus observations in the network. In this paper, we
present a dynamic sequential detection algorithm, dynamic model
based mean state detection (DMMSD), to exclude bogus mobility
data. Simulations validate the effectiveness and robustness of the
proposed algorithm as compared with existing approaches.

I. INTRODUCTION

Autonomous vehicles (AVs) and intelligent transportation

system (ITS) are expected to greatly improve the efficiency

of transportation systems and reduce fatal accidents in the

near future. In the past decade, both industry and academia

have paid increasing attention to many fundamental issues for

AVs and ITS. Among those issues, obtaining precise mobility

status, such as location, velocity and acceleration, of the self

and surrounding vehicles is one of the most essential.
In practice, current prevailing tracking techniques often

rely exclusively on the on-board sensors, such as Global

Positioning System (GPS), Inertial Measurement Unit (IMU)

and Lighting Detection and Ranging (LIDAR) to conduct

single-vehicle independent tracking. In [1], the state-of-the-

art single-vehicle non-cooperative localization techniques are

investigated and summarized. As the authors stated, though

fusing data from on-board sensors could potentially achieve

the required accuracy for autonomous vehicles, the cost of

a single vehicle may be too high. In addition, the perfor-

mance may be compromised in some extreme scenarios. Thus,
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cooperative localization and tracking methods (see e.g. [2]–

[9]) were proposed to utilize off-board information from V2X

communications (see e.g. [10]–[14]) to augment the precision

and reliability. However, those works assume that the mobility

information sent by other collaborators are always trustworthy,

which might not be the case in many scenarios. It is true that

V2X communications authentication and verification protocols

such as those summarized in [15], [16] can prevent unauthen-

ticated and unverified collaborators to inject bogus mobility

data into the cooperative network to some extent. Malicious

collaborators that can bypass those protection protocols may

still exist. Therefore, it is desirable to add an additional level

of defense against malicious collaborators in the cooperative

mobility tracking process so that it could be robust against

bogus mobility data.

Most related work in the literature fall into two categories:

1) mobility data verification; 2) secure localization. Mobility

data verification (see e.g. [17]–[20]) seems to be similar with

the problem of interest, while they differ in terms of main

objective and trust assumptions. The main task of mobility data

verification is to verify other vehicles’ self-claimed mobility

status using its own observations, while the main objective

of cooperative mobility tracking is to enhance the precision

and reliability of the mobility tracking with observations from

cooperating vehicles. In data verification the observations

made by the vehicle itself are assumed to be precise or some

fully trustworthy collaborators are previously identified, while

in cooperative mobility tracking the observations made by the

vehicle itself are highly likely to be quite noisy or totally

unavailable in some scenarios and none of the cooperating

vehicles is fully trustworthy. Thus, the algorithms proposed

for mobility data verification are not suitable for the problem

of interest in this paper.

A more related topic covered in the literature would be the

problem of secure localization in VANET and Wireless Sensor

Network (WSN), which considers how to detect and remove

the bogus data during the cooperative positioning process.

In the survey papers [21], [22], secure localization algo-

rithms are classified into two categories: 1) filtering algo-

rithms and 2) detection algorithms. Filtering algorithms select
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a possible subset of precise observations to form the final

estimate, such as gridding and voting in [23], [24], or use

some robust loss functions in the formulation of the location

estimate to minimize the influences of bogus data, such the

least median square (LMS) proposed in [25] and the minimum

mean absolute error (MMAE) used in [26], [27]. In contrast,

the goal of detection algorithms is to find out all bogus data

and exclude them from the cooperative positioning process.
Early detection algorithms are mostly based on the mini-

mum mean square error (MMSE) consistency check, which

was first proposed in [24] as a part of the attack-resistant

minimum mean square estimation (ARMMSE) algorithm.

However, ARMMSE is sometimes regarded as a filtering

algorithm since it only selects a subset of the benign data.

Cluster-based minimum mean square estimation (CMMSE)

in [28] utilizes the consistency check and extends it to a

true detection algorithm. Recently, hypothesis testing based

detection algorithms, such as generalized likelihood ratio test

(GLRT) and malicious node detection algorithm (MNDC) are

proposed in [29], [30].
However, the algorithms in WSN either work on the single

snap-shot data at a particular time instant (e.g. LMS, AR-

MMSE,CMMSE) or are only applicable to static scenario (e.g.

GLRT, MNDC). This means that previous algorithms aren’t

capable to utilize temporal correlations of the mobility data to

improve the detection accuracy in dynamic cooperative track-

ing scenario. Thus, a dynamic sequential detection algorithm,

Dynamic Model based Malicious Detection (DMMSD), is

proposed in this paper to detect bogus data and corresponding

malicious collaborators in cooperative tracking.
Though some previous works have simply applied detection

approaches used in WSN to VANET and ITS, there is no

existing work that concentrates on malicious collaborator

detection from the point view of dynamic sequential analysis

in the literature. So the major contributions in this paper are:

• We proposed a sequential detection algorithm, namely the

dynamic model based mean state detection (DMMSD),

to identify malicious collaborators more precisely by

utilizing the temporal correlation of mobility data. And

to the best of our knowledge, this is the first time se-

quential malicious user detection algorithm are proposed

in cooperative mobility tracking.

• We proposed a secure cooperative mobility tracking

process to integrate proposed detection algorithm with

existing cooperative tracking algorithms.

The proposed algorithm is tested under the most threatening

attacks, the coordinated trajectory attacks, and compared with

the existing algorithms. Simulations validate the effectiveness

and robustness of the proposed algorithm as compared with

existing approaches.

II. SYSTEM MODEL

In general, the physical motion of a vehicle can be modeled

as a first-order hidden Markov model [31]:

s[j] = f (s[j − 1],u[j],w[j]) ,

z[j] = g (s[j],v[j]) ,
(1)

where j is the discrete time index, s is the state of the vehicle

which includes position and velocity, u is the command

process or equivalently the driving input, and w is the state

noise; z is the observations through measurement devices such

as GPS, IMU, LIDAR etc. and v is the measurement noise; f
and g are the state and measurement functions which can be

obtained by the physical laws of the motion and the properties

of the sensing devices, respectively.

We assume that all vehicles in cooperation are equipped

with GPS, IMU, and the integrated sensing system which may

include LIDAR, radar, camera and so on. Each vehicle obtains

its own position estimate from GPS, its own velocity estimate

from IMU and wheel encoders, and the relative position and

velocity with respect to other vehicles through the sensing

system. To develop the mobility tracking algorithm, here we

develop the detailed observation and state transfer model as

follows:

A. System State Transfer Model
For a vehicle Vi, we can describe its mobility in a system

state transfer equation [31]:

si[j] = Asi[j − 1] +Buui[j] +wi[j], (2)

where

si =

⎛
⎜⎜⎝
xi

ẋi

yi
ẏi

⎞
⎟⎟⎠ ,ui =

(
Fi,x

Fi,y

)
,wi =

⎛
⎜⎜⎝
wxi

wẋi

wyi

wẏi

⎞
⎟⎟⎠ , (3)

A =

⎛
⎜⎜⎝
1 Δt 0 0
0 1 0 0
0 0 1 Δt
0 0 0 1

⎞
⎟⎟⎠ , Bu =

⎛
⎜⎜⎜⎝

(Δt)2

2 0
Δt 0

0 (Δt)2

2
0 Δt

⎞
⎟⎟⎟⎠ , (4)

xi, yi are the Cartesian coordinates of Vi, ẋi, ẏi are the velocity

of Vi; Fi,x and Fi,y are the vehicle command process that

provides acceleration, which can be provided by the IMU; w
is the state noise which can be usually modeled as additive

white Gaussian noise (AWGN); Δt is the discrete time step.

B. Observation Model
The observation at an arbitrary vehicle Vs is composed of

two parts: 1) the observation of its own mobility status, such

as those provided by GPS and IMU, denoted as zs; 2) the

observation of the relative mobility status between another

vehicle Vi and itself, such as those provided by the integrated

sensing system, denoted as zi→s. For zs, we have

zs[j] = Hsss[j] + vs[j] , (5)

where Hs is the measurement matrix and vs is the measure-

ment noise, both of which can be determined by the properties

of the sensing devices. For zi→s, we have

zi→s[j] = Hi→ssi→s[j] + vi→s[j] , (6)

where si→s[j] = si[j] − ss[j] is the relative state between

vehicles s and i. The detailed value of Hi→s and the statistical

property of vi→s depend on the sensing device and the way

to extract the related information from the raw data. Without
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loss of generality, in this paper we assume that in both cases,

the sensing devices have direct measurement of the state and

the measurement noise is AWGN with known variance.

C. Secure Cooperative Mobility Tracking Process
The cooperative tracking model used here is the integration

of our previous model [7] and the proposed malicious col-

laborator detection algorithm. The vehicle observed by other

vehicles is called the target vehicle and denoted as VT and the

collaborators are denoted as Vi (i = 1, 2, · · · , N), where N is

the number of vehicles in cooperation. At each time instant, VT

feeds the received state observations from N vehicles to the

proposed DMMSD algorithm. The current and previous K−1
observations of each vehicle form the observation sequence.

Then DMMSD analyzes the sequence of all collaborators to

detect potential malicious ones. At the same time, current

observations are also sent to N independent Kalman filters

on VT to generate current state estimates of VT. Finally, the

detection results will decide the estimates from which Kalman

filters will be trusted and hence used to form the fused global

state estimate as the mobility tracking result.
D. Threat Model

The threat model adopted here is similar to the threat models

in WSN and VANET. In general, malicious attacks can be

classified into two categories: 1) uncoordinated attacks: there

is no communication among malicious vehicles, and thus the

bogus data from each malicious vehicle are independent; and

2) coordinated attacks: before reporting their own bogus data

to the target vehicle, the malicious vehicles will first confirm

a mutual bogus state that deviates from the true state of VT.

Then each vehicle randomly choose a state near the confirmed

mutual state to manufacture its bogus data. In this paper, we

will consider the much more threatening coordinated attacks.

Particularly, if the data reported by malicious vehicles

during the attack can form a plausible state trajectory that

is close to the true state trajectory of VT, the precision and

stability of the global mobility estimation of VT could be

greatly degraded. Here, we term it as the trajectory attack.

Combining the two most threatening attack pattern above

together, we can obtain the coordinated trajectory attack:

zmi[j] = s(m traj)[j] + δmi[j], (j ∈ Tm) , (7)

where i ∈ M and M is the set of identities of malicious

vehicles; zmi[j] is the state observations from the i-th mali-

cious vehicle at discrete time tj = jΔt; Tm = [tstart, tend] is

the duration of the coordinated trajectory attack; s(m traj) is

the mutual bogus state trajectory confirmed by all malicious

vehicles; independent small noise δmi is added by each

malicious vehicle to make the spatial distribution of the bogus

data at each time instant not abnormally dense.

III. THE PROPOSED ALGORITHM

Sequential algorithms are also recently proposed to improve

the performance of secure localization in WSN, e.g. previously

mentioned MNDC algorithm. It averages data received over

a period of time to reduce the influence of measurement

noise and increase the accuracy of detection. However, the

static node and fixed position assumption of MNDC makes

it inapplicable in the dynamic cooperative mobility tracking

scenario where all vehicles are moving in most of time.

To address the dynamic property of vehicles and form our

dynamic sequential detection algorithm DMMSD, we rely on

the state transfer function (2) in the dynamic model which

completely describes the theoretical trajectory of the target

vehicle. DMMSD consists of three main steps: 1) prediction

with dynamic model, 2) variance reduction with averaging, 3)

detection with consistency check and clustering.

A. Prediction with Dynamic Model
The predication with dynamic model is motivated by the fact

that acceleration of the target vehicle at each time instant can

be measured by its own on-board IMU precisely and regarded

as trustworthy. Therefore, once we know the mobility state

observation of VT at a specific time instant, we can predict

the possible observation for any future time with acceleration

measurements and the dynamic model.

For instance, consider any particular cooperating vehicle

Vi observing VT. In a period of time {t1, t2, · · · tK} (tK
is the current time instant). VT can use state observation

zi1 received from Vi at t1 and acceleration measurements

{a1, a2, · · · aK−1} from its IMU to predict the observation Vi

may send at tK . We denote this predication as ẑi(1→K). Note

that we write the state observation sent by Vi at time tj as zij

instead of zT→i[j]+zi[j] for simplicity. Similarly, other state

predictions {ẑi(2→K), ẑi(3→K), · · · ẑi(K→K)} can also be ob-

tained from {zi2, zi3, · · · ziK}. Note that ẑi(K→K) = ziK .

After prediction, state observations from Vi at different time

instants are converted into state predictions at the same time

instant, which eliminates the influence of the motion of VT and

turns the dynamic sequential analysis problem into a static

problem. Therefore, averaging strategy can be subsequently

utilized to process those predictions.

B. Variance Reduction with the Averaging
The core idea of DMMSD is using correlated observation

sequence to reduce the measurement noise and improve the

detection accuracy. Thus, after converting state observations

into state predictions, the second step is to use averaging

strategy on multiple predictions to reduce the measurement

noise. The mean of the state predictions of Vi, or equivalently

the mean state, in this period is written as z̄iK :

z̄iK =
ẑi(1→K) + ẑi(2→K) + · · ·+ ẑi(K→K)

K
. (8)

Iteratively, VT will compute the mean of state predictions of

all cooperating vehicle and store them in the mean state vector

Z̄ =
(
z̄1K z̄2K · · · z̄NK

)T
, (9)

which will be analyzed in the third step of detection. Quali-

tatively speaking, the variance of z̄iK is surely much smaller

than variance of any single prediction ẑi(j→K) or single

observation zij . However, to determine the optimal sequence

length K that achieves the maximum variance reduction, one

needs to obtain the quantitative relation between the variance

of zij , the variance of z̄iK and the sequence length K. The

relation is presented as the following theorem:
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Theorem 1: Considering the accumulative noise brought in

by the prediction, the variance of mean of state predictions

given by a specific cooperating vehicle is approximately:

D(z̄K)=

(
D(x̄K)

D(v̄K)

)
≈ 1

K2

(
Kσ2

x + (Δt)2σ2
v

∑K−1
j=1 j2

Kσ2
v + (Δt)2σ2

a

∑K−1
j=1 j2

)
,

(10)

where D(x̄K), D(v̄K) are variance of mean position and

velocity predictions, σ2
x, σ

2
v are the variance of single position,

velocity measurement of cooperating vehicle and σ2
a is the

variance of single acceleration measurement.

Proof 1: See Appendix A.

To get a clear vision of the amount of reduction in variance,

we adopt a practical observation interval Δt = 0.1s and

assume that σ2
x = σ2

v = σ2 and in practice, σ2 � σ2
a.

Accordingly

D(z̄K)

σ2
≈ 1

600K

(
600 + (K − 1)(2K − 1)

600

)
. (11)

We can see that D(v̄K)/σ2 keeps decreasing as K increases,

while D(x̄K)/σ2 has a minimum value due to accumulative

noise brought by prediction process. Therefore, under the

assumptions above, K = 16 is the optimal sequence length

to minimize D(x̄K)/σ2.

C. Detection Using the Consistency Check and Clustering
First two steps enlarge the difference among the bogus

and normal observations by reducing the variance of the

observations. However, we are yet to set a criteria to determine

whether there are bogus observations and a tool to separate the

bogus and normal observations. For this task, we propose the

following two-step procedure: 1) Consistency Check: deter-

mine whether there are bogus observations by analyzing the

distribution of the mean states of all cooperative vehicles; and

2) Clustering: if the step above indicates the existence of bogus

data, then we apply a clustering algorithm to classify the mean

states into two clusters.

In the consistency check, the mean square error (MSE)

consistency which was firstly proposed in [24] is adopted.

Its core idea is concisely explained here, while the detailed

derivation can be found in the original paper: since normal

observations are the sum of the true target state and zero-

mean Gaussian noise, MSE of mean state vector Z̄ should

satisfy P{MSE < τ2} → 1 if all collaborators are benign and

the normalized threshold τ2 is properly selected. However, if

there are bogus observations, the MSE would be very likely

to exceed τ2. Thus, the MSE of Z̄ is computed to determine

whether observations from cooperating vehicles are consistent

with each other.

If the consistency check indicates the existence of bogus

data, clustering algorithm will be conducted on Z̄. If not, all

observations will be regarded as normal. The goal of clustering

is to distinguish normal and bogus mean states, then identify

benign and malicious vehicles, so the number of cluster is

always two. In this case, K-means clustering is a very effective

algorithm and adopted here. However, any other clustering

algorithms are also fully compatible with this framework.

The vehicles in the larger cluster are regarded as benign,

and those in the smaller one are marked as malicious. This

means that, like all other algorithms which assume ”No one is

absolutely trustworthy”, DMMSD only handles the scenario

where ratio of malicious users is less than 0.5. The final

result of Consistency Check and Clustering are concluded as

a boolean vector, or equivalently a trust table, which describes

each vehicle as benign or malicious.

IV. PERFORMANCE EVALUATION

In this section, we evaluate DMMSD by comparing its

performance with popular secure localization algorithms in

WSN. Algorithms selected here include a detection algorithm,

the SeqMMSE, an enhanced sequential version of CMMSE

from [28] and two filtering algorithms, LMS from [25] and the

MMAE used in [26], [27]. Though recently proposed MNDC

algorithm in WSN can achieve high detection accuracy in

static scenario, it’s inherently inapplicable to dynamic scenario

like cooperative tracking, thus, not adopted here.

Since previous and proposed algorithm all process position

and velocity information in the state vector separately, without

loss of generality, in the evaluation we assume bogus obser-

vations only exist in the position information for better result

visualization. The true trajectory of the target vehicle can be

seen as the blue line in Fig 2a, which is a typical lane changing

action. Parameters of our simulation are listed in Table I.

TABLE I: Simulation Parameters
Simulation Parameters Value
Discrete time step 0.1 [s]
Duration of simulation 20 [s]
Length of sequence for analyzing 16
Malicious deviation 5 [m] in Fig. 1b, 2

3.6-8.4 [m] in Fig. 1a
Number of total collaborators 20
Number of malicious collaborators 8 in Fig. 1,2a

0-9 in Fig. 2b
Variance of single normal observation 9 [m2]
Variance of single bogus observation 9 [m2] in Fig. 2, 2

3.6-18 [m2] in Fig. 1b

In the coordinated trajectory attack, the malicious trajectory

ym[j] is assumed to be obtained by adding a constant devia-

tion, εm, to the true trajectory yt[j] of the target vehicle in Y

direction, i.e., ym[j] = yt[j] + εm.

True positive rate (TPR) and false positive rate (FPR) are

essential indicators to evaluate the performance of detection

algorithms. Thus, we firstly compare the TPR and FPR of

SeqMMSE and DMMSD with varying malicious deviation εm
and variance of bogus data σ2

m in Fig. 1. As we can see,

DMMSD significantly outperform SeqMMSE with better and

more robust TPR and FPR.

To compare DMMSD with filtering algorithms, trajectory

estimates and the root mean square error (RMSE) of esti-

mates are used for evaluation. Trajectory estimates of different

algorithms in Fig. 2a clearly demonstrates that the estimate

of DMMSD is more stable and closer to the ground truth

than LMS and MMAE. The estimate from LMS is not stable

enough and the estimate from MMAE has an observable

deviation in the Y direction due to the malicious attack. The
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(a) With varying deviation. (b) With varying variance.

Fig. 1: TPR and FPR under coordinated trajectory attacks.

advantages of DMMSE are further verified in comparison of

RMSE of estimates when number of malicious vehicles varies.

In Fig. 2b, the RMSE of DMMSD is always lower than that

of LMS and stays much closer to the ground truth until the

ratio of malicious vehicle approaches 0.5 where all algorithm

has a larger increase in RMSE. As compared with MMAE,

DMMSD has substantial advantage in most ratios. Though

it’s noticed that the RMSE of DMMSD is slightly higher

than that of MMAE when the ratio of malicious users is very

low, that is actually a reasonable result caused by balanced

detection nature of DMMSD. A very brief explanation is:

to make DMMSD more generalized and resistant to different

types of attack, it is desirable to make the detection rate more

balanced,i.e., make the TPR slightly smaller than 1 and FPR

slightly larger than 0, instead of pushing one of them to the

best. Therefore, when the ratio of malicious users is low,

few malicious users may be classified as benign and some

benign ones may be regarded as malicious. Consequently,

RMSE of the DMMSD is slightly higher than MMAE. Though

one is able to increase TPR or decrease FPR by fine-tuning

parameters in the Consistency Check step, it often comes

with the price of significant increase in FPR or decrease TPR

according to our test. Thus, to get a balanced performance

in all malicious ratio, a little bit higher RMSE in the low

malicious ratio case is completely acceptable.

Quantitatively, RMSE of DMMSD is at least 11.5% and at

most 25.8% lower than RMSE of LMS. As compared with

MMAE, it’s at most 10% higher in the low malicious ratio,

while it can be 51% lower than MMAE when the malicious

ratio approaches 0.5. Considering the mobility tracking has a

fundamental impact on the safety and reliability of AVs and

ITS, more robust and precise DMMSD is apparently better

candidate for securing the cooperative tracking.

V. CONCLUSIONS

In this paper, we presented a dynamic sequential detection

algorithm termed as DMMSD. Dynamic model based pre-

diction and averaging strategies are introduced to utilize the

temporal correlation of observations to increase the detection

accuracy. Compared with sequential version of classical de-

tection algorithms, DMMSD has much better TPR and FPR

performance. Compared with the filtering algorithms used

in WSN, DMMSD is much more robust under coordinated

trajectory attack. Possible improvements in the future may

(a) Trajectory estimates. (b) RMSEs.
Fig. 2: Performance under coordinated trajectory attacks.

include: 1) the integration of filtering algorithm and DMMSD

by adding an adaptive switching module, which can utilize the

low RMSE advantage of filtering algorithm in low malicious

ratio scenario and robustness of DMMSD in high malicious ra-

tio; and 2) the utilization of the correlation among acceleration,

velocity and position to conduct hierarchical joint detection.

APPENDIX A

PROOF OF THEOREM 1
The four dimensions of s and z are: position and velocity in

X direction, position and velocity in Y direction as introduced

in (3),(5),(6). Without loss of generality, we assume the

motions in X and Y direction are independent, so we only

consider X direction in the following derivations.

Firstly, the variance of single prediction ẑ(j→K) from any

particular cooperating vehicle is derived. For simplicity, we

use scalar x, v, a as the position, velocity observation from

cooperating vehicle and acceleration observation from IMU

of VT. According to the state transfer function (2) we have:

xj+1 = xj + vjΔt+
1

2
aj(Δt)2 (12)

vj+1 = vj + ajΔt (13)

Then we can get position and velocity prediction at tK from

the observation at t1:

x̂1→K = x1 +Δt

K−1∑
j=1

vj +
1

2
(Δt)2

K−1∑
j=1

aj (14)

v̂1→K = v1 +Δt

K−1∑
j=1

aj (15)

Considering that we only have the velocity at t1, we need to

write x̂1→K as:

x̂1→K=x1+Δt

K−1∑
j=1

v1+(Δt)2
K−1∑
j=1

j−1∑
k=1

ak+
1

2
(Δt)2

K−1∑
j=1

aj (16)

All noises of x, v, a in (15),(16) are assumed to be AWGN with

known variance as mentioned in Section II-B. Use σ2
x, σ

2
v , σ

2
a

to represent their variances. Thus, the variances of x̂1→K and

v̂1→K can be derived as:

D(x̂1→K) = D(x1) + (Δt)2D(

K−1∑
j=1

v1) +
1

4
(Δt)4D(

K−1∑
j=1

aj)

+(Δt)4D(

K−1∑
j=1

j−1∑
k=1

ak) (17a)

D(v̂1→K) = D(v1) + (Δt)2D(

K−1∑
j=1

aj) (17b)
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With further simplifications,

D(x̂1→K) = σ2
x + (K − 1)2(Δt)2σ2

v +
1

4
(Δt)4(K − 1)σ2

a

+(Δt)4σ2
a[1

2 + 22 + ...+ (K − 2)2] (18a)

D(v̂1→K) = σ2
v + (K − 1)2(Δt)2σ2

a (18b)

A practical observation interval Δt = 0.1s is used in our

assumption. The variance of the observations of IMU is quite

small and the length of sequence K won’t be larger than 30.

Therefore, the last two terms in (18a) are high-order small

amount and can be neglected. Then the approximation of

D(x̂1→K) have the same form as D(v̂1→K), so we can use

state vector to integrate them and simplify the expression.

D(ẑ1→K)=

(
D(x̂1→K)
D(v̂1→K)

)
≈
(
σ2
x + (K − 1)2(Δt)2σ2

v

σ2
v + (K − 1)2(Δt)2σ2

a

)
(19)

The form of variance of other prediction D(ẑj→K) is similar:

D(ẑj→K) ≈
(
σ2
x + (K − j)2(Δt)2σ2

v

σ2
v + (K − j)2(Δt)2σ2

a

)
. (20)

Eventually, the variance of the mean of state predictions

D(z̄K) can be obtained:

D(z̄K) =
D(ẑ1→K) +D(ẑ2→K) + ...+D(ẑK→K))

K2

≈ 1

K2

(
Kσ2

x + (Δt)2σ2
v(
∑K−1

j=1 j2)

Kσ2
v + (Δt)2σ2

a(
∑K−1

j=1 j2)

)
.
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